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Abstract 

 

 We investigate implementation of social choice functions, where we impose severe 
restrictions on mechanisms, such as boundedness, permitting only tiny transfers, and 
uniqueness of an iteratively undominated strategy profile in the ex-post term. We assume 
that there exists some partial information about the state that is verifiable. We consider 
the dynamic aspect of information acquisition, where players share information, but the 
timing of receiving information is different across players. By using this aspect, the 
central planner designs a dynamic, not a static, mechanism, in which each player 
announces what he (or she) knows about the state at multiple stages with sufficient 
intervals. By demonstrating a sufficient condition on the state and on the dynamic aspect, 
namely full detection, we show that a wide variety of social choice functions are uniquely 
implementable even if the range of players’ lies that the verified information can directly 
detect is quite narrow. With full detection, we can detect all possible lies, not by the 
verified information alone, but by processing a chain of detection triggered by this 
information. This paper does not assume either expected utility or quasi-linearity. 
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1. Introduction 

 

 This paper investigates unique implementation of a social choice function (SCF), 

where the central planner attempts to achieve the allocation implied by the SCF that is 

contingent on the state. The central planner, however, cannot observe the state before 

determining an allocation. Hence, the central planner designs a mechanism to induce 

informed players to reveal their knowledge about the state. In this case, the mechanism 

must incentivize these players to make truthful announcements as unique equilibrium 

behavior 3 . The requirement of uniqueness is a quite substantial restriction in the 

implementation problem. The basic problem is therefore to clarify whether the central 

planner can design such an effective mechanism.4 

This paper has two main departures from the previous works on implementation. 

First, this paper permits some partial information about the state to become verifiable 

after the central planner determines an allocation. For example, by conducting a follow-

up survey, the central planner can obtain a resultant consequence of his (or her) allocation 

decision, which is verifiable and includes a partial information about the state. The central 

planner can utilize this verified information as a clue to detecting players’ lying. 

Second, this paper seriously, and carefully, considers a dynamic aspect of players’ 

information acquisition. We assume that each player receives information about the state 

not all at once but sequentially. The central planner requires each player to announce what 

he (or she) knows at the early stage, i.e., at the first stage. He also requires this player to 

announce what he knows at the later stage, i.e., at the second stage, where he is more 

informed than at the first stage. Hence, the central planner requires each player to 

announce at multiple stages with sufficient intervals. 

By making the monetary transfers contingent on the verified information as well as 

their announcements, the central planner attempts to design not a static mechanism, but a 

dynamic mechanism, which can effectively penalize any detected liar, making players 

willing to tell the truth. The purpose of this paper is to clarify the extent to which a wider 

                                                        
3 This paper does not investigate direct mechanisms, but indirect mechanisms, in which each player 
is required to announce what he (or she) knows many times. 
4  For the surveys on implementation theory, see Moore (1992), Palfrey (1992), Osborne and 
Rubinstein (1994, Chapter 10), Jackson (2001), and Maskin and Sjöström (2002), for instance. 
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variety of SCFs are uniquely implementable with partial verification and multi-stage 

revelation than without them. 

This paper makes numerous severe restrictions on mechanism design. First, we 

select iterative dominance as the equilibrium concept, which is defined as the set of all 

strategy profiles that survive through the iterative removal of strategies that are dominated 

in the ex-post term, i.e., weakly dominated at every state, and strictly dominated at some 

states. This is the set of all strategy profiles that survive through the iterative removal of 

strategies that are strictly dominated irrespective of the specification of the full-support 

prior distribution. We then require the uniqueness of an iteratively undominated strategy 

profile. Since this iterative dominance notion is a very weak equilibrium concept, our 

uniqueness requirement should be a very severe restriction. 

Second, we require a mechanism to be detail-free in terms of prior distribution on 

the state space. Since our definition of iterative dominance is on the ex-post term, the 

mechanism must be made independent of the specification of prior distribution. 

Third, we require a mechanism to be bounded in that it is not incorporated with any 

construction that has no equilibrium, such as the integer game. Because of this 

boundedness requirement, we focus on a class of mechanisms in which the message space 

is finite for each player. 

Fourth, we permit only tiny transfers because of players’ limited liability. To be 

precise, we require any transfer to be close to zero off the equilibrium path and no 

transfers on the equilibrium path. 

The above requirements will make solving our implementation problem challenging. 

This paper demonstrates a sufficient condition on the state space and the dynamic aspect 

of information acquisition, under which an SCF is uniquely implementable in iterative 

dominance with partial verification, where we design a mechanism that is dynamic, 

bounded, and detail-free, and utilizes only tiny transfers. 

To design an effective bounded mechanism with tiny transfers, we will apply the 

basic concept of mechanism design that originates in Abreu and Matsushima (1992a, 

1992b, 1994), where the central planner requires each player to make multiple 

announcements at once, randomly selects one announcement profile from their 

announcements, and fines the first deviants from some reference. Once we can establish 

the reference truthfully, the mechanism design á la Abreu-Matsushima properly motivates 
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all players to make truthful announcements, successfully implementing the SCF. The 

remaining problem is therefore to clarify the manner in which we can establish such a 

truthful reference. 

This remaining problem appears difficult to solve, because the relevance of the 

verified information to the state is limited and the prior distribution is unspecified in our 

model. In fact, the range of players’ lies that the verified information can directly detect 

is quite narrow, and we cannot even apply any device of a proper scoring rule to 

incentivize players to truthfully reveal the distributions implied by their private 

information. 

This paper will overcome this difficulty by considering the dynamic aspect of 

players’ information acquisition as follows. The main part of this paper assumes complete 

information in that there exist three or more players and the state is common knowledge 

among them immediately before the central planner determines the allocation. This 

assumption automatically guarantees incentive compatibility by using direct mechanisms 

such as majority rules, where truth-telling is a Nash equilibrium. However, in such 

mechanisms, it is also a Nash equilibrium for all players to tell the same lie, violating 

uniqueness. To overcome the difficulty of uniqueness, we design a multi-stage dynamic 

mechanism where we assume that the timing of receiving information is different across 

players, and the central planner can require a player to announce his private information, 

i.e., partial information about the state, before all players observe this information. 

We introduce a concept concerning this dynamic aspect, namely “chain of detection”, 

as follows. The verified information detects a limited, but non-empty, class of some 

players’ lies at the first stage, which motivates these players to reveal their respective 

aspects of the state truthfully at the first stage. This truthful revelation along with the 

verified information detects another class of lies at the first stage, which motivates the 

relevant players to reveal other aspects of the state truthfully at the first stage; and so on. 

This paper demonstrates a condition on the state space and the dynamic aspect of 

information acquisition, namely full detection, implying that there exists such a chain of 

detection, through which we can iteratively detect all possible lies at the first stage. Hence, 

with full detection, truth-telling is the only announcement for each player that survives 

through the iterative removal of detected lies at the first stage. 
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By penalizing detected liars in an appropriate manner, with full detection we can 

make all players reveal their private information truthfully at the first stage. Hence, we 

can establish the truthful reference as the combination of the verified information and 

their truthfully announced private information. 

Based on these observations, we show as the main theorem of this paper that full 

detection is a sufficient condition, under which an SCF is uniquely implementable in 

iterative dominance with partial verification, where the designed mechanism is dynamic, 

bounded, detail-free, and permits only tiny transfers. 

Full detection appears to be an involved condition. In fact, to detect a player’s lie, 

we must find out a state at which the other players never announce any message profile 

that they may possibly announce provided his lie is true. However, by demonstrating a 

tractable sufficient condition for full detection, we can show that despite this complexity, 

full detection covers a wide range of state space formulations. This contrasts with the case 

without verification, where any non-trivial deterministic SCF is never implementable in 

the exact term. 

To detect all possible lies, the central planner designs a dynamic mechanism, not a 

static mechanism, in which each player is required to make announcements twice at two 

distinct stages, i.e., at the first stage and at the second stage. The central planner regards 

their first announcements along with the verified information as the reference, while he 

utilizes only their second announcements for the determination of allocation. 

At the first stage, each player is informed of his private information that the central 

planner asks him to reveal, but he is less informed than at the second stage. By requiring 

players to make announcements when they are less informed, the central planner can 

prevent them from finding a means of escape from detection, making the truthful 

reference easier to be established. 

Let us consider an example with 2n   players, where a state is described by 

0 1( , ,..., )n    . Assume that i  is either 1, 2, or 3 for each {0,1,..., }i n , and 0  

is ex-post verifiable. The state space   is defined as a subset of 1{1,2,3}n . At the first 

stage, each player {0,1,..., }i n  observes i  as his private information, and the central 

planner requires him to announce it. 
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If 1{1,2,3}n  , i.e., there exists no state that can be ignored, it is impossible to 

detect any lie. Let us suppose that   is a proper subset of 1{1,2,3}n , and that each 

player’s observation is always different from his neighbor’s observation, i.e., 

1{1,2,3}n   belongs to   if and only if 

1i i    for all {1,..., }i n . 

Because of this proper-subset nature, the verified information 0  can directly detect any 

lie about 1 , because player 1 cannot exclude the possibility that his lie 1 1    is 

equivalent to 0 , i.e., 1 0   . This motivates player 1 to tell the truth about 1 . In the 

same manner, the truthful announcement about 1  can detect any lie about 2 . This 

motivates player 2 to tell the truth about 2 . Recursively, any player {1,..., }i n  is well 

motivated to tell the truth about i , implying full detection. 

 In the process of such iterative removal of detected lies, it is important to assume 

that each player i  is not informed of 1i   at the first stage. Otherwise, he can find a 

way to escape from detection by announcing 1{ , }i i i    . Hence, it is crucial for the 

central planner to require each player i  to announce about i  before he observes 1i  . 

This paper further investigates the case in which full detection does not hold, i.e., 

the case of partial detection. By replacing uniqueness of strategy by uniqueness of 

outcome, we define full implementation in iterative dominance. We define a concept of 

measurability of an SCF with respect to partial detection. We then show that with partial 

detection, this measurability is sufficient for the SCF to be fully implementable in 

iterative dominance. 

Throughout this paper, we mostly assume complete information at the second stage. 

Without any substantial modification, however, we can replace this complete information 

by a class of incomplete information, where each player can observe not all players’ 

private information, but some players’ private information, at the second stage. By 

requiring a version of ex-post incentive compatibility, we show that the same arguments 

hold even in this class of incomplete information environments. 

If players share information about the state, i.e., if players’ observations overlap each 

other, the requirement of incentive compatibility is less restrictive than otherwise. 
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However, the requirement of uniqueness is more restrictive, because players are given 

more room to coordinate undetected lies. 

This paper shows that we can overcome this tradeoff between incentive 

compatibility and uniqueness by incorporating both the revelation at the early stage, 

where players are less informed than at the later stage, and the revelation at the later stage 

into dynamic mechanism design. In this manner, we can effectively separate the issue of 

incentive compatibility, which is relevant to the informational structure at the second 

stage, from the issue of uniqueness, i.e., the establishment of reference at the first stage. 

This finding is in contrast with the previous literature of robust implementation such as 

Bergemann and Morris (2009), which generally used only static mechanisms5. 

We should refer to another departure from the previous works; we do not assume 

either expected utility or quasi-linearity. This paper makes only basic assumptions on 

preferences such that each player’s utility function is continuous in lottery over 

allocations, and is continuous and increasing in monetary transfer. 

 The organization of this paper is as follows. Section 2 explains related literature. 

Section 3 shows the basic model. Section 4 investigates the case of full verification. 

Section 5 investigates the case of partial verification. Section 6 introduces the concepts 

of detection and full detection, and demonstrates the main theorem of this paper. Section 

7 investigates the case of partial detection. Section 8 investigates a class of incomplete 

information at the second stage. Section 9 discusses the generalization of detection. 

Section 10 concludes. 

 

2. Literature Review 

 

 The basic framework for the implementation problem was explored by Hurwicz 

(1972) and Maskin (1999). Maskin showed that monotonicity is a necessary condition for 

a social choice correspondence to be fully implementable in Nash equilibrium. This result 

should be regarded as being negative, because monotonicity is a quite demanding 

condition for a deterministic SCF. In fact, with some additional restrictions, any 

                                                        
5 Bergemann and Morris (2009) investigated not exact, but virtual, implementation. Our arguments 
do not utilize any device of virtualness at all. The requirement of exactness is very crucial for our 
arguments. 



8 
 

deterministic SCF that is fully implementable in Nash equilibrium must be dictatorial. 

The purpose of this paper is therefore to show permissive results for full, or unique, 

implementation. 

 Matsushima (1988) and Abreu and Sen (1991) showed a permissive result that any 

full-support stochastic SCF is monotonic, and therefore, fully implementable in Nash 

equilibrium. Hence, if the tiny probability to select unwanted allocations even on the 

equilibrium path is permitted, even any deterministic SCF becomes fully implementable 

in Nash equilibrium, not in the exact sense, but in the virtual sense. In contrast, this paper 

sticks to exact implementation. 

 Moore and Repullo (1988) and Palfrey and Srivastava (1991) replaced Nash 

equilibrium with their respective refinements such as subgame perfect equilibrium and 

undominated Nash equilibrium. Abreu and Matsushima (1994) replaced Nash 

equilibrium with weak iterative dominance, or according to the terminology of Moulin 

(1979), dominance solvability, and then showed a permissive result for unique 

implementation by permitting just tiny monetary transfers off the equilibrium path. Chen, 

Kunimoto, and Chung (2015) extended this result to the Bayesian environments. Because 

of the use of refinement, these works commonly permitted the existence of Nash 

equilibria that fail to achieve the value of the SCF. In contrast, this paper will replace 

Nash equilibrium with an even weaker equilibrium concept, namely iterative dominance 

in the ex-post term, eliminating all unwanted Bayesian Nash equilibria irrespective of the 

specification of the full-support prior distribution. 

 Many previous works in the implementation literature have constructed mechanisms 

that have “implausible” features where the mechanisms are incorporated with 

constructions that have no equilibrium, such as the integer games. To exclude such 

constructions that are implausible, or according to the terminology of Jackson (1992), are 

unbounded, Abreu and Matsushima (1992a) innovated a new method, namely the AM 

mechanism design, that makes the mechanism bounded by permitting only a finite 

strategy space for each player. Abreu and Matsushima then showed a very permissive 

result for unique virtual implementation in iterative dominance. Abreu and Matsushima 

(1992b) extend this result to the Bayesian environments. Abreu and Matsushima (1994) 

and Chen, Kunimoto, and Chung (2015) also utilized the AM mechanism design for exact 

implementation, by replacing iterative dominance with weak iterative dominance. The 
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present paper will apply the AM bounded mechanism design for exact implementation 

without replacing iterative dominance with any stronger equilibrium concept such as 

weak iterative dominance. 

 In the Bayesian framework, the designed mechanisms generally depend on the fine 

details of a fixed prior distribution. Bergemann and Morris (2009) emphasized the 

importance of detail-free mechanism design and the usage of ex-post equilibrium 

concepts. This paper defines the iterative dominance notion on the ex-post term and usage 

of design mechanisms that are detail-free in terms of the prior distribution. 

 Based on these backgrounds, this paper is the first work to show the permissive result 

for exact implementation of SCFs by using only detail-free bounded mechanisms with 

tiny transfers. 

 The construction in this paper is divided into two parts, i.e., the application of the 

AM mechanism design, and the establishment of the truthful reference. The technical 

contribution of this paper is mainly devoted to the latter part. 

 To establish the reference truthfully, the pioneering works such as Abreu and 

Matsushima (1992a, 1992b, 1994) have utilized the incentive devices of “virtualness”. 

Bergemann and Morris (2009) investigated virtual implementation from the viewpoint of 

robustness. Alternatively, Matsushima (2008a, 2008b) assumed the presence of a tiny 

psychological cost of dishonesty for a player, and then incentivized him to make truthful 

announcements for the reference. In contrast to these works, this paper will not utilize 

either the incentive device of virtualness or the psychological cost of dishonesty. 

 To establish the truthful reference, this paper demonstrates an alternative approach 

by assuming that some partial information about the state is verifiable. There exist many 

previous works, such as Hansen (1985), Mezzetti (2004), DeMarzo, Kremer, and 

Skrzypaz (2005), Mylovanov and Zapechelnyuk (2014), Deb and Mishra (2014), and 

Carroll (2015), that incorporated such verification into the problems of mechanism design. 

These works commonly showed that the presence of verification makes incentive 

compatibility more easily satisfied. In contrast, this paper’s concern is the impact of 

verification, not on incentive compatibility, but rather on uniqueness of equilibrium. In 

this respect, this paper is the first attempt to incorporate verification into the unique or 

full implementation theory. 
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 This paper makes an important contribution to dynamic mechanism design, which 

is currently a growing concern; for example, see the survey by Krähmer and Strausz 

(2005). In particular, Penta (2015) is related to this paper, because Penta investigated full 

implementation in the incomplete information environments where players receive 

information over time. Penta selected perfect Bayesian equilibrium as the solution 

concept, which is much stronger than the concept of iterative dominance in this paper, 

while Penta carefully considered the robustness issue. Compared with Penta, we confine 

our attention to a more special class of incomplete information environments, where 

players share information. This confinement serves to highlight the contrast between 

static mechanism design and dynamic mechanism design in terms of uniqueness. It might 

be important for future research to extend the analysis of this paper to more general 

classes of incomplete information environments. 

 The literature of persuasion games is also related to this paper, where players 

voluntarily reveal verifiable information, i.e., hard evidence, which can partially prove 

their announcements to be correct, encouraging correct public decision making; for 

instance, see Grossman (1981) and Kamenica and Gentzkov (2011). Kartik and Tercieux 

(2012) and Ben-Porath and Lipmann (2012) investigated full implementation with such 

hard evidence, stating that the great degree to which hard evidence directly proves players’ 

announcements to be correct is crucial in implementing a wide variety of SCFs. In 

contrast, this paper emphasizes that a wide variety of SCFs are implementable even if the 

verifiable information is quite limited. 

 To show such permissive results even with limited verification, this paper assumes 

that the state space is common knowledge and the central planner can make the 

mechanism dependent on the state space. We then demonstrate a condition concerning 

the shape of state space, namely full detection, which guarantees any SCF to be 

implementable. 

 Full detection assumes that there exists a rare event, to which each player assigns a 

probability of occurrence of zero, and therefore the event can be ignored. As pointed out 

by the authors in behavioral economics, such as Camerer and Kunreuther (1989), real 

people tend to assign a rare event with probability zero because of their psychological 

biases such as the optimistic bias. This justifies the relevancy of full detection. 
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 The literature on models of knowledge has discussed “the puzzle of the hats,” the 

idea that a tiny information release has a big influence on players’ reasoning. In contrast, 

this paper focuses on the influence of tiny information releases, i.e., verified information, 

on player’s incentives. This information should be hidden from players when they make 

announcements for the purpose of establishing the reference. 

 The method of the AM mechanism design has long been criticized without any 

formal analysis, because of the conjecture that this method crucially depends on the 

expected utility assumption. This paper will prove that this criticism is groundless. The 

functioning of the AM mechanism relies just on the local linearity of preferences, 

implying the irrelevance of global linearity such as expected utility and quasi-linearity. 

Hence, this paper will be expected to promote the popularity of this essentially powerful 

method6. 

 

3. The Model 

 

We consider a situation in which the central planner determines an allocation and 

makes monetary transfers. Let {1,..., }N n  denote the finite set of all players, where we 

assume 3n   except for Section 8. Let A  denote the finite set of all allocations. Let 

  denote the set of all lotteries over allocations7. Let   denote the finite set of all states, 

i.e., the finite state space. A social choice function, an SCF, is defined as :f  . 

We define the state-contingent utility function for each player i N  as 

:iu R R  . 

where ( , , )i iu t   implies the utility for player i  when he (or she) expects the state   

to occur, and the central planner to determine an allocation according to the lottery  , 

and make a monetary transfer it R  to player i . Let ( )i i Nu u  . 

                                                        
6 There are controversies on the practical usage of Abreu-Matsushima mechanisms that are related to 
level-K reasoning and focal points. See Glazer and Rosenthal (1992) and Abreu and Matsushima 
(1992c). 
7 We denote  . We write a   if ( ) 1a  .  
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 We assume that ( , , )i iu t   is continuous with respect to   and it R , and 

that ( , , )i iu t   is increasing in it . Importantly, this paper does not assume expected 

utility and quasi-linearity. Let iU  denote the set of all utility functions for player i . 

  

4. Full Verification 

 

 As a benchmark for this paper’s analysis, this section will assume full verification as 

follows. After the central planner determines an allocation, but before he makes monetary 

transfers, the state becomes public and verifiable to the court. The central planner can 

make the monetary transfers contingent on the state as well as the players’ announcements, 

but he cannot make the allocation choice contingent on the state. 

We define a static mechanism, or shortly, a mechanism, as G ( , , )M g x , where 

ii N
M M


  , iM  denotes the set of all messages of player i , :g M   denotes the 

allocation rule, ( )i i Nx x   denotes the transfer rule, and :ix M R  denotes the 

transfer rule for player i . We confine our attention to mechanisms such that iM  is finite 

for all i N ; i.e., we focus on a class of mechanisms that are so-called bounded. 

This section assumes complete information in that each player observes the state 

 , while the central planner cannot observe it before his allocation choice. Each 

player i N  announces a message i im M  that is contingent on the state  . The 

central planner then determines an allocation according to the lottery ( )g m  , where 

( )i i Nm m M   denotes the message profile. After the state   becomes verifiable, the 

central planner receives the monetary transfer ( , )ix m R   from each player i . 

A strategy for each player i  in a mechanism G  is defined as :i is M . Player 

i  announces the message ( )i is M   when he observes  . Let iS  denote the set of 

all strategies for player i . Let ii N
S S


   and ( )i i Ns s S  . 

 

4.1. Iterative Dominance 
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We introduce the equilibrium concept, namely iterative dominance, which is defined 

as the survival of iterative removal of messages that are dominated with strict inequality 

in the ex-post term, in the following manner. For every i N  and  , let 

   (0, )i iM M  . 

Recursively, for each 1h , we define a subset of player 'i s  messages ( , )i iM h M   

in the manner that ( , )i im M h   if and only if there exists no ( 1, )i im M h    such 

that for every ( 1, )i im M h    , 

   ( ( ), ( , ), ) ( ( , ), ( , , ), )i i i i i i i iu g m x m u g m m x m m        , 

where 
\{ }

( 1, ) ( 1, )i j
j N i

M h M h  
    . Here, we require each player i  to prefer im  

to im  irrespective of ( 1, )i im M h    . We require strict inequalities for the iterative 

steps of eliminating dominated messages. 

 Note that ( , ) ( 1, )i iM Mh h   . Define 

   
0

( , )( , ) i
h

i hM M 



   . 

 

Definition 1: A strategy i is S  for player i  is said to be iteratively undominated in 

G  with full verification if 

   ( ) ( , )i is M    for all  . 

 

 Because of the requirement of strict inequalities, the order of elimination does not 

matter in the definition of iterative dominance. By requiring the uniqueness of an 

iteratively undominated strategy profile, we define unique implementation in iterative 

dominance with full verification as follows. 

 

Definition 2: A mechanism G is said to uniquely implement an SCF f  in iterative 

dominance with full verification if there exists the unique iteratively undominated strategy 

profile s S  in G, i.e., 

   
0

( , ) { ( )}i i
h

M h s 



  for all   and i N , 
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and it induces the value of the SCF, i.e., 

   ( ( )) ( )g s f   for all  . 

 

 The definition of iterative dominance is independent of the specification of the prior 

distribution on  . Hence, the mechanism that uniquely implements an SCF in iterative 

dominance with full verification is independent of the specification of the prior 

distribution on  . 

 

4.2. Construction of Mechanisms 

 

Fix arbitrary real numbers 1 0   and 2 0  . Fix an arbitrary integer 0K  . We 

construct a mechanism * *
1 2( , , , ) ( , , )G G f K M g x    in the following manner. For 

every i N , let 

   
1

K
k

i i
k

M M


  , 

and 
k
iM    for all {1,..., }k K . 

Player i N  announces K  sub-messages k k
i im M  at once. 

 For each {1,..., }k K , we define :k kg M   in the manner that for each 

 , 

   ( ) ( )k kg m f     if k
im   for at least 1n  players, 

and 

   *( )k kg m a     if there exists no such  , 

where *a A  is an arbitrary allocation, which is regarded as the status quo allocation. 

This specification is well-defined because we assumed 3n  . Let 

   1

( )
( )

K
k k

k

g m
g m

K



. 

 The central planner randomly selects an integer k  from {1,..., }K , and determines 

an allocation according to ( )k kg m  . The central planner selects an allocation 
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according to the value of the SCF, i.e., ( )f  , if at least 1n  players i  announce 

k
im  , where we assumed 3n  . Otherwise, he selects the status quo allocation *a . 

 Let 

   1 2( , ) i
i

r
x m

K
      if there exists {1,..., }k K  such that 

        k
im  , and 

        k
jm    for all k k   and i N , 

and 

   2( , ) i
i

r
x m

K
     if there exists no such {1,..., }k K , 

where {0,..., }ir K  denotes the number of integers {1,..., }k K  such that k
im  . 

 If a player is one of the first deviants from  , i.e., one of the players who tell lies 

as the earliest sub-message among all liars, he is fined the monetary amount 1 . Any 

player i N  is fined the monetary amount 2
ir

K
 . That is, by announcing any single 

sub-message dishonestly, the player is fined the monetary amount 2

K


. 

 Since 

   1 20 ( , )ix m      , 

by selecting 1 2   close to zero, we can make the monetary transfer ( , )ix m   as close 

to zero as possible. 

 We denote a strategy 1( )k K
i i ks s  , where :k k

i is M  . We define the honest 

strategy for player i , * *
1( )k K

i i ks s  , as 

   * ( )k
is    for all {1,..., }k K  and  . 

The honest strategy profile * *( )i i Ns s   induces the value of the SCF f  in *G , i.e., 

   *( ( )) ( )g s f   for all  , 

and no monetary transfers, i.e., 

   *( ( ), ) 0ix s     for all i N  and  . 
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 The construction of the mechanism *G  is based on the bounded mechanism design 

that originates in Abreu and Matsushima (1992a, 1992b, 1994). Abreu and Matsushima 

demonstrated the basic concepts relevant to *G , such that each player announces 

multiple sub-messages at once, and the central planner randomly selects one sub-message 

profile and he fines the first deviants. 

 There is a substantial difference between this paper and Abreu and Matsushima in 

that we do not utilize any incentive device of “virtualness” that originates in Matsushima 

(1988) and Abreu and Sen (1991). Virtualness permits the selection of an undesirable 

allocation even on the equilibrium path. In contrast, this paper does not permit such 

selections at all, i.e., it requires a mechanism to achieve, not virtually, but exactly, the 

value of the SCF.8 

 

4.3. Possibility Theorem 

 

 Since ( , , )i iu t   is continuous in ( , )it  and increasing in it , we can select a 

sufficient K  such that whenever 

1
max ( ) ( )

a A
a a

K
 


  , 

then 

(1)   1( , , ) ( , , )i i i iu t u t         for all 2[0, ]it   and  . 

The inequalities in (1) imply that a first-deviant’s loss from the monetary fine 1  is 

always greater than his gain from the change of allocation caused by his lying. 

 The following theorem shows that *G  uniquely implements f  in iterative 

dominance with full verification. Since *G  is well-defined, we can conclude that with 

full verification, any SCF is uniquely implementable in iterative dominance, where we 

need almost no monetary transfers off the equilibrium path, and need no monetary 

transfers on the equilibrium path. 

 

                                                        
8 Abreu and Matsushima (1994) showed a possibility theorem in exact implementation, where the 
iterative removal of strictly dominated strategies was replaced with the iterative removal of weakly 
dominated strategies. 
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Theorem 1: The honest strategy profile *s  is the unique iteratively undominated 

strategy profile in *G  with full verification. 

 

Proof: We can show that each player i N  prefers 1
im  . Suppose that there exists a 

player \{ }j N i  who announces 1
jm  . Then, by announcing 1

im   instead of 

 , player i  is fined 1  or even more. From (1), the impact of the fine 1  on his welfare 

is greater than the impact of the resultant change of allocation. 

 Next, suppose that there exists no player \{ }j N i  who announces 1
jm  . Then, 

by announcing 1
im   instead of  , player i  is fined 2

K


 or even more. (Even if he 

announces 1
im  , he may still be one of the first deviants, and therefore, he may not 

avoid the fine 1  in this case.) From the specification of g  and the assumption of 3n  , 

there is no resultant change of allocation. These observations imply that he prefers 
1
im   regardless of the other players’ announcements. 

 Fix an arbitrary integer {2,..., }h K . We can repeat the same logic as above in the 

following manner. Suppose that each player i N  announces h
im    for all 

{1,..., 1}h h  . According to the same manner as above, we can show that he prefers 

h
im  . Suppose that there exists a player \{ }j N i  who announces h

jm  . Then, 

by announcing h
im   instead of  , player i  is fined 1  or even more. From (1), 

the impact of the fine 1  on his welfare is greater than the impact of the resultant change 

of allocation. Next, suppose that there exists no player \{ }j N i  who announces 

h
jm  . Then, by announcing h

im   instead of  , player i  is fined 2

K


 or even 

more. The specification of g  implies that there is no resultant change of allocation in 

this case. Hence, he prefers h
im  . 

Q.E.D. 

 

5. Partial Verification 



18 
 

 

From this section, let us describe a state as 

0 1( , ,..., )n    . 

For each {0}i N  , i  denotes the set of possible i . Let 
{0}\{i}

i j
j N

 
   


, 

{0}\{ }( )i j j N i i     , 
{0}\{i, }

i j l
l N j

  
   


, and {0}\{ , }( )i j l l N i j i j       . 

 We assume that   is a proper subset of 
{0}

i
i N
 


. Each player i N  regards the 

set difference 
{0}

\i
i N



   


 as the rare event the occurrence of which can be ignored. 

 Let ( )i i i    denote the set of possible i  such that ( , )i i   . We 

assume that for every i i  , ( )i i  is nonempty. 

We assume partial verification as follows. After the central planner determines an 

allocation, but before he determines monetary transfers, only 0  becomes public and 

verifiable to the court. The remaining part of the state, 0 , is unverifiable throughout. 

In this case, players have incentive to announce dishonestly about 0 . Hence, as far as 

we stick to static mechanism design, it is generally impossible to derive a permissive 

result in exact implementation with no verification about 0 . This motivates us to 

investigate dynamic mechanisms instead of static mechanisms, which will be addressed 

in the next subsection. 

 

5.1. Dynamic Mechanisms 

 

We consider the following two-stage procedure. At the first stage, each player i N  

observes i , i.e., observes i  earlier than {0}\{ }( )i j j N i    , as his private 

information. Each player i  does not observe i  at this stage. Hence, player i  is the 

first person who observes i  among all players. The central planner then requires each 

player i  to announce about i  as his first announcement. 

At the second stage, each player i N  observes the remaining part of the state i . 

Hence, at the second stage, the state   becomes common knowledge among all players. 
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The central planner then requires each player i  to announce about the state   as his 

second announcement. In other words, this section assumes incomplete information at the 

first stage, but assumes complete information at the second stage. 

Based on the above-mentioned requirements of two announcements, we define a 

dynamic mechanism as 0( , , , )M M g x  , where 0 0
ii N

M M


  , 0
iM  denotes the set of 

possible first announcements by player i , ii N
M M


  , iM  denotes the set of possible 

second announcements by player i , 0:g M M    denotes the allocation rule, 

( )i i Nx x   denotes the transfer rule, and 0
0:ix M M R    denotes the transfer 

rule for player i . We assume that both 0
iM  and iM  are finite sets for each i N ; i.e., 

we focus on a set of bounded dynamic mechanisms. 

After observing i , but before observing i , i.e., at the first stage, each player i  

makes his first announcement 0 0
i im M . After observing i , i.e., at the second stage, 

each player i  makes his second announcement i im M . The central planner then 

selects an allocation according to 0( , )g m m  . After 0  becomes verifiable, the 

central planner receives 0
0( )ix m ,m, R   from each player i .9 

We will assume imperfect information in that each player cannot observe the other 

players’ first and second announcements. 

A strategy for player i  in a dynamic mechanism   is defined as 0( , )i i is s  , 

where 0 0:i i is M   and :i is M . He announces 0 0( )i i is M   as his first 

announcement. He announces ( )i is M   as his second announcement, provided he 

announced 0 ( )i is   at the first stage. Because of the imperfect information assumption, 

his second announcement does not depend on the other players’ announcements. Let 0
iS  

denote the set of possible 0
is . Let 0

i i iS S    denote the set of all strategies for player 

i  in  . Denote 0 0
ii N

S S


  , ii N
    , and ( )i i N    . 

                                                        
9 This paper assumes that 0  becomes verifiable after the allocation is selected. This assumption is 

crucial in the case of full verification. Without this assumption, implementation is trivial in the case 
of full verification, while it is still problematic in the case of partial verification. For the case of partial 
verification, we can eliminate this assumption without any substantial change of the arguments. 
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5.2. Iterative Dominance 

 

With partial verification, we define iterative dominance as follows. For every i N , 

let 

0 0ˆ (0, )i i iM M   for all i i  , 

and 

   ˆ (0, )i iM M   for all  . 

Let 

   0 0
0

ˆ ˆ(0, ) (0, )i i
i N

M M  
  , 0 0

0
\{ }

ˆ ˆ(0, ) (0, )i i j j
j N i

M M    
  , 

   0
0

ˆ ˆ(0, ) (0, )i i
i N

M M  
  , and 0 0

0
\{ }

ˆ ˆ(0, ) (0, )i i j j
j N i

M M    
  . 

Recursively, for each 1h , we define a subset of player 'i s  first messages 

0 0ˆ ˆ( , )i i iM h M   in the manner that 0 0ˆ ( , )i i im M h   if and only if there exists no 

0 0ˆ ( 1, )i i im M h    such that for every ( )i i i   , 0 0
0

ˆ ( 1, )i i im M h      , and 

ˆ ( 1, )m M h   , 

   0 0
0( ( , ), ( , , ), )i iu g m m x m m    

0 0 0 0
0( ( , , ), ( , , , ), )i i i i i iu g m m m x m m m      , 

and there exists ( )i i i    such that for every ˆ ( 1, )m M h    and 

0 0
0

ˆ ( 1, )i i im M h      , 

   0 0
0( ( , ), ( , , ), )i iu g m m x m m    

0 0 0 0
0( ( , , ), ( , , , ), )i i i i i iu g m m m x m m m      . 

We define a subset of player 'i s  second messages ( ,ˆ )i iMM h    in the manner that 

( , )ˆ
i im hM   if and only if there exists no ( 1, )ˆ

i im hM    such that for every 

( 1, )ˆ
i im M h     and 0 0

0
ˆ ( 1, )m M h   , 

   0 0
0( ( , ), ( , , ), )i iu g m m x m m    

0 0
0( ( , , ), ( , , , ), )i i i i i iu g m m m x m m m      . 
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Let 

   0 0
0

ˆ ˆ( , ) ( , )i ii N
M h M h  

  , 0 0
0

\{ }

ˆ ˆ( , ) ( , )i i j j
j N i

M h M h    
  , 

   0
0

ˆ ˆ( , ) ( , )i ii N
M h M h  

  , and 0 0
0

\{ }

ˆ ˆ( , ) ( , )i i j j
j N i

M h M h    
  . 

Note that 0 0ˆ ˆ( , ) ( 1, )i i i iM h M h   , ˆ ˆ( , ) ( 1, )i iM Mh h   . Define 

   0 0

0

ˆ ˆ( , ) ( , )i i i i
h

M M h 



    and 

0

ˆ ˆ( , ) ( , )i i
h

M M h 



   , 

both of which are non-empty because of the finiteness. Note that we can eliminate a 

second message only if it is dominated irrespective of the first announcement profile 0m . 

Hence, we can regard the set of all iteratively undominated strategies for player i  as the 

Cartesian product given by 0ˆ ˆ( ( , )) ( ( , ))
i i

i i iM M
 

 
 
     . 

 

Definition 3: A strategy 0( , )i i i is s    for player i  is said to be iteratively 

undominated in   with partial verification if 

   0 0ˆ( ) ( , )i i i is M    for all i i  , 

and 

ˆ( ) ( , )i is M    for all    . 

 

 Suppose that 0i   for all i N , and 

   0i   for all i N  if and only if  . 

This supposition corresponds to the full verification case, where ( )i i  is a singleton 

for all i N  and i i  . The definition of iterative dominance in this section is 

equivalent to that of iterative dominance with full verification. 

 Note that the order of elimination does not matter in the definition of iterative 

dominance with partial verification. Even if we change the order of eliminating strategies, 

the set of eventually survived strategies is unchanged. The reason for this irrelevance is 

that for every i i  , there exists ( )i i i    for which the strict inequalities hold 

for players’ incentives irrespective of the other players’ announcements. 
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Definition 4: A dynamic mechanism   is said to uniquely implement an SCF f  in 

iterative dominance with partial verification if there exists the unique iteratively 

undominated strategy profile    in   with partial verification, and this profile 

induces the value of the SCF, i.e., 

   ( ( )) ( )g f    for all  . 

 

 The definition of iterative dominance is independent of the specification of the prior 

distribution on  . That is, the dynamic mechanism that uniquely implements an SCF in 

iterative dominance with partial verification is “detail-free” with respect to the prior 

distribution on  . 

 At the first stage, each player i N  prefers a ( )i -contingent choice ( , )i i
if t   

to another ( )i -contingent choice ( , )i i
if t    if ( , )i i

if t   makes a more preferable 

choice of allocation and transfer for player i  than ( , )i i
if t    irrespective of i , i.e., 

if for every ( )i i i   , 

   ( ( ), ( ), ) ( ( ), ( ), )i i i i
i i i i i i i i i iu f t u f t             , 

where : ( )i
i i if      and : ( )i

i i it R   . Hence, we can say that any message 

that is eliminated through the iterative procedure is regarded as a message that is 

dominated with strict inequality irrespective of the specification of the “full-support” 

prior distribution on  . In the definition of iterative dominance with partial verification, 

we required strict inequalities for not all, but some states. This implies that any eliminated 

message is weakly dominated for all non-full-support distributions, while it is strictly 

dominated for all full-support distributions. 

 

6. Full Detection 

 

 This section demonstrates a sufficient condition under which any SCF is uniquely 

implementable in iterative dominance with partial verification. This section is the main 

part of this paper. 
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6.1. Definitions 

 

 For each i N , let us denote : 2 i
i i 

   , where 

   ( )i i i     , 

and 

0 0   for all ( )i i i     . 

We regard the function i  as describing the pattern of the announcements made by all 

players other than player i . That is, they announce a profile that belongs to 

( )i i i      when i  occurs. Here, we regard player 0 as the dummy player who 

always announces 0  truthfully. 

 We introduce a notion on i , namely detection, as follows. 

 

Definition 5: A function i  is said to detect player i  for i  against i  if there 

exists ( )i i i    such that 

(2)   ( ) ( )i i i i           for all ( )i i i    . 

 

 Suppose that i  is correct, but player i  announces i i    incorrectly. Suppose 

that for every i , the other players announce according to ( )i i i     ; i.e., they 

announce a profile 0i   that satisfies 0 0( , ) ( )i i i        . Note that if player 'i s  

announcement i  is correct, the other players announce according to ( )i i    for 

some ( )i i i    . 

 Suppose that player i  expects 0 0( , ) ( )i i i i         to occur. Then, player 

i  expects the other players to announce according to ( )i i   . However, the condition 

of (2) implies that if player 'i s  announcement i  is correct, the other players never 

announce according to ( )i i   . This is a contradiction. In this case, we can recognize 

that player 'i s  announcement i  is incorrect. Hence, i  detects player i  for i  

against i . 
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 Based on this detection notion, we define full detection as follows. For every 

{0,1,...}h  and {0}i N  , we specify ( ) : 2 i
i ih    and ( ) : 2 i

i ih 
    in 

the following manner. Let 

   0 0 0( )( ) { }h    for all 0 0   and {0,1,...}h , 

and 

   (0)( )i i i    and 0(0)( ) { }i i i       for all i N  and  . 

Recursively, for each {1,2,...}h , we define ( )( ) ( 1)( )i i i ih h      and 

( )( ) ( 1)( )i i i ih h         in the manner that for every ( 1)( )i i ih    , 

   ( )( )i i ih     if and only if ( 1)i h   fails to detect player i  

       for i  against i , i.e., 

 
( )

{ ( 1)( )} ( 1)( )
i i i

i i i ih h
 

    
  

   


  


   for all 

 ( )i i i   , 

and for every ( 1)( )i i ih      , 

   ( )( )i i ih       if and only if ( )( )j j jh     for all 

       {0} \{ }j N i  . 

Here, ( )i h  is the set of all announcements that can survive through the h -round 

iterative removal of detected lies. 

 

Full Detection: For every i N  and i i  , 

   ( )( ) { }i i i
h

h  


 . 

 

 The sequence 0(( ( ), ( 1)) )i i i N hh h  
    describes the iterative removal of detected 

lies. Full detection implies that the iterative removal of detected lies eventually eliminates 

all lies. Truth-telling is therefore the only announcement that survives through such a 

removal procedure. Since   is finite, there exists a positive integer *h  such that 

   ( )( ) { }i i ih    for all *h h . 
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 We demonstrate the following tractable sufficient condition for full detection. Let us 

describe a state as 

   0( ,..., )L   , 

where L  is a positive integer. We assume that there exists a function 

{0}:{0,..., } 2NL    such that for every {0}i N   

   ( )i L i  , 

where we denote 

   ( ) { {0,..., }| ( )}L i l L i l   , 

and 

   ( )C l l C    for each {0,..., }C L . 

Note that ( )l N   is the set of all players who observe l  at the first stage, and 

( ) {1,..., }L i L  is the set of all components of the state that player i  observes at the first 

stage. That is, at the first stage, each player i  observes any component l  of the state 

such that ( )l L i . For each component l , there may exist multiple players who can 

observe it at the first stage; i.e., it might be the case that ( ) 2l  . (For convenience, we 

assume that (0) {0}L  , i.e., 0 0  .) 

 Let l  denote the set of possible l . Hence, 
{0,..., }

ll L
    . 

 For every {0}i N   and ( )l L i , let 

   ( , ) { {0,..., 1} | ( )}L l i l l i l     , 

which is the set of all components of the state that are earlier than l  and player i  cannot 

observe at the first stage. For every {0}i N  , ( )l L i , and i i  , let 

   ( , ) ( , ) ( )L l i L l i i   if and only if there exists   such that 

       i i   and ( , ) ( , )L l i L l i  . 

Note that ( , ) ( )L l i i  is the set of all ( , )L l i  that are consistent with player 'i s  

observation i  at the first stage. 

 The following proposition shows a sufficient condition for full detection, which 

implies that for every {1,..., }l L , there exists a player who can observe the l th  



26 
 

component l  at the first stage, and whenever he observes different l th  components 

l , then different profiles of earlier components ( , )L l i  might occur. With this condition, 

his lie about the l th  component is detected through the observation of ( , )L l i . 

 

Proposition 2: Suppose that for every {1,..., }l L , there exists ( )i l  such that for 

every i i   and i i  , 

   ( , ) ( , )( ) ( )L l i i L l i i      if l l    and l l     for all ( ) \{ }l L i l . 

Then,   satisfies full detection. 

 

Proof: Consider 1l  . In this case, ( , ) ( , )( ) ( )L l i i L l i i      implies that 0  detects 

player (1)i   for i  against i  whenever 1 1   , where we must note that the 

dummy player 0 always tells the truth about 0  because of its verification. 

 Fix an arbitrary {2,..., }h L . Suppose that for every {0,..., 1}h h  , player ( )l   

tells the truth about l  . In this case, ( , ) ( , )( ) ( )L l i i L l i i      implies that ( , )L l i  detects 

player ( )i l  for i  against i  whenever l l   . 

Q.E.D. 

 

 A special case of the sufficient condition in Proposition 2 is introduced as follows. 

Suppose that 

   0l    for all {1,..., }l L , 

and each component of the state is always different from its neighbors, i.e., for every 

{0,..., }
l

l L



   , 

     if and only if 1l l    for all {1,..., }l L . 

Moreover, suppose that for every {1,..., }l L , there exists ( )i l N   such that 

   ( )l L i , 

   { 2, 1} ( )l l L i    if 2l  , 

and 
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   0 ( )L i  if 1l  . 

Hence, player ( )l  cannot observe 1l   and 2l   at the first stage. 

 Clearly,   satisfies the sufficient condition in Proposition 2, i.e., full detection, in 

this special case. A player’s lie about l  is detected through the observation of 1l  . 

Since 0  is verifiable, we can eliminate all lies about 1  through the observation of 0 . 

Recursively, for every {2,..., }l L , we can eliminate all lies about l  through the 

truthful announcement about 1l 
10. 

Let us further consider an example of this special case, where we assume 

  ( ) { }i i  , {1,2,3}i  , and 

    if and only if 1i i    for all {1,..., }i n , 

where each player i  observes only i  at the first stage, i.e., i i  . This example 

corresponds to the example addressed in the introduction of this paper. The verified 

information 0  can directly detect any lie by player 1 about 1 , because player 1 cannot 

exclude the possibility that his lie 1 1    is equivalent to 0 , i.e., 1 0   . This 

motivates player 1 to tell the truth about 1 . In the same manner, the truthful 

announcement by player 1 about 1  can detect any lie by player 2 about 2 . This 

motivates player 2 to tell the truth about 2 . Recursively, any player {1,..., }i n  is 

motivated to tell the truth about i , implying full detection. 

 In the process of such iterative removal of detected lies, it is crucial to assume that 

each player i  is not informed of 1i   at the first stage. Otherwise, he can find a way to 

escape from detection by announcing 1{ , }i i i    . Hence, it is crucial to assume that 

any player i  does not observe either 1i   or 2i  . This is exactly what the special case 

implies.11 

 

6.2. The Theorem 

                                                        
10 We will show some generalization of this special case in Subsection 9.1. 
11 With only tiny transfers permitted, full detection does not imply incentive compatibility. 
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Fix arbitrary real numbers, 1( ) 0h   for each *{1,..., }h h , 2 0  , and 3 0  . 

Let 
*

1 1 1( ( ))h
hh   . Fix an arbitrary integer 1K  . To uniquely implement an SCF f  

in iterative dominance with partial verification, we construct a dynamic mechanism 

* * 0
1 2 3( , , , , ) ( , , , )f K M M g x       as follows. Let 

  0
i iM   , 

and 

   
1

K
k

i i
k

M M


  and k
iM    for all {1,..., }k K . 

For each {2,..., }k K , we define :k kg M   in the manner that for each  , 

   ( ) ( )k kg m f      if k
im   for at least 1n  players, 

and 

   *( )k kg m a      if there exists no such  . 

Let 

   0 1

( )
( , )

K
k k

k

g m
g m m

K



. 

The allocation choice does not depend on the first announcements 0m . 

 Let 

   
*

0 0 0
0 0 0

1

( , , ) ( , ) ( , , )
h

h
i i i

h

x m m x m z m m  


  , 

where 

   0
0 1( , ) ( )h

ix m h     if 
0

0 0

( )
( , ) ( 1)( )

i i i

i i i
m

m h


  
 

  


 


 , 

0
0( , ) 0h

ix m       if 
0

0 0

( )
( , ) ( 1)( )

i i i

i i i
m

m h


  
 

  


 


 , 

   0
0 2 3( , , ) i

i

r
z m m

K
      if there exists {1,..., }k K  such that 

         0
0( , )k

im m  , and 

 0
0( , )k

j mm    for all k k   and 
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\{ }j N i , 

and 

   0
0 3( , , ) i

i

r
z m m

K
     if there exists no such {1,..., }k K , 

where {0,..., }ir K  implies the number of {2,..., }k K  such that 0
0( , )k

im m  . 

 We select 1 2 3( , , )    such that 

(3)   
1

1 1 2 3
1

( ) ( )
h

h

h h   




  


  for all *{1,..., }h h . 

Since 

   
*

0
0 1 2 3

1

0 ( , , ) ( )
h

i
h

x m m h   


     for all i N  and 0
0( , , )m m  , 

by choosing 
*

1 2 3
1

( )
h

h

h  


   close to zero, we can make 0
0( , , )ix m m   as close to 

zero as possible. 

 We define the honest strategy for player i  in * , * 0* *( , )i i is s  , as 

  0* ( )i i is    for all i i  , 

and 

   * ( )k
is    for all {1,..., }k K  and  . 

The honest strategy profile * *( )i i N    induces the value of the SCF f , i.e., 

   *( ( )) ( )g f    for all  , 

and no monetary transfers, i.e., 

   *( ( ), ) 0ix      for all i N  and  . 

 Because of the continuity assumption, we can select a sufficient K  such that 

whenever 
1

max ( ) ( )
a A

a a
K

 


  , then 

(4)  2( , , ) ( , , )i i i i i iu t u t         for all 
*

1 3
1

[0, ( ) ]
h

i
h

t h 


   and i i  . 

The inequalities in (4) imply that 2  is close to zero but is sufficient compared with the 

change of allocation within the 
1

K
 limit. 
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 We can see this paper’s main technical contribution in the arguments about the 

players’ incentives at the first stage. It is crucial in incentives to assume that each player 

i  makes the first announcement before he observes i . According to h
ix , any player 

i N  is fined the monetary amount 1( )h  if he makes a first announcement that is 

detected by ( 1)i h   that describes the profiles of the other players’ announcements 

which survived through the ( 1)h  round iterative removals of detected messages. This 

holds true irrespective of h . Hence, from (3) and full detection, it follows that each 

player is willing to announce an undetected message, i.e., the honest message, as his first 

announcement. This is reason we can utilize the first announcements and the verified 

information as the reference to judge whether the second announcements are honest. 

 According to iz , any first deviant from the combination of the profile of first 

announcements and the verified information 0
0( , )m  in the second announcement 

stage is fined the monetary amount 2 . Any player is additionally fined 3

K


 whenever 

he deviates from 0
0( , )m . We apply the bounded mechanism design that originates in 

Abreu and Matsushima (1992a, 1992b, 1994), showing that by setting the first 

announcement and the verified information as the reference, any player is willing to make 

a truthful second announcement. 

 Based on these observations, we can demonstrate the following theorem, which 

states that under full detection, the dynamic mechanism *  uniquely implements f  in 

iterative dominance with partial verification. Since *  is well-defined, we can conclude 

that with full detection, any SCF is uniquely implementable in iterative dominance with 

partial verification, where we need almost no monetary transfers off the equilibrium path, 

and no monetary transfers on the equilibrium path. 

  

Theorem 3: Under full detection, the honest strategy profile *  is the unique iteratively 

undominated strategy profile in * . That is, *  uniquely implements f  in iterative 

dominance with partial verification. 
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Proof: Suppose that player i  observes i  and announces 0 (1)( )i i im    as his first 

announcement. In this case, (0)i  detects him for i  against 0
im ; there exists 

( )i i i    such that 

(0)( ) (0)( )i i i i           for all 0( )i i im  . 

Since 0 0(0)( ) { }i i iM       , the announcement by any other player \{ }j N i  

belongs to (0)( )j j  . This implies that, by announcing 0
im , he is fined 1(1) . In 

contrast, he can avoid this fine by announcing i  truthfully. Since the announcement of 

0
im  is irrelevant to the allocation choice and 1(1)  is large enough to satisfy (3), it 

follows that player i  never announces any element that does not belong to (1)( )i i  . 

 Consider an arbitrary *{2,..., }h h . Suppose that any player i N  announces a 

message for the first announcement that belongs to ( 1)( )i ih  . Suppose that player i  

observes i  and announces 0 ( )( )i i im h  . In this case, ( 1)i h   detects him for 

i  against 0
im . That is, there exists ( )i i i    such that 

( 1)( ) ( 1)( )i i i ih h            for all 0( )i i im  . 

Since the announcement by any other player \{ }j N i  belongs to ( 1)( )j jh  , he is 

fined 1( )h . In contrast, he can avoid this fine by announcing i  truthfully. Since the 

announcement of 0
im  is irrelevant to the allocation choice and 1( )h  is large enough to 

satisfy (3), it follows that player i  never announces any element that does not belong to 

( )( )i ih  . 

From the above arguments, we have proved that if i  is strictly iteratively 

undominated, then, 

0 ( ) ( )( )i i i i
h

s h  


   for all i i  , 

which, along with full detection, implies that 

0 ( )i i is    for all i i  . 
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 Since all players tell the truth for their first announcements, i.e., any player i N  

announces 0
i im  , we can prove in the same manner as in Theorem 1 that for each 

i N , if i  is strictly iteratively undominated, then, 

( )k
is    for all   and {1,..., }k K , 

where we utilized the inequality (4) for deriving this statement. 

 From these observations, we have proved that *  is the unique strict iteratively 

undominated strategy profile in * . 

Q.E.D. 

 

 In the proof, we utilize the basic concept of bounded mechanism design that 

originates in Abreu and Matsushima (1992a, 1992b, 1994) such that the central planner 

requires each player to make multiple announcements at one time, selects one profile 

from their announcements, and fines the first deviants from the reference. Once we can 

establish the truthful reference, the mechanism á la Abreu-Matsushima can successfully 

implement the SCF in iterative dominance. 

 The remaining problem is to show how the central planner can establish such truthful 

reference. This problem becomes substantial once we require the mechanism to be 

“detail-free” in terms of the prior distribution. In fact, this is an easy problem to solve if 

we permit a particular prior distribution : [0,1]p   to be common knowledge. For 

instance, let us denote by 0( | ) : [0,1]i ip     the ( )i  conditional distribution on 

0  induced by p . Assume that for each i N , 

( | ) ( | )i i i ip p     whenever i i  . 

In this case, by introducing a device of proper scoring rule, the central planner can 

incentivize each player i  to reveal i  truthfully, establishing the truthful reference. 

 Since this paper assumes no such common knowledge about the prior distribution, 

we need to utilize a proper-subset nature of the state space, such as full detection, in more 

complicated manners than the above-mentioned differences in conditional distributions. 

 

7. Partial Detection 
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This section considers the case in which   does not satisfy full detection. We 

weaken implementation by replacing the uniqueness of iteratively undominated strategy 

profile with the uniqueness of outcome induced by iteratively undominated strategy 

profiles. In this manner, we define full implementation in iterative dominance with partial 

verification as follows. 

 

Definition 6: A dynamic mechanism   is said to fully implement an SCF f  in iterative 

dominance with partial verification if every iteratively undominated strategy profile 

   in   induces the value of the SCF, i.e., 

   ( ( )) ( )g f    for all  . 

 

 Full implementation permits the multiplicity of iteratively undominated strategies. 

However, it requires any profile of iteratively undominated strategies to correctly achieve 

the value of the SCF. 

 A partition on i  is defined as : 2 \ { }i
i i    , where for every i i   and 

i i , 

   either ( ) ( )i i i i     or ( ) ( )i i i i     . 

We can regard a partition i  as the set of subsets i i   such that 

i i   if and only if ( )i i i   for some i i  . 

Let {0}( )i i N    . denote {0}( ) ( ( ))i i i N      . 

 We specify *
i  as the finest partition on i  satisfying that 

   *( )( ) ( )i i i i
h

h  


   for all i i  , 

where ( )i h  was introduced in the definition of full detection. Note that full detection 

holds if and only if for every {0}i N  , *
i  is the full partition, i.e., *( ) { }i i i    

for all i i  . 

 

Definition 7: An SCF f  is said to be measurable if for every   and  , 
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( ) ( )f f   whenever * *( ) ( )i i i i     for all {0}i N  . 

 

 Measurability implies that the value of f  is the same between i  and i  

whenever both belong to the same cell of * . The following theorem shows that the 

measurability is a sufficient condition for an SCF to be fully implementable in iterative 

dominance with partial verification. 

 

Theorem 4: Suppose that an SCF f  is measurable. Then, it is fully implementable in 

iterative dominance with partial verification. 

 

Proof: See Appendix A. 

 

8. Incomplete Information at the Second Stage 

 

 Throughout the previous sections, we assumed complete information at the second 

stage. This section eliminates this assumption, and instead assumes incomplete 

information at the second stage. That is, even at the second stage, each player does not 

know all about the state. 

 To be precise, for each i N , let us fix an arbitrary set ( ) {0}C i N  , where we 

assume ( )i C i . At the second stage, each player i  observes ( ) ( )( )C i j j C i   , while 

he (or she) cannot observe {0}\ ( )N C i  . He makes his second announcement contingent 

only on ( )C i . 

 We define {0}\( )C N C ii C



     in the manner that 

   {0}\( )C C N C    if and only if {0}\( , )C N C   . 

We redefine a strategy 0( , )i i is s   for each player i  by replacing :i is M  with 

( ):i C i is M  . 

 We further redefine iterative dominance as follows. For every i N , let 

0 0ˆ (0, )i i iM M   for all i i  , 



35 
 

and 

   ( )
ˆ (0, )i C i iM M   for all  . 

Let ( )
ˆ ˆ(0, ) (0, )j C jj N

M M 


   and ( )\{ }

ˆ ˆ(0, ) (0, )i j C jj N i
M M  

  . Recursively, for 

each 1h , we define 0 0ˆ ˆ( , )i i iM h M   in the manner that 0 0ˆ ( , )i i im M h   if and only 

if there exists no 0 0ˆ ( 1, )i i im M h    such that for every ( )i i i   , 

ˆ ( 1, )m M h   , and 0 0
0

ˆ ( 1, )i i im M h      , 

   0 0
0( ( , ), ( , , ), )i iu g m m x m m    

0 0 0 0
0( ( , , ), ( , , , ), )i i i i i iu g m m m x m m m      , 

and there exists ( )i i i    such that for every ˆ ( 1, )m M h    and 

0 0
0

ˆ ( 1, )i i im M h      , 

   0 0
0( ( , ), ( , , ), )i iu g m m x m m    

0 0 0 0
0( ( , , ), ( , , , ), )i i i i i iu g m m m x m m m      . 

We define ( )
ˆ ( , )i C i ih MM    in the manner that ( , )ˆ

i im hM   if and only if there 

exists no ( )( , )ˆ 1i i C im hM    such that for every {0}\ ( ) {0}\ ( ) ( )( )N C i N C i C i   , 

( 1, )ˆ
i im M h    , and 0 0

0
ˆ ( 1, )m M h   , 

   0 0
0( ( , ), ( , , ), )i iu g m m x m m    

0 0
0( ( , , ), ( , , , ), )i i i i i iu g m m m x m m m      , 

and there exists {0}\ ( ) {0}\ ( ) ( )( )N C i N C i C i    such that for every ( 1, )ˆ
i im M h     

and 0 0
0

ˆ ( 1, )m M h   , 

   0 0
0( ( , ), ( , , ), )i iu g m m x m m    

0 0
0( ( , , ), ( , , , ), )i i i i i iu g m m m x m m m      . 

A strategy 0( , )i i i is s    for player i  is said to be iteratively undominated in   

with partial verification under incomplete information at the second stage if 

   0 0

0

ˆ( ) ( , )i i i i
h

s M h 



   for all i i  , 

and 
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0

ˆ( ) ( , )i i
h

s M h 



   for all    . 

 

Definition 8: An SCF f  is said to be strictly incentive compatible if there exists a 

positive real number 0   and a function ( ): C ii N
f


    such that for every  , 

   ( )(( ) ) ( )C i i Nf f     whenever ( ) ( )C i C i    for all i N , and 

( ) {0}
i N

C i N


   

and for every i N , ( ) ( )C i C i  , and [0, ]it  , 

   ( ) ( ) \{ } ( )( ( ), , ) ( (( ) ( ) , ), , )C j j N C j j N i Ci i i i iu f t u f t         . 

 

 Note that the “strictness” in Definition 8 is different from the standard usage of this 

word. Strict incentive compatibility in Definition 8 implies that irrespective of the 

constant transfer it  within the   limit, truth-telling is a weakly (not necessarily 

strictly) dominant strategy for each player i  in the direct mechanism given by f . We 

do not require strict inequality in this definition. Clearly, this strict incentive compatibility 

holds under complete information at the second stage, provided that 3n   and f  is 

replaced with the rule that selects the allocation implied by a state whenever 1n  

players have the same private information as this state. 

 Note also from the continuity assumption that an SCF f  is strictly incentive 

compatible if there exists f  such that for every  , 

   ( )(( ) ) ( )C i i Nf f     whenever ( ) ( )C i C i    for all i N , and 

( ) {0}
i N

C i N


   

and for every i N  and ( ) ( )C j C i  , 

   ( ) ( ) \{ } ( )( ( ),0, ) ( (( ) ( ) , ),0, )Ci ij j N C j j N i C iu f u f        if 

( ) ( ) \{ } ( )( ) ( ) ,( ) ( )C j j N C j j N i C if f      . 

The following theorem states that with full detection and strict incentive 

compatibility, we can construct a dynamic mechanism that uniquely implements the SCF 
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f  in iterative dominance with partial verification under incomplete information at the 

second stage. We need almost no monetary transfers off the equilibrium path, and no 

monetary transfers on the equilibrium path. The following theorem is a natural extension 

of Theorem 3. 

 

Theorem 5: Assume incomplete information at the second stage, full detection, and strict 

incentive compatibility. Then, the SCF f  is uniquely implementable in iterative 

dominance with partial verification under incomplete information at the second stage. 

That is, there exists a dynamic mechanism   that has the unique iteratively 

undominated strategy profile  , and 

   ( ( )) ( )g f    for all  . 

We need almost no monetary transfers off the equilibrium path, and no monetary transfers 

on the equilibrium path. 

 

Proof: See Appendix B. 

 

We further introduce a condition on an SCF as a combination of measurability and 

ex-post incentive compatibility as follows. 

 

Definition 9: An SCF f  is said to be strict measurable incentive compatible if there 

exists a positive real number 0   and a function : ii N
f


    such that for every 

 , 

   0 0( ) ( )f f   , 

and for every i N , i i  , and [0, ]it  , 

   0 0( ( ), , ) ( ( , ), , )i i i i i iu f t u f t           , 

where f̂  is measurable in that for every ii N



    and ii N




   , 

( ) ( )f f   whenever * *( ) ( )i i i i     for all {0}i N  . 
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 From the continuity assumption, it follows that an SCF f  is strict measurable 

incentive compatible if there exists : ii N
f


    such that for every  , 

   0 0( ) ( )f f   , 

and for every i N  and i i  , 

   0 0( ( ),0, ) ( ( , ), 0, )i i i iu f u f          whenever 0 0( ) ( , )i if f       , 

where f̂  is measurable. 

 The following theorem shows that the strict measurable incentive compatibility is a 

sufficient condition for an SCF to be fully implementable in iterative dominance with 

partial verification under incomplete information at the second stage. The following 

theorem is a natural extension of Theorem 4. 

 

Theorem 6: Assume incomplete information at the second stage and strict measurable 

incentive compatibility. Then, the SCF f  is fully implementable in iterative dominance 

with partial verification under incomplete information at the second stage. 

 

Proof: See Appendix C. 

 

 The case of { } { }C i i  for all i N  corresponds to Bergemann and Morris (2009), 

which investigates virtual implementation instead of exact implementation. Note that the 

difference of exact implementation and virtual implementation is very crucial. Note also 

that in this case we do not need any dynamics of mechanism design. By permitting the 

overlap in information across players, and by utilizing the dynamic aspect of information 

acquisition, we can weaken the restriction of incentive compatibility with no harm in 

uniqueness. 

 

Multi-Round Announcements 

 

 In the previous sections, we assumed as a dynamic aspect of mechanism design that 

the central planner requires each player i N  to make the first announcement about i  
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at the first stage. This section will assume that the central planner can require each player 

i  to make announcements even before the first stage, i.e., even when he observes only 

partial information about i . Even for the establishment of the reference, we will utilize 

dynamic, not static mechanism design. This section shows a weaker sufficient condition 

than full detection for guaranteeing unique implementation in iterative dominance. 

 Let us consider the following modification of the special case in Subsection 6.1. 

Before the first stage, there exist T  multiple rounds, i.e., round 1, round 2, …, and round 

T , where round T  corresponds to the first stage. Each player i  can observe all 

components of ( )( )i l l L i    by round T . 

 For each i N  and ( )l L i , player i  observes l  at round ( , ) {1,..., }t t i l T  . 

(For convenience, denote ( , )t i l   for each ( )l L i .) We assume that there exists a 

mapping :{1,..., }L N   such that 

   ( (1),1) ( (1),0)t t  , 

and for every {2,..., }l L , 

   ( ) ( 1)l l   , 

   ( ( ), ) ( ( ), 1)t l l t l l   , and ( ( ), ) ( ( ), 2)t l l t l l   . 

Hence, player ( )l  can observe l  earlier than 1l   and 2l  . Note that we do not 

exclude the case in which player ( )l  can observe, not only l , but also 1l   and 2l   

by the first stage (round T ). This is the main point of difference from the case of single-

round, i.e., two-stage announcements, where full detection excludes the case in which 

player ( )l  observes 1l   and 2l   at the first stage. 

 Let us consider the T -round procedure, in which, for every {1,..., }l L , the central 

planner requires player ( )i l  to make an announcement about l  at round ( , )t i l . 

Since 1l l   , it is clear that player ( 1) 'l s   announcement about 1l   detects player 

( ) 'l s  lies about l . This can make unique implementation in iterative dominance 

possible to achieve by constructing a dynamic mechanism with multiple rounds. 

 To understand that the assumption of this section is weaker than the sufficient 

condition in Subsection 6.1, let us consider the example in which 

   2L n , 
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for every i N , 

   ( ) {2 1,2 1}L i i i   , i.e., 2 1 2 1( , )i i i     if i  is odd, 

and 

   ( ) {2( 1),2 }L i i i  , i.e., 2( 1) 2( , )i i i    if i  is even. 

Note that for every {1,..., }l L  and i N , 

   2 ( )l L i   whenever ( )l L i , 

which violates the sufficient condition in Subsection 6.1. Let us further suppose that 

2T  , and each player i  observes 

   2 1i   at round 1 and 2 1i   at round 2   if i  is odd, 

and 

   2i  at round 1 and 2( 1)i   at round 2   if i  is even. 

Then, this case satisfies the assumption of this subsection, and therefore, we can make 

unique implementation in iterative dominance possible to achieve. 

 

10. Conclusion 

 

We investigated unique exact implementation of an SCF, where we required a 

mechanism to be bounded and detail-free, utilize only tiny transfers, and satisfy 

uniqueness of iteratively undominated strategy profile. We defined the iterative 

dominance notion on the ex-post terms, and required strict inequalities for all full-support 

distributions as the incentive constraints. 

We assumed that there exists partial information about the state that is verifiable. We 

considered the dynamic aspect of players’ information acquisition. We permitted the 

central planner to design a dynamic mechanism, in which a player is required to announce 

what he knows at multiple stages with sufficient intervals, where each player was less 

informed at the early stage than at the later stage. Using this approach, the central planner 

could establish the reference truthfully in a wide class of environments. With the 

establishment of truthful reference, we could successfully apply the bounded mechanism 

design proposed by Abreu and Matsushima (1992). 
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To be precise, we demonstrated a sufficient condition on the state space and the 

dynamic aspect of players’ information acquisition, namely full detection, under which 

any SCF was uniquely implementable. In contrast to static mechanism design, a wide 

variety of SCFs were uniquely implementable by dynamic mechanism design. This 

permissive result held even if the range of players’ lies that the verified information can 

directly detect was quite narrow. 

This is the first paper to demonstrate permissive results in exact implementation with 

uniqueness of Nash equilibrium. This is also the first paper to investigate bounded 

mechanism design with the uniqueness of mixed strategy Nash equilibrium without the 

expected utility hypothesis. 
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Appendix A: Proof of Theorem 4 

 

Fix arbitrary real numbers 1( ) 0h   for each *{1,..., }h h , 2 0  , and 3 0  . 

Let 
*

1 1 1( ( ))h
hh   . Fix an arbitrary integer 1K  . We construct a dynamic mechanism 

** ** 0
1 2 3( , , , , ) ( , , , )f K M M g x       as follows. Let 

  0
i iM   , 

and 

   
1

K
k

i i
k

M M


  and *k
iM    for all {1,..., }k K . 

In contrast with the dynamic mechanism *  specified in Subsection 6.2, each player i  

announces an element of the partition *
i  as a sub-message in the second announcement 

stage instead of announcing an element of i . 

 For each {2,..., }k K , we define :k kg M   in the manner that for each 

 , 

   ( ) ( )k kg m f     if * ( )k
im    for at least 1n  players, 

and 

   *( )k kg m a     if there exists no such  . 

Let 

   0 1

( )
( , )

K
k k

k

g m
g m m

K



. 

Let 

   
*

0 0 0
0 0 0

1

( , , ) ( , ) ( , , )
h

h
i i i

h

x m m x m z m m  


  , 

where 

   0
0 1( , ) ( )h

ix m h     if 
0

0 0

( )
( , ) ( 1)( )

i i i

i i i
m

m h


  
 

  


 


 , 

0
0( , ) 0h

ix m       if 
0

0 0

( )
( , ) ( 1)( )

i i i

i i i
m

m h


  
 

  


 


 , 
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   0
0 2 3( , , ) i

i

r
z m m

K
     if there exists {1,..., }k K  such that 

         0
0( , ) k

im m  , and 

 0
0( , ) k

jm m   for all k k   and 

\{ }j N i , 

and 

   0
0 3( , , ) i

i

r
z m m

K
     if there exists no such {1,..., }k K , 

where {0,..., }ir K  implies the number of {2,..., }k K  such that 0
0( , ) k

im m  . 

According to iz , any first player i  who reports an element of *
i  as his sub-message 

in the second announcement stage that does not include the combination of the profile of 

first announcements and the verified information 0
0( , )m  is fined the tiny amount 

given by 2 . 

We select 1 2 3( , , )    such that 

   
1

1 1 2 3
1

( ) ( )
h

h

h h   




  


  for all *{1,..., }h h . 

With this, in the same manner as the proof of Theorem 3, we can prove that for every 

i N , if i  is strictly iteratively undominated, then 

  0 *( ) ( )i i i is    for all i i  , 

and 

   *( ) ( )k
is     for all {1,..., }k K  and  . 

This along with the measurability implies that if   is a strictly iteratively undominated 

strategy profile, then 

   ( ( )) ( )g f    for all  , 

and 

   ( ( ), ) 0ix      for all i N  and  . 

 

Appendix B: Proof of Theorem 5 
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Fix arbitrary real numbers, 1( ) 0h   for each *{1,..., }h h , 2 0  , and 3 0  . 

Let 
*

1 1 1( ( ))h
hh   . Fix an arbitrary integer 1K  . We construct a dynamic mechanism, 

denoted by * * 0
1 2 3

ˆ ˆ ( , , , , ) ( , , , )f K M M g x     , as follows. Let 

   0
i iM   , 

1

K
k

i i
k

M M


 , and ( )
k
i C iM    for all {1,..., }k K . 

Let 

   2

( )
( )

1

K
k

k

f m
g m

K




 
 for all m M , 

which f  is the function introduced in Definition 6. Let 

   
*

0 0
0 0 0

1

( , ) ( , ) ( , , )
h

h
i i i

h

x m x m z m m  


  , 

where 

   0
0 1( , ) ( )h

ix m h    if 
1

0
0

( )
( , ) ( )( )

i i i

i i i
m

m h


  
 

  





 , 

0
0( , ) 0h

ix m      if 
1

0
0

( )
( , ) ( )( )

i i i

i i i
m

m h


  
 

  





 , 

   0
0 2 3( , , ) i

i

r
z m m

K
     if there exists {1,..., }k K  such that 

        0
( )

k
i C im m , and 

0
( )

k
j C jm m   for all k k   and \{ }j N i , 

and 

   0
0 3( , , ) i

i

r
z m m

K
     if there exists no such {1,..., }k K , 

where we denote 0
0 0m  , and {0,..., }ir K  implies the number of {1,..., }k K  

satisfying 0
( )

k
i C im m . We select 1 2 3( , , )    such that 

   
1

1 1 2 3
1

( ) ( )
h

h

h h   




  


  for all *{1,..., }h h . 

Note that 
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*

0 1 2 3
1

0 ( , ) ( )
h

i
h

x m h   


     for all i N  and 0( , )m  . 

Hence, by choosing 
*

1 2 3
1

( )
h

h

h  


   close to zero, we can make the monetary transfer 

0( , )ix m   close to zero, i.e., lesser than  , where   was the real number in Definition 

6, which was selected close to zero. 

 We define the honest strategy for player i , denoted by * 0* *
1ˆ ˆ ˆ( , ( ) )k K

i i i ks s  , as 

   *0ˆ ( )i i is    for all i i  , 

and 

   *
( ) ( )ˆ ( )k

i C i C is    for all {1,..., }k K  and i i  . 

The honest strategy profile * *ˆ ˆ( )i i N    always induces the value of the SCF f  and 

no monetary transfers. 

 Because of the continuity assumption, we can select a sufficiently large K  such 

that whenever 
1

max ( ) ( )
a A

a a
K

 


  , then 

(B-1) 2( , , ) ( , , )i i i i i iu t u t         for all 
*

1 3
1

[0, ( ) ]
h

i
h

t h 


   and i i  . 

In the same manner as in Theorem 3, we can prove that if is  is strictly iteratively 

undominated in *Ĝ , then, ( ) ( )( )i i i i
h

s h  


  , that is, 

1( )i i is    for all i i  . 

Suppose 1
j jm   for all j N . We can show that if is  is strictly iteratively 

undominated, then, 

2 ( )i i is    for all i i  . 

Suppose that there exists a player \{ }j N i  who announces 2 1
j jm m , i.e., 2

j jm  . 

Then, by announcing 2
i im   instead of i , player i  is fined the monetary amount 

given by 2  or more. From (B-1), the impact of the monetary fine 2  on his welfare 

is greater than the impact of the resultant change of allocation. Next, suppose that there 

exists no player \{ }j N i  who announces 2
j jm  . Then, by announcing 2

i im   
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instead of i , player i  is fined the monetary amount given by 3 . Because of strict 

incentive compatibility, the resultant change of allocation never improves his welfare. 

Hence, player i  prefers 2
i im  . 

 Fix an arbitrary 3h  . Suppose that h
j jm    for all j N  and h h  . In the 

same manner as above, we can show that each player i  prefers h
i im  . These 

observations imply that if is  is strictly iteratively undominated, then, 

( )k
i i is    for all i i   and all {1,..., }k K , 

that is, *ˆi is s . 

 

Appendix C: Proof of Theorem 6 

 

Fix arbitrary real numbers, 1( ) 0h   for each *{1,..., }h h , 2 0  , and 3 0  . 

Let 
*

1 1 1( ( ))h
hh   . Fix an arbitrary integer 1K  . We construct a mechanism denoted 

by ** **
1 2 3

ˆ ˆ ( , , , , ) ( , , )G G f K M g x     as follows. Let 

   
1

K
k

i i
k

M M


 , 

   k
i iM   , 

and 

   *k
i iM    for all {2,..., }k K . 

In contrast with *Ĝ , each player i  announces not i  but *
i i   for all sub-

messages except the first sub-message 1
im . Let 

   2

( )
( )

1

K
k

k

f m
g m

K




 
 for all m M , 

which f  is the function introduced in Definition 9. We will write ( ) ( )f f    if 

i i   for all i N , where we denote ( )i i N   . Let 
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1
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h
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  , 

where 

   1
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1
0

( )
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i i i
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m h
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1
0( , ) 0h

ix m      if 
1

1
0

( )
( , ) ( )( )

i i i

i i i
m

m h


  
 

  





 , 

   2 3( )
1

i
i

r
z m

K
  


 if there exists {2,..., }k K  such that 

        1
0( , ) k

i im m  , and 

1
0( , ) k

j jm m   for all k k   and \{ }j N i , 

and 

   3( )
1

i
i

r
z m

K



   if there exists no such {2,..., }k K , 

where {0,..., 1}ir K   implies the number of {2,..., }k K  satisfying 1k
i im m . We 

select 1 2 3( , , )    such that 

   
1

1 1 2 3
1

( ) ( )
h

h

h h   




  


  for all *{1,..., }h h . 

 In the same manner as the proof of Theorem 5, we can prove that for every i N , 

if i  is strictly iteratively undominated, then 

  1 *( ) ( )i i i is    for all i i  , 

and 

   *( ) ( )k
is     for all {2,..., }k K  and  . 

This combined withmeasurability implies that if   is a strictly iteratively undominated 

strategy profile, then 

   ( ( )) ( )g f    for all  , 

and 

   ( ( ), ) 0ix      for all i N  and  . 

 

 


