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Abstract

The single equicorrelation structure among several daily asset returns is promising and at-

tractive to reduce the number of parameters in multivariate stochastic volatility models.

However, such an assumption may not be realistic as the number of assets may increase, for

example, in the portfolio optimizations. As a solution to this oversimplification, the multiple-

block equicorrelation structure is proposed for high dimensional financial time series, where

we assume common correlations within a group of asset returns, but allow different correla-

tions for different groups. The realized volatilities and realized correlations are also jointly

modelled to obtain stable and accurate estimates of parameters, latent variables and lever-

age effects. Using a state space representation, we describe an efficient estimation method of

Markov chain Monte Carlo simulation. Illustrative examples are given using simulated data,

and empirical studies using U.S. daily stock returns data show that our proposed model

outperforms other competing models in portfolio performances.
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1 Introduction

Modeling multivariate volatilities has been one of the most attractive and challenging research

topics in financial econometrics. The stylized facts such as volatility clustering, dynamic cor-

relations and leverage effects in the financial time series have been considered in various

multivariate extensions of the univariate time-varying variance models for generalized au-

toregressive conditional heteroskedasticity (GARCH) models (e.g. Bauwens, Laurent, and

Rombouts (2006)) and stochastic volatility (SV) models (e.g. Asai, McAleer, and Yu (2006),

Chib, Omori, and Asai (2009)).

This paper focuses on the multivariate stochastic volatility (MSV) model with leverage

effect (e.g. Dańıelsson (1998), Asai and McAleer (2006), Asai and McAleer (2009), Chan,

Kohn, and Kirby (2006), Ishihara and Omori (2012), Ishihara, Omori, and Asai (2016), Naka-

jima (2015) and Trojan (2014)) in line with the dynamic equicorrelation stochastic volatility

(DESV) model proposed by Kurose and Omori (2016), where the correlations between asset

returns are assumed to be time-varying and common for all pairs of asset returns. Although

such an equicorrelation assumption is simple and useful, it may be too strong and counter-

intuitive, especially when the number of dependent variables is very large. As a solution

to this oversimplification, a multiple-block DESV model is proposed where we assume com-

mon correlations within a group of asset returns, but allow different correlations for different

groups. Furthermore, the equicorrelation structure is assumed between variables in the i-th

and the j-th groups. That is, we assume the common correlation between one asset re-

turn in the i-th group and another asset return in the j-th group. As discussed in Elton

and Gruber (1973) in their the empirical studies, one should divide observed variables into

traditional (well-known) groups (such as industrial sectors) rather than pseudo (temporary,

randomly determined) groups. Similar multiple-block dynamic equicorrelation structures are

discussed in Engle and Kelly (2012) for GARCH models, while Lucas, Schwaab, and Zhang

(2016) introduce a related multiple-block equicorrelation structure and propose the dynamic

generalized hyperbolic (GH) skew-t-error model for generalized autoregressive score (GAS)

models. On the other hand, for multivariate stochastic volatility models, Asai, Caporin, and

McAleer (2015) propose a simplified block-type parameterization with static correlations.

There are several major difficulties in constructing multivariate volatility models. Firstly,

it is necessary to guarantee that the covariance matrix of the high dimensional asset return
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vector is positive definite, especially when time-varying correlation structure is incorporated.

It would become the computational burden to check the positive definiteness as the number

of asset returns increases. However, in a single block DESV model, such a condition reduces

to a simple inequality, the equicorrelation is greater than −(p− 1)−1 where p is the number

of asset returns (Kurose and Omori (2016)). In a multiple-block DESV model, we show

that it is sufficient to check the positive definiteness of the matrix whose dimension is equal

to the number of blocks (K) instead of the number of asset returns. Since the number of

blocks is much smaller than that of the asset returns (K << p), it is expected to reduce the

computational burden significantly to check the positive definiteness.

Secondly, we usually have too many parameters and latent variables in multivariate time-

varying covariance models, which may result in their unstable estimates. This is partly

because the information from the daily asset returns is not sufficient to identify all of these

parameters and variables. To overcome this difficulty, we need either decrease the number

of parameters and latent variables by simplifying the volatility model, or increase our source

of information by adding more measurement equations. A single-block DESV model, which

assumes the single equicorrelation structure among several daily asset returns, is promising

and attractive to reduce the number of parameters in multivariate stochastic volatility models.

However, such an assumption may not be realistic as the number of assets may increase, which

is often the case in the portfolio optimizations. As a solution to this oversimplification, the

multiple-block equicorrelation structure is proposed for high dimensional financial time series,

where we assume common correlations within a group of asset returns, but allow different

correlations for different groups. At the same time, we also incorporate additional source of

information by jointly modeling the realized volatilities and realized correlations to obtain

stable and accurate estimates of parameters, latent variables and leverage effects.

The realized measures, such as realized volatilities and realized correlations computed

from high-frequency data, recently attracted a great deal of attention in the statistical mod-

eling of latent variances and correlations of daily asset returns. The realized volatility, defined

as the sum of the squared intraday returns over a specified time interval such as a day, is

shown to be a consistent estimator of the latent stochastic variance of the log-price process

as the sampling frequency diverges under the ideal market assumption (e.g., Andersen and

Bollerslev (1998), Barndorff-Nielsen and Shephard (2001)). Further, Barndorff-Nielsen and
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Shephard (2004) defined the realized covariance matrix as the sum of the outer product of

intraday returns over a specified period and showed that it is a consistent estimator of the

quadratic cross-variance of the multivariate log-price process under the ideal market assump-

tion. The high-frequency data, however, has several major problems in the real market,

which causes biases in the realized measures (e.g., Hansen and Lunde (2006) and Ubukata

and Oya (2009)). These are the market microstructure noises such as the presence of bid-ask

spread, discrete trading and price adjustment (e.g., O’Hara (1995) and Hasbrouck (2007))),

non-trading hours (Hansen and Lunde (2005)) and non-synchronous trading for multivariate

assets. Ignoring the overnight hours would underestimate the volatilities, while increasing

sampling frequencies may result in observations with more microstructure noises and under-

estimate the correlation between asset returns (called Epps effect) since any two assets are

rarely traded simultaneously (Epps (1979)).

Thus various realized measures discussed in the past literature can be used as additional

measurement equations in our proposed framework (for the covariance matrices, e.g., Malli-

avin and Mancino (2002), Hayashi and Yoshida (2005), Barndorff-Nielsen, Hansen, Lunde,

and Shephard (2011), Kunitomo and Sato (2013) and Zhang (2011)). Noting that the daily

returns are not heavily affected by those noises above, we consider the simultaneous mod-

elling of the daily returns and the realized measures in line with Takahashi, Watanabe, and

Omori (2009) who proposed such a joint modeling known as realized stochastic volatility

(RSV) model (see also Dobrev and Szerszen (2010), Koopman and Scharth (2013), Zheng

and Song (2014), Takahashi, Watanabe, and Omori (2016)). Hansen, Huang, and Shek (2012)

similarly proposed the realized GARCH models, and these approaches are shown to lead to

the substantial improvement in such as the prediction of volatilities and quantile forecasts

(Watanabe (2012)). The daily returns successfully eliminate those biases in the realized

measures which provide additional information on latent variables and model parameters.

We estimate model parameters and latent variables by Markov chain Monte Carlo (MCMC)

simulation using Bayesian approach since it is difficult to evaluate the likelihood function us-

ing the high-dimensional numerical integration. For sampling latent correlation variables,

we employ the multiple-trial Metropolized independent algorithm to increase the acceptance

rate in Metropolis-Hastings algorithm. For sampling latent log volatility variables, we use a

simple single-move sampler, which draws a single latent variable at a time given the other
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latent variables and the parameters, when our MCMC samples are not highly autocorrelated.

But, when those samples are highly autocorrelated, we also consider the multi-move sampler

which draws a block of latent variables at a time given other blocks and the parameters to

improve the sampling efficiencies.

The rest of this article is organized as follows. In Section 2, we propose the multivariate

realized stochastic volatility model with multiple-block dynamic equicorrelation and cross

leverage effect. Section 3 describes an efficient Bayesian estimation method for the proposed

model. In Section 4, we illustrate our estimation method using simulated data. Section

5 applies our proposed model to the multivariate asset return data and the corresponding

high-frequency data. Section 6 concludes this paper.

2 Multiple-block dynamic equicorrelations with realized mea-
sures, leverage and endogeneity

This section describes the multiple-block dynamic equicorrelation model with realized mea-

sures, leverage and endogeneity. We first introduce the basic multivariate stochastic volatility

model in Section 2.1, and then extend it to consider the multiple-block dynamic correlations

in Section 2.2. Finally, we incorporate the additional measurement equations based on real-

ized measures in Section 2.3 to complete our proposed model.

2.1 Basic multivariate stochastic volatility model

Let yt = (y1t, . . . , ypt)
′, mt = (m1t, . . . ,mpt)

′ and ht = (h1t, . . . , hpt)
′ denote a daily asset re-

turn vector, its mean vector and its corresponding log variance vector at time t (t = 1, . . . , n).

The log variance vector ht is assumed to follow a stationary first order autoregressive pro-

cess with a diagonal coefficient matrix Φ, and, the initial log variance vector h1 is as-

sumed to follow the stationary distribution setting Ψ0 = ΦΨ0Φ + Ψηη or vec(Ψ0) =

(Ip2 − Φ ⊗ Φ)−1vec(Ψηη) where Ip is a p × p unit matrix and vec(A) denotes a vector-

ization of a matrix A. Thus we define a basic multivariate SV model:

yt = mt +V
1/2
t ϵt, ϵt ∼ Np(0p,Rt), t = 1, ..., n, (1)

ht+1 = µ+Φ(ht − µ) + ηt, ηt ∼ Np(0p,Ψηη), t = 1, ..., n− 1, (2)

mt+1 = mt + vt, vt ∼ Np(0p,Ωm), t = 1, ..., n− 1, (3)

h1 ∼ Np(µ,Ψ0), m1 ∼ Np(0p, κIp), (4)
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where Np(µ,Ψ0) denotes a p-variate normal distribution with mean µ and covariance matrix

Ψ0, 0p is a p-dimensional zero vector, Rt is a correlation matrix at time t, and

Vt = diag{exp(h1t), . . . , exp(hpt)}, t = 1, . . . , n, (5)

Φ = diag(ϕ1, . . . , ϕp), Ωm = diag(ω2
m1

, . . . , ω2
mp

), (6)

For simplicity, the elements of the mean process mt, are assumed to follow independent

random walk processes with their initial variances are set to some large constant κ.

2.2 Multiple-block dynamic equicorrelations

Suppose that we are able to divide yt into K blocks (or groups) so that there are pk elements

in k-th block for k = 1, . . . ,K (
∑K

k=1 pk = p). We assume the equicorrelation structure within

and between blocks. That is, the correlation coefficient between two asset returns within the

k-th block is common, ρkk,t, and the correlation coefficient between one asset return in the

k-th block and another asset return in the l-th block is also common, ρkl,t:

Rt =

R11,t · · · R1K,t
...

. . .
...

RK1,t · · · RKK,t

 , Rkl,t =

{
(1− ρkk,t)Ipk + ρkk,t1pk1

′
pk
, k = l,

ρkl,t1pk1
′
pl
, k ̸= l,

(7)

for t = 1, . . . , n, where 1p denotes a p × 1 vector with all elements equal to one. Then we

consider the transformation of ρkl,t

gkl,t = log(1 + ρkl,t)− log(1− ρkl,t), k, l = 1, . . . ,K, (l < k). (8)

Further we assume that gt = (g11,t, . . . , gK1,t, g22,t, . . . , gK2,t, . . . , gKK,t)
′ follows a stationary

autoregressive process with a diagonal coefficient matrix Θ = diag(θ1, . . . , θq) where q =

K(K + 1)/2 and θj corresponds to the j-th element of gt:

gt+1 = γ +Θ(gt − γ) + ζt, ζt ∼ Nq(0q,Σ), (9)

g1 ∼ Nq(0q,Σ0), vec(Σ0) = (Iq2 −Θ⊗Θ)−1vec(Σ). (10)

We note that gt’s are subject to the condition that the correlation matrix Rt is positive

definite, which is given in Proposition 11.

Remark 1. If pk = 1, then ρkk is not identified. Then we remove gkk,t from gt and set

q − 1 → q.
1If K = 1, Rt is an equicorrelation matrix and is positive definite if and only if −(pk − 1)−1 < ρkk,t < 1.
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Proposition 1 (Positive definiteness of Rt). Multiple-block equicorrelation matrix Rt de-

fined in (7) is positive definite if all eigenvalues of Ãt + B̃tP are positive where

Ãt = diag(1− ρ11,t, . . . , 1− ρKK,t), B̃t =

 ρ11,t · · · ρ1K,t
...

. . .
...

ρK1,t · · · ρKK,t

 ,

P = diag(p1, . . . , pK), |ρkl| < 1, k, l = 1, . . . ,K.

Proof: Define the p× p matrix C as

C =


1p1 0 · · · 0

0 1p2
. . .

...
...

. . .
. . . 0

0 · · · 0 1pK

 .

Then Rt = At +Bt, where

At = diag
{
(1− ρ11,t)1

′
p1 , · · · , (1− ρKK,t)1

′
pK

}
,

Bt =

 ρ11,t1p11
′
p1 · · · ρ1K,t1p11

′
pK

...
. . .

...
ρK1,t1pK1

′
p1 · · · ρKK,t1pK1

′
pK

 = CB̃tC
′.

The determinant of Rt is given by

|Rt| = |At +Bt| = |At| × |Ip +A−1
t CB̃tC

′| = |At| × |IK + B̃tC
′A−1

t C|

=

K∏
k=1

(1− ρkk,t)
pk × |IK + B̃tPÃ−1

t |

=

K∏
k=1

(1− ρkk,t)
pk−1 × |Ãt + B̃tP|,

and the result follows. □

2.3 Realized volatilities and realized correlations

Let RVit and RCorij,t denote the realized volatility of the i-th asset and the realized corre-

lation between the i-th and j-th asset returns at time t, and let xit ≡ logRVit and let x∗kl,t

denote the sample mean of log{(1 +RCorij,t)/(1−RCorij,t)} where the i-th and j-th asset

returns belong to the k-th and l-th blocks, respectively. Further, we let xt = (x1t, . . . , xpt)
′
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and x∗
t = (x∗11,t, . . . , x

∗
K1,t, x

∗
22,t . . . , x

∗
K2,t, . . . , x

∗
KK,t)

′. We incorporate the additional mea-

surement equations based on realized measures as follows:

xit = ξi + hit + wit, wit ∼ N(0, δ2i ),

x∗kl,t = ξkl + gkl,t + w∗
kl,t, w∗

kl,t ∼ N(0, δ∗2kl ),

for i = 1, . . . , p and k, l = 1, . . . ,K, (l < k). We set

xt = ξ + ht +wt, wt ∼ Np (0p,Ψww) , (11)

x∗
t = ξ∗ + gt +w∗

t , w∗
t ∼ Nq(0q,∆

∗), ∆∗ = diag(δ∗)2, (12)

where

ξ = (ξ1, . . . , ξp)
′, ξ∗ = (ξ∗1 , . . . , ξ

∗
q )

′, δ = (δ1, . . . , δp)
′, δ∗ = (δ∗1 , . . . , δ

∗
q )

′,

and ξ∗i , δ
∗
j are relabelled to represent the i-th element of ξ∗ and j-th element of δ∗.

We can consider the correlation between wit and wjt by using non-diagonal covariance

matrix Ψww and further will take account of the correlation among wit, ϵjt and ηkt to

describe the endogeneity as discussed in Koopman and Scharth (2013). On the other hand,

since x∗ij,t’s are subject to relatively large measurement noises in empirical studies, we assume

no correlation between w∗
ij,t’s for simplicity.

Bias correction in realized measures. We note that ξ and ξ∗ are adjustment vectors to correct

the biases for the realized volatilities and correlations. The positive element of ξ indicates

that the realized measure of the variance has an upward bias due to, for example, the market

microstructure noise, while the negative elements indicates that it has a downward bias due

to such as the existence of non-trading hours. Further, the non-zero element of ξ∗ would be

caused by the market microstructure noise or the non-synchronous trading effect.

Finally, we consider correlations between zt ≡
(
(R

−1/2
t ϵt)

′,w′
t,η

′
t

)′
to incorporate the

leverage effect and endogeneity as we shall discuss below:

zt =

(
z1t
z2t

)
∼ N3p

(
03p,Ψ

)
, Ψ =

(
Ip Ψ12

Ψ21 Ψ22

)
, (13)

where

z1t = R
− 1

2
t ϵt(≡ εt), z2t =

(
wt

ηt

)
, (14)

Ψ12 = Cov(z1t, z2t) = (Ψεw,Ψεη), Ψ22 = Var(z2t) =

(
Ψww Ψwη

Ψηw Ψηη

)
. (15)
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Leverage effect and endogeneity. We consider correlations among the error terms for the

measurement equation of the daily asset return (through εt = R
−1/2
t ϵt), the measurement

equation of the realized measure of the variance (wt) and the state equation of the log

variance (ηt). First, we extend the univariate SV model with leverage by incorporating the

correlation between εt and ηt (see, e.g., Kurose and Omori (2016)). Second, there may exist

some dependence between the daily return and the realized measure since they are functions

of intraday returns with market microstructure noises, discretizations and jumps (see Peters

and de Vilder (2006), Koopman and Scharth (2013) and Chaussé and Xu (2016)). Thus,

based on the literature that addresses such an endogeneity between the realized measure of

the variance and the asset return, we consider correlations between wt and εt. Further, we

also take account of the correlation between wt and ηt. On the other hand, we assume that

there is no correlation between w∗
t and the other error terms to avoid overparameterization

leading to unstable parameter estimates.

The above equations (1)-(15) define the multiple-block dynamic equicorrelation stochastic

volatility model with realized measures, leverage and endogeneity (multiple-block RDESV-

LE).

3 Markov chain Monte Carlo estimation

3.1 Prior distributions and joint posterior density

For prior distributions of ϑ = (µ,γ, ξ, ξ∗,∆∗,Φ,Θ,Ψ,Σ,Ωm), we assume

µ ∼ Np(mµ0,Sµ0), γ ∼ Nq(mγ0,Sγ0), (16)

ξ ∼ Np(mξ0,Sξ0), ξ∗ ∼ Nq(mξ∗0,Sξ∗0), δ∗2j ∼ IG(α∗
δj0

/2, β∗
δj0

/2), (17)

(ϕi + 1)/2 ∼ Be(aϕi
, bϕi

), (θj + 1)/2 ∼ Be(aθj , bθj ), (18)

Σ ∼ IWq(nΣ0,SΣ0), ω2
mi

∼ IG(αωmi0
/2, βωmi0

/2), (19)

for i = 1, . . . , p, j = 1, . . . , q, where Be(a, b) denotes a beta distribution with parameters a, b,

IG(α, β) denotes an inverse gamma distribution with shape parameter α and rate parameter

β and IW(n,S) denotes an inverse Wishart distribution with parameters (n,S).

For Ψ, we consider the prior distribution of the inverse matrix Ψ−1 as follows. It is easy
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to show that

Ψ−1 =

(
Ψ11 Ψ12

Ψ21 Ψ22

)
, Ψ11 = Ip +Ψ12(Ψ22)−1Ψ21,

where Ψ12 = Ψ21′ and Ψ22 are the p×2p and 2p×2p matrices, respectively. Thus we assume

Ψ22 ∼ W2p(n0,S0), (20)

vec(Ψ21)|Ψ22 ∼ N2p2
(
vec(Ψ22∆0),Λ0 ⊗Ψ22

)
, (21)

where W(n,S) denotes a Wishart distribution with parameters (n,S). Let π(ϑ) denote the

prior probability density function of ϑ. Then, the joint posterior density function is

π(ϑ, {ht}nt=1, {gt}nt=1, {mt}nt=1|{yt}nt=1, {xt}nt=1, {x∗
t }nt=1)

∝ π(ϑ)× |Ψ|−
n−1
2 exp

( n−1∑
t=1

lt −
1

2

n−1∑
t=1

z′
2tΨ

−1
22 z2t

)
× |Ip −ΨεwΨ

−1
wwΨwε|−

1
2 |Ψww|−

1
2 exp

{
ln − 1

2
z′
2nΨ

−1
wwz2n

}
× |∆∗|−

n
2 exp

{
− 1

2

n∑
t=1

(x∗
t − ξ∗ − gt)

′∆∗−1(x∗
t − ξ∗ − gt)

}

× |Σ|−
n−1
2 exp

[
− 1

2

n−1∑
t=1

{gt+1 − γ −Θ(gt − γ)}′Σ−1{gt+1 − γ −Θ(gt − γ)}
]

× |Ψ0|−
1
2 |Σ0|−

1
2 exp

[
− 1

2

{
(h1 − µ)′Ψ−1

0 (h1 − µ) + (g1 − γ)′Σ−1
0 (g1 − γ)

}]
× |Ωm|−

n−1
2 exp

{
− 1

2κ
m′

1m1 −
1

2

n−1∑
t=1

(mt+1 −mt)
′Ω−1

m (mt+1 −mt)

}
, (22)

where, for t = 1, . . . , n− 1,

lt = −1

2

(
z1t −Ψ12Ψ

−1
22 z2t

)′
(Ip −Ψ12Ψ

−1
22 Ψ21)

−1
(
z1t −Ψ12Ψ

−1
22 z2t

)
− 1

2
log |Rt| −

1

2

p∑
i=1

hit,

z1t = εt = R
− 1

2
t V

− 1
2

t (yt −mt), z2t =

(
xt − ξ − ht

ht+1 − µ− Φ(ht − µ)

)
,

and, for t = n,

ln = −1

2

(
z1n −ΨεwΨ

−1
wwz2n

)′
(Ip −ΨεwΨ

−1
wwΨwε)

−1
(
z1n −ΨεwΨ

−1
wwz2n

)
− 1

2
log |Rn| −

1

2

p∑
i=1

hin,

z1n = εn = R
− 1

2
n V

− 1
2

n (yn −mn), z2n = xn − ξ − hn.
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We implement the MCMC algorithm in six blocks:

1. Initialize {ht}nt=1, {gt}nt=1, {mt}nt=1,ϑ.

2. Generate ϑ|{yt}nt=1, {xt}nt=1, {x∗
t }nt=1, {ht}nt=1, {gt}nt=1, {mt}nt=1.

3. Generate {ht}nt=1|{yt}nt=1, {xt}nt=1, {gt}nt=1, {mt}nt=1,ϑ.

4. Generate {gt}nt=1|{yt}nt=1, {xt}nt=1, {x∗
t }nt=1, {ht}nt=1, {mt}nt=1,ϑ.

5. Generate {mt}nt=1|{yt}nt=1, {xt}nt=1, {ht}nt=1, {gt}nt=1,ϑ.

6. Go to 2.

3.2 Spectral decomposition of Rt

As shown in the previous subsection, we need to evaluate R
−1/2
t in the posterior probability

density. This subsection describes the spectral decomposition of Rt to compute R
−1/2
t , where

the eigenvalues and eigenvectors are given in the following proposition.

Proposition 2 (Eigenvalues and eigenvectors of Rt). Let λkt = 1−ρkk,t (k = 1, . . . ,K), and

further let λ∗
kt and ukt = (u1k,t, . . . , uKk,t)

′ (k = 1, . . . ,K) denote eigenvalues and eigenvectors

of the matrix Ãt + B̃tP. Then λkt’s and λ∗
kt’s are eigenvalues of Rt where λkt is a repeated

eigenvalue of multiplicity pk − 1. The orthonormal eigenvectors corresponding to λkt are

ekm =

 0∑k−1
j=1 pj

akm

0∑K
j=k+1 pj

 , where akm =
1√

(pk −m)(pk −m+ 1)

 0m−1

pk −m
−1pk−m

 ,

for m = 1, . . . , pk − 1, and k = 1, . . . ,K. The eigenvector corresponding to λ∗
kt is

e∗kt =
1√∑K

j=1 u
2
jk,tpj

 u1k,t1p1
...

uKk,t1pK

 , k = 1, . . . ,K,

and orthonormal if λ∗
kt’s are distinct eigenvalues.

Proof: Since the determinant of the correlation matrix Rt is

|Rt| =

K∏
k=1

(1− ρkk,t)
pk−1 × |Ãt + B̃tP|,

10



λkt = 1−ρkk,t and λ∗
kt (k = 1, . . . ,K) are eigenvalues of Rt where λkt is a repeated eigenvalue

of multiplicity pk − 1. Noting that

{
(1− ρkk,t)Ipk + ρkk,t1pk1

′
pk

}
akm = (1− ρkk,t)akm,

ρjk,t1pj1
′
pk
akm = 0pj , j ̸= k,

we obtain

Rtekm = λktekm, m = 1, . . . , pk − 1,

for k = 1, . . . ,K. Similarly, since{
(1− ρjj,t)Ipj + ρjj,t1pj1

′
pj

}
(ujk,t1pj ) = {1 + (pj − 1)ρjj,t}ujk,t1pj ,

ρjm,t1pj1
′
pm(umk,t1pm) = (pmρjm,t)umk,t1pj , j ̸= m,

and ∑
m̸=j

(pmρjm,t)umk,t + {1 + (pj − 1)ρjj,t}ujk,t = λ∗
ktujk,t, j = 1, . . . ,K,

we obtain

Rte
∗
kt = λ∗

kte
∗
kt, k = 1, . . . ,K,

for k = 1, . . . ,K. Finally, it is easy to see that

e′jmekn = 0, (m ̸= n or j ̸= k), e′jme∗kt = 0,

and that e∗′jte
∗
kt = 0 if λ∗

jt ̸= λ∗
kt since Rt is symmetric. □

Using Proposition 2, we set

Rt =

K∑
k=1

{
λ∗
kte

∗
kte

∗′
kt + λkt

(
pk−1∑
m=1

ekme′km

)}
, (23)

R
−1/2
t = diag(λ∗

1t, . . . , λ
∗
Kt, λ1t1

′
p1−1, λ2t1

′
p2−1, . . . , λKt1

′
pK−1)

−1/2

× [e∗1t, . . . , e
∗
Kt, e11, . . . , e1,p1−1, e21 . . . , e2,p2−1, . . . , eK,pK−1]

′ , (24)

where λ∗
1t ≥ · · · ≥ λ∗

Kt > 0. If λ∗
kt is a repeated eigenvalue, then we orthogonalize the

corresponding eigenvectors. Further, we set the first element of the eigenvector to be positive

for identification purpose only.
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Remark 2. Alternatively, the Cholesky decomposition may be used to compute R
−1/2
t . In

our proposed equicorrelations model, we consider the groups of asset returns which may be

highly correlated with each other and, in such a case, some eigenvalues could be very close to

zero where Cholesky decompositions may become unstable. Thus, we use the spectral decom-

position where most eigenvalues and eigenvectors are obtained analytically as in Proposition

2.

Remark 3. When there is no leverage effect (Ψ12 = O and Ψεw = O), Proposition 3 (see

Appendix A) derives the inverse matrix of Rt to reduce the computational burden.

3.3 Generation of {ht}nt=1

A simple sampling method for {ht}nt=1, which we use is a single-move sampler that draws a

single latent variable ht at a time given the other ht’s and the parameters using Metropolis-

Hastings (MH) algorithm. To construct a proposal density for ht, we consider the following

Taylor expansion around xit − ξi,

exp

(
−hit

2

)
≈ exp

(
−xit − ξi

2

)
− 1

2
exp

(
−xit − ξi

2

)
{hit − (xit − ξi)},

and obtain

z1t = R
− 1

2
t V

− 1
2

t (yt −mt) ≈ z̃1t = R
− 1

2
t (ỹt − Ftht),

where

Ft =
1

2
diag

(
(y1t −m1t) exp

(
−x1t − ξ1

2

)
, . . . , (ypt −mpt) exp

(
−xpt − ξp

2

))
, (25)

ỹt = 2Ft

(
1p +

xt − ξ

2

)
. (26)

Let z̃t = (z̃′
1t, z

′
2t)

′. Then the conditional posterior density of ht is

π(ht|·) ∝ exp

{
− 1

2

(
z′
tΨ

−1zt + 1′pht + z′
t−1Ψ

−1zt−1

)}
≈ exp

{
− 1

2

(
z̃′
tΨ

−1z̃t + 1′pht + z′
t−1Ψ

−1zt−1

)}
∝ exp

{
− 1

2
(ht −mht)

′S−1
ht (ht −mht)

}
, (27)

where

mht = mht,1 +mht,2, S−1
ht = S−1

ht,1 + S−1
ht,2, (28)

12



and

S−1
ht,1 =

 R
−1/2
t Ft

Ip
Φ

′

Ψ−1

 R
−1/2
t Ft

Ip
Φ

 ,

Sht,2 = Ψηη −
(
Ψηε Ψηw

)( Ip Ψεw

Ψwε Ψww

)−1(
Ψεη

Ψwη

)
,

mht,1 = Sht

−1

2
1p +

(
F′
tR

−1/2′
t Ip Φ

)
Ψ−1

 R
−1/2
t ỹt

xt − ξ
ht+1 − (Ip −Φ)µ

 ,

mht,2 = ShtS
−1
ht,2

×

{
µ+Φ(ht−1 − µ) +

(
Ψηε Ψηw

)( Ip Ψεw

Ψwε Ψww

)−1(
z1,t−1

xt−1 − ξ − ht−1

)}
.

Define k(ht) = −1
2(z

′
tΨ

−1zt − z̃′
tΨ

−1z̃t). We propose a candidate h†
t ∼ Np(mht,Sht), and

accept it with probability min[1, exp{k(h†
t)− k(ht)}].

Remark 4. If the above single-move sampler produces the highly autocorrelated MCMC

samples, we use more efficient multi-move sampler as discussed in Appendix C.2.

Remark 5. We note that there might be alternative efficient proposals based on efficient

importance sampling (Richard and Zhang (2007) or particle Gibbs (Andrieu, Doucet, and

Holenstein (2010)). The investigation of the performance of those samplers is left for the

future work.

3.4 Generation of {gt}nt=1

We consider a single-move sampler for sampling gt where we sample gt one at a time given

other parameters and latent variables. For t = 1, . . . , n, the conditional posterior density of

gt is

π(gt|·) ∝ exp(lt)× exp

{
− 1

2
(gt −mgt)

′S−1
gt (gt −mgt)

}
,

where

Sgt = {Σ−1 +ΘΣ−1Θ+∆∗−1}−1, (29)

mgt = Sgt[ΘΣ−1{gt+1 − (Iq −Θ)γ}+Σ−1{γ +Θ(gt−1 − γ)}+∆∗−1(x∗
t − ξ∗)]. (30)

13



Given other parameters and latent variables, we generate a candidate from a truncated

normal distribution, g†
t ∼ TN{R†

t>0}(mgt,Sgt), where we guarantee the positive definiteness

of the proposed correlation matrix R†
t , i.e., R

†
t > 0. Let lt and l†t denote the conditional log

likelihood in Section 3.1 evaluated at the current sample gt and the candidate g†
t respectively.

Then we accept it with probability min{1, exp(l†t − lt)}.

Remark 6. As we shall see in empirical studies, the realized correlations may be subject to

measurement errors with relatively large variances. It may be difficult to propose a good

candidate in such a case, and the following multiple-trial Metropolized independent sampler

would improve the acceptance rate in the MH algorithm (See Liu, Liang, and Wong (2000)

and Liu (2001)).

Multiple-Trial Metropolized Independent Sampler:

1. Generate a trial set of i.i.d. samples g
(k)
t ∼ TN{R(k)

t >0}(mgt,Sgt), k = 1, . . . ,KMT.

2. Compute w(g
(k)
t ) = exp(l

(k)
t ) where l

(k)
t is lt evaluated at gt = g

(k)
t .

3. Draw g†
t from the trial set with probability proportional to w(g

(k)
t ).

4. Accept g†
t with probability

min

{
1,

∑KMT
k=1 w(g

(k)
t )

w(gt) +
∑KMT

k=1 w(g
(k)
t )− w(g†

t )

}
.

3.5 Generation of {mt}nt=1

Define ŷt and Σ̂t as

ŷt ≡

{
yt −V

1/2
t R

1/2
t Ψ12Ψ

−1
22 z2t, t = 1, . . . , n− 1,

yn −V
1/2
n R

1/2
n ΨεwΨ

−1
wwz2n, t = n,

Σ̂t ≡

{
V

1/2
t R

1/2
t (Ip −Ψ12Ψ

−1
22 Ψ21)R

1/2′
t V

1/2
t , t = 1, . . . , n− 1,

V
1/2
n R

1/2
n (Ip −ΨεwΨ

−1
wwΨwε)R

1/2′
n V

1/2
n , t = n.

Then it can be shown that the conditional posterior distribution of {mt}mt=1 is the same as

that of the following linear Gaussian state space model:

ŷt = mt + ϵ̂t, ϵ̂t ∼ Np(0p, Σ̂t), t = 1, . . . , n,

mt+1 = mt + vt, vt ∼ Np(0p,Ωm), t = 1, . . . , n− 1,

m1 ∼ Np(0p, κIp).

14



Thus we generate all {mt}nt=1 at a time using a simulation smoother (de Jong and Shephard

(1995) or Durbin and Koopman (2002)).

3.6 Generation of Ψ

First define

Ξ =

(
Ξ11 Ξ12

Ξ21 Ξ22

)
=

( ∑n−1
t=1 z1tz

′
1t

∑n−1
t=1 z1tz

′
2t∑n−1

t=1 z2tz
′
1t

∑n−1
t=1 z2tz

′
2t

)
,

g(Ψ) = |Ψ0|−1/2 exp

{
− 1

2
(h1 − µ)′Ψ−1

0 (h1 − µ)

}
×|Ip −ΨεwΨ

−1
wwΨwε|−

1
2 |Ψww|−

1
2 exp

{
ln − 1

2
z′
2nΨ

−1
wwz2n

}
.

Then it can be shown that the conditional posterior density of Ψ12 and Ψ22 is

π(Ψ12,Ψ22|·)

∝ g(Ψ)× |Ψ|−
n−1
2 exp

{
−1

2

n−1∑
t=1

z′
tΨ

−1zt

}
× |Ψ22|

n0−2p−1
2 exp

{
−1

2
tr(S−1

0 Ψ22)

}
×|Ψ22|−

p
2 exp

{
−1

2
vec(Ψ21 −Ψ22∆0)

′ (Λ−1
0 ⊗Ψ22−1

)
vec(Ψ21 −Ψ22∆0)

}
∝ g(Ψ)× |Ψ22|

n1−2p−1
2 exp

{
− 1

2
tr(S−1

1 Ψ22)

}
×|Ψ22|−

p
2 exp

[
− 1

2
{vec(Ψ21 −Ψ22∆1)}′(Λ1 ⊗Ψ22)−1vec(Ψ21 −Ψ22∆1)

]
,

where

n1 = n0 + n− 1, S1 = (S−1
0 +Ξ22 +∆0Λ

−1
0 ∆′

0 −∆1Λ
−1
1 ∆′

1)
−1,

Λ1 = (Λ−1
0 +Ξ11)

−1, ∆1 = (−Ξ21 +∆0Λ
−1
0 )Λ1,

using tr(AB) = vec(A′)′vec(B) and vec(AXB) = (B′ ⊗A)vec(X), for X(n× n), A(m× n)

and B(n × m) (see, e.g., Gupta and Nagar (2000), Ishihara, Omori, and Asai (2016)). We

generate a candidate Ψ† in three steps:

1. Generate Ψ22† ∼ W(n1,S1).

2. Generate vec(Ψ21†)|Ψ22† ∼ N2p2(vec(Ψ
22†∆1),Λ1 ⊗Ψ22†).

3. Compute Ψ†
21 = −Ψ22†−1Ψ21†, Ψ†

22 = Ψ22†−1 + Ψ†
21Ψ

†′
21 and accept Ψ† with proba-

bility min[1, g(Ψ†)/g(Ψ)].
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4 Simulation study

This section gives illustrative examples using simulated data for our proposed model. We

focus on three-block cases (K = 3) and use the following true parameters (with the subscript

‡) that are based on our empirical studies in Section 5 to generate 2,500 observations (n =

2500).

µ‡ = ξ‡ = 0p, ξ∗‡ = 0q, γ‡ = (1.9, 0.5, 0.5, 1.9, 0.5, 1.9)′,

Φ‡ = 0.97Ip, Θ‡ = 0.97Iq, Ωm‡ = 0.001Ip, ∆∗
‡ = 0.1Iq, Σ‡ = 0.01Iq,

Ψww‡ = 0.07Ip + 0.031p1
′
p, Ψηη‡ = 0.02Ip + 0.041p1

′
p, Ψηw‡ = Op×p,

Ψwε‡ = Ψηε‡ =
(
−0.11p, 0.051p, −0.051p, Op×(p−3)

)
.

For prior distributions, we assume

µ ∼ Np(µ‡, 100Ip), ξ ∼ Np(ξ‡, 100Ip), ξ∗ ∼ Nq(ξ
∗
‡ , 100Iq), γ ∼ Nq(γ‡, 100Iq),

ϕi + 1

2
∼ Be(20, 1.5),

θj + 1

2
∼ Be(20, 1.5), ω2

mi0 ∼ IG(5, 3ω2
mi‡), δ∗2j ∼ IG(10−4, 10−4),

Σ ∼ IWq(1,Σ
−1
‡ ), Ψ22 ∼ W2p(2p, (2pΨ22‡)

−1), vec(Ψ21)|Ψ22 ∼ N2p2(02p2 , 10Ip ⊗Ψ22),

for i = 1, . . . , p, j = 1, . . . , q and set κ = 10 for the initial distribution of m1.

4.1 Example 1: Endogeneity and leverage

As the first example, we consider the case p = 6 where p1 = 3, p2 = 2, p3 = 1 as in our

empirical study. Since the third block consists of only one asset return, ρ33,t is not identified

and we remove g33,t from gt. Thus q = 5 and we set γ‡ = (1.9, 0.5, 0.5, 1.9, 0.5)′.

We generate 100,000 MCMC samples after discarding the first 5,000 samples as the burn-

in period. The multi-move sampler is used to generate {ht}nt=1 where we set the number of

the blocks to 401 (N = 400), and the multiple-trial Metropolized independent sampler is used

to generate {gt}nt=1 with the number of trials equal to 3 (KMT = 3). The acceptance rates

for {ht}nt=1 and {gt}nt=1 in the independent MH algorithms are 0.516 and 0.963, respectively.

Tables 1 and 2 show the posterior means, 95% credible intervals and estimated inefficiency

factors (IF)2 for µ, γ, ϕ, θ, ξ, ξ∗, Ωm, ∆∗ and for diagonal elements of Ψww, Ψηη, Ψηw,

2The inefficiency factor is defined as 1 + 2
∑∞

g=1 ρ(g), where ρ(g) is the sample autocorrelation at lag g.
This is interpreted as the ratio of the numerical variance of the posterior mean from the chain to the variance
of the posterior mean from hypothetical uncorrelated draws. The smaller the inefficiency factor becomes, the
closer the MCMC sampling is to the uncorrelated sampling.
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Σ. The posterior means are all close to the true values, and 95% credible intervals include

true values except those of ω2
m5

and ω2
m6

which are very small numbers for the variance of the

mean processes, suggesting that our proposed algorithm works well. For other parameters

(Ψwε, Ψηε, off-diagonal elements of Ψww, Ψηη, Ψηw and Σ), similar estimation results are

obtained and hence omitted.

Parameter estimates under misspecified model. We also investigate how parameter esti-

mates are affected when the existence of the endogeneity is ignored. The parameters are

re-estimated under the misspecified model where Ψwε = Ψηw = O and Ψww is a diagonal

matrix. Table 3 shows the posterior means, 95% credible intervals and estimated inefficiency

factors for diagonal elements of Ψww, Ψηη and Ψηε. Their posterior means are not close

to true values, and 95% credible intervals do not include the true values except for diagonal

elements of Ψηε whose true values are zeros. The diagonal elements of Ψww are underesti-

mated while those of Ψηη are overestimated. The posterior means of the diagonal elements

of Ψηε are all shrunk toward zero. Overall, parameter estimates of (diagonal and off-diagonal

elements of) the covariance matrices for Ψww, Ψηη and Ψηε are found to be biased when

we ignore the existence of the endogeneity.

Further, to see how the estimates of the cross leverage effect is affected by the model

misspecification, we compute the correlation between yt and ht+1 for t = 1, . . . , n− 1 using

the MCMC samples of Ψεη, Rt and Ψηη. Table 4 shows the sample means of the posterior

means of the correlation between yit and hj,t+1 under both the true and misspecified models.

Under the true model, they are around −0.09 ∼ −0.35 indicating the existence of the cross

leverage effect for all combinations. On the other hand, under the misspecified model, they

are all shrunk toward zero suggesting no cross leverage effect. Thus, the misspecified model

(ignoring the existence of the endogeneity) may lead us to underestimate the cross leverage

effects. This is consistent with the simulation study of Chaussé and Xu (2016) for the

univariate case.
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Table 1: Example 1. Posterior means, 95% credible intervals
and inefficiency factors for µ, γ, ϕ, θ, ξ, ξ∗, Ωm and ∆∗.

Par. True Mean 95% interval IF Par. True Mean 95% interval IF

µ1 0 -0.255 (-0.627, 0.113) 11 ξ1 0 0.049 (-0.008, 0.102) 372
µ2 0 -0.066 (-0.399, 0.267) 16 ξ2 0 0.032 (-0.026, 0.088) 433
µ3 0 -0.104 (-0.446, 0.240) 11 ξ3 0 0.045 (-0.009, 0.097) 363
µ4 0 -0.045 (-0.305, 0.216) 20 ξ4 0 0.003 (-0.057, 0.059) 426
µ5 0 0.120 (-0.157, 0.399) 18 ξ5 0 0.003 (-0.054, 0.060) 385
µ6 0 -0.157 (-0.531, 0.215) 7 ξ6 0 -0.011 (-0.068, 0.043) 259

γ1 1.9 1.857 (1.709, 2.005) 148 ξ∗1 0 0.014 (-0.049, 0.075) 795
γ2 0.5 0.404 (0.279, 0.528) 69 ξ∗2 0 0.023 (-0.027, 0.073) 423
γ3 0.5 0.460 (0.307, 0.609) 70 ξ∗3 0 0.040 (-0.018, 0.101) 462
γ4 1.9 1.889 (1.717, 2.064) 139 ξ∗4 0 -0.029 (-0.109, 0.047) 691
γ5 0.5 0.453 (0.325, 0.580) 111 ξ∗5 0 0.049 (-0.013, 0.113) 467

ϕ1 0.97 0.974 (0.967, 0.981) 13 ω2
m1

× 103 1 1.129 (0.745, 1.661) 88
ϕ2 0.97 0.971 (0.964, 0.978) 16 ω2

m2
× 103 1 1.275 (0.810, 1.897) 133

ϕ3 0.97 0.972 (0.965, 0.979) 21 ω2
m3

× 103 1 0.922 (0.527, 1.500) 181
ϕ4 0.97 0.963 (0.954, 0.972) 17 ω2

m4
× 103 1 1.189 (0.747, 1.788) 127

ϕ5 0.97 0.966 (0.958, 0.973) 20 ω2
m5

× 103 1 0.442 (0.214, 0.816) 232
ϕ6 0.97 0.974 (0.967, 0.981) 20 ω2

m6
× 103 1 0.573 (0.325, 0.943) 221

θ1 0.97 0.969 (0.956, 0.981) 17 δ∗21 0.1 0.098 (0.091, 0.106) 10
θ2 0.97 0.963 (0.948, 0.976) 20 δ∗22 0.1 0.096 (0.089, 0.103) 14
θ3 0.97 0.968 (0.954, 0.980) 22 δ∗23 0.1 0.099 (0.091, 0.106) 17
θ4 0.97 0.971 (0.958, 0.982) 28 δ∗24 0.1 0.100 (0.093, 0.108) 21
θ5 0.97 0.961 (0.946, 0.974) 23 δ∗25 0.1 0.095 (0.088, 0.102) 14

Table 2: Example 1. Posterior means, 95% credible intervals
and inefficiency factors for diagonal elements of Ψww, Ψηη,
Ψηw and Σ.

Par. True Mean 95% interval IF Par. True Mean 95% interval IF

Ψww11 0.1 0.106 (0.091, 0.122) 200 Ψηη11 0.06 0.060 (0.053, 0.069) 39
Ψww22 0.1 0.093 (0.080, 0.107) 186 Ψηη22 0.06 0.062 (0.054, 0.070) 53
Ψww33 0.1 0.090 (0.078, 0.103) 146 Ψηη33 0.06 0.061 (0.053, 0.069) 54
Ψww44 0.1 0.109 (0.093, 0.126) 221 Ψηη44 0.06 0.060 (0.052, 0.069) 61
Ψww55 0.1 0.102 (0.087, 0.118) 312 Ψηη55 0.06 0.061 (0.053, 0.069) 60
Ψww66 0.1 0.096 (0.081, 0.112) 314 Ψηη66 0.06 0.063 (0.055, 0.072) 49
Ψηw11 0 -0.001 (-0.014, 0.013) 261 Σ11 0.01 0.010 (0.008, 0.013) 47
Ψηw22 0 -0.009 (-0.019, 0.003) 246 Σ22 0.01 0.011 (0.008, 0.014) 58
Ψηw33 0 -0.009 (-0.018, 0.003) 200 Σ33 0.01 0.012 (0.009, 0.016) 64
Ψηw44 0 0.000 (-0.013, 0.015) 258 Σ44 0.01 0.012 (0.009, 0.016) 78
Ψηw55 0 0.002 (-0.011, 0.017) 358 Σ55 0.01 0.011 (0.009, 0.015) 61
Ψηw66 0 -0.004 (-0.016, 0.011) 372
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Table 3: Example 1. Misspecified model. Posterior means,
95% credible intervals and inefficiency factors for diagonal
elements of Ψww, Ψηη and Ψηε.

Par. True Mean 95% interval IF Par. True Mean 95% interval IF

Ψww11 0.1 0.076 (0.070, 0.082) 30 Ψηη11 0.06 0.105 (0.095, 0.116) 43
Ψww22 0.1 0.073 (0.067, 0.079) 27 Ψηη22 0.06 0.103 (0.093, 0.113) 37
Ψww33 0.1 0.072 (0.066, 0.078) 29 Ψηη33 0.06 0.097 (0.088, 0.107) 33
Ψww44 0.1 0.075 (0.069, 0.082) 42 Ψηη44 0.06 0.103 (0.093, 0.114) 43
Ψww55 0.1 0.076 (0.070, 0.082) 20 Ψηη55 0.06 0.094 (0.085, 0.103) 35
Ψww66 0.1 0.072 (0.067, 0.078) 22 Ψηη66 0.06 0.103 (0.093, 0.113) 38
Ψηε11 -0.1 -0.021 (-0.037, -0.006) 10
Ψηε22 0.05 -0.007 (-0.024, 0.010) 17
Ψηε33 -0.05 0.002 (-0.017, 0.020) 17
Ψηε44 0 0.004 (-0.012, 0.021) 12
Ψηε55 0 -0.017 (-0.033, -0.001) 15
Ψηε66 0 -0.014 (-0.030, 0.002) 8

Table 4: Means of the correlation between yit and hj,t+1.

True model
h1,t+1 h2,t+1 h3,t+1 h4,t+1 h5,t+1 h6,t+1

y1t -0.317 -0.337 -0.267 -0.266 -0.347 -0.282
y2t -0.287 -0.305 -0.246 -0.226 -0.299 -0.269
y3t -0.290 -0.314 -0.236 -0.275 -0.339 -0.291
y4t -0.257 -0.229 -0.275 -0.233 -0.290 -0.296
y5t -0.275 -0.255 -0.272 -0.271 -0.295 -0.273
y6t -0.118 -0.116 -0.093 -0.095 -0.113 -0.124

Misspecified model
h1,t+1 h2,t+1 h3,t+1 h4,t+1 h5,t+1 h6,t+1

y1t -0.058 -0.088 -0.030 -0.040 -0.103 -0.041
y2t -0.038 -0.070 -0.010 -0.011 -0.066 -0.027
y3t -0.054 -0.075 -0.018 -0.050 -0.102 -0.057
y4t -0.035 -0.028 -0.058 -0.030 -0.068 -0.073
y5t -0.028 -0.027 -0.038 -0.038 -0.061 -0.041
y6t -0.033 -0.039 -0.024 -0.023 -0.043 -0.044
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4.2 Example 2: Higher dimensional case

Next, we consider the higher dimensional case p = 30 with p1 = p2 = p3 = 10 and q = 6.

As in the previous subsection, we generate 100,000 MCMC samples after discarding the first

5,000 samples as the burn-in period. The single-move sampler is used to generate {ht}nt=1,

and the multiple-trial Metropolized independent sampler is used to generate {gt}nt=1 with the

number of trials equal to 4 (KMT = 4). The acceptance rates for {ht}nt=1 and {gt}nt=1 in the

independent MH algorithms are 0.925 and 0.939, respectively.

Tables 5 shows the posterior means, 95% credible intervals and estimated inefficiency

factors for the selected model parameters. The posterior means are all close to the true

values, suggesting that our proposed algorithm works well. For other parameters, similar

estimation results are obtained and hence omitted.

Table 5: Example 2. Posterior means, 95% credible intervals and inefficiency factors
for the selected model parameters.

True Mean 95% interval IF

µ1 0 -0.168 (-0.459, 0.130) 15
γ6 1.9 1.909 (1.739, 2.078) 44
ξ1 0 -0.000 (-0.051, 0.049) 490
ξ∗6 0 -0.001 (-0.048, 0.044) 630
ϕ1 0.97 0.967 (0.960, 0.974) 15
θ6 0.97 0.973 (0.962, 0.984) 9
Ψwε11 -0.1 -0.094 (-0.112, -0.077) 37
Ψηε11 -0.1 -0.105 (-0.122, -0.088) 50
Ψww11 0.1 0.108 (0.097, 0.119) 73
Ψηw11 0 0.007 (-0.001, 0.017) 110
Ψηη11 0.06 0.068 (0.060, 0.076) 34
δ∗26 0.1 0.102 (0.095, 0.110) 7
Σ66 0.01 0.011 (0.009, 0.014) 32
ω2
m1

× 103 1 1.158 (0.753, 1.713) 106

IF of ξ∗6 is the maximum among all parameters (including the omitted parameters).
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5 Empirical study

5.1 Data

We use daily close-to-close returns and their realized measures for some of the most liquid

stocks in the Dow Jones Industrial Average (DJIA) index, obtained from Oxford-Man Insti-

tute3. These are: (1) Bank of America (BAC), (2) JP Morgan (JPM), (3) American Express

(AXP), (4) International Business Machines (IBM), (5) Microsoft (MSFT), (6) Coca Cola

(KO). The sample period is from February 1, 2001 to December 31, 20094. Taking account

of the sample correlations among the six series, we divide them into three groups: Group

1 (Finance) consists of BAC, JPM and AXP, Group 2 (Information Technology) consists of

IBM and MSFT, and Group 3 (Food) consists of KO. Thus we apply our proposed model to

this dataset with three blocks (K = 3). Note that each block corresponds to the industrial

sector and that the block sizes are three, two and one (p1 = 3, p2 = 2, p3 = 1, p = 6, q = 5)

respectively.

5.2 Estimation results

Assuming the same prior distributions for parameters as in Section 4, we implement the

MCMC algorithm to conduct the inference on the parameters of interest where the multi-

move sampler and the multiple-trial Metropolized independent sampler are used as in Section

4.1. We generate 100,000 MCMC samples from the posterior distributions of the parameters

in the model after discarding the first 30,000 samples as the burn-in period. The acceptance

rates in the independent MH algorithms for {ht}nt=1 and {gt}nt=1 are 0.421 and 0.953, which

indicates that generated candidates are accepted with relatively high probability and our

sampling algorithm works well. Table 6 reports posterior means, 95% credible intervals and

inefficiency factors for µ, γ, ϕ, θ, ξ, ξ∗, Ωm and ∆∗.

5.2.1 Bias correction of realized measures

The posterior probability with which the bias adjustment term ξi is negative is greater than

0.975 for i = 1, . . . , 6. This suggests that the realized measure of variances tends to have a

3See Noureldin, Shephard, and Sheppard (2012) for the detailed explanation. The asset return is calculated
as yt = (log pt − log pt−1)× 100, where pt is the asset price at time t.

4There are 2,241 observations in total. We remove the observation for October 3, 2005 from the dataset
since it is considered as an outlier.
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downward bias due to the non-trading hours and that the effect of non-trading hours is more

influential than that of microstructure noises. In a similar manner, the posterior distributions

of ξ∗j suggest that the realized measure of the correlation tends to have a downward bias as

described in Section 1 (Epps effect). These estimation results show that our model can detect

and adjust the bias of the realized measures due to various problems in the financial market.

Table 6: U.S. stock returns. Posterior means, 95% credible
intervals and inefficiency factors for µ, γ, ϕ, θ, ξ, ξ∗, Ωm

and ∆∗.

Par. Mean 95% interval IF Par. Mean 95% interval IF

µ1 0.766 (0.459, 1.068) 24 ξ1 -0.474 (-0.536, -0.413) 623
µ2 1.107 (0.846, 1.365) 29 ξ2 -0.419 (-0.480, -0.360) 599
µ3 1.058 (0.779, 1.333) 21 ξ3 -0.520 (-0.580, -0.462) 471
µ4 0.547 (0.367, 0.726) 73 ξ4 -0.461 (-0.522, -0.397) 628
µ5 0.872 (0.685, 1.059) 40 ξ5 -0.502 (-0.561, -0.445) 450
µ6 0.107 (-0.068, 0.280) 53 ξ6 -0.232 (-0.295, -0.170) 421

γ1 1.678 (1.592, 1.764) 300 ξ∗1 -0.627 (-0.691, -0.563) 536
γ2 1.066 (0.999, 1.132) 879 ξ∗2 -0.248 (-0.307, -0.187) 1091
γ3 0.844 (0.769, 0.917) 802 ξ∗3 -0.182 (-0.250, -0.111) 924
γ4 1.309 (1.214, 1.399) 608 ξ∗4 -0.327 (-0.411, -0.239) 694
γ5 0.798 (0.721, 0.876) 718 ξ∗5 -0.096 (-0.169, -0.024) 813

ϕ1 0.960 (0.952, 0.967) 67 ω2
m1

× 103 0.225 (0.122, 0.409) 269
ϕ2 0.953 (0.944, 0.961) 83 ω2

m2
× 103 0.233 (0.118, 0.441) 299

ϕ3 0.959 (0.952, 0.967) 78 ω2
m3

× 103 0.231 (0.119, 0.433) 222
ϕ4 0.938 (0.926, 0.948) 98 ω2

m4
× 103 0.232 (0.118, 0.431) 236

ϕ5 0.942 (0.930, 0.952) 89 ω2
m5

× 103 0.243 (0.123, 0.457) 212
ϕ6 0.940 (0.929, 0.951) 105 ω2

m6
× 103 0.234 (0.113, 0.433) 240

θ1 0.808 (0.777, 0.837) 67 δ∗21 0.026 (0.022, 0.031) 63
θ2 0.679 (0.646, 0.712) 64 δ∗22 0.012 (0.010, 0.014) 72
θ3 0.613 (0.570, 0.654) 122 δ∗23 0.019 (0.015, 0.023) 157
θ4 0.649 (0.608, 0.690) 83 δ∗24 0.042 (0.036, 0.048) 102
θ5 0.614 (0.575, 0.653) 50 δ∗25 0.028 (0.024, 0.032) 72

Table 7 shows the estimation results for the covariance matrix Ψww. The posterior means

of off-diagonal elements of Ψww are all positive and the posterior probability of the positive

covariance between wit and wjt (i ̸= j) is greater than 0.975 for all i and j (i ̸= j). That is,

all measurement errors of the realized volatilities are positively correlated.
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Table 7: U.S. stock returns. Posterior means with 95% credible intervals for Ψww.

0.106
(0.092, 0.121)

0.049 0.115
(0.037, 0.061) (0.100, 0.130)

0.030 0.037 0.116
(0.019, 0.041) (0.025, 0.049) (0.102, 0.132)

0.044 0.045 0.038 0.124
(0.033, 0.055) (0.034, 0.057) (0.027, 0.050) (0.109, 0.141)

0.041 0.045 0.035 0.050 0.113
(0.031, 0.052) (0.034, 0.056) (0.024, 0.046) (0.039, 0.062) (0.099, 0.127)

0.035 0.029 0.024 0.030 0.026 0.101
(0.025, 0.046) (0.019, 0.040) (0.013, 0.035) (0.019, 0.042) (0.016, 0.036) (0.087, 0.115)


*The (i, j)-th element corresponds to that ofΨww. Bold figures indicate that the 95% credible interval

does not include zero.

5.2.2 Volatility clustering

In Table 6, the posterior means of autoregressive coefficients (ϕi’s) for the hit’s are all found

to be very high (0.93 ∼ 0.96), which implies that log volatilities are highly persistent. Figure

1 shows the time series plot of the posterior means of exp(hit/2), the square root of the

estimated time-varying variances. These trajectories sharply increased in September 2008,

corresponding to the financial crisis during which Lehman Brothers filed for Chapter 11

bankruptcy protection (September 15, 2008). We also observe the increase in July 2002

resulted from the market turmoil during which Worldcom filed for Chapter 11 bankruptcy

protection (July 21, 2002), while those increases in April 2001 and in September 2001 are

due to the collapse of the dot-com bubble and to the September 11 attacks, respectively.

Further, we note that Figure 1 indicates the co-movement of the volatilities. In fact, as

shown in Table 8, the posterior means of off-diagonal elements of Ψηη are all positive and

the posterior probability of the positive covariance between hit and hjt (i ̸= j) is greater than

0.975 for all i and j (i ̸= j). That is, all log volatilities are positively correlated.
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Figure 1: Time series plot of posterior means of exp(hit/2)’s.
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Table 8: U.S. stock returns. Posterior means with 95% credible intervals for Ψηη.

0.087
(0.075, 0.101)

0.078 0.086
(0.067, 0.090) (0.073, 0.100)

0.069 0.070 0.073
(0.058, 0.080) (0.059, 0.081) (0.062, 0.086)

0.054 0.061 0.053 0.067
(0.045, 0.064) (0.051, 0.072) (0.044, 0.063) (0.055, 0.079)

0.051 0.056 0.051 0.052 0.065
(0.042, 0.061) (0.046, 0.067) (0.042, 0.061) (0.043, 0.063) (0.053, 0.078)

0.047 0.053 0.049 0.048 0.045 0.057
(0.039, 0.057) (0.044, 0.062) (0.040, 0.058) (0.039, 0.057) (0.036, 0.054) (0.047, 0.068)


*The (i, j)-th element corresponds to that of Ψηη. Bold figures indicate that the 95% credible interval

does not include zero.
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5.2.3 Multiple-block dynamic equicorrelation

The averages of the posterior means of the block equicorrelations (ρ11,t, ρ21,t, ρ31,t, ρ22,t, ρ32,t)

are (0.670, 0.480, 0.391, 0.562, 0.371)′ 5 . The posterior means of autoregressive coefficients

(θj ’s) for gt’s are high (0.61 ∼ 0.81) and the block equicorrelations are found to be persistent.

In Figure 2, these equicorrelations are found to be not constant but time-varying as expected.

The diagonal-block equicorrelations, ρ11,t and ρ22,t, for Groups 1 and 2, fluctuate at higher

levels than those of off-diagonal block equicorrelations, which seems to be consistent with

those posterior means of γ reported in Table 6. The posterior means of γ1 and γ4 (corre-

sponding to ρ11,t and ρ22,t) are 1.678 and 1.309, and they are larger than those of γ2, γ3 and

γ5 (corresponding to ρ21,t, ρ31,t and ρ32,t).

Figure 2: Time series plot of posterior means of the ρij,t’s.
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Also, as shown in Table 9, the 95% credible intervals of off-diagonal elements of Σ are

all positive and do not include zero, which means unobserved multiple-block equicorrelation

factors are correlated positively with each other.

5We note that γ is not the exact mean of {gt}nt=1 though the obtained posterior means of those are very
similar.
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Table 9: U.S. stock returns. Posterior means with 95% credible intervals for Σ.

0.070
(0.061, 0.079)

0.050 0.053
(0.046, 0.056) (0.048, 0.058)

0.041 0.044 0.064
(0.036, 0.046) (0.040, 0.049) (0.057, 0.071)

0.039 0.056 0.039 0.081
(0.033, 0.044) (0.051, 0.061) (0.033, 0.044) (0.071, 0.091)

0.033 0.044 0.058 0.053 0.064
(0.028, 0.038) (0.040, 0.049) (0.053, 0.063) (0.047, 0.058) (0.057, 0.071)


*The (i, j)-th element corresponds to that of Σ. Bold figures indicate that the 95% credible interval

does not include zero.

5.2.4 Endogeneity and leverage

Figure 3 shows the posterior means of dynamic correlations between the return of i-th asset

at time t (yit) and the j-th log variance at time t + 1 (hj,t+1). The sample means of the

posterior means also shown in Table 10. The trajectories of these correlations are negative

at almost all of the time points as expected and far below zero, which indicates the existence

of the cross leverage effects. We also estimated our proposed model without considering the

endogeneity, where Ψwε = Ψηw = O and Ψww is a diagonal matrix. The sample means

of the posterior means of the dynamic correlations under the restricted model are shown in

Table 11, and all cross leverage effects are shrunk toward zero. This is consistent with the

result obtained in our simulation study in Section 4.1.

Table 12 shows the posterior means and the 95% credible intervals for Ψηε. The co-

variances in the first column are all negative and their posterior probability of the negative

correlation is greater than 0.975. The cross leverage effect seems to exist through the first

element of εt = R
−1/2
t V

−1/2
t (yt − mt) since most covariances in other columns are around

zeros. In most cases, the first eigenvalue is the largest among all eigenvalues, and hence

the first element of εt = R
−1/2
t V

−1/2
t (yt − mt) is the first principal component, probably

representing the market factor.
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Figure 3: Posterior means of the correlation between yit and hj,t+1.
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Table 10: Sample means of posterior means of the correlation between yit and hj,t+1.

h1,t+1 h2,t+1 h3,t+1 h4,t+1 h5,t+1 h6,t+1

y1t -0.335 -0.300 -0.252 -0.314 -0.240 -0.311
y2t -0.327 -0.351 -0.293 -0.321 -0.269 -0.306
y3t -0.336 -0.341 -0.334 -0.356 -0.290 -0.343
y4t -0.260 -0.248 -0.214 -0.340 -0.233 -0.233
y5t -0.263 -0.234 -0.208 -0.242 -0.208 -0.257
y6t -0.213 -0.198 -0.167 -0.238 -0.170 -0.206

Table 11: Sample means of posterior means of the correlation between yit and hj,t+1.
Model without endogeneity.

h1,t+1 h2,t+1 h3,t+1 h4,t+1 h5,t+1 h6,t+1

y1t -0.124 -0.091 -0.076 -0.107 -0.073 -0.138
y2t -0.116 -0.121 -0.100 -0.099 -0.076 -0.132
y3t -0.137 -0.127 -0.138 -0.136 -0.098 -0.166
y4t -0.101 -0.089 -0.077 -0.161 -0.100 -0.106
y5t -0.136 -0.116 -0.100 -0.117 -0.109 -0.141
y6t -0.095 -0.082 -0.068 -0.104 -0.069 -0.105
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Table 12: U.S. stock returns. Posterior means with 95% credible intervals for Ψηε.

−0.114 −0.013 −0.009 0.000 −0.004 0.001
(−0.136,−0.091) (−0.036, 0.009) (−0.041, 0.024) (−0.019, 0.020) (−0.026, 0.018) (−0.020, 0.023)

−0.109 −0.017 −0.019 0.015 0.013 −0.004
(−0.131,−0.087) (−0.040, 0.005) (−0.051, 0.015) (−0.005, 0.035) (−0.009, 0.035) (−0.025, 0.016)

−0.089 −0.020 −0.010 0.028 0.000 −0.002
(−0.110,−0.067) (−0.041, 0.003) (−0.042, 0.021) (0.009, 0.047) (−0.021, 0.021) (−0.022, 0.018)

−0.103 0.000 −0.001 0.014 −0.005 −0.027
(−0.124,−0.082) (−0.021, 0.021) (−0.030, 0.029) (−0.005, 0.032) (−0.026, 0.015) (−0.046,−0.008)

−0.080 −0.014 0.007 0.016 0.001 −0.007
(−0.101,−0.059) (−0.035, 0.009) (−0.026, 0.041) (−0.003, 0.035) (−0.020, 0.023) (−0.026, 0.012)

−0.087 −0.008 −0.014 0.009 −0.007 0.006
(−0.106,−0.068) (−0.028, 0.011) (−0.043, 0.016) (−0.008, 0.027) (−0.027, 0.012) (−0.012, 0.025)


*The (i, j)-th element corresponds to that of Ψηε. Bold figures indicate that the 95% credible interval

does not include zero.

Table 13: U.S. stock returns. Posterior means with 95% credible intervals for Ψwε.

−0.070 −0.014 −0.017 −0.021 0.001 −0.015
(−0.091,−0.049) (−0.037, 0.008) (−0.048, 0.016) (−0.040,−0.002) (−0.021, 0.023) (−0.035, 0.006)

−0.057 −0.028 −0.043 −0.004 0.013 −0.016
(−0.078,−0.037) (−0.052,−0.002) (−0.074,−0.009) (−0.024, 0.015) (−0.008, 0.035) (−0.036, 0.004)

−0.035 −0.015 0.000 0.006 0.001 −0.007
(−0.056,−0.014) (−0.039, 0.009) (−0.034, 0.034) (−0.014, 0.025) (−0.021, 0.023) (−0.027, 0.013)

−0.072 0.007 −0.026 −0.001 0.008 −0.026
(−0.092,−0.051) (−0.015, 0.031) (−0.056, 0.005) (−0.019, 0.018) (−0.013, 0.029) (−0.046,−0.007)

−0.039 −0.016 −0.032 0.011 0.024 −0.012
(−0.059,−0.019) (−0.039, 0.010) (−0.064, 0.002) (−0.008, 0.030) (0.002, 0.045) (−0.032, 0.007)

−0.051 −0.003 −0.015 −0.006 −0.003 0.004
(−0.070,−0.032) (−0.025, 0.020) (−0.045, 0.015) (−0.024, 0.012) (−0.023, 0.017) (−0.015, 0.022)


*The (i, j)-th element corresponds to that of Ψwε. Bold figures indicate that the 95% credible interval

does not include zero.
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Table 13 shows the posterior means and the 95% credible intervals for Ψwε. As in

the estimation results for Ψηε, the covariances in the first column are all negative and

their posterior probabilities of the negative correlation are greater than 0.975. Since other

covariances in other columns are around zeros, the measurement errors of the log realized

volatilities are negatively correlated with the asset returns through the first element of εt =

R
−1/2
t V

−1/2
t (yt −mt).

Figure 4 shows the posterior means of dynamic correlations between the return of i-th

asset at time t (yit) and the j-th log realized measure of the variance at time t (xjt). The

sample means of the posterior means also shown in Table 14. The most trajectories of these

correlations are negative at almost all of the time points while some of them fluctuate around

zero, which indicates the existence of the negative (sometimes very weak or no) correlation

between the two quantities. This is consistent with the empirical study of Peters and de Vilder

(2006) or Chaussé and Xu (2016) for the univariate case.

Figure 4: Posterior means of the correlation between yit and xjt.
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Table 14: Sample means of posterior means of the correlation between yit and xjt.

x1t x2t x3t x4t x5t x6t
y1t -0.222 -0.175 -0.088 -0.170 -0.092 -0.152
y2t -0.198 -0.197 -0.097 -0.185 -0.155 -0.139
y3t -0.170 -0.165 -0.102 -0.169 -0.119 -0.137
y4t -0.154 -0.095 -0.071 -0.173 -0.069 -0.101
y5t -0.112 -0.051 -0.053 -0.104 -0.035 -0.111
y6t -0.111 -0.065 -0.049 -0.122 -0.044 -0.087

For Ψηw, the posterior means and the 95% credible intervals are shown in Table 15. The

diagonal elements of covariances are all negative and most of their posterior probabilities of

the negative correlation are greater than 0.975. Other covariances of off-diagonal elements are

around zeros and the measurement error of the log realized volatility is negatively correlated

only with the corresponding latent log volatility.

Table 15: U.S. stock returns. Posterior means with 95% credible intervals for Ψηw.

−0.020 −0.010 −0.013 0.008 0.000 −0.001
(−0.030,−0.009) (−0.020, 0.001) (−0.023,−0.003) (−0.002, 0.018) (−0.009, 0.010) (−0.010, 0.009)

−0.009 −0.015 −0.010 0.006 0.001 0.000
(−0.018, 0.002) (−0.026,−0.003) (−0.020, 0.001) (−0.004, 0.017) (−0.009, 0.011) (−0.010, 0.010)

−0.007 −0.006 −0.023 0.005 −0.002 −0.001
(−0.016, 0.002) (−0.015, 0.004) (−0.033,−0.013) (−0.005, 0.015) (−0.011, 0.008) (−0.010, 0.008)

0.007 0.003 0.000 −0.004 0.000 0.002
(−0.002, 0.017) (−0.007, 0.013) (−0.010, 0.010) (−0.015, 0.007) (−0.009, 0.010) (−0.007, 0.012)

0.004 0.002 0.000 0.006 −0.017 −0.002
(−0.005, 0.013) (−0.007, 0.012) (−0.010, 0.009) (−0.003, 0.016) (−0.027,−0.007) (−0.011, 0.007)

0.006 0.003 −0.001 0.009 0.007 −0.015
(−0.002, 0.015) (−0.006, 0.012) (−0.010, 0.008) (−0.001, 0.018) (−0.002, 0.016) (−0.024,−0.005)


*The (i, j)-th element corresponds to that of Ψηw. Bold figures indicate that the 95% credible interval

does not include zero.
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5.3 Model comparison based on portfolio performances

This subsection conducts a model comparison based on the portfolio performances. In mod-

eling time-varying variances of asset returns, it is important to forecast the future covariance

matrices of the time series for the financial risk management. To evaluate such a forecasting

performance, we conduct out-of-sample covariance forecasts and give the minimum variance

portfolios. It has often been implemented to investigate such a forecasting performance by

the well-known mean-variance optimization (e.g., Luenberger (1997)).

Let E(yt+1|Ft,ϑ) and Var(yt+1|Ft,ϑ) denote the conditional mean and covariance matrix

of yt+1 given the information at time t (Ft) and the parameter ϑ. We make a minimum

variance (MV) portfolio, and the MV portfolio weight (w) is obtained as the solution to the

problem:

min
w

w′Var(yt+1|Ft,ϑ)w s.t. w′1p = 1 and w′E(yt+1|Ft,ϑ) ≥ q0, (31)

where q0 is the target value. It indicates that we make the expected portfolio returns exceed

q0. The optimal weight is given by

wMV =
c− q0b

ac− b2
Var(yt+1|Ft,ϑ)

−11p +
q0a− b

ac− b2
Var(yt+1|Ft,ϑ)

−1E(yt+1|Ft,ϑ), (32)

where

a = 1′pVar(yt+1|Ft,ϑ)
−11p, (33)

b = 1′pVar(yt+1|Ft,ϑ)
−1E(yt+1|Ft,ϑ), (34)

c = E(yt+1|Ft,ϑ)
′Var(yt+1|Ft,ϑ)

−1E(yt+1|Ft,ϑ). (35)

We implement the rolling forecast as follows:

1. Estimate the model parameters using the data from 2001 to 2006 (we set the data as

{yt}nt=1 and the posterior mean of the parameter vector as ϑ.)

2. For the next year including n1 trading days, i.e., t = n+ 1, . . . , n+ n1 − 1,

(a) Use the efficient sequential Monte Carlo method described in Appendix C.1 to

compute E(yt+1|Ft,ϑ) and Var(yt+1|Ft,ϑ).

(b) Compute the hedge portfolio weight described above and the “realized” returns,

w′
MVyt+1.
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3. Include the new observations of the next year to our estimation period and remove

the observations of the oldest year. Re-estimate the parameters of interest using the

six-year-data (relabelled as {yt}nt=1).

4. Go to Step 2.

In the end, we calculate the standard deviations of the “realized” returns (756 in total). The

numerical standard error of the estimate is obtained by repeating the sequential Monte Carlo

ten times. We compare the following nine models:

1. Models with realized measures where Ψwε = Ψηw = Ψηε = O and Ψww is a diagonal

matrix.

(a) Univariate models (RSV).

(b) 1-block dynamic equicorrelation model (1B-RDESV).

(c) 3-block dynamic equicorrelation model (3B-RDESV).

2. Models with realized measures and leverage where Ψwε = Ψηw = O and Ψww is a

diagonal matrix.

(a) Univariate models (RSV-L).

(b) 1-block dynamic equicorrelation model (1B-RDESV-L).

(c) 3-block dynamic equicorrelation model (3B-RDESV-L).

3. Models with realized measures, leverage and endogeneity.

(a) Univariate models (RSV-LE).

(b) 1-block dynamic equicorrelation model (1B-RDESV-LE).

(c) 3-block dynamic equicorrelation model (3B-RDESV-LE).

To compute E(yt+1|Ft,ϑ) and Var(yt+1|Ft,ϑ), we implement the sequential Monte Carlo as

described in Appendix C.1 where we set the number of particles M = 5, 000 with the block

length L = 3 for multivariate models and L = 1 for univariate models. The target value is

set q0 = −10, 0, 10, 20 and 30 annually.
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Table 16: Out-of-sample portfolio standard deviations. Year 2007.

Target return q0
Model −10 0 10 20 30

RSV 1.661 1.405 1.206 1.068 0.993
(0.034) (0.025) (0.017) (0.011) (0.006)

1B-RDESV 1.632 1.310 1.064 0.908 0.856
(0.095) (0.069) (0.046) (0.025) (0.009)

3B-RDESV 1.555 1.250 1.023 0.885 0.845
(0.068) (0.055) (0.039) (0.022) (0.013)

RSV-L 1.673 1.404 1.204 1.078 1.027
(0.041) (0.030) (0.020) (0.011) (0.006)

1B-RDESV-L 1.110 1.204 1.305 1.408 1.510
(0.061) (0.077) (0.091) (0.103) (0.113)

3B-RDESV-L 1.164 0.958 0.839 0.812 0.864
(0.029) (0.017) (0.009) (0.005) (0.014)

RSV-LE 1.583 1.332 1.146 1.031 0.986
(0.053) (0.039) (0.025) (0.015) (0.011)

1B-RDESV-LE 0.957 0.891 0.852 0.838 0.843
(0.018) (0.012) (0.007) (0.004) (0.006)

3B-RDESV-LE 0.948 0.886 0.843 0.818 0.807
(0.014) (0.011) (0.007) (0.004) (0.002)

*Standard errors in parentheses. Bold figures indicate the minimum of the column.

Table 17: Out-of-sample portfolio standard deviations. Year 2008.

Target return q0
Model −10 0 10 20 30

RSV 2.505 2.547 2.766 3.089 3.463
(0.108) (0.176) (0.244) (0.305) (0.359)

1B-RDESV 2.545 2.272 2.105 2.036 2.051
(0.080) (0.053) (0.031) (0.016) (0.012)

3B-RDESV 2.456 2.144 1.968 1.925 1.988
(0.078) (0.040) (0.022) (0.031) (0.058)

RSV- L 2.620 2.443 2.417 2.504 2.670
(0.076) (0.034) (0.059) (0.117) (0.171)

1B-RDESV-L 2.210 2.158 2.223 2.364 2.550
(0.037) (0.040) (0.085) (0.139) (0.194)

3B-RDESV-L 2.252 2.422 2.710 3.058 3.429
(0.094) (0.165) (0.224) (0.274) (0.315)

RSV-LE 2.609 2.486 2.428 2.421 2.454
(0.028) (0.031) (0.054) (0.082) (0.109)

1B-RDESV-LE 2.125 2.054 2.003 1.969 1.948
(0.021) (0.017) (0.014) (0.013) (0.012)

3B-RDESV-LE 2.089 2.046 2.021 2.011 2.011
(0.023) (0.022) (0.023) (0.027) (0.032)

*Standard errors in parentheses. Bold figures indicate the minimum of the column.

33



Table 18: Out-of-sample portfolio standard deviations. Year 2009.

Target return q0
Model −10 0 10 20 30

RSV 1.736 1.598 1.603 1.712 1.882
(0.038) (0.042) (0.076) (0.120) (0.165)

1B-RDESV 1.708 1.546 1.507 1.571 1.709
(0.106) (0.060) (0.037) (0.049) (0.069)

3B-RDESV 1.612 1.433 1.391 1.462 1.612
(0.075) (0.041) (0.055) (0.094) (0.129)

RSV-L 2.274 1.927 1.694 1.584 1.589
(0.137) (0.080) (0.040) (0.031) (0.059)

1B-RDESV-L 1.697 1.929 2.206 2.496 2.786
(0.052) (0.090) (0.128) (0.162) (0.193)

3B-RDESV-L 1.499 1.394 1.426 1.566 1.776
(0.087) (0.036) (0.057) (0.087) (0.105)

RSV-LE 1.958 1.761 1.621 1.534 1.496
(0.129) (0.099) (0.073) (0.051) (0.033)

1B-RDESV-LE 1.857 1.744 1.656 1.591 1.544
(0.064) (0.053) (0.042) (0.033) (0.025)

3B-RDESV-LE 1.434 1.361 1.318 1.301 1.305
(0.031) (0.022) (0.013) (0.009) (0.014)

*Standard errors in parentheses. Bold figures indicate the minimum of the column.

Tables 16, 17 and 18 report the out-of-sample portfolio standard deviations using the

six-year rolling estimation window for the years 2007, 2008 and 2009. For the year 2007,

three-block dynamic equicorrelations models with realized measures, leverage and endogene-

ity (3B-RDESV-L and 3B-RDESV-LE) outperform other competing models in the sense that

their standard deviation of the “realized” returns are the smallest among others, but the endo-

geneity may not be important for the larger target values, q0 = 10 and 20. For the year 2008,

three-block or one-block dynamic equicorrelations models with realized measures, leverage

and endogeneity (3B-RDESV-LE and 1B-RDESV-LE) and three-block dynamic equicorrela-

tions model (3B-RDESV) seem to outperform other models, and the leverage and endogeneity

may not be important for the larger target values, q0 = 10 and 20. All standard deviations

of the “realized” returns are much larger than those in 2007, due to the financial crisis in

2008. Finally, for the year 2009, three-block dynamic equicorrelations model with realized

measures, leverage and endogeneity (3B-RDESV-LE) also seems to outperform other models

for all the target values.

Overall, the standard deviations of the “realized” returns are found to be smaller than

34



those of the other competing models for our three-block dynamic equicorrelations models with

realized measures, leverage and endogeneity. It indicates that our proposed model with the

time-varying multiple-block equicorrelation structure with leverage and endogeneity shows

good out-of-sample forecasting performance with respect to dynamic MV portfolio, even

when the market is turbulent due to the aftermath of 2008 financial crisis.

6 Conclusion

The dynamic equicorrelation SV model of Kurose and Omori (2016), which incorporates

the dynamic equicorrelation and cross leverage effect for the SV model, is extended to have

the multiple-block dynamic equicorrelation structure. We also extend it to consider the

simultaneous modeling of the multivariate daily returns and the related realized measure.

Bayesian estimation scheme via Markov chain Monte Carlo method is described to conduct

the statistical inference regarding the parameters. Numerical examples are provided and the

proposed model is applied to the multivariate stock returns data. We find the persistence

in both the volatilities and the correlations, and the existence of cross leverage effects. The

estimation result suggests that the realized measures are endogenous and correlated with the

asset return and that the biases in the realized measure owing to market microstructure noise,

non-trading hours and non-synchronous trading are adjusted within the proposed model. In

the model comparison based on the minimum variance portfolio performances, our models

are found to outperform competing models regarding the standard deviations of the realized

returns.
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Appendix

A Inverse matrix of Rt

Proposition 3 (Inverse matrix of Rt). The inverse of the multiple-block equicorrelation

matrix Rt is given by

R−1
t = A−1

t +Dt,

where

A−1
t = diag

{
(1− ρ11,t)

−11′p1 , · · · , (1− ρKK,t)
−11′pK

}
,

Dt =

 d11,t1p11
′
p1 · · · d1K,t1p11

′
pK

...
. . .

...
dK1,t1pK1

′
p1 · · · dKK,t1pK1

′
pK

 = CD̃tC
′,

D̃t =

 d11,t · · · d1K,t
...

. . .
...

dK1,t · · · dKK,t

 = −(Ãt + B̃tP)−1B̃tÃ
−1
t ,

and Ãt, B̃t,C,P are defined in Proposition 1.

Proof: Noting that C′C = P, CÃt = AtC and Ã−1
t C′ = C′A−1

t , we obtain

Rt(A
−1
t +Dt) = (At +Bt)(A

−1
t +Dt)

= (At +CB̃tC
′)
{
A−1

t −C(Ãt + B̃tP)−1B̃tÃ
−1
t C′

}
= Ip +CB̃tC

′A−1
t − (AtC+CB̃tP)(Ãt + B̃tP)−1B̃tÃ

−1
t C′

= Ip +CB̃tC
′A−1

t −CB̃tÃ
−1
t C′ = Ip,

where At,Bt are defined in the proof of Proposition 1. Similarly, using C′At = ÃtC
′ and
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A−1
t C = CÃ−1

t ,

(A−1
t +Dt)Rt = (A−1

t +Dt)(At +Bt)

=
{
A−1

t −C(Ãt + B̃tP)−1B̃tÃ
−1
t C′

}
(At +CB̃tC

′)

= Ip +A−1
t CB̃tC

′ −C(Ãt + B̃tP)−1B̃tÃ
−1
t (C′At +PB̃tC

′)

= Ip +A−1
t CB̃tC

′ −C(Ãt + B̃tP)−1(IK + B̃tÃ
−1
t P)B̃tC

′

= Ip +A−1
t CB̃tC

′ −C(Ãt + B̃tP)−1(IK + B̃tPÃ−1
t )B̃tC

′

= Ip +A−1
t CB̃tC

′ −CÃ−1
t B̃tC

′ = Ip,

and the result follows. □

B Conditional posterior distributions and MCMC algorithm

B.1 Generation of µ, ξ, ξ∗ and γ

The joint conditional posterior distribution of ξ and µ is(
ξ
µ

)
|· ∼ N2p(mξµ,Sξµ), (36)

where

Sξµ =

{
diag

(
S−1
ξ0 + (Ψww −ΨwεΨεw)

−1,S−1
µ0 +Ψ−1

0

)
+ (n− 1)diag(Ip, Ip −Φ)(Ψ22 −Ψ21Ψ12)

−1diag(Ip, Ip −Φ)

}−1

, (37)

mξµ = Sξµ

[(
S−1
ξ0 mξ0 + (Ψww −ΨwεΨεw)

−1(xn − hn −Ψwεz1n)

S−1
µ0mµ0 +Ψ−1

0 h1

)

+ diag(Ip, Ip −Φ)(Ψ22 −Ψ21Ψ12)
−1

n−1∑
t=1

((
xt − ht

ht+1 − Φht

)
−Ψ21z1t

)]
. (38)

Similarly, the conditional posterior distributions of ξ∗ and γ are

ξ∗|· ∼ Nq(m
∗
ξ,S

∗
ξ),

S∗
ξ =

(
S∗−1
ξ0 + n∆∗−1

)−1
, m∗

ξ = S∗
ξ

{
S∗−1
ξ0 m∗

ξ0 +∆∗−1
n∑

t=1

(x∗
t − gt)

}
,
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and

γ|· ∼ Nq(mγ ,Sγ),

Sγ =
{
S−1
γ0 +Σ−1

0 + (n− 1)(Iq −Θ)Σ−1(Iq −Θ)
}−1

,

mγ = Sγ

{
S−1
γ0mγ0 +Σ−1

0 g1 + (Iq −Θ)Σ−1
n−1∑
t=1

(gt+1 −Θgt)

}
.

B.2 Generation of Φ and Θ

Generation of Φ. Let

A =
n−1∑
t=1

(ht − µ)(ht − µ)′,

B =

n−1∑
t=1

(ht − µ)

{
ht+1 − µ−

(
Ψηε Ψηw

)( Ip Ψεw

Ψwε Ψww

)−1(
z1t
wt

)}′

S−1,

S = Ψηη −
(
Ψηε Ψηw

)( Ip Ψεw

Ψwε Ψww

)−1(
Ψεη

Ψwη

)
,

and b denote a vector whose i-th element is equal to the (i, i)-th element ofB. The conditional

posterior density of ϕ = Φ1p is given by

π(ϕ|·) ∝ g(ϕ)× exp

{
− 1

2
(ϕ−mϕ)

′S−1
ϕ (ϕ−mϕ)

}
, (39)

where

g(ϕ) =

p∏
j=1

π(ϕj)× |Ψ0|−
1
2 exp

{
− 1

2
(h1 − µ)′Ψ−1

0 (h1 − µ)

}
, (40)

S−1
ϕ = A⊙ S−1, mϕ = Sϕb, (41)

and ⊙ denotes Hadamard product. Generate a candidate ϕ† ∼ TN{−1<ϕi<1,∀i}(mϕ,Sϕ) and

accept it with probability min[1, g(ϕ†)/g(ϕ)].

Generation of Θ. Similarly, let

A =

n−1∑
t=1

(gt − γ)(gt − γ)′, B =

n−1∑
t=1

(gt − γ)(gt+1 − γ)′Σ−1,

and b denote a vector whose i-th element is equal to the (i, i)-th element of B. Then the

conditional posterior density of θ = Θ1q can be shown as

π(θ|·) ∝ g(θ)× exp

{
− 1

2
(θ −mθ)

′S−1
θ (θ −mθ)

}
, (42)
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where

g(θ) =

q∏
j=1

π(θj)× |Σ0|−
1
2 exp

{
− 1

2
(g1 − γ)′Σ−1

0 (g1 − γ)

}
, (43)

S−1
θ = A⊙Σ−1, mθ = Sθb. (44)

Generate a candidate θ† ∼ TN{−1<θj<1,∀j}(mθ,Sθ) and accept it with probability min[1, g(θ†)/g(θ)].

B.3 Generation of ∆∗ and Ωm

The conditional posterior distributions of δ∗2j and ω2
mi

are

δ∗2j |· ∼ IG(α∗
δj1

/2, β∗
δj1

/2), j = 1, . . . , q, (45)

α∗
δj1

= α∗
δj0

+ n, β∗
δj1

= β∗
δj0

+
n∑

t=1

(x∗kl,t − ξ∗j − gkl,t)
2. (46)

where ξ∗j = ξ∗kl and

ω2
mi

| ∼ IG(αmi1/2, βmi1/2), i = 1, . . . , p, (47)

αmi1 = αmi0 + n− 1, βmi1 = βmi0 +

n−1∑
t=1

(mi,t+1 −mit)
2. (48)

B.4 Generation of Σ

The conditional posterior density of Σ is given by

π(Σ|·) ∝ g(Σ)× |Σ|−
nΣ+q+1

2 exp

{
− 1

2
tr(S−1

Σ Σ−1)

}
, (49)

where nΣ = nΣ0 + n− 1 and

S−1
Σ = S−1

Σ0 +

n−1∑
t=1

{gt+1 − γ −Θ(gt − γ)}{gt+1 − γ −Θ(gt − γ)}′, (50)

g(Σ) = |Σ0|−
1
2 exp

{
− 1

2
(g1 − γ)Σ−1

0 (g1 − γ)

}
. (51)

Generate a candidate Σ† ∼ IW(nΣ,SΣ) and accept it with probability min[1, g(Σ†)/g(Σ)].

C Efficient algorithms

C.1 Block particle filtering

We compute E(yt+1|Ft,ϑ) and Var(yt+1|Ft,ϑ) by integrating out latent variables numeri-

cally, using the block sampling strategy for the particle filtering, which is an efficient sequen-

tial Monte Carlo method discussed in Doucet, Briersa, and Sénécal (2006).
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In a standard sequential Monte Carlo method, (i) we generate particles of (ht+1, gt+1,mt+1)

given Ft, (ii) compute the weights of the particles given Ft+1 to construct the discrete approx-

imation of the filtering density, f̂(ht+1, gt+1,mt+1|Ft+1,ϑ), and (iii) resample the particles.

In our proposed model, the filtering density of the latent variables ht+1 and gt+1 heavily relies

on the new observations at time t+1 (especially on the realized measures), and the resampling

particles may concentrate in the narrow region of the high filtering density, which results in

the path degeneracy and hence inaccurate estimates of E(yt+1|Ft,ϑ) and Var(yt+1|Ft,ϑ).

To avoid this path degeneracy problem, we consider the conditional joint density functions,

f(ht−L+1:t, gt−L+1:t,mt−L+1:t|Yt, Xt, X
∗
t ,ϑ)

∝ f(yt−L+1:t,xt−L+1:t,ht−L+1:t|yt−L,xt−L,ht−L, gt−L:t,mt−L:t,ϑ)f(mt−L+1:t|mt−L,ϑ)

×f(gt−L+1:t|x∗
t−L+1:t, gt−L,ϑ)f(ht−L, gt−L,mt−L|Yt−1, Xt−1, X

∗
t−1,ϑ),

f(ht+1, gt+1,mt+1|Yt, Xt, X
∗
t ,ϑ)

∝ f(ht+1|ht, gt,mt,yt,xt,ϑ)f(mt+1|mt,ϑ)f(gt+1|gt,ϑ),

where Yt = {y1, . . . ,yt}, Xt = {x1, . . . ,xt}, X∗
t = {x∗

1, . . . ,x
∗
t }, and implement the sequen-

tial Monte Carlo as follows:

1. For i = 1, . . . ,M , conditional on (h
(i)
t−L, g

(i)
t−L,m

(i)
t−L,ϑ), generate samples from an im-

portance density approximating f(ht−L+1:t, gt−L+1:t,mt−L+1:t|Yt, Xt, X
∗
t ,ϑ):

(i) Generate m
(i)
t−L+1:t ∼ f(mt−L+1:t|m(i)

t−L,ϑ) using the state equation (3).

(ii) Using the state equation (9) and the observation equation (12), implement the

simulation smoother (e.g., de Jong and Shephard (1995)) and generate g
(i)
t−L+1:t ∼

f(gt−L+1:t|x∗
t−L+1:t, g

(i)
t−L,ϑ).

(iii) Using the the state equation (2) and the observation equations (11) and (53), gen-

erate h
(i)
t−L+1:t ∼ g(ht−L+1:t|yt−L:t,xt−L:t,m

(i)
t−L:t, g

(i)
t−L:t,h

(i)
t−L,ϑ) using the simu-

lation smoother.

2. For i = 1, . . . ,M , compute

πi =
π̃i∑M
j=1 π̃j

,

π̃i =
f(yt−L+1:t,xt−L+1:t,h

(i)
t−L+1:t|yt−L,xt−L,h

(i)
t−L, g

(i)
t−L:t,m

(i)
t−L:t,ϑ)

g(h
(i)
t−L+1:t|yt−L:t,xt−L:t,m

(i)
t−L:t, g

(i)
t−L:t,h

(i)
t−L,ϑ)

.
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3. For i = 1, . . . ,M , set f̂(h
(i)
t−L+1:t, g

(i)
t−L+1:t,m

(i)
t−L+1:L|Yt, Xt, X

∗
t ,ϑ) = πi.

4. For i = 1, . . . ,M , resample

h
(i)
t−L+1:t, g

(i)
t−L+1:t,m

(i)
t−L+1:t ∼ f̂(ht−L+1:t, gt−L+1:t,mt−L+1:t|Yt, Xt, X

∗
t ,ϑ).

5. For i = 1, . . . ,M , generate h
(i)
t+1 ∼ f(ht+1|h(i)

t , g
(i)
t ,m

(i)
t , Yt, Xt,ϑ), g

(i)
t+1 ∼ f(gt+1|g(i)

t ,ϑ),

m
(i)
t+1 ∼ f(mt+1|m(i)

t ,ϑ). Estimate E(yt+1|Ft,ϑ) and Var(yt+1|Ft,ϑ) by

µ̂t+1|t =
1

M

M∑
i=1

m
(i)
t+1, Σ̂t+1|t =

1

M

M∑
i=1

V
1/2(i)
t+1 R

(i)
t+1V

1/2(i)
t+1 +Ωm. (52)

6. Discard h
(i)
t−L+2:t+1, g

(i)
t−L+2:t+1,m

(i)
t−L+2:t+1, i = 1, . . . ,M .

7. Replace t with t+ 1 and go to 1.

Remark 7. The above sequential Monte Carlo method generates a block of state variables

of the length L, and discards the last L − 1 state variables to avoid the path degeneracy

problem. This improves the estimation accuracy of E(yt+1|Ft,ϑ) and Var(yt+1|Ft,ϑ). We

note that it reduces to the standard sequential Monte Carlo method for L = 1.

C.2 Multi-move sampler for {ht}nt=1

We first divide {ht}nt=1 into N + 1 blocks, (hkm−1+1, . . . ,hkm), m = 1, . . . , N with k0 =

0, kN+1 = n, ki−ki−1 ≥ 2, using stochastic knots km = int[n(m+Um)/(N+2)], where Um’s

are independent uniform random variables on (0, 1) (see e.g. Omori and Watanabe (2008),

Shephard and Pitt (1997)). Then consider the approximating linear Gaussian state space

model where we replace Equations (1) and (14) with

ỹt = Ftht + ϵ̃t, z̃1t = R
− 1

2
t ϵ̃t, t = km−1 + 1, . . . , km. (53)

where ỹt, Ft, and z̃1t are defined in Section 3.3. Generate a candidate for (hkm−1+1, . . . ,hkm)

given other blocks from using the simulation smoother (e.g. de Jong and Shephard (1995),

Durbin and Koopman (2002)) and conduct MH algorithm.

D Supplementary results of model comparison

D.1 Cases with K = 2

We check the forecasting ability for two-block models (K = 2) and justify our proposed

model with K = 3 in our empirical studies.
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We use the same data series as in Section 5.3: (1) Bank of America (BAC), (2) JP

Morgan (JPM), (3) American Express (AXP), (4) International Business Machines (IBM),

(5) Microsoft (MSFT), (6) Coca Cola (KO).

Case 1. We divide them into two groups: Group 1A (Finance and Information Tech-

nology) consists of BAC, JPM, AXP, IBM and MSFT, and Group 2A (Food) consists

of KO. We call the models as two-block (A) dynamic equicorrelations models. Thus

we apply our proposed model to the dataset with two blocks (K = 2) and conduct

out-of-sample covariance forecasts based on the portfolio performances.

Tables 19, 20 and 21 report the out-of-sample portfolio standard deviations using the

six-year rolling estimation window for the years 2007, 2008 and 2009. For the year 2007,

two-block (A) dynamic equicorrelations models do not outperform competing models

listed in Table 16 in Section 5.3. For the year 2008, two-block (A) dynamic equicor-

relations models with realized measures, leverage and endogeneity (2B-RDESV-LE(A)

and 2B-RDESV-L(A)) seem to perform a little better than other models listed in Table

17 for q0 = −10, 0 and 30. For the year 2009, two-block (A) dynamic equicorrelations

model with realized measures, leverage (2B-RDESV-LE(A)) do not seem to outperform

other models listed in Table 18 for all the target values.

Case 2. We also divide the data series into other two groups: Group 1B (Finance)

consists of BAC, JPM and AXP, and Group 2B (Information Technology and Food)

consists of MSFT, IBM and KO. We call the models as two-block (B) dynamic equicor-

relations models.

Tables 22, 23 and 24 report the out-of-sample portfolio standard deviations using the

six-year rolling estimation window for the years 2007, 2008 and 2009. For the year 2007,

two-block (B) dynamic equicorrelations models with realized measures, leverage and

endogeneity (2B-RDESV-LE(B)) seem to outperform other models listed in Table 16

for target value q0 = −10. For the year 2008, two-block (B) dynamic equicorrelations

models with realized measures, leverage and endogeneity (2B-RDESV-LE(B) and 2B-

RDESV-L(B)) seem to perform a little better than other models listed in Table 17 for

q0 = −10 and 0. For the year 2009, two-block(B) dynamic equicorrelations model with

realized measures, leverage (2B-RDESV-L(B)) seems to outperform other models listed

46



in Table 18 for q0 = 0.

Case 3. Finally, we divide the data series into two groups: Group 1C (Finance and

Food) consists of BAC, JPM, AXP and KO, and Group 2C (Information Technology)

consists of MSFT and IBM. We call the models as two-block (C) dynamic equicorrela-

tions models.

Tables 25, 26 and 27 report the out-of-sample portfolio standard deviations using the

six-year rolling estimation window for the years 2007, 2008 and 2009. For the years

2007, 2008 and 2009, two-block (C) dynamic equicorrelations models with realized

measures, leverage and endogeneity do not seem to outperform other models listed in

Tables 16, 17 and 18 for all the target values.

Overall, our three-block dynamic equicorrelations models show good out-of-sample forecast-

ing performance with respect to dynamic MV portfolio, even when the market is turbulent

due to the aftermath of 2008 financial crisis.
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Table 19: Out-of-sample portfolio standard deviations. Year 2007.

Target return q0
Model −10 0 10 20 30

2B-RDESV(A) 1.542 1.242 1.022 0.897 0.873
(0.066) (0.050) (0.035) (0.018) (0.008)

2B-RDESV-L(A) 1.197 1.002 0.877 0.827 0.844
(0.023) (0.018) (0.013) (0.006) (0.005)

2B-RDESV-LE(A) 0.990 0.917 0.867 0.837 0.824
(0.016) (0.012) (0.008) (0.005) (0.003)

*Standard errors in parentheses. Bold figures indicate that they are smaller than the minimum of

Table 16.

Table 20: Out-of-sample portfolio standard deviations. Year 2008.

Target return q0
Model −10 0 10 20 30

2B-RDESV(A) 2.291 2.068 2.022 2.112 2.289
(0.025) (0.018) (0.026) (0.065) (0.113)

2B-RDESV-L(A) 2.134 2.032 2.024 2.088 2.200
(0.025) (0.012) (0.028) (0.048) (0.072)

2B-RDESV-LE(A) 2.078 2.019 1.976 1.948 1.931
(0.015) (0.012) (0.010) (0.008) (0.008)

*Standard errors in parentheses. Bold figures indicate that they are smaller than the minimum of

Table 17.

Table 21: Out-of-sample portfolio standard deviations. Year 2009.

Target return q0
Model −10 0 10 20 30

2B-RDESV(A) 1.626 1.441 1.523 1.790 2.139
(0.110) (0.039) (0.041) (0.082) (0.124)

2B-RDESV-L(A) 1.467 1.361 1.358 1.434 1.559
(0.022) (0.007) (0.015) (0.028) (0.044)

2B-RDESV-LE(A) 1.800 1.678 1.580 1.504 1.447
(0.065) (0.053) (0.043) (0.034) (0.025)

*Standard errors in parentheses. Bold figures indicate that they are smaller than the minimum of

Table 18.
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Table 22: Out-of-sample portfolio standard deviations. Year 2007.

Target return q0
Model −10 0 10 20 30

2B-RDESV(B) 1.646 1.328 1.082 0.919 0.853
(0.087) (0.064) (0.043) (0.024) (0.010)

2B-RDESV-L(B) 1.149 0.971 0.865 0.830 0.857
(0.031) (0.022) (0.013) (0.009) (0.015)

2B-RDESV-LE(B) 0.945 0.887 0.847 0.822 0.811
(0.012) (0.008) (0.005) (0.003) (0.002)

*Standard errors in parentheses. Bold figures indicate that they are smaller than the minimum of

Table 16.

Table 23: Out-of-sample portfolio standard deviations. Year 2008.

Target return q0
Model −10 0 10 20 30

2B-RDESV(B) 2.443 2.164 2.022 2.001 2.076
(0.085) (0.053) (0.021) (0.029) (0.059)

2B-RDESV-L(B) 2.175 2.027 2.007 2.086 2.234
(0.025) (0.015) (0.027) (0.039) (0.052)

2B-RDESV-LE(B) 2.080 2.034 2.007 1.994 1.993
(0.015) (0.010) (0.009) (0.013) (0.019)

*Standard errors in parentheses. Bold figures indicate that they are smaller than the minimum of

Table 17.

Table 24: Out-of-sample portfolio standard deviations. Year 2009.

Target return q0
Model −10 0 10 20 30

2B-RDESV(B) 1.839 1.578 1.505 1.572 1.734
(0.172) (0.113) (0.053) (0.072) (0.131)

2B-RDESV-L(B) 1.484 1.353 1.358 1.462 1.628
(0.056) (0.030) (0.034) (0.064) (0.093)

2B-RDESV-LE(B) 1.655 1.546 1.461 1.396 1.350
(0.048) (0.041) (0.035) (0.030) (0.025)

*Standard errors in parentheses. Bold figures indicate that they are smaller than the minimum of

Table 18.
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Table 25: Out-of-sample portfolio standard deviations. Year 2007.

Target return q0
Model −10 0 10 20 30

2B-RDESV(C) 1.807 1.463 1.188 0.989 0.883
(0.068) (0.057) (0.045) (0.032) (0.019)

2B-RDESV-L(C) 1.221 1.017 0.886 0.833 0.851
(0.034) (0.023) (0.012) (0.005) (0.010)

2B-RDESV-LE(C) 1.056 0.977 0.918 0.876 0.850
(0.027) (0.021) (0.015) (0.011) (0.007)

*Standard errors in parentheses. Bold figures indicate that they are smaller than the minimum of

Table 16.

Table 26: Out-of-sample portfolio standard deviations. Year 2008.

Target return q0
Model −10 0 10 20 30

2B-RDESV(C) 2.535 2.216 2.046 2.015 2.095
(0.069) (0.042) (0.024) (0.024) (0.040)

2B-RDESV-L(C) 2.210 2.076 2.063 2.142 2.280
(0.024) (0.013) (0.021) (0.046) (0.077)

2B-RDESV-LE(C) 2.264 2.180 2.114 2.063 2.025
(0.021) (0.018) (0.015) (0.013) (0.010)

*Standard errors in parentheses. Bold figures indicate that they are smaller than the minimum of

Table 17.

Table 27: Out-of-sample portfolio standard deviations. Year 2009.

Target return q0
Model −10 0 10 20 30

2B-RDESV(C) 2.055 1.665 1.540 1.661 1.932
(0.079) (0.037) (0.018) (0.050) (0.094)

2B-RDESV-L(C) 1.565 1.443 1.424 1.489 1.608
(0.039) (0.017) (0.011) (0.027) (0.046)

2B-RDESV-LE(C) 2.006 1.868 1.755 1.663 1.588
(0.069) (0.059) (0.051) (0.043) (0.036)

*Standard errors in parentheses. Bold figures indicate that they are smaller than the minimum of

Table 18.

D.2 Comparison with CRSV model

In this subsection, we conduct the one-step-ahead forecasting by rolling the sample period

described as in Shirota, Omori, Lopes, and Piao (2017).

We use daily close-to-close returns and their realized measures for some of the most

liquid stocks in the Dow Jones Industrial Average (DJIA) index, obtained from Oxford-

Man Institute (Noureldin, Shephard, and Sheppard (2012)). These are: JP Morgan (JPM),
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International Business Machine (IBM), Microsoft (MSFT), Exxon Mobil (XOM), Alcoa (AA),

American Express (AXP), Du Pont (DD), General Electric (GE) and Coca Cola (KO). The

sample period is from February 1, 2001 to December 31, 20096. Taking account of the sample

correlations among the nine series, we divide them into four groups: Group 1 (Finance)

consists of JPM and AXP, Group 2 (Information Technology and Others) consists of IBM,

MSFT and GE, Group 3 (Manufacturing) consists of XOM, AA and DD, and Group 4(Food)

consists of KO. Thus we apply our proposed model to this dataset with four blocks (K = 4).

We follow Shirota, Omori, Lopes, and Piao (2017) and modify the equation (4) in Section

2.1 as

m1 ∼ N(0p, λmΩm),

and set λm = 100. We also set ω2
mi0

∼ IG(10−5/2, 10−5/2), i = 1, . . . , p.

First we generate the model parameters and latent variables using 1742 (n = 1742)

observations from February 1, 2001 to January 8, 2008 and also generate the latent variables

for the next day given them. Next, we include the new observations of the next day to our

estimation period and remove the observations of the oldest day. The parameters of interest

are re-estimated using the new data and the latent variables are generated for the next day.

This is repeated until all one-step-ahead forecasts are conducted through December 31, 2009

(500 in total).

Let Niter denote the number of MCMC iterations for parameter estimation. We generate

MCMC samples of ({ht}nt=1, {gt}nt=1, {mt}nt=1,ϑ) as described in Section 37 and add a step

to the i-th MCMC iteration as follows:

• Generate

h
(i)
n+1, g

(i)
n+1,m

(i)
n+1|{yt}nt=1, {xt}nt=1, {x∗

t }nt=1, {h
(i)
t }nt=1, {g

(i)
t }nt=1, {m

(i)
t }nt=1,ϑ

(i).

We estimate E(yn+1|Fn,ϑ) and Var(yn+1|Fn,ϑ) by

µ̂n+1|n =
1

Niter

Niter∑
i=1

m
(i)
n+1 and Σ̂n+1|n =

1

Niter

Niter∑
i=1

(V
1/2(i)
n+1 R

(i)
n+1V

1/2(i)
n+1 +Ω

(i)
m).

6Noting that the asset return of American Express (AXP) is extremely low on October 3, 2005 when the
company conducted a stock split, we regard the data on that day as an outlier and remove it from the original
data by Noureldin, Shephard, and Sheppard (2012) in Section 5.3.

7The estimation algorithm are partly modified for this forecasting study. See the remark at the end of this
subsection.
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We set Niter = 3000 and generate MCMC samples after discarding first 1,000 samples

as the burn-in period. We also set the initial values for the model parameters and latent

variables as the posterior means of previous MCMC iteration.

In this subsection, we make three hedge portfolios: a minimum variance portfolio, a

mean-variance portfolio and a maximum expected return portfolio8.

Table 28 reports the cumulative objective functions (realized portfolio variances, realized

utility functions and realized returns) for (1) minimum variance strategy with the target

value µ∗
p = 0.004, 0.01 and 0.1, (2) mean-variance strategy with γ = 6, 10 and 15, and (3)

maximum return strategy with σ2∗
p = 0.001, 0.01 and 0.1 for 4B-RDESV-LE and 1B-RDESV-

LE models. For the minimum variance and maximum return strategies, 4B-RDESV-LE and

1B-RDESV-LE models outperform the models of Shirota, Omori, Lopes, and Piao (2017)9.

On the other hand, for mean-variance strategy, CRSV models of Shirota, Omori, Lopes,

and Piao (2017) outperform our model. As discussed in Shirota, Omori, Lopes, and Piao

(2017), the realized measures are not useful to improve the performance in the mean-variance

strategy in general. Under all settings in each strategy, 4B-RDESV-LE model outperforms

1B-RDESV-LE model.

Figures 5, 6 and 7 illustrate the time series plots of the portfolio weight for three strategies

in 4B-RDESV-LE model. Similarly to Shirota, Omori, Lopes, and Piao (2017), we find that

the portfolio weights fluctuate more drastically under the riskest setting in each strategy

(µ∗
p = 0.1, γ = 6 and σ2∗

p = 0.1) than under the other settings in each strategy. We also

notice that all weights of the stocks for the mean-variance strategy are very small and the

weights of the risk free asset are very large. Time series plots of cumulative realized returns

and realized portfolio variances are illustrated in Figures 8 and 9.

Therefore, in comparison with the models proposed by Shirota, Omori, Lopes, and Piao

(2017), our method is shown to perform well in the analysis of multivariate stock returns.

Remark 8. If we include the data on October 3, 2005 to the data set, we face the difficulty

that the sampling method of gt does not work for the day. Therefore, we need to generate an

element of gt of the day given the other elements one by one and conduct the multiple-trial

8See Shirota, Omori, Lopes, and Piao (2017) for details. We follow Shirota, Omori, Lopes, and Piao (2017)
and use federal funds rate for risk-free rate.

9See Table 18 of Shirota, Omori, Lopes, and Piao (2017).
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Metropolized independent sampler with many trials.

Table 28: The value of cumulative objective functions for three strategies.

Minimum Variance µ∗
p = 0.004 µ∗

p = 0.01 µ∗
p = 0.1

CRSV 0.748 4.448 730.4
4B-RDESV-LE 0.437 2.571 461.0
1B-RDESV-LE 0.576 3.422 632.6

Mean-Variance γ = 6 γ = 10 γ = 15
CRSV 0.981 1.153 1.239
4B-RDESV-LE 0.905 1.092 1.186
1B-RDESV-LE 0.877 1.075 1.175

Maximum Return σ2∗
p = 0.001 σ2∗

p = 0.01 σ2∗
p = 0.1

CRSV 1.172 0.662 -0.947
4B-RDESV-LE 1.537 1.892 3.013
1B-RDESV-LE 1.384 1.409 1.485
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Figure 5: Time series plot of the portfolio weight for minimum variance strategy: µ∗
p = 0.004

(red), µ∗
p = 0.01 (green) and µ∗

p = 0.1 (blue).
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Figure 6: Time series plot of the portfolio weight for mean-variance strategy: γ = 6 (red),
γ = 10 (green) and γ = 15 (blue).
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Figure 7: Time series plot of the portfolio weight for maximum return strategy: σ2∗
p = 0.001

(red), σ2∗
p = 0.01 (green) and σ2∗

p = 0.1 (blue).
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Figure 8: Cumulative realized return: 4B-RDESV-LE (red) and 1B-RDESV-LE (blue).
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Figure 9: Realized portfolio variance 4B-RDESV-LE (red) and 1B-RDESV-LE (blue).
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