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Abstract

Markov regime switching models have been widely used in numerous empirical applications

in economics and finance. However, the asymptotic distribution of the maximum likelihood

estimator (MLE) has not been proven for some empirically popular Markov regime switching

models. In particular, the asymptotic distribution of the MLE has been unknown for models in

which the regime-specific density depends on both the current and the lagged regimes, which

include the seminal model of Hamilton (1989) and the switching ARCH model of Hamilton and

Susmel (1994). This paper shows the asymptotic normality of the MLE and the consistency of

the asymptotic covariance matrix estimate of these models.

Key words: asymptotic distribution; autoregressive conditional heteroscedasticity; maximum

likelihood estimator; Markov regime switching

JEL classification numbers: C12, C13, C22

1 Introduction

Since the seminal contribution of Hamilton (1989), Markov regime switching models have become

a popular framework for applied empirical work because they can capture the important features of

time series, such as structural changes, nonlinearity, high persistence, fat tails, leptokurtosis, and

asymmetric dependence (see, e.g., Evans and Wachtel, 1993; Hamilton and Susmel, 1994; Gray,

1996; Sims and Zha, 2006; Inoue and Okimoto, 2008; Ang and Bekaert, 2002; Okimoto, 2008; Dai

et al., 2007).

Consider the Markov regime switching model defined by a discrete-time stochastic process

{Yk, Xk} written as

Yk = fθ(Yk−1, . . . , Yk−s, Xk; εk), (1)

∗This research was supported by the Natural Science and Engineering Research Council of Canada and JSPS
KAKENHI Grant Number JP17K03653.
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where {εk} is an independent and identically distributed sequence of random variables, {Yk} is an

inhomogeneous s-order Markov chain on a state space Y conditional on Xk such that the conditional

distribution of Yk only depends on Xk and the lagged Y ’s, Xk is a first-order Markov process in a

state space X , and fθ is a family of functions indexed by a finite-dimensional parameter θ ∈ Θ. In

(1), the Markov chain {Xk} is not observable.

Surprisingly, the asymptotic distribution of the maximum likelihood estimator (MLE) of the

Markov regime switching model (1) has not been fully established in the existing literature. Bickel

et al. (1998) and Jensen and Petersen (1999) derive the asymptotic normality of the MLE of hidden

Markov models, in which the conditional distribution of Yk depends on Xk but not on the lagged

Y ’s. For hidden Markov models and Markov regime switching models with a finite state space,

the consistency of the MLE has been proven by Leroux (1992), Francq and Roussignol (1998), and

Krishnamurthy and Rydén (1998).

In an influential paper, Douc et al. (2004) [DMR, hereafter] establish the consistency and

asymptotic normality of the MLE in autoregressive Markov regime switching models (1) with a

nonfinite hidden state space X under two assumptions. First, DMR assume that the conditional

distribution of Yk does not depend on the lagged Xk’s. Specifically, on page 2259, DMR assume

that

for each n ≥ 1 and given {Yk}n−1
k=n−s and Xn, Yn is conditionally independent of

{Yk}n−s−1
k=−s+1 and {Xk}n−1

k=0 .

Second, DMR assume in their Assumption A1(a) that the transition density of Xk is bounded away

from 0.

These two assumptions together rule out models in which the conditional density Yk depends

on both the current and the lagged regimes. Suppose that we specify Xk in (1) as

Xk = (X̃k, X̃k−1, . . . , X̃k−p+1), (2)

where p ≥ 2, and X̃k follows a first-order Markov process and is called the regime. Then, the

transition density of Xk inevitably has zeros. For example, when p = 2 and Xk = (X̃k, X̃k−1), we

have Pr (Xk+1 = (i′, j′)|Xk = (i, j)) = 0 when j′ 6= i. Consequently, the asymptotic distribution

of the MLE has not been proven for some popular Markov regime switching models including the

seminal model of Hamilton (1989) and the switching ARCH (SWARCH) model of Hamilton and

Susmel (1994).

Example 1 (Hamilton (1989)). Consider the following model:

Yk = µX̃k + uk with uk =

p−1∑
`=1

γ`uk−` + σεk for p ≥ 2, (3)

where εk ∼ i.i.d. N(0, 1) and X̃k follows a Markov chain on X̃ = {1, 2, . . . ,M} with Pr(X̃k =

j|X̃k−1 = i) = pij, where M represents the number of regimes. Let
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θ = (µ′1, . . . , µ
′
M , γ

′, {pij}1≤i≤M,1≤j≤M−1)′ with γ = (γ1, . . . , γp−1, σ)′. Then, the conditional density

of Yk given (Yk−1, . . . , Yk−p)
′ and Xk = (X̃k, . . . , X̃k−p+1)′ is

gθ(Yk|Yk−1, . . . , Yk−p+1, Xk) =
1

σ
φ

(
(Yk − µX̃k)−

∑p−1
`=1 γ`(Yk−` − µX̃k−`)
σ

)
,

where φ(z) = (1/
√

2π) exp(−z2/2). Hamilton (1989) estimates model (3) with M = 2 and p = 5

using data on U.S. real GNP growth.

Example 2 (SWARCH model of Hamilton and Susmel (1994)). Consider the following model:

Yk = µ+ γyYk−1 + σX̃khkεk with h2
k = γ0 +

p−1∑
`=1

γ` (hk−`εk−`)
2 for p ≥ 2,

where εk ∼ i.i.d. N(0, 1) or Student t with v degrees of freedom, and X̃k follows a Markov chain

on X̃ = {1, 2, . . . ,M} with Pr(X̃k = j|X̃k−1 = i) = pij. For a Gaussian SWARCH model, let

θ = (θ′1, . . . , θ
′
M , γ

′, {pij}1≤i≤M,1≤j≤M−1)′ with θj = σ2
j and γ = (µ, γy, γ0, γ1, . . . , γp−1)′. Then, the

conditional density of Yk given (Yk−1, . . . , Yk−p)
′ and Xk = (X̃k, . . . , X̃k−p+1)′ is

gθ(Yk|Yk−1, . . . , Yk−p, Xk) =
1

σX̃khk
φ

(
Yk − µ− γyYk−1

σX̃khk

)
,

where h2
k = γ0 +

∑p−1
`=1 γ`

(
Yk−`−µ−γyYk−`−1

σX̃k−`

)2

.

In the models of Hamilton (1989) and Hamilton and Susmel (1994), the transition probability of

Xk = (X̃k, . . . , X̃k−p+1)′ has zeros when p ≥ 2. Therefore, Assumption A1(a) of DMR is violated.

As discussed on pages 2257–2258 of DMR, Assumption A1(a) is a crucial assumption for their

Corollary 1 (page 2262) that establishes the deterministic geometrically decaying bound on the

mixing rate of the conditional chain, X|Y . As DMR recognize on page 2258, this deterministic

nature of the bound is vital to their proof of the asymptotic normality of the MLE.

This paper shows the consistency and asymptotic normality of the MLE of the Markov regime

switching model (1)–(2) with p ≥ 2, including the models of Hamilton (1989) and Hamilton and

Susmel (1994). To the best of our knowledge, there exists no rigorous proof in the literature of

the asymptotic normality of the MLE of these models, even though these models are popular in

applied work and empirical researchers regularly make inferences based on the presumed asymptotic

normality (see, e.g., Goodwin, 1993; Garcia and Perron, 1996; Hamilton and Lin, 1996; Fong, 1997;

Ramchand and Susmel, 1998; Maheu and McCurdy, 2000; Edwards and Susmel, 2001). This paper

therefore provides the theoretical basis for statistical inferences associated with these models.

To derive the asymptotic normality of the MLE, we first establish a bound on the mixing rate of

the conditional chain, X|Y , in Corollary 1. Our bound is written as a product of random variables,

where all but finitely many of them are strictly less than 1. Consequently, the mixing rate of the
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conditional chain is geometrically decaying almost surely. We then use this mixing rate to show that

the sequence of the conditional scores and conditional Hessians given the m past periods converge

to the conditional score and conditional Hessian given the “infinite past” as m→∞. Given these

results, we show the asymptotic normality of the MLE under standard regularity assumptions by

applying a martingale central limit theorem to the score function (Proposition 2) as well as by

proving a uniform law of large numbers for the observed Fisher information (Proposition 3). These

results extend those in DMR to an empirically important class of models where the density depends

on lagged regimes. Another feature of the present study is that we introduce an additional weakly

exogenous regressor, Wk.

The remainder of this paper is organized as follows. Section 2 introduces the notation, model,

and assumptions. Section 3 derives the bound on the mixing rate of the conditional chain, X|Y .

Section 4 derives the consistency of the MLE, and the asymptotic normality of the MLE is shown

in Section 5. Section 6 reports the simulation results. Section 7 collects the proofs and Section 8

collects the auxiliary results.

2 Model and assumptions

Our notation largely follows the notation in DMR. Let := denote “equals by definition.” For a

k × 1 vector x = (x1, . . . , xk)
′ and a matrix B, define |x| :=

√
x′x and |B| :=

√
λmax(B′B), where

λmax(B′B) denotes the largest eigenvalue of B′B. For a k × 1 vector a = (a1, . . . , ak)
′ and a

function f(a), let ∇2
af(a) := ∇aa′f(a). For two probability measures µ1 and µ2, the total vari-

ation distance between µ1 and µ2 is defined as ‖µ1−µ2‖TV := supA |µ1(A)−µ2(A)|. ‖·‖TV satisfies

supf(x):0≤f(x)≤1 |
∫
f(x)µ1(dx)−

∫
f(x)µ2(dx)| = ‖µ1−µ2‖TV and supf(x):maxx |f(x)|≤1 |

∫
f(x)µ1(dx)−∫

f(x)µ2(dx)| = 2‖µ1 − µ2‖TV for any two probability measures µ1 and µ2 (see, e.g., Levin et al.

(2009, Proposition 4.5)). Let I{A} denote an indicator function that takes the value of 1 when A

is true and 0 otherwise. C denotes a generic finite positive constant whose value may change from

one expression to another. Let a∨b := max{a, b} and a∧b := min{a, b}. Let bxc denote the largest

integer less than or equal to x, and define (x)+ := max{x, 0}. For any {xi}, we define
∑b

i=a xi := 0

and
∏b
i=a xi := 1 when b < a. “i.o.” stands for “infinitely often.” All limits below are taken as

n→∞ unless stated otherwise.

We consider the Markov regime switching process defined by a discrete-time stochastic process

{(Xk, Yk,Wk)}, where (Xk, Yk,Wk) takes the values in a set X ×Y ×W with the associated Borel

σ-field B(X × Y ×W). We use pθ(·) to denote densities with respect to the probability measure

on B(X × Y ×W)⊗Z. For a stochastic process {Uk} and a < b, define Ub
a := (Ua, Ua+1, . . . , Ub).

Denote Yk−1 := (Yk−1, . . . , Yk−s) for a fixed integer s and Y
b
a := (Ya,Ya+1, . . . ,Yb). Define

Zk := (Xk,Yk). Let Qθ(x,A) := Pθ(Xk ∈ A|Xk−1 = x) denote the transition kernel of {Xk}∞k=0.

We now introduce our assumptions, which mainly follow the assumptions in DMR.

Assumption 1. (a) The parameter θ belongs to Θ, a compact subset of Rq, and the true parameter
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value θ∗ lies in the interior of Θ. (b) {Xk}∞k=0 is a Markov chain that lies in a compact set X ⊂ Rdx.

(c) Qθ(x, ·) has a density qθ(x, ·) with respect to a finite dominating measure µ on B(X ) such that

µ(X ) = 1, and σ0
+ := supθ∈Θ supx,x′∈X qθ(x, x

′) < ∞. (d) There exists a finite p ≥ 1 such that

0 < σ− := infθ∈Θ infx,x′∈X pθ(xk|xk−p = x′) and σ+ := supθ∈Θ supx,x′∈X pθ(xk|xk−p = x′) <∞. (e)

{(Yk,Wk)}∞k=−s+1 takes the values in a set Y ×W ⊂ Rdy × Rdw .

Assumption 2. (a) For each k ≥ 1, Xk is conditionally independent of (Xk−2
0 ,Y

k−1
0 ,W∞

0 ) given

Xk−1. (b) For each k ≥ 1, Yk is conditionally independent of (Yk−s−1
−s+1 ,Xk−1

0 ,Wk−1
0 ,W∞

k+1) given

(Yk−1, Xk,Wk), and the conditional distribution of Yk has a density gθ(yk|Yk−1, Xk,Wk) with

respect to a σ-finite measure ν on B(Y). (c) W∞
1 is conditionally independent of (Y0, X0) given

W0. (d) {(Zk,Wk)}∞k=0 is a strictly stationary ergodic process.

Assumption 3. For all y′ ∈ Y, y ∈ Ys, and w ∈ W, 0 < infθ∈Θ infx∈X gθ(y
′|y, x, w) and

supθ∈Θ supx∈X gθ(y
′|y, x, w) <∞.

Assumption 1(c) is also assumed on page 2258 of DMR. This assumption excludes the case

where X = R and µ is the Lebesgue measure but allows for continuously distributed Xk with finite

support. Assumption 1(d) implies that the state space X of the Markov chain {Xk} is νp-small for

some nontrivial measure νp on B(X ). Therefore, for all θ ∈ Θ, the chain {Xk} has a unique invari-

ant distribution and is uniformly ergodic (Meyn and Tweedie, 2009, Theorem 16.0.2). Assumptions

2(a)(b) imply that Zk is conditionally independent of (Zk−2
0 ,Wk−1

0 ,W∞
k+1) given (Zk−1,Wk); hence,

{Zk}∞k=0 is a Markov chain on Z := X ×Ys given {Wk}∞k=0. Under Assumptions 2(a)–(c), the con-

ditional density of Zn0 given Wn
0 is written as pθ(Z

n
0 |Wn

0 ) = pθ(Z0|W0)
∏n
k=1 pθ(Zk|Zk−1,Wk). Be-

cause {(Zk,Wk)}∞k=0 is stationary, we extend {(Zk,Wk)}∞k=0 to a stationary process {(Zk,Wk)}∞k=−∞
with doubly infinite time. We denote the probability and associated expectation of {(Zk,Wk)}∞k=∞
under stationarity by Pθ and Eθ, respectively.1 Assumption 3 is stronger than Assumption A1(b) in

DMR, which assumes only 0 < infθ∈Θ

∫
x∈X gθ(y

′|y, x)µ(dx) and supθ∈Θ

∫
x∈X gθ(y

′|y, x)µ(dx) <∞.

When X is finite, Assumption 3 becomes identical to Assumption A3 of Francq and Roussignol

(1998), who prove the consistency of the MLE when X is finite. It appears that assuming a lower

bound on gθ similar to Assumption 3 is necessary to derive the asymptotics of the MLE when

infθ infx,x′ qθ(x, x
′) = 0. When p = 1, we could weaken Assumption 3 to Assumption A1(b) in

DMR, but we retain Assumption 3 to simplify the exposition and proof.

Following DMR, we analyze the conditional log-likelihood function given Y0, Wn
0 , and X0 = x0

rather than the stationary log-likelihood function given Y0 and Wn
0 because, as explained in

DMR (pages 2263–2264), the conditional initial density pθ(X0|Y
k−1
0 ) cannot be easily computed

in practice. The conditional density function of Yn
1 is

pθ(Y
n
1 |Y0,W

n
0 , x0) =

∫ n∏
k=1

pθ(Yk, xk|Yk−1, xk−1,Wk)µ
⊗n(dxn1 ), (4)

1DMR use Pθ and Eθ to denote the probability and expectation under stationarity because their Section 7 deals
with the case when Z0 is drawn from an arbitrary distribution. Because we assume {(Zk,Wk)}∞k=∞ is stationary
throughout this paper, we use notations such as Pθ and Eθ without an overline for simplicity.
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where pθ(yk, xk|yk−1, xk−1, wk) = qθ(xk−1, xk)gθ(yk|yk−1, xk, wk). Assumptions 2(a)(b)(c) imply

that, for k ≥ 1, Wk is conditionally independent of Zk−1
0 given Wk−1

0 because p(Wk|Zk−1
0 ,Wk−1

0 ) =

p(Wk
0 ,Z

k−1
0 )/p(Wk−1

0 ,Zk−1
0 ) and, for j = k, k−1, p(Wj

0,Z
k−1
0 ) = p(Z0,W

j
0)
∏k−1
t=1 p(Zt|Zt−1,Wt) =

p(Wj
1|W0)p(Z0|W0)

∏k−1
t=1 p(Zt|Zt−1,Wt). Therefore, for 1 ≤ k ≤ n, we have

pθ(Y
k
1 |Y0,W

n
0 , x0) = pθ(Y

k
1 |Y0,W

k
0 , x0), (5)

pθ(Y
k
1 |Y0,W

n
0 ) = pθ(Y

k
1 |Y0,W

k
0). (6)

In view of (5) and (6), we can write the conditional log-likelihood function and stationary log-

likelihood function as

ln(θ, x0) := log pθ(Y
n
1 |Y0,W

n
0 , x0) =

n∑
k=1

log pθ(Yk|Y
k−1
0 ,Wk

0 , x0),

ln(θ) := log pθ(Y
n
1 |Y0,W

n
0 ) =

n∑
k=1

log pθ(Yk|Y
k−1
0 ,Wk

0).

(7)

Many applications use the log-likelihood function in which the conditional density pθ(Y
n
1 |Y0,W

n
0 , x0)

is integrated with respect to x0 over a probability measure ξ on B(X ), where ξ can be fixed or

treated as an additional parameter. We also analyze the resulting objective function:

ln(θ, ξ) := log

(∫
pθ(Y

n
1 |Y0,W

n
0 , x0)ξ(dx0)

)
. (8)

3 Uniform forgetting of the conditional hidden Markov chain

In this section, we establish a mixing rate of the conditional hidden Markov chain, which is the

process {Xk} given the sequence of Y ’s and W ’s. The bounds on this mixing rate are instrumental

in deriving the asymptotic properties of the MLE. Corollary 1 of DMR shows that the conditional

hidden Markov chain forgets its past at a deterministic exponential rate. As DMR note on page

2258, their deterministic rate holds only when p = 1. We derive the convergence rate of the

conditional Markov chain when p ≥ 1.

First, we derive the minorization condition (Rosenthal, 1995) on the conditional hidden Markov

chain. Lemma 1 of DMR derives the minorization condition when p = 1 and the covariate Wk is

absent. The following lemma generalizes Lemma 1 of DMR to accommodate p ≥ 2 and covariate

Wk.
2 When p ≥ 2, the minorization coefficient ω(·) depends on (Y

k−1
k−p,W

k−1
k−p) because Y

k−1
k−p

provide information on Xk in addition to the information provided by Xk−p.

Lemma 1. Assume Assumptions 1–3. Let m,n ∈ Z with −m ≤ n and θ ∈ Θ. Then, (a) under

Pθ, conditionally on (Y
n
−m,W

n
−m), {Xk}nk=−m is an inhomogeneous Markov chain, and (b) for all

−m+ p ≤ k ≤ n, there exists a function µk(y
n
k−1,w

n
k , A) such that

2We replace the conditioning variable Y
n
m in DMR with Y

n
−m, because the subsequent analysis uses Y

n
−m.
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(i) For any A ∈ B(X ), (ynk−1,w
n
k ) 7→ µk(y

n
k−1,w

n
k , A) is a Borel function;

(ii) For any (ynk−1,w
n
k ), µk(y

n
k−1,w

n
k , ·) is a probability measure on B(X ). Furthermore,

µk(y
n
k−1,w

n
k , ·)� µ for all (ynk−1,w

n
k ), and, for all (Y

n
−m,W

n
−m),

inf
x∈X

Pθ
(
Xk ∈ A

∣∣Xk−p = x,Y
n
−m,W

n
−m
)
≥ ω(Y

k−1
k−p,W

k−1
k−p)µk(Y

n
k−1,W

n
k , A),

where ω(Y
k−1
k−p,W

k−1
k−p) := σ−/σ+ when p = 1, and, when p ≥ 2,3

ω(Y
k−1
k−p,W

k−1
k−p) :=

 σ− infθ infxk−1
k−p+1

∏k−1
i=k−p+1 gθ(Yi|Yi−1, xi,Wi)

σ+ supθ supxk−1
k−p+1

∏k−1
i=k−p+1 gθ(Yi|Yi−1, xi,Wi)

2

. (9)

The following corollary provides the rate at which the conditional chain {Xk}nk=−m given

(Y
n
−m,W

n
−m) forgets its past. This corollary is an immediate consequence of Lemmas 1 and 8

when −m+ p ≤ k ≤ n. When k < −m+ p, this corollary holds because ‖µ1 − µ2‖TV ≤ 1 for any

probability measures µ1 and µ2.

Corollary 1. Assume Assumptions 1–3. Let m,n ∈ Z with −m ≤ n and θ ∈ Θ. Then, for all

−m ≤ k ≤ n, all probability measures µ1 and µ2 on B(X ), and all (Y
n
−m,W

n
−m),∥∥∥∥∫

X
Pθ
(
Xk ∈ ·

∣∣X−m = x,Y
n
−m,W

n
−m
)
µ1(dx)−

∫
X
Pθ
(
Xk ∈ ·

∣∣X−m = x,Y
n
−m,W

n
−m
)
µ2(dx)

∥∥∥∥
TV

≤
b(k+m)/pc∏

i=1

(
1− ω(Y

−m+pi−1
−m+pi−p,W

−m+pi−1
−m+pi−p)

)
.

The convergence rate of the conditional hidden Markov chain depends on the minorization coeffi-

cient ω(Y
k−1
k−p,W

k−1
k−p). If this coefficient is bounded away from 0, the chain forgets its past exponen-

tially fast. When p ≥ 2, this coefficient is not bounded away from 0 because infyk−1
k−p,w

k−1
k−p

ω(yk−1
k−p,w

k−1
k−p) =

0. However, ω(Y
k−1
k−p,W

k−1
k−p) becomes close to zero only when Yk−1

k−p+1 takes an unlikely value be-

cause the denominator of ω(Y
k−1
k−p,W

k−1
k−p) is finite and the numerator of ω(Y

k−1
k−p,W

k−1
k−p) is a product

of the conditional density gθ(y|y, x, w). As a result, ω(Y
k−1
k−p,W

k−1
k−p) is bounded away from 0 with

a probability close to 1. In the following sections, we use this fact to establish the consistency and

asymptotic normality of the MLE.

3Strictly speaking, Wk−p in ω(Y
k−1
k−p,W

k−1
k−p) is superfluous because ω(Y

k−1
k−p,W

k−1
k−p) does not depend on Wk−p.

We retain Wk−p for notational simplicity.
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4 Consistency of the MLE

Define the conditional MLE of θ∗ given Y0, Wn
0 , and X0 = x0 as

θ̂x0 := argmax
θ∈Θ

ln(θ, x0),

with ln(θ, x0) defined in (7). In this section, we prove the consistency of the conditional MLE. We

introduce additional assumptions required for proving consistency.

Assumption 4. (a) b+ := supθ∈Θ supy1,y0,x,w
gθ(y1|y0, x, w) < ∞. (b) Eθ∗ | log b−(Y

1
0,W1)| < ∞,

where b−(Y
k
k−1,Wk) := infθ∈Θ infxk∈X gθ(Yk|Yk−1, xk,Wk).

Assumption 5. There exist constants α > 0, C1, C2 ∈ (0,∞), and β > 1 such that, for any r > 0,

Pθ∗
(
b−(Y

1
0,W1) ≤ C1e

−αr
)
≤ C2r

−β.

Assumption 4(a) is also assumed in Assumption (A3) of DMR. Assumption 4(b) is stronger

than Assumption (A3) of DMR, who assume Eθ∗ | log(infθ∈Θ

∫
gθ(Y1|Y0, x)µ(dx)| < ∞. Assump-

tion 4 implies that Eθ∗ supθ∈Θ supx∈X | log(gθ(Y1|Y0, x,W1))| <∞, which is similar to the moment

condition used in the standard maximum likelihood estimation, but the infimum is taken over x

in addition to θ. Assumption 5 restricts the probability that infθ∈Θ infxk∈X gθ(Yk|Yk−1, xk,Wk)

takes an extremely small value. Assumption 5 is not restrictive because the right hand side

of the inequality inside Pθ∗(·) is exponential in r and the bound C2r
−β is a polynomial in r.

An easily verifiable sufficient condition for Assumption 5 is Eθ∗ | log b−(Y
1
0,W1)|1+δ < ∞ for

some δ > 0. This is because Pθ∗(b−(Y
1
0,W1) ≤ b+e

−αr) = Pθ∗(| log(b−(Y
1
0,W1)/b+)| ≥ αr) ≤

(Eθ∗ | log(b−(Y
1
0,W1)/b+)|1+δ)/(αr)1+δ ≤ C2r

−(1+δ), where the first equality follows from b−(Y
1
0,W1) ≤

b+, and the second and third inequalities follow from Markov’s inequality and Minkowski’s inequal-

ity. Examples 1 and 2 satisfy Assumptions 4 and 5.

In the following lemma, we show that the difference between the conditional log-likelihood

function ln(θ, x0) and the stationary log-likelihood function ln(θ) is o(n) Pθ∗-a.s.

Lemma 2. Assume Assumptions 1–5. Then,

n−1 sup
x0∈X

sup
θ∈Θ
|ln(θ, x0)− ln(θ)| → 0 Pθ∗-a.s.

When p = 1, Lemma 2 of DMR shows that supθ∈Θ |ln(θ, x0)− ln(θ)| is bounded by a determin-

istic constant. When p ≥ 2, Lemma 2 of DMR is no longer applicable because |ln(θ, x0) − ln(θ)|
depends on the products of 1 − ω(Y

pi−1
pi−p,W

pi−1
pi−p)’s for i = 1, . . . , bn/pc. A key observation is

that {ω(Y
pi−1
pi−p,W

pi−1
pi−p)}i≥1 is stationary and ergodic and that ε := Pθ∗(ω(Y

pi−1
pi−p,W

pi−1
pi−p) ≤ δ)

is small when δ > 0 is sufficiently small. Because the strong law of large numbers implies that

(bn/pc)−1
∑bn/pc

i=1 I{ω(Y
pi−1
pi−p,W

pi−1
pi−p) > δ} converges to 1 − ε Pθ∗-a.s. from the strong law of large

8



numbers, 1− ω(Y
pi−1
pi−p,W

pi−1
pi−p) > 1− δ holds for a large fraction of the ω(Y

pi−1
pi−p,W

pi−1
pi−p)’s. Conse-

quently, we can establish a Pθ∗-a.s. bound on n−1|ln(θ, x0)− ln(θ)|.
We proceed to show that, for all θ ∈ Θ, pθ(Yk|Y

k−1
−m ,W

k
−m) converges to pθ(Yk|Y

k−1
−∞,W

k
−∞)

Pθ∗-a.s. as m → ∞ and that we can approximate n−1ln(θ) by n−1
∑n

k=1 log pθ(Yk|Y
k−1
−∞,W

k
−∞),

which is the sample average of the stationary ergodic random variables. For x ∈ X and m ≥ 0,

define

∆k,m,x(θ) := log pθ(Yk|Y
k−1
−m ,W

k
−m, X−m = x),

∆k,m(θ) := log pθ(Yk|Y
k−1
−m ,W

k
−m)

= log

∫
pθ(Yk|Y

k−1
−m ,W

k
−m, X−m = x−m)Pθ(dx−m|Y

k−1
−m ,W

k
−m),

so that ln(θ) =
∑n

k=1 ∆k,0(θ). The following proposition corresponds to Lemma 3 of DMR. This

proposition shows that, for any k ≥ 0, the sequences {∆k,m(θ)}m≥0 and {∆k,m,x(θ)}m≥0 are uni-

formly Cauchy sequences and hence converge uniformly in θ ∈ Θ with probability one.

Lemma 3. Assume Assumptions 1–5. Then, there exist a constant ρ ∈ (0, 1) and random sequences

{Ak,m}k≥1,m≥0 and {Bk}k≥1 such that, for all 1 ≤ k ≤ n and m′ ≥ m ≥ 0,

(a) sup
x,x′∈X

sup
θ∈Θ

∣∣∆k,m,x(θ)−∆k,m′,x′(θ)
∣∣ ≤ Ak,mρb(k+m)/3pc,

(b) sup
x∈X

sup
θ∈Θ
|∆k,m,x(θ)−∆k,m(θ)| ≤ Ak,mρb(k+m)/3pc,

(c) sup
m≥0

sup
x∈X

sup
θ∈Θ
|∆k,m,x(θ)|+ sup

m≥0
sup
θ∈Θ
|∆k,m(θ)| ≤ Bk,

where Pθ∗ (Ak,m ≥M i.o.) = 0 for a constant M <∞ and Bk ∈ L1(Pθ∗).

Lemma 3(a) implies that {∆k,m,x(θ)}m≥0 is a uniform Cauchy sequence in θ ∈ Θ with prob-

ability one and that limm→∞∆k,m,x(θ) does not depend on x. Let ∆k,∞(θ) denote this limit.

Because {∆k,m,x(θ)}m≥0 is uniformly bounded in L1(Pθ∗) from Lemma 3(c), {∆k,m,x(θ)}m≥0 con-

verges to ∆k,∞(θ) in L1(Pθ∗) and ∆k,∞(θ) ∈ L1(Pθ∗) by the dominated convergence theorem.

Define l(θ) := Eθ∗ [∆0,∞(θ)]. Lemma 3 also implies that n−1ln(θ) converge to n−1
∑n

k=1 ∆k,∞(θ),

which converges to l(θ) by the ergodic theorem. Therefore, the consistency of θ̂x0 is proven if this

convergence of n−1ln(θ)− l(θ) is strengthened to uniform convergence in θ ∈ Θ and the additional

regularity conditions are confirmed.

We introduce additional assumptions on the continuity of qθ and gθ and identification of θ∗.

Assumption 6. (a) For all (y, y′, w) ∈ Ys × Y × W and uniformly in x, x′ ∈ X , qθ(x, x
′) and

gθ(y
′|y, x, w) are continuous in θ. (b) Pθ∗ [pθ∗(Y1|Y

0
−m,W

1
−m) 6= pθ(Y1|Y

0
−m,W

1
−m)] > 0 for all

m ≥ 0 and all θ ∈ Θ such that θ 6= θ∗.

Assumption 6(b) is a high-level assumption because it is imposed on pθ(Y1|Y
0
−m,W

1
−m). When

9



the covariate Wk is absent, DMR prove consistency under a lower-level assumption (their (A5′)),

which is stated in terms of pθ(Y
n
1 |Y0). We use Assumption 6(b) for brevity.

The following proposition shows the strong consistency of the (conditional) MLE.4

Proposition 1. Assume Assumptions 1–6. Then, supx0∈X |θ̂x0 − θ
∗| → 0 Pθ∗-a.s.

Francq and Roussignol (1998, Theorem 3) prove the consistency of the MLE when the state

space of Xk is finite. Proposition 1 generalizes Theorem 3 of Francq and Roussignol (1998) in the

following three aspects. First, we allow Xk to be continuously distributed. Second, we analyze

the log-likelihood function conditional on X0 = x0, whereas Francq and Roussignol (1998) set the

initial distribution of X1 to any probability vector with strictly positive elements. In other words,

we allow for zeros in the postulated initial distribution of {Xk}. Third, we allow for an exogenous

covariate {Wk}nk=0.

Define the MLE with a probability measure ξ on B(X ) for x0 as θ̂ξ := argmaxθ∈Θ ln(θ, ξ) with

ln(θ, ξ) defined in (8). Proposition 1 implies the following corollary.

Corollary 2. Assume Assumptions 1–6. Then, for any ξ, θ̂ξ → θ∗ Pθ∗-a.s.

5 Asymptotic distribution of the MLE

In this section, we derive the asymptotic distribution of the MLE and consistency of the asymp-

totic covariance matrix estimate. Because θ̂x0 is consistent, expanding the first-order condition

∇θln(θ̂x0 , x0) = 0 around θ∗ gives

0 = ∇θln(θ̂x0 , x0) = ∇θln(θ∗, x0) +∇2
θln(θ, x0)(θ̂x0 − θ∗), (10)

where θ ∈ [θ∗, θ̂x0 ] and θ may take different values across different rows of ∇2
θln(θ, x0). In the

following, we approximate ∇jθln(θ, x0) =
∑n

k=1∇
j
θ log pθ(Yk|Y

k−1
0 ,Wk

0 , X0 = x0) for j = 1, 2 by∑n
k=1∇

j
θ log pθ(Yk|Y

k−1
−∞,W

k
−∞), which is a sum of a stationary process. We then apply the cen-

tral limit theorem and law of large numbers to n−j/2
∑n

k=1∇
j
θ log pθ(Yk|Y

k−1
−∞,W

k
−∞). A similar

expansion gives the asymptotic distribution of n1/2(θ̂ξ − θ∗).
We introduce additional assumptions. Define X+

θ := {(x, x′) ∈ X 2 : qθ(x, x
′) > 0}.

Assumption 7. There exists a constant δ > 0 such that the following conditions hold on G := {θ ∈
Θ : |θ−θ∗| < δ}: (a) For all (y, y′, w, x, x′) ∈ Ys×Y×W×X ×X , the functions gθ(y

′|y, w, x) and

qθ(x, x
′) are twice continuously differentiable in θ ∈ G. (b) supθ∈G supx,x′∈X+

θ
|∇θ log qθ(x, x

′)| <∞
and supθ∈G supx,x′∈X+

θ
|∇2

θ log qθ(x, x
′)| < ∞. (c) Eθ∗ [supθ∈G supx∈X |∇θ log gθ(Y1|Y0, x,W1)|2] <

∞ and Eθ∗ [supθ∈G supx∈X |∇2
θ log gθ(Y1|Y0, x,W1)|] <∞. (d) For almost all (y, y′, w) ∈ Ys ×Y ×

4A Gaussian regime switching model with regime-specific mean µj and variance σ2
j is subject to the unbounded

likelihood problem (Hartigan, 1985) in that the likelihood diverges to infinity if we set µj = Yk for some k and let
σj → 0. In this paper, the compactness assumption (Assumption 1(a)) in effect imposes a lower bound on σj and
hence rules out the unbounded likelihood problem.
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W, there exists a function fy,y′,w : X → R+ in L1(µ) such that supθ∈G gθ(y
′|y, x, w) ≤ fy,y′,w(x).

(e) For almost all (x,y, w) ∈ X × Ys ×W and j = 1, 2, there exist functions f jx,y,w : Y → R+ in

L1(ν) such that |∇jθgθ(y
′|y, x, w)| ≤ f jx,y,w(y′) for all θ ∈ G.

Assumption 8. Eθ∗ [supm≥0 supθ∈G |∇θ log pθ(Y1|Y
0
−m,W

1
−m)|2] <∞,

Eθ∗ [supm≥0 supθ∈G |∇2
θ log pθ(Y1|Y

0
−m,W

1
−m)|] <∞,

Eθ∗ [supm≥0 supθ∈G supx∈X |∇θ log pθ(Y1|Y
0
−m,W

1
−m, X−m = x)|2] <∞, and

Eθ∗ [supm≥0 supθ∈G supx∈X |∇2
θ log pθ(Y1|Y

0
−m,W

1
−m, X−m = x)|] <∞.

Assumption 7 is the same as Assumptions (A6)–(A8) of DMR except for accommodating the

case inf(x,x′)∈X 2 qθ(x, x
′) = 0 and the covariate W . Examples 1 and 2 satisfy Assumption 7. As-

sumption 8 is a high-level assumption that bounds the moments of ∇jθ log pθ(Yk|Y
k−1
−m ,W

k
−m) and

∇jθ log pθ(Yk|Y
k−1
−m ,W

k
−m, X−m = x) uniformly in m. When p = 1, DMR could derive Assumption 8

by using the L3−j(Pθ∗) convergence of∇jθ log pθ(Yk|Y
k−1
−m ,W

k
−m) and∇jθ log pθ(Yk|Y

k−1
−m ,W

k
−m, X−m =

x) to ∇jθ log pθ(Yk|Y
k−1
−∞,W

k
−∞) as m→∞. When p ≥ 2, we need to assume Assumption 8 because

our Lemma 6 only shows that these sequences converge to∇jθ log pθ(Yk|Y
k−1
−∞,W

k
−∞) in probability.

5.1 Asymptotic distribution of the score function

This section derives the asymptotic distribution of n−1/2∇θln(θ∗, x0) and n−1/2∇θln(θ∗, ξ). We

introduce a result known as the Louis missing information principle (Louis, 1982), which expresses

the derivatives of the log-likelihood function of a latent variable model in terms of the conditional

expectation of the derivatives of the complete data log-likelihood function. Let (X,Y,W ) be ran-

dom variables with pθ(y, x|w) denoting the joint density of (Y,X) given W , and let pθ(y|w) be

the marginal density of Y given W . Then, a straightforward differentiation that is valid under

Assumption 7 gives

∇θ log pθ(Y |W ) = Eθ [∇θ log pθ(Y,X|W )|Y,W ] ,

∇2
θ log pθ(Y |W ) = Eθ

[
∇2
θ log pθ(Y,X|W )

∣∣Y,W ]+ varθ [∇θ log pθ(Y,X|W )|Y,W ] .
(11)

Define Z
k
k−1 := (Yk, Xk,Yk−1, Xk−1). For j = 1, 2, denote the derivatives of the complete data

log-density of (Yk, Xk) given (Yk−1, Xk−1,Wk) by

φj(θ,Z
k
k−1,Wk) := ∇jθ log pθ(Yk, Xk|Yk−1, Xk−1,Wk)

= ∇jθ log qθ(Xk−1, Xk) +∇jθ log gθ(Yk, |Yk−1, Xk,Wk).

We use a short-handed notation φjθk := φj(θ,Z
k
k−1,Wk). We also suppress the superscript 1 from

φ1
θk, so that φθk = φ1

θk. Let |φjk|∞ := supθ∈G supx,x′∈X+
θ
|∇jθ log qθ(x, x

′)|
+ supθ∈G supx∈X |∇

j
θ log gθ(Yk|Yk−1, x,Wk)|.
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Define, for x ∈ X , k ≥ 1, m ≥ 0, and j = 1, 2,5

Ψj
k,m,x(θ) := Eθ

[
k∑

t=−m+1

φjθt

∣∣∣∣∣Yk
−m,W

k
−m, X−m = x

]
− Eθ

[
k−1∑

t=−m+1

φjθt

∣∣∣∣∣Yk−1
−m ,W

k−1
−m , X−m = x

]
.

(12)

Because Ψ1
k,m,x(θ) = ∇θ log pθ(Yk|Y

k−1
−m ,W

k
−m, X−m = x) from (11), we can express ∇θln(θ, x0) as

∇θln(θ, x0) =
n∑
k=1

∇θ log pθ(Yk|Y
k−1
0 ,Wk

0 , X0 = x0) =
n∑
k=1

Ψ1
k,0,x0(θ).

We show that {Ψj
k,m,x(θ)}m≥0 is a Cauchy sequence that converges to a limit at an exponen-

tial rate. Note that Ψj
k,m,x(θ) is a function of Eθ[φjθt|·] for t = −m + 1, . . . , k. When t is large,

the difference between Eθ[φjθt|Y
k
−m,W

k
−m, X−m = x] and Eθ[φjθt|Y

k
−m′ ,W

k
−m′ , X−m′ = x′] with

m′ > m is small by virtue of Corollary 1. When t is small, we bound Eθ[φjθt|Y
k
−m,W

k
−m, X−m =

x]− Eθ[φjθt|Y
k−1
−m ,W

k−1
−m , X−m = x] in Ψj

k,m,x(θ) by using the following lemma. This lemma corre-

sponds to Lemma 9 of DMR and derives the minorization constant for the time-reversed process

{Xn−k}0≤k≤n+m conditional on (Y
n
−m,W

n
−m).

Lemma 4. Assume Assumptions 1 and 2. Let m,n ∈ Z with −m ≤ n and θ ∈ Θ. Then, (a) under

Pθ, conditionally on (Y
n
−m,W

n
−m), the time-reversed process {Xn−k}0≤k≤n+m is an inhomogeneous

Markov chain, and (b) for all p ≤ k ≤ n + m, there exists a function µ̃k(y
n−k+p−1
−m ,wn−k+p−1

−m , A)

such that

(i) For any A ∈ B(X ), (yn−k+p−1
−m ,wn−k+p−1

−m ) 7→ µ̃k(y
n−k+p−1
−m ,wn−k+p−1

−m , A) is a Borel function;

(ii) For any (yn−k+p−1
−m ,wn−k+p−1

−m , A), µ̃k(y
n−k+p−1
−m ,wn−k+p−1

−m , ·) is a probability measure on

B(X ). Furthermore, µ̃k(y
n−k+p−1
−m ,wn−k+p−1

−m , ·) � µ for all (yn−k+p−1
−m ,wn−k+p−1

−m ), and,

for all (Y
n−k+p−1
−m ,Wn−k+p−1

−m ),

Pθ
(
Xn−k ∈ A

∣∣Xn−k+p,Y
n
−m,W

n
−m
)

= Pθ
(
Xn−k ∈ A

∣∣∣Xn−k+p,Y
n−k+p−1
−m ,Wn−k+p−1

−m

)
≥ ω(Y

n−k+p−1
n−k ,Wn−k+p−1

n−k )µ̃k(Y
n−k+p−1
−m ,Wn−k+p−1

−m , A),

where ω(Y
n−k+p−1
n−k ,Wn−k+p−1

n−k ) := σ−/σ+ when p = 1, and, when p ≥ 2,

ω(Y
n−k+p−1
n−k ,Wn−k+p−1

n−k ) is defined as in (9) but replacing k − 1 and k − p in (9) with n −
k + p− 1 and n− k.

The following lemma shows that the time-reversed process {Xn−k}0≤k≤n+m conditional on

5DMR (page 2272) use the symbol ∆k,m,x(θ) to denote our Ψ1
k,m,x(θ), but we use Ψk,m,x(θ) to avoid confusion

with ∆k,m,x(θ) used in Lemma 3.

12



(Y
n
−m,W

n
−m) forgets its initial conditioning variable (i.e., Yn and Wn) exponentially fast. Part (b)

corresponds to equation (39) on page 2294 of DMR.

Lemma 5. Assume Assumptions 1 and 2. Let m,n ∈ Z with m,n ≥ 0 and θ ∈ Θ. Then,

(a) for all −m ≤ k ≤ n and all (Y
n
−m,W

n
−m),∥∥∥Pθ (Xk ∈ ·

∣∣Yn
−m,W

n
−m
)
− Pθ

(
Xk ∈ ·

∣∣∣Yn−1
−m ,W

n−1
−m

)∥∥∥
TV

≤
b(n−1−k)/pc∏

i=1

(
1− ω(Y

n−2−pi+p
n−2−pi+1,W

n−2−pi+p
n−2−pi+1)

)
.

(b) for all −m+ 1 ≤ k ≤ n and all (Y
n
−m,W

n
−m, x),∥∥∥Pθ (Xk ∈ ·

∣∣Yn
−m,W

n
−m, X−m = x

)
− Pθ

(
Xk ∈ ·

∣∣∣Yn−1
−m ,W

n−1
−m , X−m = x

)∥∥∥
TV

≤
b(n−1−k)/pc∏

i=1

(
1− ω(Y

n−2−pi+p
n−2−pi+1,W

n−2−pi+p
n−2−pi+1)

)
.

Define, for k ≥ 0, m ≥ 0, and j = 1, 2,

Ψj
k,m(θ) := Eθ

[
k∑

t=−m+1

φjθt

∣∣∣∣∣Yk
−m,W

k
−m

]
− Eθ

[
k−1∑

t=−m+1

φjθt

∣∣∣∣∣Yk−1
−m ,W

k−1
−m

]
.

Note that Ψ1
k,m(θ) = ∇θ log pθ(Yk|Y

k−1
−m ,W

k
−m). From Corollary 1 and Lemma 5, we obtain the

following bound on Ψj
k,m,x(θ)−Ψj

k,m(θ) and Ψj
k,m,x(θ)−Ψj

k,m′,x′(θ).

Lemma 6. Assume Assumptions 1–8. Then, for j = 1, 2, there exist a constant ρ ∈ (0, 1), random

sequences {Ak,m}k≥1,m≥0 and {Bm}m≥0, and a random variable Kj ∈ L3−j(Pθ∗) such that, for all

1 ≤ k ≤ n and m′ ≥ m ≥ 0,

(a) sup
θ∈G

sup
x∈X

∣∣∣Ψj
k,m,x(θ)−Ψj

k,m(θ)
∣∣∣ ≤ Kj(k +m)2ρb(k+m)/4(p+1)cAk,m,

(b) sup
θ∈G

sup
x,x′∈X

∣∣∣Ψj
k,m,x(θ)−Ψj

k,m′,x′(θ)
∣∣∣ ≤ [Kj(k +m)2 +Bm]ρb(k+m)/4(p+1)cAk,m,

where Pθ∗ (Ak,m ≥ 1 i.o.) = 0, Bm < ∞ Pθ∗-a.s., and the distribution function of Bm does not

depend on m.

Because Bmρ
b(k+m)/4(p+1)c/2 →p 0 as m→∞, Lemma 6 implies that {Ψ1

k,m,x(θ)}m≥0 converges

to Ψ1
k,∞(θ) = ∇θ log pθ(Yk|Y

k−1
−∞,W

k
−∞) in probability uniformly in θ ∈ G and x ∈ X . Define the

filtration F by Fk := σ((Yi,Wi+1) : −∞ < i ≤ k). It follows from Eθ∗ [Ψ1
k,m(θ∗)|Yk−1

−m ,W
k
−m] = 0,

Assumption 8, and combining Exercise 2.3.7 and Theorem 5.5.9 of Durrett (2010) that

Eθ∗ [Ψ1
k,∞(θ∗)|Yk−1

−∞,W
k
−∞] = 0 and I(θ∗) := Eθ∗ [Ψ1

0,∞(θ∗)(Ψ1
0,∞(θ∗))′] <∞. Therefore,

13



{Ψ1
k,∞(θ∗)}∞k=−∞ is an (F ,Pθ∗)-adapted stationary, ergodic, and square integrable martingale differ-

ence sequence, to which a martingale central limit theorem is applicable. The following proposition

establishes the asymptotic distribution of the score function.

Proposition 2. Assume Assumptions 1–8. Then, (a) for any x0 ∈ X , n−1/2∇θln(θ∗, x0) →d

N(0, I(θ∗)); (b) for any probability measure ξ on B(X ) for x0, n−1/2∇θln(θ∗, ξ)→d N(0, I(θ∗)).

5.2 Convergence of the Hessian

This section derives the probability limit of n−1∇2
θln(θ, x0) and n−1∇2

θln(θ, ξ) when θ is in a neigh-

borhood of θ∗. Define

Γk,m,x(θ) := varθ

[
k∑

t=−m+1

φθt

∣∣∣∣∣Yk
−m,W

k
−m, X−m = x

]
− varθ

[
k−1∑

t=−m+1

φθt

∣∣∣∣∣Yk−1
−m ,W

k−1
−m , X−m = x

]
,

(13)

Γk,m(θ) := varθ

[
k∑

t=−m+1

φθt

∣∣∣∣∣Yk
−m,W

k
−m

]
− varθ

[
k−1∑

t=−m+1

φθt

∣∣∣∣∣Yk−1
−m ,W

k−1
−m

]
. (14)

From the Louis missing information principle (11), we can write ∇2
θln(θ, x0) in terms of {Ψ2

k,m,x(θ)}
and {Γk,m,x(θ)} as

∇2
θln(θ, x0) =

n∑
k=1

∇2
θ log pθ(Yk|Y

k−1
0 ,Wk

0 , X0 = x0) =

n∑
k=1

[Ψ2
k,0,x0(θ) + Γk,0,x0(θ)].

The following lemma provides the bounds on Γk,m,x(θ) that are analogous to Lemma 6.

Lemma 7. Assume Assumptions 1–8. Then, there exist a constant ρ ∈ (0, 1), random sequences

{Ck,m}k≥1,m≥0 and {Dm}m≥0, and a random variable K ∈ L1(Pθ∗) such that, for all 1 ≤ k ≤ n

and m′ ≥ m ≥ 0,

(a) sup
θ∈G

sup
x∈X
|Γk,m,x(θ)− Γk,m(θ)| ≤ K(k +m)3ρb(k+m)/8(p+1)cCk,m,

(b) sup
θ∈G

sup
x,x′∈X

∣∣Γk,m,x(θ)− Γk,m′,x′(θ)
∣∣ ≤ K[(k +m)3 +Dm]ρb(k+m)/16(p+1)cCk,m,

where Pθ∗ (Ck,m ≥ 1 i.o.) = 0, Dm < ∞ Pθ∗-a.s. and the distribution function of Dm does not

depend on m.

Lemma 7 implies that {Γk,m,x(θ)}m≥0 converges to Γk,∞(θ) in probability uniformly in x ∈ X
and θ ∈ G. The following proposition is a local uniform law of large numbers for the observed

Hessian.
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Proposition 3. Assume Assumptions 1–8. Then,

sup
x∈X

∣∣n−1∇2
θln(θ, x)− Eθ∗ [Ψ2

0,∞(θ) + Γ0,∞(θ)]
∣∣→p 0.

The following proposition shows the asymptotic normality of the MLE.

Proposition 4. Assume Assumptions 1–8. Then, (a) for any x0 ∈ X , n−1/2(θ̂x0 − θ∗) →d

N(0, I(θ∗)−1); (b) for any probability measure ξ on B(X ) for x0, n−1/2(θ̂ξ − θ∗)→d N(0, I(θ∗)−1).

5.3 Convergence of the covariance matrix estimate

When conducting statistical inferences with the MLE, the researcher needs to estimate the asymp-

totic covariance matrix of the MLE. Proposition 3 already derived the consistency of the observed

Hessian. We derive the consistency of the outer-product-of-gradients estimates:

Îx0(θ) := n−1
n∑
k=1

∇θ log pθ(Yk|Y
k−1
0 ,Wk

0 , x0)(∇θ log pθ(Yk|Y
k−1
0 ,Wk

0 , x0))′, (15)

Îξ(θ) := n−1
n∑
k=1

∇θ log pθξ(Yk|Y
k−1
0 ,Wk

0)(∇θ log pθξ(Yk|Y
k−1
0 ,Wk

0))′, (16)

where ∇θ log pθξ(Yk|Y
k−1
0 ,Wk

0) := ∇θ log
∫
pθ(Yk|Y

k−1
0 ,Wk

0 , x0)ξ(dx0). In applications,

∇θ log pθ(Yk|Y
k−1
0 ,Wk

0 , x0) can be computed by numerically differentiating log pθ(Yk|Y
k−1
0 ,Wk

0 , x0),

which in turn can be computed by using the recursive algorithm of Hamilton (1996).

The following proposition shows the consistency of the outer-product-of-gradients estimate. Its

proof is similar to that of Proposition 3 and hence omitted.

Proposition 5. Assume Assumptions 1–8. Then, supx0∈X |Îx0(θ̂)−I(θ∗)| →p 0 and Îξ(θ̂)→p I(θ∗)

for any θ̂ such that θ̂ →p θ
∗ and any ξ.

6 Simulation

As an illustration, we provide a small simulation study based on the Markov regime switch-

ing model (3). The simulation was conducted with an R package we developed for Markov

regime switching models.6 We generate 1000 data sets of sample sizes n = 200, 400, and 800

from model (3) with p = 5, using the parameter value estimated by Hamilton (1989) for U.S.

real GNP growth from 1952Q2 to 1984Q4. Specifically, the true parameter value of our simu-

lated data is taken from Table I of Hamilton (1989) with θ = (µ1, µ2, γ1, γ2, γ3, γ4, σ, p11, p22)′ =

(1.522,−0.3577, 0.014,−0.058,−0.247,−0.213, 0.7690, 0.9049, 0.7550)′.7 For each of the 1000 data

6The R package is available at https://github.com/chiyahn/rMSWITCH.
7We simulate (800 + n) periods and use the last n observations as our sample, so that the initial value for our

data set is approximately drawn from the stationary distribution.
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sets, we estimate the parameter θ by the MLE, where we also treat the initial distribution of X0,

ξ = (Pr(X0 = 1),Pr(X0 = 2))′, as a parameter to be estimated together with θ. Given the estimate,

we construct the asymptotic 95 percent confidence interval by using the outer-product-of-gradients

estimator (16), while fixing ξ at its estimated value, and then examine the frequency at which the

95 percent confidence interval contains the true parameter value. Table 1 presents the results. At

n = 200, the asymptotic 95 percent confidence intervals slightly undercover the true parameter with

the coverage probability ranging from 0.875 to 0.944. As the sample size increases from n = 200

to 400, and then to 800, the actual coverage probability approaches 95 percent, indicating that the

asymptotic approximation improves as the sample size increases. Table 2 presents the coverage

probabilities of the asymptotic 95 percent confidence intervals when we use the outer-product-

of-gradients estimator (15) by setting x0 = 2 rather than (16). Consistent with our theoretical

derivation, the results in Table 2 are similar to those in Table 1, suggesting that the choice of the

initial value of x0 in constructing the covariance matrix estimate does not affect the performance

of the asymptotic confidence intervals.

Table 1: Coverage probability of the asymptotic 95 percent confidence intervals with ξ̂

p11 p21 β1 β2 β3 β4 µ1 µ2 σ

n = 200 0.916 0.911 0.938 0.926 0.944 0.925 0.916 0.896 0.875
n = 400 0.938 0.933 0.930 0.944 0.943 0.937 0.946 0.929 0.922
n = 800 0.942 0.942 0.945 0.941 0.950 0.956 0.939 0.941 0.930

Notes: Based on 1000 replications. Each entry reports the frequency at which the asymptotic 95 percent confidence
interval constructed from (16) contains the true parameter value.

Table 2: Coverage probability of the asymptotic 95 percent confidence intervals with x0 = 2

p11 p21 β1 β2 β3 β4 µ1 µ2 σ

n = 200 0.915 0.920 0.938 0.927 0.941 0.934 0.922 0.901 0.884
n = 400 0.932 0.932 0.938 0.949 0.942 0.939 0.945 0.929 0.923
n = 800 0.943 0.945 0.945 0.939 0.949 0.956 0.936 0.937 0.929

Notes: Based on 1000 replications. Each entry reports the frequency at which the asymptotic 95 percent confidence
interval constructed from (15) with x0 = 2 contains the true parameter value.

7 Proofs

Throughout these proofs, define V
a
b := (Y

a
b ,W

a
b ).

Proof of Lemma 1. The proof uses a similar argument to the proof of Lemma 1 in DMR. Because
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{Zk}nk=−m is a Markov chain given {Wk}nk=−m, we have, for −m < k ≤ n,

Pθ(Xk ∈ A|Xk−1
−m ,Y

n
−m,W

n
−m) = Pθ(Xk ∈ A|Xk−1,Y

n
k−1,W

n
k ).

Therefore, {Xk}nk=−m conditional on (Y
n
−m,W

n
−m) is an inhomogeneous Markov chain, and part

(a) follows.

We proceed to prove part (b). Observe that if −m+ p ≤ k ≤ n,

Pθ(Xk ∈ A|Xk−p,Y
n
−m,W

n
−m) = Pθ(Xk ∈ A|Xk−p,Y

n
k−p,W

n
k−p), (17)

because the left hand side of (17) can be written as

Pθ(Xk ∈ A,Yn
k−p+1|Xk−p,Y

k−p
−m ,W

n
−m)

Pθ(Yn
k−p+1|Xk−p,Y

k−p
−m ,W

n
−m)

=
Pθ(Xk ∈ A,Yn

k−p+1|Xk−p,Yk−p,W
n
k−p)

Pθ(Yn
k−p+1|Xk−p,Yk−p,W

n
k−p)

.

The equality (17) holds even when the conditioning variable Wn
k−p on the right hand side is replaced

with Wn
k−p+1, but we use Wn

k−p for notational simplicity. Write the right hand side of (17) as

Pθ(Xk ∈ A|Xk−p,Y
n
k−p,W

n
k−p)

=

∫
A pθ(Xk = x,Yn

k |Xk−p,Y
k−1
k−p,W

n
k−p)µ(dx)

pθ(Y
n
k |Xk−p,Y

k−1
k−p,W

n
k−p)

=

∫
A
pθ(Xk = x|Xk−p,Y

k−1
k−p,W

k−1
k−p)pθ(Y

n
k |Xk = x,Yk−1,W

n
k )µ(dx)

×
(∫
X
pθ(Xk = x|Xk−p,Y

k−1
k−p,W

k−1
k−p)pθ(Y

n
k |Xk = x,Yk−1,W

n
k )µ(dx)

)−1

.

When p = 1, we have pθ(xk|xk−p,Y
k−1
k−p,W

k−1
k−p) = pθ(xk|xk−1) ∈ [σ−, σ+]. Therefore, the stated

result follows with µk(Y
n
k−1,W

n
k , A) defined as

µk(Y
n
k−1,W

n
k , A) :=

∫
A
pθ(Y

n
k |Xk = x,Yk−1,W

n
k )µ(dx)

/∫
X
pθ(Y

n
k |Xk = x,Yk−1,W

n
k )µ(dx).

(18)

Note that
∫
X pθ(Y

n
k |Xk = x,Yk−1,W

n
k )µ(dx) > 0 from Assumption 3.
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When p ≥ 2, a lower bound on pθ(xk|xk−p,Y
k−1
k−p,W

k−1
k−p) is obtained as

pθ(xk|xk−p,Y
k−1
k−p,W

k−1
k−p)

=
pθ(xk,Y

k−1
k−p+1|xk−p,Yk−p,W

k−1
k−p)

pθ(Y
k−1
k−p+1|xk−p,Yk−p,W

k−1
k−p)

=

∫ ∏k
i=k−p+1 qθ(xi−1, xi)

∏k−1
i=k−p+1 gθ(Yi|Yi−1, xi,Wi)µ

⊗(p−1)(dxk−1
k−p+1)∫ ∏k

i=k−p+1 qθ(xi−1, xi)
∏k−1
i=k−p+1 gθ(Yi|Yi−1, xi,Wi)µ⊗p(dxkk−p+1)

≥
infθ infxk,xk−p pθ(xk|xk−p) infθ infxk−1

k−p+1

∏k−1
i=k−p+1 gθ(Yi|Yi−1, xi,Wi)

supθ supxk,xk−p pθ(xk|xk−p) supθ supxk−1
k−p+1

∏k−1
i=k−p+1 gθ(Yi|Yi−1, xi,Wi)

. (19)

Similarly, an upper bound on pθ(xk|xk−p,Y
k−1
k−p,W

k−1
k−p) is given by the reciprocal of (19). Therefore,

the stated result holds with µk(Y
n
k−1,W

n
k , A) defined in (18).

Proof of Lemma 2. In view of (7), the stated result holds if there exist constants ρ ∈ (0, 1) and

M <∞ and a random sequence {bk} with Pθ∗(bk ≥M i.o.) = 0 such that, for k = 1, . . . , n,

sup
x0∈X

sup
θ∈Θ

∣∣∣log pθ(Yk|Y
k−1
0 ,Wk

0 , x0)− log pθ(Yk|Y
k−1
0 ,Wk

0)
∣∣∣ ≤ min

{
b+

b−(Y
k
k−1,Wk)

, ρbk/3pcbk

}
,

(20)

because b+/b−(Y
k
k−1,Wk) <∞ Pθ∗-a.s. from Assumption 3.

First, it follows from pθ(Yk|Y
k−1
0 ,Wk

0 , x0) =
∫
gθ(Yk|Yk−1, xk,Wk)Pθ(dxk|x0,Y

k−1
0 ,Wk

0),

pθ(Yk|Y
k−1
0 ,Wk

0) =
∫
gθ(Yk|Yk−1, xk,Wk)Pθ(dxk|Y

k−1
0 ,Wk

0), and Assumption 4(a) that

pθ(Yk|Y
k−1
0 ,Wk

0 , x0), pθ(Yk|Y
k−1
0 ,Wk

0) ∈ [b−(Y
k
k−1,Wk), b+] uniformly in θ ∈ Θ and x0 ∈ X .

Hence, from the inequality | log x− log y| ≤ |x− y|/(x ∧ y), we have, for k = 1, . . . , n,

sup
x0∈X

sup
θ∈Θ
| log pθ(Yk|Y

k−1
0 ,Wk

0 , x0)− log pθ(Yk|Y
k−1
0 ,Wk

0)| ≤ b+/b−(Y
k
k−1,Wk). (21)

This gives the first bound in (20).

We proceed to derive the second bound in (20). Using a derivation similar to (17) and noting

that Xk is independent of Wk given Xk−1 gives, for any −m+ p ≤ k ≤ n,

Pθ(Xk ∈ ·|Xk−p,Y
k−1
−m ,W

k
−m) = Pθ(Xk ∈ ·|Xk−p,Y

k−1
k−p,W

k−1
k−p). (22)
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Consequently, for any −m+ p ≤ k ≤ n,

pθ(Yk|Y
k−1
−m ,W

k
−m, x−m)

=

∫ ∫
gθ(Yk|Yk−1, xk,Wk)pθ(xk|xk−p,Y

k−1
k−p,W

k−1
k−p)Pθ(dxk−p|x−m,Y

k−1
−m ,W

k−1
−m )µ(dxk), (23)

pθ(Yk|Y
k−1
−m ,W

k
−m)

=

∫ ∫
gθ(Yk|Yk−1, xk,Wk)pθ(xk|xk−p,Y

k−1
k−p,W

k−1
k−p)Pθ(dxk−p|Y

k−1
−m ,W

k−1
−m )µ(dxk). (24)

Furthermore,

Pθ(Xk−p ∈ ·|Y
k−1
−m ,W

k−1
−m ) =

∫
Pθ(Xk−p ∈ ·|x−m,Y

k−1
−m ,W

k−1
−m )Pθ(dx−m|Y

k−1
−m ,W

k−1
−m ). (25)

Combining (23), (24), and (25) for m = 0 and applying Corollary 1 and the property of the total

variation distance gives that, for any p ≤ k ≤ n and uniformly in x0 ∈ X ,∣∣∣pθ(Yk|Yk−1
0 ,Wk

0 , x0)− pθ(Yk|Y
k−1
0 ,Wk

0)
∣∣∣

≤
∣∣∣∣∫ ∫ gθ(Yk|Yk−1, xk,Wk)pθ(xk|xk−p,Y

k−1
k−p,W

k−1
k−p)µ(dxk)

×
(
Pθ(dxk−p|x0,Y

k−1
0 ,Wk−1

0 )− Pθ(dxk−p|Y
k−1
0 ,Wk−1

0 )
)∣∣∣

≤
b(k−p)/pc∏

i=1

(
1− ω(V

pi−1
pi−p)

)
sup
xk−p

∫
gθ(Yk|Yk−1, xk,Wk)pθ(xk|xk−p,Y

k−1
k−p,W

k−1
k−p)µ(dxk)

≤
b(k−p)/pc∏

i=1

(
1− ω(V

pi−1
pi−p)

)
sup

x′k,xk−p∈X
pθ(x

′
k|xk−p,Y

k−1
k−p,W

k−1
k−p)

∫
gθ(Yk|Yk−1, xk,Wk)µ(dxk).

(26)

Furthermore, (23) and (24) imply that, for any k ≥ p, (pθ(Yk|Y
k−1
0 ,Wk

0 , x0) ∧ pθ(Yk|Y
k−1
0 ,Wk

0))

≥ infx′k,xk−p∈X pθ(x
′
k|xk−p,Y

k−1
k−p,W

k−1
k−p)

∫
gθ(Yk|Yk−1, xk,Wk)µ(dxk). Therefore, it follows from

| log x− log y| ≤ |x− y|/(x ∧ y), (26), and (19) and the subsequent argument that, for p ≤ k ≤ n,

sup
x0∈X

sup
θ∈Θ

∣∣∣log pθ(Yk|Y
k−1
0 ,Wk

0 , x0)− log pθ(Yk|Y
k−1
0 ,Wk

0)
∣∣∣ ≤ ∏b(k−p)/pci=1

(
1− ω(V

pi−1
pi−p)

)
ω(V

k−1
k−p)

. (27)

We first bound
∏b(k−p)/pc
i=1 (1− ω(V

pi−1
pi−p)) on the right hand side of (27). Fix ε ∈ (0, 1/8]. Because

ω(V
t−1
t−p) > 0 for all V

t−1
t−p ∈ Yp+s−1×Wp from Assumption 3 (note that ω(V

t−1
t−p) = σ−/σ+ > 0 when

p = 1), there exists ρ ∈ (0, 1) such that Pθ∗(1−ω(V
t−1
t−p) ≥ ρ) ≤ ε. Define Ii := I{1−ω(V

pi−1
pi−p) ≥ ρ};
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then, we have Eθ∗ [Ii] ≤ ε and 1− ω(V
pi−1
pi−p) ≤ ρ1−Ii . Consequently, with ak := ρ−

∑b(k−p)/pc
i=1 Ii ,

b(k−p)/pc∏
i=1

(
1− ω(V

pi−1
pi−p)

)
≤ ρb(k−p)/pc−

∑b(k−p)/pc
i=1 Ii = ρb(k−p)/pcak. (28)

Because V
t−1
t−p is stationary and ergodic, it follows from the strong law of large numbers that

(b(k − p)/pc)−1
∑b(k−p)/pc

i=1 Ii → Eθ∗ [Ii] ≤ ε Pθ∗-a.s. as k →∞. Therefore, ak is bounded as

Pθ∗(ak ≥ ρ−2εb(k−p)/pc i.o.) = 0. (29)

We then bound 1/ω(V
k−1
k−p) on the right hand side of (27). Let C3 := (σ−/σ+)2(C1/b+)2(p−1) > 0;

then, we have Pθ∗(ω(V
k−1
k−p) ≤ C3e

−2α(p−1)r) ≤ (p − 1)Pθ∗(b−(Y
k
k−1,Wk) ≤ C1e

−αr) for any

r > 0. In view of ρ ∈ (0, 1), there exists a finite and positive constant C4 such that ρε =

e−2α(p−1)C4 . For k ≥ 2p, set r = C4b(k − p)/pc > 0 so that ρεb(k−p)/pc = e−2α(p−1)r. Then,

Pθ∗(ω(V
k−1
k−p) ≤ C3ρ

εb(k−p)/pc) ≤ (p−1)Pθ∗(b−(Y
k
k−1,Wk) ≤ C1e

−αC4b(k−p)/pc) for k ≥ 2p, and it fol-

lows from Assumption 5 that
∑∞

k=p Pθ∗(ω(V
k−1
k−p) ≤ C3ρ

εb(k−p)/pc) <∞. Therefore, Pθ∗(ω(V
k−1
k−p) ≤

C3ρ
εb(k−p)/pc i.o.) = 0 from the Borel-Cantelli lemma. Substituting this bound and (28) and (29)

into (27) gives, for p ≤ k ≤ n,

sup
x0∈X

sup
θ∈Θ

∣∣∣log pθ(Yk|Y
k−1
0 ,Wk

0 , x0)− log pθ(Yk|Y
k−1
0 ,Wk

0)
∣∣∣ ≤ ρ(1−3ε)b(k−p)/pcbk, (30)

where Pθ∗(bk ≥M i.o.) = 0 for a constant M <∞.

The right hand side of (30) gives the second bound in (20) because (1 − 3ε)b(k − p)/pc ≥
b(k − p)/pc/2 ≥ b(k − p)/2pc ≥ bk/3pc, where the last inequality holds because, for any numbers

a, b > 0 and k ≥ 0,

b(k − a)+/bc ≥ bk/(a+ b)c. (31)

Therefore, (20) holds, and the stated result is proven.

Proof of Lemma 3. The proof uses a similar argument to the proof of Lemma 3 in DMR and the

proof of Lemma 2. We first show part (a) for −m + p ≤ k ≤ n. Using a similar argument to (23)

and (26) in conjunction with Corollary 1 gives

pθ(Yk|Y
k−1
−m ,W

k
−m, X−m = x)− pθ(Yk|Y

k−1
−m′ ,W

k
−m′ , X−m′ = x′)

=

∫ ∫ ∫
gθ(Yk|Yk−1, xk,Wk)pθ(xk|xk−p,Y

k−1
k−p,W

k−1
k−p)µ(dxk)

× Pθ(dxk−p|X−m = x−m,Y
k−1
−m ,W

k
−m)

[
δx(dx−m)− Pθ(dx−m|X−m′ = x′,Y

k−1
−m′ ,W

k
−m′)

]
(32)

≤
b(k−p+m)/pc∏

i=1

(
1− ω(V

−m+pi−1
−m+pi−p)

)
sup

x′k,xk−p∈X
pθ(x

′
k|xk−p,Y

k−1
k−p,W

k−1
k−p)

∫
gθ(Yk|Yk−1, xk,Wk)µ(dxk),
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where the first equality uses the fact Pθ(Xk−p ∈ ·|X−m,Y
k−1
−m′ ,W

k
−m′)

= Pθ(Xk−p ∈ ·|X−m,Y
k−1
−m ,W

k
−m), which is proven as (22).

Furthermore, (23) and (24) imply that, for any k ≥ −m + p, (pθ(Yk|Y
k−1
−m ,W

k
−m, x−m) ∧

pθ(Yk|Y
k−1
−m′ ,W

k
−m′ , x−m′)) ≥ infx′k,xk−p∈X pθ(x

′
k|xk−p,Y

k−1
k−p,W

k−1
k−p)

∫
gθ(Yk|Yk−1, xk,Wk)µ(dxk).

Therefore, it follows from the inequality | log x− log y| ≤ |x− y|/(x ∧ y) that∣∣∣log pθ(Yk|Y
k−1
−m ,W

k
−m, X−m = x)− log pθ(Yk|Y

k−1
−m′ ,W

k
−m′ , X−m′ = x′)

∣∣∣
≤

∏b(k−p+m)/pc
i=1

(
1− ω(V

−m+pi−1
−m+pi−p)

)
ω(V

k−1
k−p)

.
(33)

Proceeding as in (28)–(30) in the proof of Lemma 2, we find that there exist ρ ∈ (0, 1) and ε ∈
(0, 1/8] such that the right hand side of (33) is bounded by ρ(1−2ε)b(k−p+m)/pcρ−εb(k−p)/pcBk,m, where

Pθ∗(Bk,m ≥M i.o.) = 0 for a constant M <∞. Therefore, part (a) is proven for −m+p ≤ k ≤ n by

noting that ρ−εb(k−p)/pc ≤ ρ−εb(k−p+m)/pc and using the argument following (30). Part (a) holds for

1 ≤ k ≤ −m + p − 1 because | log pθ(Yk|Y
k−1
−m ,W

k
−m, X−m = x) − log pθ(Yk|Y

k−1
−m′ ,W

k
−m′ , X−m′ =

x′)| is bounded by b+/b−(Y
k
k−1,Wk), which is finite Pθ∗-a.s. Part (b) follows from replacing

Pθ(dx−m|X−m′ = x′,Y
k−1
−m′ ,W

k
−m′) in (32) with Pθ(dx−m|Y

k−1
−m ,W

k
−m). Part (c) follows from

b−(Y
k
k−1,Wk) ≤ pθ(Yk|Y

k−1
−m ,W

k
−m, X−m = x) ≤ b+ and Assumption 4.

Proof of Proposition 1. The proof follows the argument of the proof of Proposition 2 and Theorem 1

in DMR. From Property 24.2 of Gourieroux and Monfort (1995, page 385), the stated result holds if

(i) Θ is compact, (ii) ln(θ, x0) is continuous uniformly in x0 ∈ X , (iii) supx0∈X supθ∈Θ |n−1ln(θ, x0)−
l(θ)| → 0 Pθ∗-a.s., and (iv) l(θ) is uniquely maximized at θ∗.

(i) follows from Assumption 1(a). (ii) follows from Assumption 6(a). In view of Lemma 2 and

the compactness of Θ, (iii) holds if, for all θ ∈ Θ,

lim sup
δ→0

lim sup
n→∞

sup
|θ′−θ|≤δ

|n−1ln(θ′)− l(θ)| = 0 Pθ∗-a.s. (34)

Noting that ln(θ) =
∑n

k=1 ∆k,0(θ), the left hand side of (34) is bounded by A+B + C, where

A := lim sup
n→∞

sup
θ′∈Θ

∣∣∣∣∣n−1
n∑
k=1

(∆k,0(θ′)−∆k,∞(θ′))

∣∣∣∣∣ ,
B := lim sup

δ→0
lim sup
n→∞

sup
|θ′−θ|≤δ

∣∣∣∣∣n−1
n∑
k=1

(∆k,∞(θ′)−∆k,∞(θ))

∣∣∣∣∣ ,
C := lim sup

n→∞

∣∣∣∣∣n−1
n∑
k=1

(∆k,∞(θ)− Eθ∗∆k,∞(θ))

∣∣∣∣∣ .
Fix x ∈ X . Setting m = 0 and letting m′ → ∞ in Lemma 3(a)(b) show that supθ∈Θ |∆k,0(θ) −
∆k,∞(θ)| ≤ supθ∈Θ |∆k,0(θ)−∆k,0,x(θ)|+supθ∈Θ |∆k,0,x(θ)−∆k,∞(θ)| ≤ 2Ak,0ρ

bk/3pc while supθ∈Θ |∆k,0(θ)−
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∆k,0,x(θ)| + supθ∈Θ |∆k,0,x(θ) − ∆k,∞(θ)| ≤ 4Bk follows from Lemma 3(c). Consequently, A = 0

Pθ∗-a.s. B is bounded by, from the ergodic theorem and Lemma 9,

lim
δ→0

lim sup
n→∞

n−1
n∑
k=1

sup
|θ′−θ|≤δ

|∆k,∞(θ′)−∆k,∞(θ)|

= lim
δ→0

Eθ∗
[

sup
|θ′−θ|≤δ

|∆0,∞(θ′)−∆0,∞(θ)|

]
= 0 Pθ∗-a.s.

C = 0 Pθ∗-a.s. by the ergodic theorem, and hence (iii) holds. For (iv), observe that

Eθ∗ | log pθ(Y1|Y
0
−m,W

1
−m)| <∞ from Lemma 3(c). Therefore, for anym, Eθ∗ [log pθ(Y1|Y

0
−m,W

1
−m)]

is uniquely maximized at θ∗ from Lemma 2.2 of Newey and McFadden (1994) and Assumption 6(b).

Then, (iv) follows because Eθ∗ [log pθ(Y1|Y
0
−m,W

1
−m)] converges to l(θ) uniformly in θ as m→∞

from Lemma 3 and the dominated convergence theorem. Therefore, (iv) holds, and the stated

result is proven.

Proof of Corollary 2. Observe that |n−1ln(θ, ξ)− l(θ)| ≤ supx0∈X |n
−1ln(θ, x0)− l(θ)| because

infx0∈X ln(θ, x0) ≤ ln(θ, ξ) ≤ supx0∈X ln(θ, x0). Furthermore, ln(θ, ξ) is continuous in θ from the

continuity of ln(θ, x0). Therefore, the stated result follows from the proof of Proposition 1.

Proof of Lemma 4. The proof is similar to the proof of Lemma 1. Because the time-reversed process

{Zn−k}0≤k≤n+m is Markov conditional on Wn
−m, we have, for 1 ≤ k ≤ n+m,

Pθ(Xn−k ∈ A|Xn
n−k+1,Y

n
−m,W

n
−m) = Pθ(Xn−k ∈ A|Xn−k+1,Y

n−k+1
−m ,Wn

−m).

Therefore, {Xn−k}0≤k≤n+m is an inhomogeneous Markov chain given (Y
n
−m,W

n
−m), and part (a)

follows.

For part (b), because (i) the time-reversed process {Zn−k}0≤k≤n+m is Markov conditional on

Wn
−m, (ii) Yn−k+p is independent of Xn−k+p−1

−m given (Xn−k+p,Y
n−k+p−1
−m ,Wn

−m), (iii) Xn−k+p is

independent of the other random variables given Xn−k+p−1, and (iv) Wn−k+p is independent of

Zn−k+p−1
−m given Wn−k+p−1

−m , we have, for 1 ≤ k ≤ n+m,

Pθ
(
Xn−k ∈ A

∣∣Xn−k+p,Y
n
−m,W

n
−m
)

= Pθ
(
Xn−k ∈ A

∣∣∣Xn−k+p,Y
n−k+p−1
−m ,Wn−k+p−1

−m

)
. (35)

Observe that in view of n− k ≥ −m,

Pθ
(
Xn−k ∈ A,Xn−k+p,Y

n−k+p−1
−m ,Wn−k+p−1

−m

)
= Pθ

(
Xn−k+p

∣∣∣Xn−k ∈ A,Y
n−k+p−1
n−k ,Wn−k+p−1

n−k

)
× Pθ

(
Xn−k ∈ A,Yn−k+p−1

−m+1 ,Wn−k+p−1
−m+1

∣∣∣Y−m,W−m)Pθ (Y−m,W−m) .
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It follows that

Pθ
(
Xn−k ∈ A

∣∣∣Xn−k+p,Y
n−k+p−1
−m ,Wn−k+p−1

−m

)
=

∫
AGθ(x,Xn−k+p,Y

n−k+p−1
−m ,Wn−k+p−1

−m )µ(dx)∫
X Gθ(x,Xn−k+p,Y

n−k+p−1
−m ,Wn−k+p−1

−m )µ(dx)
,

where Gθ(x,Xn−k+p,Y
n−k+p−1
−m ,Wn−k+p−1

−m ) := pθ(Xn−k+p|Xn−k = x,Y
n−k+p−1
n−k ,Wn−k+p−1

n−k ) ×
pθ(Xn−k = x,Yn−k+p−1

−m+1 ,Wn−k+p−1
−m+1 |Y−m,W−m).

When p = 1, we have pθ(Xn−k+p|Xn−k = x,Y
n−k+p−1
n−k ,Wn−k+p−1

n−k ) = pθ(Xn−k+1|Xn−k = x) ∈
[σ−, σ+]. Therefore, the stated result follows with µ̃k(Y

n−k+p−1
−m ,Wn−k+p−1

−m , A) defined as

µ̃k(Y
n−k+p−1
−m ,Wn−k+p−1

−m , A) :=

∫
A pθ(Xn−k = x,Yn−k+p−1

−m+1 ,Wn−k+p−1
−m+1 |Y−m,W−m)µ(dx)∫

X pθ(Xn−k = x,Yn−k+p−1
−m+1 ,Wn−k+p−1

−m+1 |Y−m,W−m)µ(dx)
. (36)

Note that
∫
X pθ(Xn−k = x,Yn−k+p−1

−m+1 ,Wn−k+p−1
−m+1 |Y−m,W−m)µ(dx) > 0 from Assumption 3.

When p ≥ 2, it follows from a derivation similar to (19) that pθ(xn−k+p|xn−k,Y
n−k+p−1
n−k ,Wn−k+p−1

n−k )

is bounded from below by

infθ infxn−k+p,xn−k pθ(xn−k+p|xn−k) infθ inf
xn−k+p−1
n−k+1

∏n−k+p−1
i=n−k+1 gθ(Yi|Yi−1, xi,Wi)

supθ supxn−k+p,xn−k pθ(xn−k+p|xn−k) supθ sup
xn−k+p−1
n−k+1

∏n−k+p−1
i=n−k+1 gθ(Yi|Yi−1, xi,Wi)

, (37)

and an upper bound on pθ(xn−k+p|xn−k,Y
n−k+p−1
n−k ,Wn−k+p−1

n−k ) is given by the inverse of (19).

Therefore, the stated result holds with µ̃k defined in (36).

Proof of Lemma 5. When k ≥ n − 1, the stated result holds trivially because
∏j
i=1 ai = 1 when

j < i. We first show part (a) for k ≤ n − 2. Because the time-reversed process {Zn−k}0≤k≤n+m

is Markov conditional on Wn
−m and Wn is independent of Zn−1 given Wn−1, we have Pθ(Xk ∈

·|Yn
−m,W

n
−m) =

∫
Pθ(Xk ∈ ·|xn−1,Y

n−1
−m ,W

n−1
−m )Pθ(dxn−1|Y

n
−m,W

n
−m). Similarly, we obtain

Pθ(Xk ∈ ·|Y
n−1
−m ,W

n−1
−m ) =

∫
Pθ(Xk ∈ ·|xn−1,Y

n−1
−m ,W

n−1
−m )Pθ(dxn−1|Y

n−1
−m ,W

n−1
−m ). It follows

that∣∣∣Pθ (Xk ∈ ·
∣∣Yn
−m,W

n
−m
)
− Pθ

(
Xk ∈ ·

∣∣∣Yn−1
−m ,W

n−1
−m

)∣∣∣
≤
∫

Pθ
(
Xk ∈ ·

∣∣∣xn−1,Y
n−1
−m ,W

n−1
−m

) ∣∣∣Pθ (dxn−1

∣∣Yn
−m,W

n
−m
)
− Pθ

(
dxn−1

∣∣∣Yn−1
−m ,W

n−1
−m

)∣∣∣ .
Therefore, the stated result follows from applying Lemmas 4 and 8 to the time-reversed process

{Xn−i}n−ki=1 conditional on (Y
n−1
−m ,W

n−1
−m ).

For part (b) for k ≤ n− 2, by using a similar argument to the proof of Lemma 4, we can show

that (i) conditionally on (Y
n
−m,W

n
−m, X−m), the time-reversed process {Xn−k}0≤k≤n+m−1 is an

inhomogeneous Markov chain, and (ii) for all p ≤ k ≤ n+m−1, there exists a probability measure
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µ̆k(y
n−k+p−1
−m ,wn−k+p−1

−m , x, A) such that, for all (Y
n−k+p−1
−m ,Wn−k+p−1

−m , x),

Pθ
(
Xn−k ∈ A

∣∣Xn−k+p,Y
n
−m,W

n
−m, X−m = x

)
= Pθ

(
Xn−k ∈ A

∣∣∣Xn−k+p,Y
n−k+p−1
−m ,Wn−k+p−1

−m , X−m = x
)

≥ ω(Y
n−k+p−1
n−k ,Wn−k+p−1

n−k )µ̆k(Y
n−k+p−1
−m ,Wn−k+p−1

−m , X−m = x,A),

with the same ω(Y
n−k+p−1
n−k ,Wn−k+p−1

n−k ) as in Lemma 4. Therefore, the stated result follows from

a similar argument to the proof of part (a).

Proof of Lemma 6. The proof follows the argument of the proof of Lemma 13 in DMR. When

(k,m) = (1, 0), the stated result follows from Ψj
1,0,x(θ) = Eθ∗ [φjθ1|V0, X0 = x], Ψj

1,0(θ) = Eθ∗ [φjθ1|V0],

supθ∈G |φ
j
θk| ≤ |φ

j
k|∞, and Assumption 7. Henceforth, assume (k,m) 6= (1, 0) so that k +m ≥ 2.

For part (a), it follows from Lemma 10(a)–(e) that

∣∣∣Ψj
k,m,x(θ)−Ψj

k,m(θ)
∣∣∣ ≤ 4

k∑
t=−m+1

|φjt |∞
(

Ωt−1,−m ∧ Ω̃t,k−1

)

≤ 4 max
−m≤t′≤k

|φjt′ |∞
k∑

t=−m+1

(
Ωt−1,−m ∧ Ω̃t,k−1

)
, (38)

where Ωt−1,−m :=
∏b(t−1+m)/pc
i=1 (1 − ω(V

−m+pi−1
−m+pi−p)) and Ω̃t,k−1 :=

∏b(k−1−t)/pc
i=1 (1 − ω(V

k−2−pi+p
k−2−pi+1))

as defined in the paragraph preceding Lemma 10. As shown on page 2294 of DMR, we have

max−m≤t′≤k |φjt′ |∞ ≤
∑k

t=−m(|t| ∨ 1)2|φjt |∞/(|t| ∨ 1)2 ≤ 2(k ∨m)2[
∑∞

t=−∞ |φ
j
t |∞/(|t| ∨ 1)2] ≤ (k +

m)2Kj with Kj ∈ L3−j(Pθ∗).
We proceed to bound

∑k
t=−m+1(Ωt−1,−m∧ Ω̃t,k−1) on the right hand side of (38). Similar to the

proof of Lemma 2, fix ε ∈ (0, 1/8p(p+1)]; then, there exists ρ ∈ (0, 1) such that Pθ∗(1−ω(V
k−1
k−p) ≥

ρ) ≤ ε. Define Ip,i :=
∑(p−2)+

t=0 I{1 − ω(V
t+i+p−1
t+i ) ≥ ρ} and νab :=

∑a
i=b Ip,i. Observe that (recall

we define
∏d
i=c xi = 1 when c > d)

b(a−s)/pc∏
i=b(b−s)/pc+1

(1− ω(V
s+pi−1
s+pi−p)) ≤ ρ

(b(a−s)/pc−b(b−s)/pc)+−
∑b(a−s)/pc
i=b(b−s)/pc+1

I{1−ω(V
s+pi−1
s+pi−p)≥ρ}

≤ ρb(a−b)+/pc−ν
a−p
b−p ,

(39)

where the second inequality follows from bxc − byc ≥ bx − yc, (bx/pc)+ = bx+/pc, s + p(b(b −
s)/pc+ 1)− p ≥ b− p, and s+ pb(a− s)/pc − 1 ≤ a− 1. Similarly, we obtain

b(k−1−b)/pc∏
i=b(k−1−a)/pc+1

(1− ω(V
k−2−pi+p
k−2−pi+1)) ≤ ρb(a−b)+/pc−νab , (40)

because k − 2 − pb(k − 1 − b)/pc + 1 ≥ b and k − 2 − p(b(k − 1 − a)/pc + 1) + p ≤ a + p − 1. By
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applying (39) to Ωt−1,−m with a = t− 1, b = s = −m, applying (40) to Ω̃t,k−1 with a = k − 1 and

b = t, and using (31) and −m+ 1 ≤ t ≤ k, we obtain

Ωt−1,−m ≤ ρb(t−1+m)+/pc−νt−1−p
−m−p ≤ ρb(t+m)/(p+1)c−νk−m−p ,

Ω̃t,k−1 ≤ ρb(k−1−t)+/pc−νk−1
t ≤ ρb(k−t)/(p+1)c−νk−m−p .

(41)

Observe that, for any ρ ∈ (0, 1), c > 0 and any integers a < b,

∞∑
t=−∞

(
ρb(t+a)/cc ∧ ρb(b−t)/cc

)
≤
b(b−a)/2c∑
t=−∞

ρb(b−t)/cc +
∞∑

t=b(b−a)/2c+1

ρb(t+a)/cc

≤ c

1− ρ

(
ρb(b−b(b−a)/2c)/cc + ρb(b(b−a)/2c+1+a)/cc

)
≤ 2c

1− ρ
ρb(a+b)/2cc.

(42)

From (42),
∑k

t=−m+1(Ωt−1,−m∧Ω̃t,k−1) is bounded by 2(p+1)ρb(k+m)/2(p+1)c−νk−m−p/(1−ρ). Because

V
i+p−1
i is stationary and ergodic, it follows from the strong law of large numbers that (b(k +

m)/2(p + 1)c)−1νk−m−p → 2(p + 1)Eθ∗ [Ip,i] ≤ 2p(p + 1)ε Pθ∗-a.s. as k + m → ∞. In view of

ε < 1/8p(p + 1), we have Pθ∗(ρb(k+m)/2(p+1)c−νk−m−p ≥ ρb(k+m)/2(p+1)c/2 i.o.) = 0. Henceforth, let

{bk,m}k≥1,m≤0 denote a generic nonnegative random sequence such that Pθ∗(bk,m ≥M i.o.) = 0 for

a finite constant M . With this notation and the fact that b(k+m)/2(p+1)c/2 ≥ b(k+m)/4(p+1)c,∑k
t=−m+1(Ωt−1,−m ∧ Ω̃t,k−1) is bounded by

ρb(k+m)/4(p+1)cbk,m, (43)

and part (a) is proven.

For part (b), it follows from (12) and Lemma 10(a)–(e) that

∣∣∣Ψj
k,m,x(θ)−Ψj

k,m′,x′(θ)
∣∣∣ ≤ 4

k∑
t=−m+1

(
Ωt−1,−m ∧ Ω̃t,k−1

)
|φjt |∞ + 2

−m∑
t=−m′+1

Ω̃t,k−1|φjt |∞.

The first term on the right hand side is bounded by (k + m)2Kjρ
b(k+m)/4(p+1)cbk,m with Kj ∈

L3−j(Pθ∗) from the same argument as the proof of part (a). For the second term on the right hand

side, write Ω̃t,k−1 as Ω̃t,k−1 = Ω̃−m,k−1Ω̃−mt,k−1, where Ω̃−mt,k−1 :=
∏b(k−1−t)/pc
i=b(k−1+m)/pc+1(1−ω(V

k−2−pi+p
k−2−pi+1)).

By applying (40) to Ω̃−mt,k−1 with a = −m and b = t, we obtain Ω̃−mt,k−1 ≤ ρb(−m−t)/pc−ν
−m
t . In

conjunction with Ω̃−mt,k−1 ≤ 1, the second term on the right hand side is bounded by 2Ω̃−m,k−1Rm,m′ ,

where

Rm,m′ :=
−m∑

t=−m′+1

dt,m|φjt |∞, dt,m := min{1, ρb(−m−t)/pc−ν
−m
t }. (44)

From a similar argument to (41)–(43), we can bound Ω̃−m,k−1 as Ω̃−m,k−1 ≤ ρb(k+m)/4(p+1)cbk,m.
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It follows from (−m − t)−1ν−mt → Eθ∗ [Ip,i] ≤ pε Pθ∗-a.s. as t + m → −∞ that Pθ∗(dt,m ≥
ρb(−m−t)/pc/2 i.o.) = 0. Furthermore, |φjt |∞ satisfies Pθ∗(|φjt |∞ ≥ ρ−b(−m−t)/pc/4 i.o.) = 0 from

Markov’s inequality and the Borel-Cantelli lemma. Therefore, Pθ∗(dt,m|φjt |∞ ≥ ρb(−m−t)/pc/4 i.o.) =

0. In conjunction with 0 ≤ dt,m|φjt |∞ <∞ Pθ∗-a.s., we obtain Rm := supm′≥mRm,m′ <∞ Pθ∗-a.s.,

and the distribution of Rm does not depend on m because Vt is stationary. Therefore, part (b) is

proven by setting Bm = Rm.

Proof of Proposition 2. By setting m = 0 and letting m′ →∞ in Lemma 6, we obtain

supθ∈G supx∈X |Ψ1
k,0,x(θ) − Ψ1

k,∞(θ)| ≤ (K1 + B0)k2ρbk/4(p+1)cAk,0. Furthermore, the sum over

finitely many supθ∈G supx∈X |Ψ1
k,0,x(θ)−Ψ1

k,∞(θ)| is o(n1/2) Pθ∗-a.s. because

Eθ∗ [supθ∈G supx∈X |Ψ1
k,0,x(θ)|] <∞ and Eθ∗ [supθ∈G |Ψ1

k,∞(θ)|] <∞ from Assumption 8. Therefore,

we have n−1/2∇θln(θ∗, x0) = n−1/2
∑n

k=1 Ψ1
k,0,x0

(θ∗) = n−1/2
∑n

k=1 Ψ1
k,∞(θ∗) + op(1).

Because {Ψ1
k,∞(θ∗)}∞k=−∞ is a stationary, ergodic, and square integrable martingale difference

sequence, it follows from a martingale difference central limit theorem (McLeish, 1974, Theorem

2.3) that n−1/2
∑n

k=1 Ψ1
k,∞(θ∗) →d N(0, I(θ∗)), and part (a) follows. For part (b), let pnθ(x0)

denote pθ(Y
n
1 |Y0,W

n
0 , x0), and observe that

∇θln(θ, ξ) =
∇θ
∫
pnθ(x0)ξ(dx0)∫

pnθ(x0)ξ(dx0)
=

∫
∇θ log pnθ(x0)pnθ(x0)ξ(dx0)∫

pnθ(x0)ξ(dx0)
.

Therefore, minx0 ∇θln(θ∗, x0) ≤ ∇θln(θ∗, ξ) ≤ maxx0 ∇θln(θ∗, x0) holds, and part (b) follows.

Proof of Lemma 7. The proof follows the argument of the proof of Lemma 17 in DMR and the

proof of Lemma 6. Fix ε ∈ (0, 1/32p(p + 1)] and choose ρ ∈ (0, 1) as in the proof of Lemma 6.

When (k,m) = (1, 0), the stated result follows from supθ∈G |φθk| ≤ |φk|∞. Henceforth, assume

(k,m) 6= (1, 0) so that k + m ≥ 2. For a ≤ b, define Sba :=
∑b

t=a φθt. Let {bk,m}k≥1,m≤0 denote

a generic nonnegative random sequence such that Pθ∗(bk,m ≥ M i.o.) = 0 for a finite constant M .

We prove part (a) first. Write Γk,m,x(θ)− Γk,m(θ) = A+ 2B + C, where

A := varθ[S
k−1
−m+1|V

k
−m, X−m = x]− varθ[S

k−1
−m+1|V

k−1
−m , X−m = x]

− varθ[S
k−1
−m+1|V

k
−m] + varθ[S

k−1
−m+1|V

k−1
−m ],

B := covθ[φθk, S
k−1
−m+1|V

k
−m, X−m = x]− covθ[φθk, S

k−1
−m+1|V

k
−m],

C := varθ[φθk|V
k
−m, X−m = x]− varθ[φθk|V

k
−m].

From Lemma 10(f)–(k), A is bounded as

|A| ≤ 24
∑

−m+1≤s≤t≤k−1

(
Ωs−1,−m ∧ Ωt−1,s ∧ Ω̃t,k−1

)
max

−m+1≤s≤t≤k−1
|φt|∞|φs|∞.

From equation (46) of DMR on page 2299, we have max−m+1≤s≤t≤k−1 |φt|∞|φs|∞ ≤
(m3 + k3)

∑∞
t=−∞ |φt|2∞/(|t| ∨ 1)2 ≤ (k +m)3K for K ∈ L1(Pθ∗).
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We proceed to bound Ωs−1,−m ∧Ωt−1,s ∧ Ω̃t,k−1. By using the argument in (39)-(41), we obtain

Ωs−1,−m ∧ Ωt−1,s ∧ Ω̃t,k−1 ≤
(
ρb(s+m)/(p+1)c ∧ ρb(t−s)/(p+1)c ∧ ρb(k−t)/(p+1)c

)
ρ−ν

k
−m−p .

Furthermore, a derivation similar to DMR (page 2299) gives, for n ≥ 2,

∑
0≤s≤t≤n

(
ρbs/(p+1)c ∧ ρb(t−s)/(p+1)c ∧ ρb(n−t)/(p+1)c

)
≤ 2

n/2∑
s=0

n−s∑
t=s

(
ρb(t−s)/(p+1)c ∧ ρb(n−t)/(p+1)c

)
.

From (42), the right hand side is bounded by

C
n/2∑
s=0

ρb(n−s)/2(p+1)c ≤ Cρbn/4(p+1)c, (45)

where the inequality holds because
∑∞

t=a ρ
bt/bc ≤ bρba/bc/(1− ρ) for any integers a ≥ 0 and b > 0.

Hence, A is bounded by K(k + m)3ρb(k+m)/4(p+1)cbk,m by setting n = k + m in (45) and noting

that (b(k +m)/4(p+ 1)c)−1νk−m−p → 4(p+ 1)Eθ∗ [Ip,i] ≤ 4p(p+ 1)ε < 1/2 Pθ∗-a.s. as k +m→∞.

For B, from Lemma 10(f)–(i), (39), (41), t ≥ −m, and (42), B is bounded as, with Mk :=

max−m+1≤t≤k−1 |φk|∞|φt|∞,

|B| ≤ 12
∑

−m+1≤t≤k−1

(Ωt−1,−m ∧ Ωk−1,t)Mk

≤ 12
∑

−m+1≤t≤k−1

(
ρ(t+m)/(p+1) ∧ ρ(k−t)/(p+1)

)
ρ−ν

k
−m−pMk

≤ Cρb(k+m)/2(p+1)c−νk−m−pMk,

which is written as K(k+m)3ρb(k+m)/4(p+1)cbk,m for K ∈ L1(Pθ∗). C is bounded by 6Ωk−1,−m|φk|2∞
from Lemma 10(h), and part (a) is proven.

We proceed to prove part (b). Write Γk,m′,x′(θ) = A+ 2B + 2C +D, where

A := varθ[S
k
−m+1|V

k
−m′ , X−m′ = x′]− varθ[S

k−1
−m+1|V

k−1
−m′ , X−m′ = x′],

B := covθ[φθk, S
−m
−m′+1|V

k
−m′ , X−m′ = x′],

C := covθ[S
k−1
−m+1, S

−m
−m′+1|V

k
−m′ , X−m′ = x′]− covθ[S

k−1
−m+1, S

−m
−m′+1|V

k−1
−m′ , X−m′ = x′],

D := varθ[S
−m
−m′+1|V

k
−m′ , X−m′ = x′]− varθ[S

−m
−m′+1|V

k−1
−m′ , X−m′ = x′].

|Γk,m,x(θ)−A| is bounded similarly to |Γk,m,x(θ)− Γk,m(θ)| in part (a) by using Lemma 10. From
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Lemma 10(g), B is bounded by 2
∑−m

t=−m′+1 Ωk−1,t|φk|∞|φt|∞ = B1 ×B2, where

B1 := 2|φk|∞
b(k−1−t)/pc∏

i=b(−m−t)/pc+1

(1− ω(V
t+pi−1
t+pi−p)), B2 :=

−m∑
t=−m′+1

b(−m−t)/pc∏
i=1

(1− ω(V
t+pi−1
t+pi−p))|φt|∞.

B1 is bounded by |φk|∞ρb(k+m)/2(p+1)cbk,m from the same argument as part (a). Because Pθ∗(|φk|∞ ≥
ρ−b(k+m)/2(p+1)c/2 i.o.) = 0, B1 is bounded by ρb(k+m)/4(p+1)cbk,m. For B2, because

∏b(−m−t)/pc
i=1 (1−

ω(V
t+pi−1
t+pi−p)) is bounded by ρb(−m−t)/pc−ν

−m
t−p from (39), we can use the same argument as the one

for Rm,m′ defined in (44) to show that B2m := supm′≥mB2 < ∞ Pθ∗-a.s. and B2m is stationary.

Therefore, B is bounded by ρb(k+m)/4(p+1)cbk,mB2m.

|C|+|D| is bounded by, with ∆t,s := |covθ[φθt, φθs|V
k
−m′ , X−m′ = x′]−covθ[φθt, φθs|V

k−1
−m′ , X−m′ =

x′]|,

k−1∑
t=−m′+1

−m∑
s=−m′+1

∆t,s ≤ 2

−m∑
s=−m′+1

k−1∑
t=s

∆t,s ≤ 2

−m∑
s=−m′+1

k−1∑
t=s

(
Ωt−1,s ∧ Ω̃t,k−1

)
|φt|∞|φs|∞. (46)

Similar to (41), we obtain

Ωt−1,s ∧ Ω̃t,k−1 ≤
(
ρb(t−s)/(p+1)c−νt−1−p

s−p ∧ ρb(k−t)/(p+1)c−νk−1
t

)
≤
(
ρb(t−s)/(p+1)c ∧ ρb(k−t)/(p+1)c

)
ρ−ν

k−1
s−p .

Therefore, the right hand side of (46) is bounded by

2

−m∑
s=−m′+1

k−1∑
t=s

(
ρb(t−s)/(p+1)c ∧ ρb(k−t)/(p+1)c

)
ρ−ν

k−1
−m ρ−ν

−m
s−p |φt|∞|φs|∞. (47)

DMR (page 2300) show that the following holds for k ≥ 1, m ≥ 0 and t, s ≤ 0:

if t ≤ (k + s− 1)/2, then (|t| − 1)/2 ≤ (3k + s− 3)/4− t,

if (k + s− 1)/2 ≤ t ≤ k − 1, then (|t| − 1)/4 ≤ t+ (−k − 3s+ 1)/4.

Consequently, (47) is bounded by

2ρb(k+m−2)/8(p+1)c−νk−1
−m

−m∑
s=−m′+1

ρb(k−2s−m)/8(p+1)cρ−ν
−m
s−p |φs|∞

×

(k+s)/2∑
t=s

ρb((3k+s−3)/4−t)/(p+1)c|φt|∞ +

k−1∑
t=(k+s)/2

ρb(t+(−k−3s+1)/4)/(p+1)c|φt|∞


≤ Cρb(k+m−2)/8(p+1)c−νk−1

−m

−m∑
s=−m′+1

ρb(−m−s)/8(p+1)c−ν−ms−p |φs|∞
k−1∑
t=s

ρb(|t|−1)/4(p+1)c|φt|∞

≤ ρb(k+m)/16(p+1)cbk,m × E × Fm,m′ ,
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where E :=
∑∞

t=−∞ ρ
b(|t|−1)/4(p+1)c|φt|∞, and Fm,m′ :=

∑−m
s=−m′+1 ρ

b(−m−s)/8(p+1)c−ν−ms−p |φs|∞. Be-

cause E ∈ L1(Pθ∗), Fm := supm′≥m Fm,m′ <∞ Pθ∗-a.s., and Fm is stationary, (47) is bounded by

ρb(k+m)/16(p+1)cbk,mEFm, and part (b) is proven.

Proof of Proposition 3. Define Υk,m,x(θ) := Ψ2
k,m,x(θ) + Γk,m,x(θ) and Υk,∞(θ) := Ψ2

k,∞(θ) +

Γk,∞(θ), so that ∇2
θln(θ, x) =

∑n
k=1 Υk,0,x(θ). By setting m = 0 and letting m′ → ∞ in Lem-

mas 6 and 7, we obtain supθ∈G supx∈X |Υk,0,x(θ)−Υk,∞(θ)| ≤ (K2 +B0)k2ρbk/4(p+1)cAk,0 +K(k3 +

D0)ρbk/16(p+1)cCk,0. Furthermore, the sum over finitely many supθ∈G supx∈X |Υk,0,x(θ)−Υk,∞(θ)|
is o(n) Pθ∗-a.s. because Eθ∗ supθ∈G supx∈X |Υk,0,x(θ)| < ∞ and Eθ∗ supθ∈G |Υk,∞(θ)| < ∞ from

Assumption 8. Therefore, we have supθ∈G supx∈X |n−1∇2
θln(θ, x)− n−1

∑n
k=1 Υk,∞(θ)| = op(1).

Consequently, it suffices to show that

sup
θ∈G

∣∣∣∣∣n−1
n∑
k=1

Υk,∞(θ)− Eθ∗ [Υ0,∞(θ)]

∣∣∣∣∣→p 0. (48)

Because G is compact, (48) holds if, for all θ ∈ G,

n−1
n∑
k=1

Υk,∞(θ)− Eθ∗ [Υ0,∞(θ)]→p 0, (49)

lim
δ→0

lim
n→∞

sup
|θ′−θ|≤δ

∣∣∣∣∣n−1
n∑
k=1

Υk,∞(θ′)− n−1
n∑
k=1

Υk,∞(θ)

∣∣∣∣∣ = 0 Pθ∗-a.s. (50)

(49) holds by ergodic theorem. Note that the left hand side of (50) is bounded by

limδ→0 limn→∞ n
−1
∑n

k=1 sup|θ′−θ|≤δ |Υk,∞(θ′)−Υk,∞(θ)|, which equals

limδ→0 Eθ∗ sup|θ′−θ|≤δ |Υ0,∞(θ′)−Υ0,∞(θ)| Pθ∗-a.s. from ergodic theorem. Therefore, (50) holds if

lim
δ→0

Eθ∗ sup
|θ′−θ|≤δ

∣∣Υ0,∞(θ′)−Υ0,∞(θ)
∣∣ = 0. (51)

Fix a point x0 ∈ X . The left hand side of (51) is bounded by 2Am + Cm, where

Am := Eθ∗ sup
θ∈G
|Υ0,m,x0(θ)−Υ0,∞(θ)| , Cm := lim

δ→0
Eθ∗ sup

|θ′−θ|≤δ

∣∣Υ0,m,x0(θ′)−Υ0,m,x0(θ)
∣∣ .

From Lemmas 6 and 7, supθ∈G |Υ0,m,x0(θ) − Υ0,∞(θ)| →p 0 as m → ∞. Furthermore, we have

Eθ∗ supm≥1 supθ∈G |Υ0,m,x0(θ)| <∞ and Eθ∗ supθ∈G |Υ0,∞(θ)| <∞ from Assumption 8. Therefore,

Am → 0 as m→∞ by the dominated convergence theorem (Durrett, 2010, Exercise 2.3.7). Cm = 0

from Lemma 11 if m ≥ p. Therefore, (51) holds, and the stated result is proven.

Proof of Proposition 4. In view of (10) and Propositions 1, 2, and 3, part (a) holds if (i) Eθ∗ [Ψ2
0,∞(θ)+

Γ0,∞(θ)] is continuous in θ ∈ G and (ii) Eθ∗ [Ψ2
0,∞(θ∗) + Γ0,∞(θ∗)] = −I(θ∗). (i) follows from

(51). For (ii), it follows from the Louis information principle and information matrix equality

that, for all m ≥ 1, Eθ∗ [Ψ1
0,m(θ∗)(Ψ1

0,m(θ∗))′] = −Eθ∗ [Ψ2
0,m(θ∗) + Γ0,m(θ∗)]. From Lemmas 6
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and 7, Assumption 8, and the dominated convergence theorem, the left hand side converges to

Eθ∗ [Ψ1
0,∞(θ∗)(Ψ1

0,∞(θ∗))′] = I(θ∗), and the right hand side converges to −Eθ∗ [Ψ2
0,∞(θ∗)+ Γ0,∞(θ∗)].

Therefore, (ii) holds, and part (a) is proven.

For part (b), an elementary calculation gives, with pnθ(x) denoting pθ(Y
n
1 |Y0,W

n
0 , x),

n−1∇2
θln(θ, ξ) =

∫
n−1∇2

θ log pnθ(x0)pnθ(x0)ξ(dx0)∫
pnθ(x0)ξ(dx0)

+

∫
(n−1/2∇θ log pnθ(x0))2pnθ(x0)ξ(dx0)∫

pnθ(x0)ξ(dx0)

−

(∫
n−1/2∇θ log pnθ(x0)pnθ(x0)ξ(dx0)∫

pnθ(x0)ξ(dx0)

)2

.

The sum of the last two terms is op(1) because supθ∈G supx∈X |n−1/2∇θ log pnθ(x)−n−1/2
∑n

k=1 Ψ1
k,∞(θ)| =

op(1). Therefore, minx0 n
−1∇2

θln(θ, x0) + op(1) ≤ n−1∇2
θln(θ, ξ) ≤ maxx0 n

−1∇2
θln(θ, x0) + op(1)

holds, and part (b) follows.

8 Auxiliary results

The following lemma provides the convergence rate of a Markov chain Xt. When Xt is time-

homogeneous, this result has been proven by Theorem 1 of Rosenthal (1995). This lemma extends

Rosenthal (1995) to time-inhomogeneous Xt.

Lemma 8. Let {Xt}t≥1 be a Markov process that lies in X , and let Pt(x,A) := P(Xt ∈ A|Xt−1 = x).

Suppose there is a probability measure Qt(·) on X , a positive integer p, and εt ≥ 0 such that

P pt (x,A) := P(Xt ∈ A|Xt−p = x) ≥ εtQt(A),

for all x ∈ X and all measurable subsets A ⊂ X . Let X0 and Y0 be chosen from the initial

distributions π1 and π2, respectively, and update them according to Pt(x,A). Then,

‖P(Xk ∈ ·)− P(Yk ∈ ·)‖TV ≤
bk/pc∏
i=1

(1− εip).

Proof. The proof follows the line of argument in the proof of Theorem 1 of Rosenthal (1995). Start-

ing from (X0, Y0), we let Xt and Yt for t ≥ 1 progress as follows. Given the value of Xt and Yt, flip a

coin with the probability of heads equal to εt+p. If the coin comes up heads, then choose a point x ∈
X according to Qt+p(·) and set Xt+p = Yt+p = x, choose (Xt+1, . . . , Xt+p−1) and (Yt+1, . . . , Yt+p−1)

independently according to the transition kernel Pt+1(xt+1|xt), . . . , Pt+p−1(xt+p−1|xt+p−2) condi-

tional on Xt+p = x and Yt+p = x, and update the processes after t + p so that they remain equal

for all future time. If the coin comes up tails, then choose Xt+p and Yt+p independently according

to the distributions (P pt+p(Xt, ·)−εt+pQt+p(·))/(1−εt+p) and (P pt+p(Yt, ·)−εt+pQt+p(·))/(1−εt+p),
respectively, and choose (Xt+1, . . . , Xt+p−1) and (Yt+1, . . . , Yt+p−1) independently according to the

transition kernel Pt+1(xt+1|xt), . . . , Pt+p−1(xt+p−1|xt+p−2) conditional on the value of Xt+p and
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Yt+p. It is easily checked that Xt and Yt are each marginally updated according to the transition

kernel Pt(x,A).

Furthermore, Xt and Yt are coupled the first time (call it T ) when we choose Xt+p and Yt+p

both from Qt+p(·) as earlier. It now follows from the coupling inequality that

‖P(Xk ∈ ·)− P(Yk ∈ ·)‖TV ≤ P(Xk 6= Yk) ≤ P(T > k).

By construction, when t is a multiple of p, Xt and Yt will couple with probability εt. Hence,

P(T > k) ≤ (1− εp) · · · (1− εbk/pc·p),

and the stated result follows.

The following lemma corresponds to Lemma 4 of DMR and implies that Eθ∗ [∆0,∞(θ)] is con-

tinuous in θ. This lemma is used in the proof of the consistency of the MLE.

Lemma 9. Assume Assumptions 1–6. Then, for all θ ∈ Θ,

lim
δ→0

Eθ∗
[

sup
|θ−θ′|≤δ

|∆0,∞(θ′)−∆0,∞(θ)|

]
= 0.

Proof. The proof is similar to the proof of Lemma 4 in DMR but requires a small adjustment when

p ≥ 2. We first show that ∆0,m,x(θ) is continuous in θ for any fixed x ∈ X and any m ≥ p + 1.

Recall that ∆0,m,x(θ) = log pθ(Y0|Y
−1
−m,W

0
−m, X−m = x) and

pθ(Y0|Y
−1
−m,W

0
−m, X−m = x) =

pθ(Y
0
−m+1|Y−m,W0

−m, X−m = x)

pθ(Y
−1
−m+1|Y−m,W

−1
−m, X−m = x)

.

For j ∈ {−1, 0}, we have

pθ(Y
j
−m+1|Y−m,W

j
−m, X−m = x)

=

∫
qθ(x, x−m+1)

j∏
i=−m+2

qθ(xi−1, xi)

j∏
i=−m+1

gθ(Yi|Yi−1, xi,Wi)µ
⊗(m+j)(dxj−m+1).

(52)

Because the integrand is bounded by (σ0
+b+)m+j , pθ(Y

j
−m+1|Y−m, X−m = x,Wj

−m) is continuous

in θ by the continuity of qθ and gθ and the bounded convergence theorem. Furthermore, when

j ≥ −m + p, the infimum of the right hand side of (52) in θ is strictly positive Pθ∗-a.s. from

Assumptions 1(d) and 3. Therefore, ∆0,m,x(θ) is continuous in θ Pθ∗-a.s. Because {∆0,m,x(θ)} is

continuous in θ and converges uniformly in θ ∈ Θ Pθ∗-a.s., ∆0,∞(θ) is continuous in θ ∈ Θ Pθ∗-a.s.

The stated result then follows from Eθ∗ supθ∈Θ |∆0,∞(θ)| <∞ by Lemma 3(c) and the dominated

convergence theorem.

The following lemma is used in the proof of Lemmas 6 and 7. This lemma provides the bounds
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on the difference in the conditional expectations of φjθt = φj(θ,Z
t
t−1,Wt) when the conditioning sets

are different. Define Ω`,k :=
∏b(`−k)/pc
i=1 (1− ω(V

k+pi−1
k+pi−p)) and Ω̃`,k :=

∏b(k−`)/pc
i=1 (1− ω(V

k−1−pi+p
k−1−pi+1))

with defining
∏b
i=a xi := 1 if b < a, where ω(·) is defined in Lemma 1 and V

b
a := (Y

b
a,W

b
a).

Lemma 10. Assume Assumptions 1–7. Then, for all m′ ≥ m ≥ 0, all −m < s ≤ t ≤ n, all θ ∈ G,

and all x, x′ ∈ X and j = 1, 2,

(a) |Eθ[φjθt|V
n
−m, X−m = x]− Eθ[φjθt|V

n
−m]| ≤ 2Ωt−1,−m|φjt |∞,

(b) |Eθ[φjθt|V
n
−m]− Eθ[φjθt|V

n
−m′ ]| ≤ 2Ωt−1,−m|φjt |∞,

(c) |Eθ[φjθt|V
n
−m, X−m = x]− Eθ[φjθt|V

n
−m′ , X−m′ = x′]| ≤ 2Ωt−1,−m|φjt |∞,

(d) |Eθ[φjθt|V
n
−m, X−m = x]− Eθ[φjθt|V

n−1
−m , X−m = x]| ≤ 2Ω̃t,n−1|φjt |∞,

(e) |Eθ[φjθt|V
n
−m]− Eθ[φjθt|V

n−1
−m ]| ≤ 2Ω̃t,n−1|φjt |∞,

and

(f) |covθ[φθt, φθs|V
n
−m]| ≤ 2Ωt−1,s|φt|∞|φs|∞,

(g) |covθ[φθt, φθs|V
n
−m, X−m = x]| ≤ 2Ωt−1,s|φt|∞|φs|∞

(h) |covθ[φθt, φθs|V
n
−m, X−m = x]− covθ[φθt, φθs|V

n
−m]| ≤ 6Ωs−1,−m|φt|∞|φs|∞,

(i) |covθ[φθt, φθs|V
n
−m, X−m = x]− covθ[φθt, φθs|V

n
−m′ , X−m′ = x′]| ≤ 6Ωs−1,−m|φt|∞|φs|∞,

(j) |covθ[φθt, φθs|V
n
−m]− covθ[φθt, φθs|V

n−1
−m ]| ≤ 6Ω̃t,n−1|φt|∞|φs|∞,

(k) |covθ[φθt, φθs|V
n
−m, X−m = x]− covθ[ϕθt, φθs|V

n−1
−m , X−m = x]| ≤ 6Ω̃t,n−1|φt|∞|φs|∞.

Proof of Lemma 10. To prove parts (a)–(c), we first show that, for all −m ≤ k ≤ t − 1, all

probability measures µ1 and µ2 on B(X ), and all V
n
−m,

sup
A

∣∣∣∣∫ Pθ(Xt
t−1 ∈ A|Xk = x,V

n
−m)µ1(dx)−

∫
Pθ(Xt

t−1 ∈ A|Xk = x,V
n
−m)µ2(dx)

∣∣∣∣
≤
b(t−1−k)/pc∏

i=1

(
1− ω(V

k+pi−1
k+pi−p)

)
.

(53)

When k = t−1, (53) holds trivially. When −m ≤ k < t−1, equation (17) and the Markov property

of Zt imply that Pθ(Xt
t−1 ∈ A|Xk,V

n
−m) = Pθ(Xt

t−1 ∈ A|Xk,V
n
k) =

∫
Pθ(Xt

t−1 ∈ A|Xt−1 =

xt−1,V
n
k)pθ(xt−1|Xk,V

n
k)µ(dxt−1). Consequently, from the property of the total variation distance,

the left hand side of (53) is bounded by∥∥∥∥∫ Pθ(Xt−1 ∈ ·|Xk = x,V
n
k)µ1(dx)−

∫
Pθ(Xt−1 ∈ ·|Xk = x,V

n
k)µ2(dx)

∥∥∥∥
TV

.

This is bounded by
∏b(t−1−k)/pc
i=1 (1− ω(V

k+pi−1
k+pi−p)) from Corollary 1, and (53) is proven.
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We proceed to show parts (a)–(c). For part (a), observe that

Eθ[φjθt|V
n
−m, X−m = x−m] =

∫
∇jθ log pθ(Yt, xt|Yt−1, xt−1,Wt)pθ(x

t
t−1|V

n
−m, x−m)µ⊗2(dxtt−1),

(54)

Eθ[φjθt|V
n
−m] =

∫
∇jθ log pθ(Yt, xt|Yt−1, xt−1,Wt)pθ(x

t
t−1|V

n
−m)µ⊗2(dxtt−1), (55)

and pθ(x
t
t−1|V

n
−m) =

∫
pθ(x

t
t−1|V

n
−m, x−m)pθ(x−m|V

n
−m)µ(dx−m). Note that, for any conditioning

set G, we have Pθ(Xt
t−1|G) = 0 if qθ(Xt−1, Xt) = 0. Therefore, the right hand side of (54) and (55)

are written as∫
∇jθ log gθ(Yt|Yt−1, xt,Wt)pθ(x

t
t−1|F)µ⊗2(dxtt−1) +

∫
X+
θ

∇jθ log qθ(xt−1, xt)pθ(x
t
t−1|F)µ⊗2(dxtt−1),

with F = {Vn
−m, x−m}, {V

n
−m}. Therefore, part (a) follows from the property of the total variation

distance and setting k = −m in (53). Parts (b) and (c) are proven similarly.

Part (d) holds if we show that, for all −m+ 1 ≤ t ≤ n and V
n
−m,

sup
A

∣∣∣Pθ(Xt
t−1 ∈ A|X−m = x,V

n
−m)− Pθ(Xt

t−1 ∈ A|X−m = x,V
n−1
−m )

∣∣∣
≤
b(n−1−t)/pc∏

i=1

(
1− ω(V

n−2−pi+p
n−2−pi+1)

)
.

(56)

When t ≥ n − 1, (56) holds trivially. When t ≤ n − 2, observe that the time-reversed process

{Zn−k}0≤k≤n+m is Markov. Hence, for any −m+ 1 ≤ t ≤ k, we have Pθ(Xt
t−1 ∈ A|X−m,V

k
−m) =∫

Pθ(Xt
t−1 ∈ A|Xt = xt,V

t
−m)pθ(xt|X−m,V

k
−m)µ(dxt). Therefore, (56) is proven similarly to (53)

by using Lemma 5(b). Part (e) is proven similarly by using Lemma 5(a).

We proceed to show parts (f)–(k). In view of (55), part (f) holds if we show that, for all

−m < s ≤ t ≤ n,

sup
A,B∈B(X 2)

∣∣Pθ(Xt
t−1 ∈ A,Xs

s−1 ∈ B|V
n
−m)− Pθ(Xt

t−1 ∈ A|V
n
−m)Pθ(Xs

s−1 ∈ B|V
n
−m)

∣∣
≤
b(t−1−s)/pc∏

i=1

(
1− ω(V

s+pi−1
s+pi−p)

)
.

(57)

When s ≥ t− 1, (57) holds trivially because
∏j
i=1 ai = 1 when j < i. When s ≤ t− 2, observe that

Pθ(Xt
t−1 ∈ A,Xs

s−1 ∈ B|Vn
−m) =

∫
B Pθ(Xt

t−1 ∈ A|Xs
s−1 = xss−1,V

n
−m)pθ(x

s
s−1|V

n
−m)µ⊗2(dxss−1)

and Pθ(Xs
s−1 ∈ B|V

n
−m) =

∫
B pθ(x

s
s−1|V

n
−m)µ⊗2(dxss−1). Hence, in view of the Markov property

of {Xk} given V
n
−m, the left hand side of (57) is bounded by supA supxs∈X |Pθ(X

t
t−1 ∈ A|Xs =

xs,V
n
−m) − Pθ(Xt

t−1 ∈ A|Vn
−m)|. From (53), this is bounded by

∏b(t−1−s)/pc
i=1 (1 − ω(V

s+pi−1
s+pi−p)),

and (57) follows. Part (g) is proven similarly by replacing the conditioning variable V
n
−m with
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(X−m,V
n
−m). Parts (h)–(k) follow from (53), (56), and the relation |cov(X,Y |F1)−cov(X,Y |F2)| ≤

|E(XY |F1)− E(XY |F2)|+ |E(X|F1)− E(X|F2)|E(Y |F1) + E(X|F2)|E(Y |F1)− E(Y |F2)|.

The following lemma corresponds to Lemma 14 of DMR and shows that Eθ∗ [Ψ1
0,m,x(θ)], Eθ∗ [Ψ2

0,m,x(θ)],

and Eθ∗ [Γ0,m,x(θ)] are continuous in θ.

Lemma 11. Assume Assumptions 1–8. Then, for j = 1, 2, all x ∈ X and m ≥ p, the functions

Ψj
0,m,x(θ) and Γ0,m,x(θ) are continuous in θ ∈ G Pθ∗-a.s. In addition,

(a) lim
δ→0

Eθ∗
[

sup
|θ′−θ|≤δ

|Ψj
0,m,x(θ)−Ψj

0,m,x(θ′)|3−j
]

= 0,

(b) lim
δ→0

Eθ∗
[

sup
|θ′−θ|≤δ

|Γ0,m,x(θ)− Γ0,m,x(θ′)|

]
= 0.

Proof. The proof is similar to the proof of Lemma 14 in DMR. For brevity, we suppress Wt

and W0
−m from φj(θ,Z

t
t−1,Wt) and the conditioning set. We prove part (a) first. Note that

supθ∈G supx∈X |Ψ
j
0,m,x(θ)|3−j ≤ (2

∑0
t=−m+1 |φ

j
t |∞)3−j ∈ L1(Pθ∗). Hence, the stated result holds if,

for m ≥ p and −m+ 1 ≤ t ≤ 0,

lim
δ→0

sup
|θ′−θ|≤δ

∣∣∣Eθ′ [φj(θ′,Ztt−1)|Y0
−m, X−m = x]− Eθ[φj(θ,Z

t
t−1)|Y0

−m, X−m = x]
∣∣∣ = 0 Pθ∗-a.s.

Write

Eθ[φj(θ,Z
t
t−1)|Y0

−m, X−m = x] =

∫
φj(θ,Z

t
t−1)pθ(X

t
t−1 = xtt−1|Y

0
−m, X−m = x)µ⊗2(dxtt−1). (58)

For all xtt−1 such that pθ(x
t
t−1|Y

0
−m, X−m = x) > 0, φj(θ,xtt−1,Y

t
t−1) is continuous in θ and

bounded by |φjt |∞ < ∞. Furthermore, pθ(X
t
t−1 = xtt−1|Y

0
−m, X−m = x) is continuous in θ and

bounded from above uniformly in θ ∈ G because pθ(X
t
t−1 = xtt−1,Y

0
−m+1|Y−m, X−m = x) is

continuous in θ and bounded from above by (σ0
+b+)m and pθ(Y

0
−m+1|Y−m, X−m = x) is continuous

in θ and bounded from below by σ
bm/pc
−

∏0
t=−m+1

∫
infθ∈G gθ(Yt|Yt−1, xt)µ(dxt) > 0. Consequently,

the integrand on the right hand side of (58) is continuous in θ and bounded from above uniformly

in θ ∈ G. From the dominated convergence theorem, the left hand side of (58) is continuous in θ,

and part (a) is proven.

Part (b) holds if, for −m+ 1 ≤ s ≤ t ≤ 0,

lim
δ→0

sup
|θ′−θ|≤δ

∣∣∣covθ′ [φ(θ′,Z
s
s−1), φ(θ′,Z

t
t−1)|Y0

−m, X−m = x]
∣∣∣

−covθ[φ(θ′,Z
s
s−1), φ(θ,Z

t
t−1)|Y0

−m, X−m = x]
∣∣∣ = 0 Pθ∗-a.s.

This holds by a similar argument to part (a), and part (b) follows.
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