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Abstract

The revenue management for online booking systems, which incorporates over-
booking by the hotels, is particularly important because of increasing cancellations
at the last minute and no-shows which cause serious damage to the management of
the hotels.

This study proposes a new quantitative overbooking model for online booking
systems, where the rival hotels’ room charges affect the choice probability of the
target hotel. Our model enables a hotel to obtain optimal overbooking strategy and
room charge that maximize the expected sales based on its empirical data on the
cancellations and the oversale cost per room.

Moreover, we present numerical examples of the optimal overbooking strategy
and room charge with actual online booking data of two major luxury hotels in
Shinjuku area in Tokyo.

Furthermore, equilibrium room charges of the hotels are considered, where we
find the price competition may lead to significantly low levels of room charges and
the expected sales.

Keywords: Hotel overbooking, Online booking, Revenue management, Equilibrium
room charge

1 Introduction

Against the backdrop of the advancement in information technologies, increasing number
of hotel customers reserve rooms through online booking systems. They can conveniently
book rooms by comparing several conditions of the hotels. Under the circumstances, the
hotel revenue management for online booking systems, where hotels set the room charges
at the optimal levels to maximize their expected revenues by taking into account the room
charges of the rival hotels, becomes increasingly important.

Whereas the share of the rooms booked through online booking systems increases, the
number of cancellations and no-shows also rises due to the convenience of the booking.
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For example, a pattern of cancellation and no-show called juggling, where customers or
groups of customers reserve rooms in multiple hotels and then cancel the rooms or do not
show up at the last minute except for the one to stay, represents a critical problem for
hotels that sell rooms through online booking systems. What makes the situation even
worse is that the customers do not prefer to pay in advance because of the possibilities
of cancellation for inevitable reasons such as sickness and unpredicted accidents and it is
difficult for the hotels to require the guests to pay the cancellation fees or resort to collect
them in terms of hospitality when the cancellations actually happen. This causes heavy
damage to the revenues of the hotels.

Although hotels overbook their rooms by predicting the number of cancellations at
the last minute and no-shows, developing an overbooking strategy is a complicated issue.
For instance, if the cancellations and no-shows are more than expected and these generate
some vacant rooms, the hotel incurs some loss on sales. On the other hand, if the cancel-
lations and no-shows are less than expected, the hotel get into a situation of oversale. In
such a case, the hotel needs to accommodate the guests a higher grade room if available
or displace the guests to other hotels by paying for the room charge and offering extra
compensation if necessary, which are additional costs for the hotel.

To overcome the difficulties in overbooking, we propose a quantitative overbooking
model for online booking systems, which incorporates the cancellations at the last minute
and no-shows with the oversale costs which the hotel incurs when the number of customers
actually coming on the check-in date exceeds the hotels’ capacity. Our study investigates
an overbooking strategy that maximizes expected sales of a hotel in an online booking
system, where customers choose a hotel from a group comparing the room charge with
those of the rival hotels. Particularly, we provide numerical examples using actual online
booking data of two major luxury hotels in Shinjuku area in Tokyo, which are crawled
from a Japanese online booking website. In addition, we investigate equilibrium room
charges and expected sales less the oversale cost of the hotels when they are in a price
competition. Hotels can use the overbooking model to determine the overbooking strategy
in peak seasons, which maximizes the expected sales less the oversale cost in online booking
systems.

For relevant studies on online hotel booking, Vermeulen and Seegers (2009) [32] in-
vestigate the impact of online hotel reviews on customer choice. Ling et al. (2014) [19]
study on optimal unit commission that a hotel pay to an online travel agency through a
sequence game model. Phillips et al. (2015) [22] deal with effects of online reviews on
hotels’ revenue per available room by a neural network model. Sparks et al. (2016) [27]
consider the effects of hotel responses to negative online reviews on the perceptions of po-
tential customers. Li et al. (2017) [15] study the signaling effect of the hotel management
response to online customer reviews to engage customers.

Also, for the literature related to hotel revenue management in qualitative perspec-
tives, Kimes and Chase (1998) [12] summarize revenue management practices in different
industries including hotels. Upchurch et al. (2002) [31] analyze revenue management
practices by having a questionnaire to hotel revenue managers. Emeksiz et al. (2006)
[9] propose effective implementation of yield management in hotels. Cetin et al. (2016)
[4] interview hotel revenue managers about knowledge, skills and abilities required for
revenue management. Abrate and Viglia (2016) [1] investigate price determining factors
in dynamic pricing of hotels with data of booking.com.
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For quantitative studies on revenue management, Lai and Ng (2005) [14] study revenue
management of hotels taking into account the length of stay by a network optimization
modeling. Chen and Kachani (2007) [5] consider demand forecasting and revenue man-
agement of hotels by a network flow model. Aziz et al. (2011) [3] investigate a dynamic
pricing model of hotels by taking into account a room allocation for early discount and
forecasting of demand. Mei and Zhan (2013) [20] examine room choice behavior of cus-
tomers by multinomial logit model by having a questionnaire. Guo et al. (2013) [11] study
a dynamic pricing model for hotels based on market segmentation in online reservation
systems. Arenoe et al. (2015) [2] deal with equilibrium room charges of hotels in a pricing
competition with the multinomial logit model. Ling et al. (2015) [18] examine an optimal
room allocation to online travel agencies taking into account the management fees paid
to them . Saito et al. (2016) [24] consider expected sales maximization for online booking
by the discrete choice model. Solnet et al. (2016) [26] investigate purchasing behavior of
hotel customers in Australia by Market basket analysis.

Furthermore, for the studies related to overbooking, Toh (1986) [28] and Toh and
Dekay (2002) [29] study practices of no-shows, late cancellations, overbooking and over-
sales comparing to the cases of airline industry proposing a simple overbooking model for
practical use. Dekay et al. (2004) [8] examine penalties on hotel customers for cancella-
tions and no-shows as well as practices of upgrading and walks in the case of oversales
by interviewing hotels. Chen et al. (2011) [6] analyze impact of cancellation fee on cus-
tomer behavior of searching for hotels by multinomial logit model based on experiment
on students. Chen and Xie (2013) [7] investigate cancellation policies of U.S. hotels by
dividing the hotels into two groups by clustering. Park and Jang (2014) [21] study effects
of temporal and monetary sunk costs on travelers’ intention to cancel travel products.

Particularly, for quantitative studies on overbooking models, Rothstein (1974) [23]
deals with an overbooking problem to determine an optimal booking policy by Markovian
sequential decision model. Liberman and Yechiali (1978) [16] deal with an overbooking
problem of hotels with stochastic cancellations. Gallego and Ryzin (1994) [10] investigate
formulations of revenue management including the case of overbooking. Koide and Ishii
(2005) [13] analyze a model for an optimal room allocation for early discount taking into
account cancellation and overbooking. Sierag et al. (2015) [25] consider an optimal choice
of products to offer for a room type under overbooking.

While all these works focus on the problem of a single hotel irrelevant to the price
levels of the other hotels, our study is the first one that deals with overbooking strategies
in online booking systems, where the customers choose a hotel to book from a group in
the same area taking the room charges of the rival hotels into account. Also, with the
actual data crawled from a Japanese online booking website, we calculate the optimal
overbooking level and room charge for a certain room type of a hotel, which provides
sensible results in accord with intuition. Cancellations at the last minute and no-shows are
increasing in contrast with the convenience of the booking in online booking systems, and
they have a serious impact on the management of hotels. To cope with the situation, the
revenue management that incorporates overbooking by hotels is particularly important.
With this model, booking patterns including arrival rates and a price sensitivity of the
customers to the choice probabilities, are estimated from the actual data in the online
booking system, and in combination with the empirical data of the cancellation rate
and the oversale cost per room they own, they can quantitatively obtain the optimal
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overbooking level and room charge that maximizes their expected sales less the oversale
cost and compensate the revenue decrease by the no-shows and cancellations at the last
minute.

The organization of the paper is as follows. Section 2 explains the mathematical setting
of the overbooking model. Section 3 presents numerical examples of the overbooking
strategies and the equilibrium room charges with the actual online booking data of the
two hotels in Shinjuku area in Tokyo. Finally, Section 4 concludes. Appendices A & B
provide the proofs of the theorems in Sections 2 & 3.

2 The model

This section explains the overbooking model for online booking systems, where an opti-
mal overbooking strategy for a certain room type is defined through an expected sales
maximization problem.

Firstly, we consider booking behavior of online customers who visit the website ran-
domly at the frequency following a Poisson process and book a certain room type of a
hotel choosing among J hotels in a group. We fix a check-in date T and let [0, T ] be the
booking period for the check-in date, where 0 is the start date of the booking period. Let
{Nt}0≤t≤T be the Poisson process with intensity λ, which represents the total number of
rooms booked for the J hotels by date t.

Let Li ≥ 0, i = 1, . . . , J be the actual capacity of hotel i for the room type and
Lob
i ≥ Li, i = 1, . . . , J be the overbooking level of hotel i, up to which hotel i accepts

reservations in the online booking system.
Let γ = (γ1, . . . , γJ) ∈ ΠJ

j=1{0, 1} ≡ Γ be the state of room availability of the J hotels
for the room type, that is, γi = 0 or 1 indicates that this room type of hotel i is fully
occupied or still available. In detail, when NT = k′, there can be Jk′ patterns of selection
orders. Let τ = (i1, i2, . . . , ik′) ∈ Sk′ , i1, i2, . . . , ik′ = 1, . . . , J be a selection order where
Sk′ is the totality of the selection orders with length k′. For τ = (i1, . . . , ik′) ∈ Sk′ and
1 ≤ l ≤ k′, we define the room availability of hotel j after l customers arrived and booked
in the selection order of τ , γl,τ

j as

γl,τ
j =

{
1, if

∑l
l′=1 1{il′=j} < Lob

j

0, otherwise
, j = 1, . . . , J,

which indicates that hotel j is available until the number of booking for hotel j reaches
its limit Lob

j .

Let x(1), . . . , x(J) be the room charges of hotels 1, . . . , J and p
(γ)
i (i = 1, . . . , J) be the

choice probability of hotel i, which is a function of x(1), . . . , x(J) and dependent on the
room availability γ. For example, p

(γ)
i can take the following forms.

1. The multinomial logit model:

p
(γ)
i =

e−βx(i)+αi1{γi=1}∑J
j=1 e

−βx(j)+αj1{γj=1}
, (1)

where β > 0, αj ∈ R.
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2. The nested logit model:

p
(γ)
i =

(∑
j∈Cki

e
−βx(j)+αj

νki 1{γi=1}

)νki

∑n
k=1

(∑
j∈Ck

e
−βx(j)+αj

νk 1{γj=1}

)νk ·
e

−βx(i)+αi
νki 1{γi=1}∑

j∈Cki
e

−βx(j)+αj
νki 1{γj=1}

(2)

where β > 0, αj ∈ R, 0 < νk ≤ 1, k = 1, . . . , n.

3. The mixed logit model:

p
(γ)
i =

∫ ∞

0

e−βx(i)+αi1{γi=1}∑J
j=1 e

−βx(j)+αj1{γj=1}
h(β)dβ, (3)

where αj ∈ R, 0 ≤ h(β),
∫∞
0

h(β)dβ = 1.

We note that in the theory of random utility (e.g. See Train [30]), the choice probabilities

p
(γ)
i , i = 1, . . . , J in the multinomial logit model (1) correspond to the situation where
customers choose the hotel with the highest utility and the customers’ utility on hotel j
(j = 1, . . . , J) is given by Uj = −βx(j) + αj + ϵj. Here, ϵj is a random variable where
{ϵj}j=1,...,J are i.i.d (independent and identically distributed) random variables following
an extreme value distribution and the deterministic part of the random utility, −βx(j)+αj,
is a decreasing function on the room charge x(j), which implies that the higher the room
charge is, the lower the utility is. The other characteristics of hotel j, which do not
change over time such as reputation and grade, are reflected in αj. The indicator function
in (1) implies that if γj = 0, that is, the room type of the hotel j is fully booked and not
available for booking, then hotel j is excluded from the group for the choice.

Similarly, the nested logit model in (2) can be interpreted in terms of the random
utility theory, where the joint distribution of (ϵ1, . . . , ϵJ) follows a general extreme value
distribution. The J hotels are divided into n non-overlapping groups of the same kind, and
the dissimilarities within the small groups are represented by 0 ≤ νk ≤ 1, k = 1, . . . , n. We
note that the nested logit model is a generalization of the multinomial logit model. That
is, the model agrees with the multinomial logit model when the dissimilarity parameters
are νk = 1, k = 1, . . . , n meaning that the hotels in the small groups are all dissimilar.
Note also that when J = 2, this model is the same as the multinomial logit model.

The mixed logit model in (3) is also a generalization of the multinomial logit model
in (1), where the sensitivity to change in the room charge β in the utilities takes different
values among customers with the distribution h(β). We shall use the mixed logit model
in the numerical examples in the next section and explain this more in detail.

We also assume that the customers’ choice behavior is independent of NT , the to-
tal number of bookings for the group by the check-in date T , that is, the conditional
probability for the choice order τ = (i1, i2 . . . , ik′) when NT = k′ is

P((i1, i2 . . . , ik′)|NT = k′) = p
(γ1,τ )
i1

p
(γ2,τ )
i2

· · · p(γ
k′,τ )

ik′
. (4)

Hence, the probability for the choice order (i1, i2 . . . , ik′) is

P((i1, i2 . . . , ik′)) = p
(γ1,τ )
i1

p
(γ2,τ )
i2

· · · p(γ
k′,τ )

ik′

(λT )k
′

k′!
e−λT . (5)
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Note that since p
(γ)
i includes x(j) and γj, the conditional probability p

(γ)
i , P((i1, i2 . . . , ik′)|NT =

k′) depends on x(j) and Lob
j , j = 1, . . . , J .

Let R
(i)
T , i = 1, . . . , J , be the number of bookings of hotel i by the customers by the

check-in date T . Namely, for NT = k′ and τ = (i1, i2, . . . , ik′), it is defined as

R
(i)
T =

k′∑
j=1

1{ij=i} (6)

and satisfies

J∑
i=1

R
(i)
T = NT . (7)

Next, we consider the expected sales of the hotel i including the cost arising from the
oversale. Since the number of hotel i’s rooms booked by the check-in date T does not
exceed the overbooking level Lob

i , it is also written as

min
(
R

(i)
T , Lob

i

)
. (8)

Let 0 ≤ ri ≤ 1 be the rate of the no-shows and cancellations at the last minute of hotel i,
which is a random variable independent of NT and R

(i)
T , i = 1, . . . , J following a discrete

probability distribution. Hereafter, we call it the cancellation rate. Then, the number
of rooms booked on the check-in date T after the no-shows and cancellations at the last
minute is

(1− ri)min
(
R

(i)
T , Lob

i

)
. (9)

Let ci > 0 be the oversale cost per room. Hotel i incurs the cost arising from oversale
when the number of rooms booked after the no-shows and cancellations exceeds the actual
room capacity Li.

More in detail, i) if the number of booking after the no-shows and cancellations at the
last minute falls within the actual capacity, that is,

(1− ri)min
(
R

(i)
T , Lob

i

)
≤ Li, (10)

there is no oversale cost.
ii) If the number exceeds the actual capacity, namely,

(1− ri)min(R
(i)
T , Lob

i ) > Li, (11)

then (
(1− ri)min

(
R

(i)
T , Lob

i

)
− Li

)
ci (12)

is the oversale cost that hotel i incurs. By putting these cases together, we observe that
the sales less the oversale cost is

min
(
Li, (1− ri)min

(
R

(i)
T , Lob

i

))
x(i) −max

((
(1− ri)min

(
R

(i)
T , Lob

i

)
− Li

)
, 0
)
ci.

(13)
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We remark that when hotel i has spare rooms in higher grade room types and they can
be used for upgrading, the oversale cost per room ci is low. Otherwise, the hotel has to
displace the guests to other hotels by paying for the room charges and may offer extra
compensations. In this case, the oversale cost per room ci is high.

Finally, we consider the maximization of the expectation of the sales less the oversale
cost over x(i) ∈ (0,∞) and Lob

i ∈ [Li,∞). Namely,

max
(x(i),Lob

i )∈(0,∞)×[Li,∞)
E
[
min

(
Li, (1− r)min(R

(i)
T , Lob

i )
)
x(i) −max

(
(1− r)min(R

(i)
T , Lob

i )− Li, 0
)
ci

]
.

(14)

The following theorem guarantees the existence of the optimal overbooking level and
room charge for this maximization problem.

Theorem 1. Suppose that hotel J ̸= i has unlimited number of rooms, i.e. γJ ≡ 1,
and the cancellation rate ri follows a discrete distribution with the support [0, r̄] where

0 ≤ r̄ < 1. If p
(γ)
j , j = 1, . . . , J is given either by the multinomial logit model in (1), the

nested logit model in (2), or the mixed logit model in (3) satisfying∫ ∞

0

1

β
h(β)dβ < ∞ (15)

, then

E
[
min

(
Li, (1− r)min(R

(i)
T , Lob

i )
)
x(i) −max

(
(1− r)min(R

(i)
T , Lob

i )− Li, 0
)
ci

]
(16)

has a maximum point (x
(i)
∗ , Lob

i∗) in (0,∞)× [Li,∞).

Note that the integrability condition (15) for β of the mixed logit model (3) holds for
the lognormal distribution. Moreover, this is also satisfied when the distribution has the
support in (0,∞) or is the triangular distribution on [0, a], a > 0

We investigate this maximization problem of hotel i for different levels of the oversale
cost per room ci and the cancellation rate ri in the numerical examples in the next section.

3 Numerical examples

In this section, we present numerical examples of the optimal overbooking level and room
charge of hotels by using actual online booking data of two major luxury hotels in Shinjuku
area in Tokyo, which were crawled from a Japanese online booking website.

3.1 Data set

The original dataset includes prices of the accommodation plans and available numbers
of accommodation plans for booking for the non-smoking standard twin rooms of Hotels
A & B in Shinjuku area in Tokyo. The check-in dates and the booking dates of the
accommodation plans in the dataset range from 1st of March 2017 to 26th of April 2017.
Table 1 describes basic information of Hotels A & B (number of guest rooms, ratings,
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and customer reviews). We note that Hotels A & B are luxury hotels with large capacity,
high ratings and good customer reviews in the same area.

Number of rooms Booking.com rating Michelin guide 2011 rating Booking.com review Rakuten review Jaran review
Hotel A 806 5 stars 4 pavilions 8.5/10.0 3.88/5.00 3.9/5.0
Hotel B 744 4 stars 3 pavilions 8.6/10.0 4.17/5.00 4.5/5.0

Table 1: Summary of Hotels A & B

Note that the original dataset does not explicitly contain the information on the room
charges or the numbers of rooms sold for this room type, while it includes the prices and
the number of plans available for booking for the multiple accommodation plans linked
to this room type. Therefore, in order to comply with the model, we need to estimate the
information from the original dataset in some way.

Considering these points, we first define the representative room charge of this room
type of a hotel for each check-in date as follows. For each check-in date and accommo-
dation plan, we calculate the average price of the plan over the corresponding booking
dates. Then, we take the minimum of the average prices over the accommodation plans
for each check-in date, and define it as the representative room charge of the room type
for the check-in date. We use the representative room charges as the room charges in the
model.

Also, we define the number of rooms booked for this room type of a hotel on a booking
date for a check-in date as follows. We first calculate the change of the available number
of plans for an accommodation plan from the previous booking date to the booking date.
If the change is negative, we regard this as the number of rooms booked on the booking
date, and if this is positive, we consider that this number of new rooms were supplied by
the hotel to the booking systems. Note that the number of plans available for booking
of an accommodation plan changes in conjunction with all the other accommodation
plans linked to the same room type, and hence the numbers are the same among all the
accommodation plans.

Remark 1. Note also that for the accommodation plans, when the number of plans avail-
able for booking is more than 10, it is only displayed as ”more than 10” in the original
dataset and the exact number is unknown. In this case, we regard the available number
for the accommodation plan as 10 in the above procedure. Hence when the check-in date
is not in a peak period and the hotel has enough inventories, the number of rooms booked
can be underestimated, which is a limitation of the original dataset.

Table 2 summarizes the information on the dataset including the representative room
charges and the numbers of rooms booked, which are used in the model parameters
estimation.
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HotelA HotelB
Number of check-in days 61 61

Number of a day before a holiday check-in days 9 9
Number of sold out check-in days 35 39

Number of sold out check-in days, a day before a holiday 6 7
Number of booking days 1,891 1,891

Number of available booking days 976 682

Maximum representative room charge 62,911 59,400
Minimum representative room charge 26,922 20,925
Average representative room charge 40,799 31,917

Maximum representative room charge, a day before a holiday 55,719 59,400
Minimum representative room charge, a day before a holiday 36,355 30,645
Average representative room charge, a day before a holiday 43,447 33,950

Maximum representative room charge, a weekday 62,911 50,202
Minimum representative room charge, a weekday 26,922 20,925
Average representative room charge, a weekday 40,367 31,721

Maximum number of booked rooms per check-in day 20 21
Minimum number of booked rooms per check-in day 0 0
Average number of booked rooms per check-in day 3.97 4.93

Maximum number of booked rooms per check-in day, a day before a holiday 10 10
Minimum number of booked rooms per check-in day, a day before a holiday 0 0
Average number of booked rooms per check-in day, a day before a holiday 3.33 3.00

Maximum number of booked rooms per check-in day, a week day 20 21
Minimum number of booked rooms per check-in day, a week day 0 0
Average number of booked rooms per check-in day, a week day 4.08 5.27

Table 2: Summary of the dataset used for the estimation

3.2 Estimation

Table 3 presents the estimation results of the mixed-logit model (3) by the maximum
likelihood method. In detail, we assume the log-normal distribution for β, that is, β = eX

where X is a random variable following the normal distribution with the mean µ ∈ R and
the standard deviation σ > 0. In addition, we assume that the intercept αj, j = 1, . . . , J
in (3) takes the form αj = δjy + ᾱj, where y is a dummy variable taking a value 0 or 1;
y = 0 if the check-in date is a weekday and y = 1 if it is a day before a holiday. We label
Hotel A and Hotel B as hotel 1 and hotel 2, respectively, and consider the case of J = 2.
Namely,

p
(γ)
i =

∫ ∞

0

e−βx(i)+δiy+ᾱi1{γi=1}∑2
j=1 e

−βx(j)+δjy+ᾱj1{γj=1}
h(β)dβ,

=

∫ ∞

0

e−e(µ+σz)x(i)+δiy+ᾱi1{γi=1}∑2
j=1 e

−e(µ+σz)x(j)+δjy+ᾱj1{γj=1}

1√
2π

e−
z2

2 dz (17)

for i = 1, 2. Noting that p
(γ)
i depends only on the differences ᾱ2 − ᾱ1 and δ2 − δ1 for ᾱj

and δj, we estimate µ, σ, ᾱ2 and δ2, with ᾱ1 = δ1 = 0.

Estimate Std. Error t-value p-value
ᾱ2: hotel B:(intercept) -2.094104 0.27978 -7.4848 7.172e-14 ***
µ: price -8.161672 0.087479 -93.2985 < 2.2e-16 ***
δ2: hotel B:holiday 0.849365 0.604821 1.4043 0.1602
σ: sd.price 1.053053 0.243032 4.333 1.471e-05 ***

Note: * - marginal significant at 0.10 level; ** - significant at 0.05 level; *** - significant at 0.01 level.

Table 3: Estimation results of the mixed-logit model.
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In the numerical examples, we use the mixed logit model in (3) which is a generalization
of the multinomial logit model in (1) in that it incorporates differences of the price sensi-
tivity β among the customers. In detail, we can interpret the mixed logit model in (3) in
the framework of the random utility theory (e.g. Train [30]) as follows. Suppose that the
utilities on Hotels A & B of person m, U1,m and U2,m, are Ui,m = −βmx

(i)+ δiy+ ᾱi+ ϵi,m,
where ϵi,m is the random term of the utility and {ϵi,m} are i.i.d random variables following
an extreme value distribution. βm is the price sensitivity parameter of person m in the
utilities U1,m and U2,m, which is a sample of a lognormal random variable eX , X ∼ N(µ, σ).
Person m chooses Hotel A if U1,m > U2,m, and Hotel B otherwise. Then, it follows that

the choice probabilities p
(γ)
1,m = E[U1,m > U2,m] of Hotels A and p

(γ)
2,m = E[U2,m > U1,m] of

Hotel B by person m under the room availability γ are given by

p
(γ)
i,m =

e−βmx(i)+δiy+ᾱi1{γi=1}∑2
j=1 e

−βmx(j)+δjy+ᾱj1{γj=1}
. (18)

Hence, the choice probabilities p
(γ)
i (i = 1, 2) over all persons are

p
(γ)
i =

∫ ∞

0

e−βx(i)+δiy+ᾱi1{γi=1}∑2
j=1 e

−βx(j)+δjy+ᾱj1{γj=1}
h(β)dβ

=

∫ ∞

0

e−e(µ+σz)x(i)+δiy+ᾱi1{γi=1}∑2
j=1 e

−e(µ+σz)x(j)+δjy+ᾱj1{γj=1}

1√
2π

e−
z2

2 dz. (19)

**In the following examples, we set the other parameters λ = 2.1429, T = 14, L1 =
20, L2 = ∞, x(2) = 42,292 so that they correspond to the booking data of the check-in
date 10th April 2017, when this room type of Hotel A was fully booked after selling 20
rooms and Hotel B still had available rooms for booking after selling 10 rooms with the
representative room charges of Hotels A & B for the check-in date JPY 46,680 and JPY
42,292, respectively. λ is estimated as λ = 30

14
by the maximum likelihood method, which

agrees with the intensity obtained by setting E[NT ] = λT = 30.

3.3 Optimal overbooking strategy

Firstly, we calculate the optimal overbooking level and room charge of Hotel A in four
cases of the cancellation rate and the oversale cost per room. Figure 1 shows the optimal
expected sales for different overbooking levels in the four cases; the high/low cancellation
rate and the high/low oversale cost per room. The cancellation rates and the oversale costs
per room are as follows: the high cancellation rate (70%, 50%, 30%) with the probability
(1
3
, 1
3
, 1
3
), the low cancellation rate (0%, 10%, 20%) with the probability (1

3
, 1
3
, 1
3
), the high

oversale cost per room JPY 100,000, and the low oversale cost per room JPY 100.
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Figure 1: The optimal expected sales less oversale cost for different overbooking levels

The maximum expected sales less the over sale cost and the optimal overbooking level
and room charge are as follows.

• The low cancel rate and the low oversale cost per room: JPY 824,200 when (Lob
1 , x

(1)) =
(25, 43,000).

• The low cancel rate and the high oversale cost per room: JPY 763,244 when
(Lob

1 , x
(1)) = (20, 43,500).

• The high cancel rate and the low oversale cost per room: JPY 555,221 when
(Lob

1 , x
(1)) = (51, 41,500).

• The high cancel rate and the high oversale cost per room: JPY 536,454 when
(Lob

1 , x
(1)) = (29, 42,000).

We observe that optimal overbooking levels as well as the expected sales less the
oversale cost are different among the four cases. The blue and yellow lines for the low
cancellation rate show higher expected sales less the oversale cost than the orange and
gray lines for the high cancellation rate, because the low cancellation rate implies less
sales loss by the no-shows and cancellations at the last minute.

Firstly, with the low cancellation rate, the merit of overbooking is not very much as
the blue and yellow lines indicate. More in detail, in the case of the low oversale cost
per room, overbooking compensates the sales loss by the no-shows and cancellations at
the last minute and this compensation outweighs the cost by the oversale up to 25 rooms
of the overbooking level. After that, there is no more sales compensation by raising the
overbooking level, and the expect sales less oversale cost only slightly decrease because
of the oversale cost. Particularly when the oversale cost per room is high, as the yellow
line illustrates, the expected sales less the oversale cost only decrease. Due to the low
cancellation rate, there is not much sales loss by the cancellations, and because the oversale
cost per room is high, oversale cost outweighs the sales compensation from 20 rooms of
the overbooking level.
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Secondly, with the high cancellation rate, as the orange and gray lines indicate, it is
better for hotels to overbook to cover the decrease in sales by the no-shows and cancel-
lations at the last minute. In the case of the low oversale cost, up to 51 rooms of the
overbooking level, the compensation effect outweighs the oversale cost and the orange line
is almost flat due to the low oversale cost per room and the little chance for the rooms to
be booked up to this level. However, when the oversale cost per room is high, as the gray
line shows, after 29 rooms of the overbooking level, overbooking results in high oversale
cost and the expected sales less oversale cost start to decline.

We remark that if r1 is a constant, the optimal overbooking level is Lob
1 = L1/(1− r1),

since as long as Lob
1 ≤ L1/(1− r1), oversale cannot not happen, and it is better for Hotel

A to accept as many bookings as possible. For Lob
1 > L1/(1− r1), the oversale occurs and

the hotel incurs more oversale cost as it raises the overbooking level. Hence, it is optimal
for Hotel A to set Lob

1 at this level if the cancellation rate is a constant. This indicates
that if the cancellation rate is at the expectation of the high cancellation rate, 50%, the
optimal overbooking level is 40 rooms, and if the rate is at the expectation of the low
cancellation rate, 10%, it is 22 rooms.

On the other hand, the optimal overbooking levels for the high cancellation rate are
29 rooms for the high oversale cost per room with 51 rooms for the low oversale cost
per room, and the optimal levels for the low cancellation rate are 20 rooms for the high
oversale cost per room with 25 rooms for the low oversale cost per room. They imply
that when the oversale cost per room is high, the optimal overbooking level is lower than
that for the constant cancellation rate, due to the high oversale cost in the case where the
cancellation rate takes the low value. They also indicate that when the oversale cost per
room is low, the optimal overbooking level is higher than that for the constant cancellation
rate in order to compensate the large sales loss in the case where the cancellation rate
takes the high value.

Next, Figure 2 illustrates the expected sales less the oversale cost for different room
charges in the case of the high cancel rate, (70%, 50%, 30%) with the probability (1

3
, 1
3
, 1
3
),

and the high oversale cost per room, JPY 100,000, when the overbooking level is set at
the optimal level, Lob

1 = 29.

Figure 2: The expected sales less the oversale cost for different room charges
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We observe that the expected sales less the oversale cost have a peak of JPY 536,454
at the room charge JPY 42,000. At first, as the room charge increases, the expected sales
less the oversale cost also increase because of the higher unit price. After the optimal room
charge, the expected sales decline, since the decrease in choice probability outweighs the
increase in unit price.

Remark 2. The oversale cost per room and the distribution of the cancellation rate are
determined by hotels based on their own empirical data. As we have observed, using the
empirical data of the cancellation rate and the oversale cost per room that they own along
with the data from the online booking system, they can obtain the optimal overbooking
level and room charge by themselves, which maximizes the expected sales less the oversale
cost.

3.4 Equilibrium room charge

Finally, we consider equilibrium room charges of Hotels A & B to observe how the room
charges transition and where they settle if each hotel revises its room charge in response
to the optimization of the counterpart. We call (x∗

1, x
∗
2) equilibrium room charges if they

satisfy

x(1)
∗ = argmaxx(1)∈(0,∞)f(x

(1)|x(2)
∗ ), (20)

x(2)
∗ = argmaxx(2)∈(0,∞)g(x

(2)|x(1)
∗ ). (21)

Here, f(x(1)|x(2)) and g(x(2)|x(1)) are the objective functions of hotels 1 and 2, which
correspond to Hotels A & B in the following example, when the room charge of the
counterpart x(2) or x(1) is given. This indicates that at the equilibrium room charges,
hotels 1 and 2 maximize their objective functions at the same time; hotel 1 maximizes
its expected sales less the oversale cost at the room charge x

(1)
∗ , given the room charge

of hotel 2 x
(2)
∗ , and hotel 2 also maximizes its objective function at the room charge x

(2)
∗ ,

given the hotel 1’s room charge x
(1)
∗ .

First, we observe that the existence of the unique equilibrium prices is guaranteed
by the following theorem in the case of the multinomial logit model in (1) when the
both hotels have an unlimited capacity and hence there is no oversale cost. The proof is
provided in Appendix B.

Theorem 2. Assume that there is no limit for the numbers of rooms available for booking
for hotels 1 and 2. Suppose that the choice probabilities of hotels 1 and 2 are given by the
multinomial logit model as

p1 =
1

1 + eβ(x(1)−x(2))+α2−α1
,

p2 =
1

1 + eβ(x(2)−x(1))+α1−α2
, (22)

and hotels 1 and 2 aim to maximize their expected sales x(1)E[R
(1)
T ] and x(2)E[R

(2)
T ], respec-

tively. Then, the unique equilibrium room charges (x
(1)
∗ , x

(2)
∗ ) ∈ ( 1

β
,∞)2 exist. Moreover,

if hotels 1 and 2 maximize their expected sales iteratively starting from the room charges
(x

(1)
0 , x

(2)
0 ) ∈ (0,∞)2, the room charges converge to the equilibrium room charges.
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Remark 3. Since E[R
(1)
T ] = λTp1,E[R

(2)
T ] = λTp2, hotels 1 and 2 equivalently aim

to maximize x(1)p1 and x(2)p2. Hence, the objective functions in (20) and (21) in the
definition of the equilibrium room charges can be taken as f(x(1)|x(2)) = x(1)p1 and
g(x(2)|x(1)) = x(2)p2.

Then, we calculate the equilibrium room charges in the case of the high cancellation
rate and the oversale cost per room in the previous example as follows. First, hotel A
maximizes its expected sales less the oversale cost given the initial room charge of Hotel
B, and then Hotel B maximizes its objective function given the optimized room charge of
Hotel A. They iterate the optimization process 10 times by turns. In each optimization,
the hotels assume infinity for the overbooking level of the counterpart since they do
not know the actual quantity of inventory of the counterpart. Although this example
considers the case of the mixed logit model with the limited capacities and oversale cost,
which is different from Theorem 2, we observe that the equilibrium room charges exist,
and the optimal room charges converge to the equilibrium levels as a result of the iterative
optimizations.

Figures 3 and 4 respectively illustrate transition of the the optimal room charges
and that of the expected sales less the oversale cost of Hotels A & B by the iterative
optimizations. In Figure 3, starting from the initial room charge of JPY 46,680 and JPY
42,292 for Hotels A & B, respectively, shown as the room charges after the 0-th iteration,
Hotel A optimizes its room charge given the initial room charge of Hotel B, and Hotel
B does given the optimized room charge of Hotel A. The optimized room charges JPY
42,000 and JPY 30,000 for Hotels A & B are shown as the room charges after the first
iteration. In the second iteration, Hotel A optimizes its room charge given the optimized
room charge of Hotel B after the first iteration, and then Hotel B does given the optimized
room charge of Hotel A. They iterate this process 10 times. We observe that the optimal
room charges decline by the iterative optimizations and settle at the equilibrium room
charges, JPY 10,500 and JPY 6,500, which are significantly at lower levels than the
original room charges. This iterative optimization process can be considered as a price
competition between the hotels. Note that the optimal overbooking level of Hotel A is 29
rooms for the first and the second iteration and 28 rooms thereafter. Figure 4 illustrates
the corresponding expected sales less the oversale cost. In accordance with the declines
of the room charges, the expected sales less oversale cost also decrease for both hotels. In
detail, the expected sales less the over sale cost start from JPY 407,992 and JPY 528,751
with the initial room charges, they increase to JPY 536,454 and JPY 620,827 in the first
optimization, but thereafter they decrease and settle at JPY 99,654 and JPY 77,084 for
Hotels A & B, respectively.
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Figure 3: Convergence of the optimal room charges to the equilibrium levels

Figure 4: Transition of the expected sales less the oversale cost by the iterative optimiza-
tions

For a better understanding of how the optimal room charges converge to the equi-
librium room charges, Figure 5 displays the best responses of the hotels, that is, the
correspondence between the optimal room charge and the given room charge of the coun-
terpart. Starting from the first optimization of Hotel A, optimal room charge JPY 42,000
of Hotel A in response to the initial room charge JPY 42,292 of Hotel B, after the iterative
optimizations by turns, the room charges settle at the crossing point of the two graphs,
JPY 10,500 and JPY 6,500 for Hotels A & B, respectively.
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Figure 5: Optimal room charges of Hotels A & B in response to the counterpart’s room
charge

These equilibrium results imply that the revenues of the hotels may significantly de-
crease once they are in a price competition repetitively optimizing their overbooking levels
and room charges to maximize their expected sales less the oversale cost. Thus, it is im-
portant for hotels to keep this possibility in mind when they implement this model to
determine their optimal overbooking strategies and room charges.

4 Conclusion

In this study, we have proposed a new quantitative overbooking model to calculate the
optimal overbooking level and room charge that maximizes the expected sales less the
oversale cost in an online booking system. The revenue management that takes into
account the overbooking by hotels in online booking systems, is particularly important
for hotels offering their rooms through the systems, because of the increasing cancellations
at the last minute and no-shows, which are attributable to the convenience of the booking
and cause serious damage to the management of the hotels. Moreover, the model takes
into account the effect of the room charges of the rival hotels on the choice probability of
the target hotel. Furthermore, we consider the equilibrium room charges of the hotels by
this optimization.

We have presented the numerical examples of the optimal setting of the overbooking
level and the room charge by using actual online booking data of the major two luxury
hotels in Shinjuku area in Tokyo, which were crawled from a Japanese booking website.
In particular, we have obtained concrete optimal overbooking levels and room charges
along with the maximized expected sales less the oversale cost in the four different cases
of the cancellation rate and oversale cost per room.

Not only the results represent the features naturally expected for the overbooking
model: when the oversale cost per room is low, it is better to overbook in order to
compensate the decrease in revenue due to the no-shows and cancellations at the last
minute; when the oversale cost per room is high, excessive overbooking ends up with a
decrease in the expected sales less the oversale cost due to the high oversale cost, but
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also indicate concrete quantitative levels, which cannot be obtained by the qualitative
observation. For instance, when the oversale cost per room is high and the cancellation
rate is low, even minor degree of the overbooking can lead to the decrease in the expected
sales less the oversale cost. Moreover, when the oversale cost per room and the cancellation
rate are both high, the result exhibits the explicit trade-off between the compensation for
the sales loss by the overbooking and the oversale cost, which is useful to determine the
overbooking level.

In the numerical example of the equilibrium room charges between the two hotels, we
have calculated the transition of the room charges when the hotels iteratively optimize
them in turns. We have found that the equilibrium prices settle at significantly low levels
compared to the original room charges and accordingly the expected sales less the oversale
cost drop.

Hotels can make use of the model to develop their overbooking strategies and to set
the room charges in online booking systems, by taking into account the rival hotels’ room
charges along with their empirical data on the cancellation rate and the oversale cost,
particularly for peak seasons. It is also important for hotels to keep in mind that once a
price competition occurs, it may dramatically decrease their revenues.
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A Proof of Theorem 1

Let

f(x(i)) = E
[
min

(
Li, (1− r)min(R

(i)
T , Lob

i )
)
x(i) −max

(
(1− r)min(R

(i)
T , Lob

i )− Li, 0
)
ci

]
.

(23)

First, we show that for a fixed Lob
i ≥ Li, the maximum point with respect to x(i) ∈

(0,∞) exists. To show this, it suffices to prove the followings.

1.

lim
x(i)→0

f(x(i)) ≤ 0, (24)
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2.

lim
x(i)→+∞

f(x(i)) = 0, (25)

3. there exists x̄(i) ∈ (0,∞) such that

f(x̄(i)) > 0, (26)

4. f(x(i)) is a continuous function with respect to x(i).

Let γ∗ = (1, 1, . . . , 1) ∈ Γ and γ# ∈ Γ be

γ#
j =

{
1, j = i, J

0, otherwise,
j = 1, · · · , J.

1. limx(i)→0 f(x
(i)) ≤ 0

Noting that limx(i)→0 f(x
(i)) = −ci limx(i)→0E

[
max

(
(1− r)min(R

(i)
T , Lob

i )− Li, 0
)]

,

we have limx(i)→0 f(x
(i)) ≤ 0, since −ciE

[
max

(
(1− r)min(R

(i)
T , Lob

i )− Li, 0
)]

is decreas-

ing as x(i) decreases to 0 and satisfies

0 ≥ −ciE
[
max

(
(1− r)min(R

(i)
T , Lob

i )− Li, 0
)]

≥ −ciE
[
max

(
(1− r)min(NT , L

ob
i )− Li, 0

)]
.

(27)

2. limx(i)→+∞ f(x(i)) = 0

For the second term of f(x(i)) in (23), since

0 ≤ max
(
(1− r)min(R

(i)
T , Lob

i )− Li, 0
)
≤ R

(i)
T , (28)
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we have

0 ≤ E
[
max((1− r)min(R

(i)
T , Lob

i )− Li, 0)
]

≤ E[R
(i)
T ]

=
∞∑
k=0

E[R
(i)
T |NT = k]

(λT )k

k!
e−λT

≤
∞∑
k=0

(
k∑

m=0

m

(
k

m

)
p
(γ#)m
i (1− p

(γ#)
i )k−m

)
(λT )k

k!
e−λT

= e−λT

∞∑
m=0

mp
(γ#)m
i

(
∞∑

k=m

(
k

m

)
(1− p

(γ#)
i )k−m (λT )k

k!

)

= e−λT

∞∑
m=0

mp
(γ#)m
i

(
∞∑

k′=0

(
k′ +m

m

)
(1− p

(γ#)
i )k

′ (λT )k
′+m

(k′ +m)!

)

= e−λT

∞∑
m=0

mp
(γ#)m
i

(λT )m

m!

(
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k′=0

(λT (1− p
(γ#)
i ))k

′

k′!

)

= e−λT eλT (1−p
(γ#)
i )

∞∑
m=0

mp
(γ#)m
i

(λT )m

m!

= λTp
(γ#)
i e−λTp

(γ#)
i

∞∑
m′=0

(λTp
(γ#)
i )m

′

m′!

= λTp
(γ#)
i . (29)

Hence,

lim
x(i)→+∞

E
[
max

(
(1− r)min(R

(i)
T , Lob

i )− Li, 0
)]

= 0. (30)

Similarly, for the first term of f(x(i)) in (23), since

0 ≤ E
[
min

(
Li, (1− r)min(R

(i)
T , Lob

i )
)
x(i)
]
≤ E

[
R

(i)
T x(i)

]
(31)

and

lim
x(i)→∞

E
[
R

(i)
T x(i)

]
≤ lim

x(i)→∞
λTx(i)p

(γ#)
i = 0, (32)

where the last equation will be shown later in the case of the mixed logit model (3), we
have

lim
x(i)→∞

E
[
min

(
Li, (1− r)min(R

(i)
T , Lob

i )
)
x(i)
]
= 0. (33)

Hence

lim
x(i)→+∞

f(x(i)) = 0. (34)
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To show (32) in the case of the mixed logit model in (3), noting that

p
(γ#)
i x(i) =

∫ ∞

0

x(i) e−βx(i)+αi∑J
j=1 e

−βx(j)+αj

h(β)dβ, (35)

and for β > 0, setting

x(∗) = max
j ̸=i

x(j),

C ≡
∑
j ̸=i

e(αj−αi) > 0, (36)

we have

x(i)

1 +
∑

j ̸=i e
−β(x(j)−x(i))+(αj−αi)

≤ x(i)

1 +
∑

j ̸=i e
β(x(i)−x(∗))+(αj−αi)

=
x(i)

1 +
(∑

j ̸=i e
(αj−αi)

)
eβ(x(i)−x(∗))

=
x(i)

1 + Ceβ(x(i)−x(∗))

=
x(i) − x(∗)

1 + Ceβ(x(i)−x(∗))
+

x(∗)

1 + Ceβ(x(i)−x(∗))

≤ x(i) − x(∗)

Ceβ(x(i)−x(∗))
+ x(∗)

≤ 1

Ceβ
+ x(∗). (37)

With the assumption that ∫ ∞

0

1

β
h(β)dβ < ∞, (38)

we have

lim
x(i)→∞

p
(γ#)
i x(i) = 0 (39)

by the dominated convergence theorem.
3. The existence of x̄(i) ∈ (0,∞) such that f(x̄(i)) > 0
To prove (26), it suffices to show that

lim
x(i)→∞

E
[
max

(
(1− r)min(R

(i)
T , Lob

i )− Li, 0
)
ci

]
E
[
min

(
Li, (1− r)min(R

(i)
T , Lob

i )
)
x(i)
] = 0.
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This follows from the fact that

E
[
max

(
(1− r)min(R

(i)
T , Lob

i )− Li, 0
)
ci

]
E
[
min

(
Li, (1− r)min(R

(i)
T , Lob

i )
)
x(i)
] ≤

ciE
[
R

(i)
T

]
x(i)(1− r̄)P

(
R

(i)
T = 1

)
≤ ciλTp

(γ#)
i

x(i)(1− r̄)
λTp

(γ∗)
i

eλTp
(γ∗)
i

≤ cie
λTp

(γ#)
i

(1− r̄)x(i)p
(γ∗)
i

→ 0 (x(i) → ∞). (40)

Here, we used

P
(
R

(i)
T = 1

)
=

∞∑
k=0

P
(
R

(i)
T = 1|NT = k

)
P(NT = k)

≥
∞∑
k=0

kp
(γ∗)
i

(
1− p

(γ∗)
i

)k−1 e−λT

k!
(λT )k

= λTp
(γ∗)
i e−λT

∞∑
k′=0

(
1− p

(γ∗)
i

)k′ (λT )k′
k′!

= λTp
(γ∗)
i e−λT e

λT
(
1−p

(γ∗)
i

)

= λTp
(γ∗)
i e−λTp

(γ∗)
i , (41)

and

lim
x(i)→∞

p
(γ#)
i

x(i)p
(γ∗)
i

= 0, (42)

which is shown particularly in the case of the mixed logit model in (3) as follows.
For β̄ > 0,

p
(γ#)
i

x(i)p
(γ∗)
i

=

∫∞
0

1

1+e−β(x(J)−x(i))+(αJ−αi)
h(β)dβ

x(i)
∫∞
0

1

1+
∑

j ̸=i e
−β(x(j)−x(i))+(αj−αi)

h(β)dβ

≤

∫ β̄

0
1

1+e−β(x(J)−x(i))+(αJ−αi)
h(β)dβ

x(i)
∫ β̄

0
1

1+
∑

j ̸=i e
−β(x(j)−x(i))+(αj−αi)

h(β)dβ
+

∫∞
β̄

1

1+e−β(x(J)−x(i))+(αJ−αi)
h(β)dβ

x(i)
∫ β̄

0
1

1+
∑

j ̸=i e
−β(x(j)−x(i))+(αj−αi)

h(β)dβ
.

(43)
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For the first term in the right hand side of (43), for 0 ≤ β ≤ β̄,

1

1 + e−β(x(J)−x(i))+(αJ−αi)

=
1

1 +
∑

j ̸=i e
−β(x(j)−x(i))+(αj−αi)

1 +
∑

j ̸=i e
−β(x(j)−x(i))+(αj−αi)

1 + e−β(x(J)−x(i))+(αJ−αi)

=
1

1 +
∑

j ̸=i e
−β(x(j)−x(i))+(αj−αi)

(
1 +

∑
j ̸=i,J e

−β(x(j)−x(i))+(αj−αi)

1 + e−β(x(J)−x(i))+(αJ−αi)

)

=
1

1 +
∑

j ̸=i e
−β(x(j)−x(i))+(αj−αi)

(
1 +

e−β(x(J)−x(i))+(αJ−αi)

1 + e−β(x(J)−x(i))+(αJ−αi)

∑
j ̸=i,J

e−β(x(j)−x(J))+(αj−αJ )

)

≤ 1

1 +
∑

j ̸=i e
−β(x(j)−x(i))+(αj−αi)

(
1 +

(∑
j ̸=i,J

e(αj−αJ )

)
max

j ̸=i,J,0≤β≤β̄
e−β(x(j)−x(J))

)
. (44)

Hence∫ β̄

0

1

1 + e−β(x(J)−x(i))+(αJ−αi)
h(β)dβ

≤

(∫ β̄

0

1

1 +
∑

j ̸=i e
−β(x(j)−x(i))+(αj−αi)

h(β)dβ

)(
1 +

(∑
j ̸=i,J

e(αj−αJ )

)
max

j ̸=i,J,0≤β≤β̄
e−β(x(j)−x(J))

)
(45)

and∫ β̄

0
1

1+e−β(x(J)−x(i))+(αJ−αi)
h(β)dβ

x(i)
∫ β̄

0
1

1+
∑

j ̸=i e
−β(x(j)−x(i))+(αj−αi)

h(β)dβ
≤ 1

x(i)

(
1 +

(∑
j ̸=i,J

e(αj−αJ )

)
max

j ̸=i,J,0≤β≤β̄
e−β(x(j)−x(J))

)

→ 0 (x(i) → ∞). (46)

For the second term in the right hand side of (43), for β ≥ β̄ and x(i) > maxj ̸=i x
(j), since

1

1 + e−β(x(J)−x(i))+(αJ−αi)
≤ 1

1 + e−β̄(x(J)−x(i))+(αJ−αi)
, (47)

we have ∫ ∞

β̄

1

1 + e−β(x(J)−x(i))+(αJ−αi)
h(β)dβ ≤ 1

1 + e−β̄(x(J)−x(i))+(αJ−αi)
. (48)
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Hence,∫∞
β̄

1

1+e−β(x(J)−x(i))+(αJ−αi)
h(β)dβ

x(i)
∫ β̄

0
1

1+
∑

j ̸=i e
−β(x(j)−x(i))+(αj−αi)

h(β)dβ
≤ 1

x(i)
∫ β̄

0
1+e−β̄(x(J)−x(i))+(αJ−αi)

1+
∑

j ̸=i e
−β(x(j)−x(i))+(αj−αi)

h(β)dβ

≤ 1

x(i)
∫ β̄

0
1+e−β̄(x(J)−x(i))+(αJ−αi)

1+
∑

j ̸=i e
−β̄(x(j)−x(i))+(αj−αi)

h(β)dβ

=
1

x(i)
(∫ β̄

0
h(β)dβ

)
1+e−β̄(x(J)−x(i))+(αJ−αi)

1+
∑

j ̸=i e
−β̄(x(j)−x(i))+(αj−αi)

.

(49)

Since

lim
x(i)→∞

1 + e−β̄(x(J)−x(i))+(αJ−αi)

1 +
∑

j ̸=i e
−β̄(x(j)−x(i))+(αj−αi)

=
e−β̄x(J)+(αJ−αi)∑
j ̸=i e

−β̄x(j)+(αj−αi)
, (50)

we have∫∞
β̄

1

1+e−β(x(J)−x(i))+(αJ−αi)
h(β)dβ

x(i)
∫ β̄

0
1

1+
∑

j ̸=i e
−β(x(j)−x(i))+(αj−αi)

h(β)dβ
≤ 1

x(i)
(∫ β̄

0
h(β)dβ

)
1+e−β̄(x(J)−x(i))+(αJ−αi)

1+
∑

j ̸=i e
−β̄(x(j)−x(i))+(αj−αi)

→ 0 (x(i) → ∞). (51)

Therefore,

lim
x(i)→∞

p
(γ#)
i

x(i)p
(γ∗)
i

= 0. (52)

4. The continuity of f(x(i))

We first show the continuity of the first term of f(x(i)) in (23).
Set

g(x(i)) = E
[
min(Li, (1− r)min(R

(i)
T , Lob

i ))
]
, (53)

gN(x
(i)) =

N∑
k=0

min(Li, (1− r)min(k, Lob
i ))P(R

(i)
T = k). (54)

Then,

lim
N→∞

sup
x(i)∈(0,∞)

|gN(x(i))− g(x(i))| = 0, (55)

since

sup
x(i)∈(0,∞)

|gN(x(i))− g(x(i))| ≤ sup
x(i)∈(0,∞)

∞∑
k=N+1

kP(R
(i)
T = k)

= sup
x(i)∈(0,∞)

E
[
R

(i)
T 1{R(i)

T ≥N+1}

]
≤ E

[
NT1{NT≥N+1}

]
→ 0, (N → ∞). (56)
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Hence, g(x(i)) is a continuous function, since the continuous function gN(x
(i)) converges

to g(x(i)) uniformly in x(i) ∈ (0,∞), and the continuity of x(i)g(x(i)) follows.
In the same manner, it follows that the second term of f(x(i)) in (23),

E
[
−max((1− r)min(R

(i)
T , Lob

i )− Li, 0)ci

]
(57)

is a continuous function with respect to x(i). Hence, f(x(i)) is continuous on (0,∞).
Finally, for fixed x(i) ∈ (0,∞),

E
[
min

(
Li, (1− r)min(R

(i)
T , Lob

i )
)
x(i) −max

(
(1− r)min(R

(i)
T , Lob

i )− Li, 0
)
ci

]
(58)

is strictly decreasing for Lob
i ≥ Li

1−r̄
.

In fact, for Lob
i ≥ Li

1−r̄
, if Lob

i increases from L̄ob
i to L̄ob

i + 1, only the probabili-

ties of R
(i)
T = L̄ob

i and R
(i)
T = L̄ob

i + 1 change. That is, for selection orders τ that

contain L̄ob
i + 1 of i, the value of R

(i)
T changes from L̄ob

i to L̄ob
i + 1, and the prob-

ability for such selection orders changes from 0 to some positive value. For the first

term E
[
min

(
Li, (1− r)min(R

(i)
T , Lob

i )
)
x(i)
]
, since min

(
Li, (1− r)min(R

(i)
T , Lob

i )
)
x(i) =

Lix
(i), it is unchanged. For the second term E

[
−max

(
(1− r)min(R

(i)
T , Lob

i )− Li, 0
)
ci

]
,

since only for such selection orders τ , −max
(
(1− r)min(R

(i)
T , Lob

i )− Li, 0
)
ci decreases

from
−
(
(1− r)L̄ob

i − Li

)
ci to −

(
(1− r)(L̄ob

i + 1)− Li

)
ci, and the probability changes from 0

to some positive value, it is strictly decreasing, and hence (58) is strictly decreasing for
Lob
i ≥ Li

1−r̄
. Hence, (58) has a maximum at some Lob

i ∈ [Li,∞).
Therefore,

max
Lob
i ≥Li

max
x(i)∈(0,∞)

E
[
min

(
Li, (1− r)min(R

(i)
T , Lob

i )
)
x(i) −max

(
(1− r)min(R

(i)
T , Lob

i )− Li, 0
)
ci

]
.

(59)

is attained at some (x
(i)
∗ , Lob

i∗) in (0,∞)× [Li,∞), which is also a maximum point for the
objective function in (16).

B Proof of Theorem 2

Let

f(x1) = x1p1 =
x1

1 + eβ(x1−x2)+α2−α1
, (60)

g(x2) = x2p2 =
x2

1 + eβ(x2−x1)+α1−α2
. (61)

Since limx1→0 f(x1) = 0, limx1→∞ f(x1) = 0 and f(x1) ≥ 0 on (0,∞), f(x1) attains its
maximum at some x1 that satisfies f ′(x1) = 0.

Noting that

f ′(x1) =
1 + eβ(x1−x2)+α2−α1 − βx1e

β(x1−x2)+α2−α1

(1 + eβ(x1−x2)+α2−α1)
2 , (62)

26



we have

eβx2 = (βx1 − 1)eβx1+α2−α1 , (63)

and

x2 =
1

β
log(βx1 − 1) + x1 +

α2 − α1

β

= h(x1). (64)

Since h : ( 1
β
,∞) → (−∞,∞) is strictly increasing and hence bijective, there exists h−1 :

(−∞,∞) → ( 1
β
,∞) such that

x1 = h−1(x2). (65)

Similarly, g(x2) attains its maximum at x2 satisfying

eβx1 = (βx2 − 1)eβx2+α1−α2 (66)

or equivalently

x1 =
1

β
log(βx2 − 1) + x2 +

α1 − α2

β

= i(x2), (67)

and i : ( 1
β
,∞) → (−∞,∞) has the inverse i−1 : (−∞,∞) → ( 1

β
,∞) such that

x2 = i−1(x1). (68)

The equilibrium point is a solution of the simultaneous equations,

eβx2 = (βx1 − 1)eβx1+α2−α1 (69)

eβx1 = (βx2 − 1)eβx2+α1−α2 . (70)

Substituting (69) for (70), we have

1 = (βx2 − 1)(βx1 − 1), (71)

and

1 = (log(βx1 − 1) + βx1 + α2 − α1 − 1) (βx1 − 1). (72)

Setting βx1 − 1 = v and βx2 − 1 = w, we have v, w > 0,

w =
1

v
, (73)

and

1 = (log v + v + α2 − α1) v. (74)
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Since the right hand side of (74) is strictly increasing, the simultaneous equations (69)

and (70) have a unique solution (x
(1)
∗ , x

(2)
∗ ) ∈ ( 1

β
,∞)2.

Finally, we show that for any (x
(1)
0 , x

(2)
0 ) ∈ [0,∞)2 and F : [0,∞)2 → [0,∞)2 such that

F (x1, x2) = (h−1(x2), i
−1(x1)), {(x(1)

n , x
(2)
n )}n∈N defined by (x

(1)
n+1, x

(2)
n+1) = F (x

(1)
n , x

(2)
n )

converges to (x
(1)
∗ , x

(2)
∗ ) as n → ∞.

Since for h : ( 1
β
,∞) → (−∞,∞),

dh(x1)

dx1

=
β

β(βx1 − 1)
+ 1

=
βx1

βx1 − 1
̸= 0, (75)

we have for h−1 : (−∞,∞) → ( 1
β
,∞),

dh−1(x2)

dx2

=
βx1 − 1

βx1

=
βh−1(x2)− 1

βh−1(x2)
, (76)

and

0 <
dh−1(x2)

dx2

< 1. (77)

Consider a ball BR = {(x1, x2)||(x1, x2)− (x
(1)
∗ , x

(2)
∗ )| ≤ R} with the radius R > 0 and

the center (x
(1)
∗ , x

(2)
∗ ). Here, we take R > 0 so that (x

(1)
0 , x

(2)
0 ) ∈ BR. We show that F

restricted on BR is a contraction map from BR ∩ [0,∞)2 to BR ∩ [0,∞)2.
For any (x1, x2) ∈ BR ∩ [0,∞)2, F (x1, x2) = (h−1(x2), i

−1(x1)) and

|h−1(x2)− x(1)
∗ | = |h−1(x2)− h−1(x(2)

∗ )|

≤
∣∣∣∣∫ x2

x
(2)
∗

dh−1(x2)

dx2

dx2

∣∣∣∣
≤ |x2 − x(2)

∗ |. (78)

Similarly,

|i−1(x1)− x(2)
∗ | = |i−1(x1)− i−1(x(1)

∗ )|

≤
∣∣∣∣∫ x1

x
(1)
∗

di−1(x1)

dx1

dx1

∣∣∣∣
≤ |x1 − x(1)

∗ |. (79)

Hence, F (x1, x2) ∈ BR ∩ [0,∞)2.

Next, noting that |(x1, x2)| ≤ R + |(x(1)
∗ , x

(2)
∗ )| for all (x1, x2) ∈ BR ∩ [0,∞)2, from

(76), we have

0 <
dh−1(x2)

dx2

< 1− 1

β(R + |(x(1)
∗ , x

(2)
∗ )|)

, (80)
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and similarly

0 <
di−1(x1)

dx1

< 1− 1

β(R + |(x(1)
∗ , x

(2)
∗ )|)

. (81)

Hence, taking 0 < rR = 1 − 1

β(R+|(x(1)
∗ ,x

(2)
∗ )|)

< 1, we have |F (x1, x2) − F (x̄1, x̄2)| ≤
rR|(x1, x2) − (x̄1, x̄2)|,∀(x1, x2), (x̄1, x̄2) ∈ BR ∩ [0,∞)2, which implies that F is a con-
traction map from BR ∩ [0,∞)2 to BR ∩ [0,∞)2.

For (x
(1)
0 , x

(2)
0 ) ∈ BR ∩ [0,∞)2, define {(x(1)

n , x
(2)
n )}n∈N by

(x
(1)
n+1, x

(2)
n+1) = F (x(1)

n , x(2)
n ). (82)

Since F is a contraction map, there exists (x
(1)
∞ , x

(2)
∞ ) ∈ BR ∩ [0,∞)2 such that

lim
n→∞

(x(1)
n , x(2)

n ) = (x(1)
∞ , x(2)

∞ ). (83)

Noting that F is a continuous map, taking the limit n → ∞ on

(x
(1)
n+1, x

(2)
n+1) = F (x(1)

n , x(2)
n ), (84)

we have

(x(1)
∞ , x(2)

∞ ) = F (x(1)
∞ , x(2)

∞ ), (85)

which implies that (x
(1)
∞ , x

(2)
∞ ) is the equilibrium point, and therefore (x

(1)
∞ x

(2)
∞ ) = (x

(1)
∗ , x

(2)
∗ ).
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