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Abstract

In economic and financial time series we sometimes observe sudden and large jumps.
Although these events are relatively rare, they would have significant influence not
only on a financial market but also several different markets and macro economies.
By using the simultaneous Hawkes-type multivariate point processes (SHPP) mod-
els, it is possible to analyze the causal effects of large events in the sense of the
Granger-non-causality (GNC) and the instantaneous Granger-non-causality (IGNC).
We investigate the financial market of Tokyo and other markets, and apply the
Granger non-causality tests. We have found several important empirical findings
among financial markets and macro economies.

Key Words

Simultaneous Hawkes-type marked point (SHPP) processes, Granger non-causality,

Instantaneous Granger non-causality, Causality tests, Financial markets

∗A preliminary draft (2017-3-20). This work was supported by JSPS KAKENHI Grant Number
JP25245033.

†Meiji University, School of Political Sicence and Economics
‡Graduate student, Graduate School of Economics, University of Tokyo
§Graduate student, Graduate School of Economics, University of Tokyo
¶Graduate student, Graduate School of Economics, University of Tokyo

1



1 Introduction

In economic and financial time series, we sometimes observe sudden

and large jumps. Although they are relatively rare event, they often

have significant influence not only on a single financial market but also

several different markets and macro-economies. There have been sev-

eral recent events occurred in European and Asian countries including

the financial crisis of 2007-2008 (sometimes called Lehman shock).

The standard statistical method for investigating economic and fi-

nancial time series is the statistical analysis of discrete time series in

econometrics. In this statistical method, we often assume that the

observed time series data are equally spaced realizations of stochas-

tic processes and the state space is Rp in the multivariate time series

analysis. Many statistical procedures of discrete time series analy-

sis have been developed and applied to economic and financial time

series in the last several decades. When we do not observe events fre-

quently, however, the traditional use of discrete time series modeling

with continuous state space may have some limitations.

In this paper we will propose to use an alternative way of investi-

gating economic and financial events with time series data in macro-

economies, that is, the statistical analysis of the marked point process

approach to investigate time series events. Although it has not been

a standard approach in time series econometrics, there have been sta-

tistical applications in statistical seismology (see Ogata (1978, 2015)

and its related literature, for instance). We will show that this ap-
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proach would be an alternative useful way to investigate multivariate

economic and financial markets and shed some new light on some as-

pects sometimes ignored. In particular, we shall propose to use the

simultaneous Hawkes-type multivariate point process models and their

applications in this study. It seems that they are not standard sta-

tistical models in the past econometric analyses, but there are some

reasons that they are useful in economic and financial time series anal-

ysis. By using the simultaneous multivariate Hawkes-type point pro-

cess (SHPP) model, which is a new multivariate point process, it is

possible to investigate the causal effects of sudden and large events of

their magnitude in the sense of the Granger-non-causality (GNC) and

the instantaneous Granger-non-causality (IGNC) through the stochas-

tic intensity modeling. In the econometric time series analysis, the

concept of Granger-Causality has been one of important tools to in-

vestigate the relationships among time series variables since Granger

(1969). In econometric literature, Florens and Fougere (1996) have

investigated several Granger-causality concepts in the framework of

continuous time stochastic processes, but we argue that their formu-

lation of the problem was incomplete because they had excluded the

possibility of co-jumps, which means the simultaneous jumps in mul-

tivariate times series. In this paper, we shall investigate the use of

co-jumps and will develop the tests of the Granger-non-causality and

the instantaneous Granger-non-causality, which may give some new

light on the econometric time series modeling.
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As empirical examples, we will investigate the interactions among

Tokyo- -NY (New York)-London financial markets and Tokyo-HK

(Hong Kong) financial markets, and apply the Granger non-causality

tests. We have found several important empirical findings among ma-

jor financial markets.

In Section 2 we present a general formulation of the simultaneous

multivariate Hawkes-type point process (SHPP) model in this study.

Then in Section 3, we will discuss the estimation method and develop

the non-causality tests in the sense of Granger (1969). In Section 4, we

will discuss some simulation results and some empirical applications

will be given in Section 5. Concluding remarks will be presented in

Section 6. Some mathematical details will be given in Appendix.

2 Simultaneous Hawkes-type Point Processes

We divide the observation period [0, T ] to the discrete observation

periods Ini = (tni−1, t
n
i ] (i = 1, · · · , n). The initial time is tn0 = 0 and we

interpret Ini as the i−th day, but it is possible to use finer observations

than daily data. Let the observable d−dimension stochastic process

be Pj(t) (j = 1, · · · , d ; tni−1 < t ≤ tni , i = 1, · · · , n) and in s ∈ Ini we

consider the (negative) log-returns of prices Y n
j (s) (t

n
i−1 < s ≤ tni ) be

Y n
j (s) = − log[Pj(s)/Pj(t

n
i−1)] (j = 1, · · · , d; i = 1, · · · , n) .(2.1)
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Let the first stopping time when Y n
j (s) exceeds the threshold uj in

s ∈ Ii be τ
n
j (i, 1). We define Xn

j (s) = Y n
j (s) for s ∈ tni−1 ≤ s ≤ τnj (i, 1)

and Xn
j (s) = Xn

j (τ
n
j (i, 1)) for s ∈ [τnj (i, 1), t

n
i ].

We consider the simple counting processes Nn∗
j (s, uk) by the num-

ber of stopping times thatXn
j (s) exceed uj (j = 1, · · · , d) for a particu-

lar j but not for other k ̸= j by the time s. For the resulting simplicity,

we assume that the jumps of the counting process Nn∗
j (s, uk) can occur

at tni , the end of each intervals (tni−1, t
n
i ], because the number of jumps

over a threshold in a finite interval are finite with probability one and

uj = u (j = 1, · · · , d). We notice that the interval length goes to zero,

that is, maxi=1,···,n |tni −tni−1| −→ 0 as n −→ ∞ and the simple counting

process Nn∗
j (s, u) converges to N∗

j (s, u). The resulting counting pro-

cess can be interpreted as the limiting process in the high frequency

asymptotics, which is not a diffusion type process. (Ait-Sahalia and

Jacod (2014), for instance.)

The simple point processes we consider N∗
j (t) (j = 1, · · · , d) satisfy

the standard condition for point processes that as ∆t → 0 we have

P (Nn∗
j (t+∆t, u)−Nn∗

j (t, u) = 1|Fn
t ) = λn∗

j (t, u)∆t+ op(∆t) ,

P (Nn∗
j (t+∆t, u)−Nn∗

j (t, u) > 1|Fn
t ) = op(∆t) ,

P (Nn∗
k (t+∆t, u)−Nn∗

j (t, u) ≥ 1|Fn
t ) = op(∆t) for k ̸= j ,

where Fn
t is the σ−field generated by the information at t, the (con-

ditional) intensity functions are given by

λn∗
j (t, u) = lim

∆t→0
E[

Nn∗
j (t+∆t, u)−Nn∗

j (t, u)

∆t
|Fn

t−] ,(2.2)
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and we denote Ft for Fn
t− whenever there is no confusion on the nota-

tion.

Next, we define the simple proint processesNn∗
jk (s, u) by the number

of stopping times that Xn
j (s) exceed u (j = 1, · · · , d) for a particular

j, Xn
k (s) exceed uk (k = 1, · · · , d; k ̸= j) for a particular k and other

Xn
l (s) (l ̸= j, k) do not exceed ul by the time s in the interval Ini . By

this construction, we can introduce the point processes Nn∗
jk (t, u) with

co-jumps of Nj and Nk by

P (Nn∗
j (t+∆t, u)−Nn∗

j (t, u) = Nn∗
k (t+∆t, u)−Nn∗

k (t, u) = 1|Ft)

= λn∗
jk(t, u)∆t+ op(∆t) ,

P (Nn∗
j (t+∆t, u)−Nn∗

j (t, u) > 1|Ft) = op(∆t) ,

P (Nn∗
k (t+∆t, u)−Nn∗

j (t, u) > |Ft) = op(∆t) for k ̸= j ,

where λn∗
j,k(t, uj) are the conditional intensity functions of co-jumps.

When we have co-jumps of two point processes, we can define the

point processes

Nn
j (s, u) = Nn∗

j (s, u) +
∑
k ̸=j

Nn∗
j,k(s, u) (j, k = 1, · · · , d)

and the corresponding conditional intensity functions are given by

λn
j (t, u) = λn∗

j (t, u) +
∑
k ̸=j

λn∗
j,k(t, u) .(2.3)

The resulting point processes can be interpreted as some marginal

point processes of the j-th component of the vector point process

Nn(s, u).
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It is straightforward to extend this formulation to have more compli-

cated co-jumps. We define

Nn
j (s, u) =

∑
Jj∈(1,···,d)

Nn∗
j1,···,jl(s, u) (j = 1, · · · , p),(2.4)

where the index set Jj = {j1, · · · , jl} ∈ {1, · · · , d} is a subset of

(1, · · · , d).

The index sets are defined as Ji = {i} for (i = 1, · · · , d), Ji =

{1, 1 + (i − d)} for (i = d + 1, · · · , 2d − 1), · · · , and Jp = {1, · · · , d}.

That is, we sequentially define Nn∗
i (s, u) = Nn∗

i (s, u) (i = 1, · · · , d),

Nn∗
d+1(s, u) = Nn∗

1,2(s, u), · · · , and Nn∗
p (s, u) = Nn∗

1,···,d(s, u).

We also use the self-exciting form of conditional intensity functions

for co-jumps as λj,k(t, x|Fn
t−) in the same way and

λn
j (t, u) =

∑
Jj∈(1,···,d)

λn∗
j,k(t, u) .(2.5)

There are one-to-one transformation between Nn
j (s, u) and Nn∗

j (s, u),

and λn
j (t, u) and λn∗

j (t, u), respectively.

We will also consider the self-exciting Hawkes-type conditional in-

tensity function for the marked point processes as

λn∗
j (t, x|Fn

t−) =
[
λj,0 +

∑p
i=1

∫ t
−∞ c∗ji(x)g

∗
ji(t− s)N ∗n

Ji
(ds× dx)

]
(2.6)

×
[
− ∂

∂xj
Fθ(x1, · · · , xd|Fn

t−)
∣∣∣∣
x1=u,xd=u

]
.

for j = 1, · · · , p, where N ∗n
Ji
(ds × dx) are the marked point precess

representations and Fθ(x1, · · · , xd) are the joint distribution function

of the underlying processes Y n
j (s), the damping functions gji(t− s) =

e−γji(t−s) and the impact functions C(X) = (cji(x)).
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Since we are interested in sudden and large jumps of the underlying

price processes, it is important to use their probability functions in the

tails. We use the tail probability functions for y > u (j = 1, · · · , d) as

P (Y n
j (s) > y|Y n

j (s) > u,Fs) =

[
1 + ξj

σj(s)
y
]−1/ξj

[
1 + ξj

σj(s)
u
]−1/ξj

(2.7)

=

1 + ξj
σ∗
j (s)

(y − uj)

−1/ξj

,

and we set σ∗
j (s) = ξjuj + σj(s) (σj(s) > 0).

We assume that given the return at s Y n
j (s) the conditional density

functions are given by

fj(y, s) =
1

σ∗
j (s)

1 + ξj
σ∗
j (s)

(y − u)

−1/ξj−1

(x > u , ξj > 0) .(2.8)

(See Resnick (2007) for the generalized Pareto distribution as the sta-

tistical extreme value theory.)

As the specific form for (2.5) for our empirical study, we use the simple

situation that Y n
j (s) = Xn

j (s), σ
∗
j (s) = σj and the conditional intensity

functions as

λ∗n
Ji
(t, u) = λn

j0 +
p∑

i=1

∫ t

0
[Aji(X

n
i )

c(s−)]gi(t− s)dN ∗n
Ji
(s, u)(2.9)

where N ∗n
d+1(s, u) = Nn

12(s, u), · · · , N ∗n
p (s, u) = Nn

1···d(s, u) and the pa-

rameters λj0 and γi are constants. We denote the impact fucntion

Cji(X) = (Ajimaxj∈Ji x
c
j) (0 ≤ c ≤ 1; i, j = 1, · · · , p).

In particular when p = d and Cji = δ(j, i) (indicator functions), they

correspond to the multivariate marked Hawkes-type processes, which
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are the simple point processes without co-jumps.

Let p× p transformation matrix as

D =

 D1

D2

 =



1 0 · · · 0 1 1 · · · 0 · · · 1

0 1 · · · 0 1 0 · · · 0 · · · 1
... 1 0

... · · · 1
... 0 1

... · · · 0

0 · · · 0 0 · · · 0 · · · 1


,

where D1 is a d× p matrix, D2 is a (p− d)× p matrix and p = 2d− 1.

Also let p× 1 vectors

λn(t,u) =



λn
1(t, u)
...

λn
d(t, u)

λn
1,2(t, u)

...

λn
1,2,···,d(t, u)



, N(t,u) =



N1(t, u)
...

Nd(t, u)

N1,2(t, u)
...

N1,2,···,d(t, u)



,

and p× p matrices

C(X(s−)) = [cij(Xs−)] , G(t− s) = [diag(gj(t− s))] .

(We use the notation of diag(·) for diagonal matrices and we often

omit n for and λn
Ji
(s) (i = 1, · · · , p) and Nn

Ji
whenever their meanings

are clear.)

In this paper we call the above Hawkes-type conditional intensity

models as the simultaneous multivariate Hawkes-type point process
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(SHPP) models because the resulting market point processes are not

necessarily simple 1. The classical Hawkes point processes have been

useful in applications because they are simple point processes, but

they exclude the possibility of simultaneous jumps or co-jumps in con-

sideration. The constructions of our marked point processes can be

regarded as an extension of Solo (2007).

3 Stationarity and Decomposition of Bartrett Spec-

trum

In our applications, we will use the stationary self-exciting Hawkes-

type (marked) point processes. We take the expectation of the inten-

sity function of (2.9) in (−∞, t] as

E[λn(t,u)] = λ0 + E[
∫ t

−∞
C(X(s−)G(t− s)dN(s,u)] .(3.10)

We take the non-negative intensity functions and then a set of suf-

ficient conditions for the existence of stationary point processes are

that E[C(X(s−)) are bounded for any s and the dpectral radius

sup
t

max
1≤i≤p

|λi(Ft)| < 1 ,(3.11)

where λi(Ft) is the characteristic roots of

Ft =
∫ t

−∞
E[C(X(s−)]G(t− s)Fsds .(3.12)

For instance, if we have a constant matrix C = E[C(X(s−)] and

Γ = (diag(γi)), gi(t) = e−γit (γi > 0; i = 1, · · · , p), then we have
1The definition of simple, basic terminologies of point processes and their mathematical details

are given in Dalay and Vere-Jones (2003), for instance.
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Ft = F = CΓ−1 and Γ = diag(γj). When d = p = 1 (one-dimensional

Hawkes process) in particular, C = α and and Γ = γ (> 0), then

F = α/γ.

Hawkes (1971) inrtoduced the spectral density for the stationary

vector point process N(t) = (Ni(t)), which was developed by Bartlett

(1963), followed by

λ(t) = λ0 +
∫ t

−∞
γ(t− u)dN(u) ,(3.13)

where γ(u) = (γij(u)) is a p× p matrix and γ(u) = (0) (zero-matrix)

for u < 0.

Let the Fourier transform of γ(tau) be

Γ∗(ω) =
∫ ∞

−∞
e−iωτγ(τ)dτ ,(3.14)

where i2 = −1.

Then when there are no co-jumps, the Bartrett spectral matrix for

frequency ω is given by

f(ω) =
1

2π
[Id − Γ∗(ω)]−1Σ[Id − Γ∗′(−ω)]−1 ,(3.15)

where p = d and Γ∗ in (3.13) is a d× d matrix for the d−dimensional

vector point process. When there can be co-jumps, the Bartrett spec-

tral matrix is given by

f(ω) =
1

2π
[Id,O][D−DΓ∗(ω)]−1Σ[D

′ −D
′
Γ∗′(ω)]−1[

Id

O
],(3.16)
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where f(ω) = (fij(ω)) is the p×p spectral density matrix andΣ = (σii)

is the diagonal matrix with the variances σii (i = 1, · · · , p) for the

orthogonal point processes N ∗
i (i = 1, · · · , p).

The relative power contribution (RPC) of the marginal spectral

density function fii(ω) (i = 1, · · · , d) with the frequency ω can be

defined by using the joint spectral density matrix f(ω). The (i,i)-

component of f(ω) can be represented as

fii(ω) =
p∑

k=1

|aik(ω)|2σkk(3.17)

and

RPCk→i(ω) =
|aik(ω)|2σkk

fkk(ω)
(i = 1, · · · , p; k = 1, · · · , d) ,(3.18)

where aij(ω) (i = 1, · · · , d; j = 1, · · · , p) are the functions of complex

variables. Also the instantaneous RPC (IRPCj→i) can be defined by

IRPCj→i(ω) =
|aij(ω)|2σjj

fii(ω)
(j = d+ 1, · · · , p) .(3.19)

In this way, we can measure the relative power contributions for any

frequency ω, which corresponds to the Granger-causality measures in

the frequency domain. One important aspect of the above formulation

is the fact that we have a natural definition of Instantaneous Granger-

causality in the frequency domain, which is different from the discrete

time series modelling.

4 Estimation and Non-causality Tests

When the point process is simple and there is no co-jump, the log-

likelihood function of (d-dimensional) multivariate point process has
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been known (see Daley and Jones (2003)) and it is given by

d∑
i=1

{−
∫ T

0
λn
i (s)ds+

∫ T

0
log(λn

i (s))dN
n
i (s)} .(4.20)

The log-likelihood function of the marked multivariate point process

with the density function fi(x) is given by

logLT =
d∑

i=1

{−
∫ T

0
λn
i (s)ds+

∫ T

0
log(λn

i (s))dN
n
i (s)}(4.21)

+
d∑

i=1

{
∫ T

0
log fi(X

n
i (s−))dNn

i (s)}

= L1 + L2 ,

where

L1 =
d∑

i=1

{−
∫ T

0
λn
i (s)ds+

∫ T

0
log(λn

i (s))dN
n
i (s)} ,

L2 =
d∑

i=1

{
∫ T

0
log fi(x

n
i (s−))dNn

i (s)}

and the density function

fi(x) =
1

σ∗
i

(1 + ξi
xi − ui
σ∗
i

)
− 1

ξi
−1

(i = 1, · · · , d) .(4.22)

Then we can apply the maximum likelihood method to L1 and L2

separately. In this formulation we use the GPD (generalized Pareto

distribution) for the marginal distributions.

When there can be co-jumps, the log-likelihood function of (d-dimensional)

multivariate point process is not the above form and it should be given

by

logL∗
T = L∗

1 + L∗
2 ,(4.23)
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where

L∗
1 =

d∑
i=1

{−
∫ T

0
λn
i (s)ds+

∫ T

0
log(λn

i (s))dN
n
i (s)}

+
d∑

i̸=j=1

{−
∫ T

0
λn
ij(s)ds+

∫ T

0
log(λn

ij(s))dN
n
ij(s)}

+ · · ·+ {−
∫ T

0
λn
i···d(s)ds+

∫ T

0
log(λn

i···d(s))dN
n
i...d(s)} .

and L∗
2 = L2.

In our applications we mainly deal with the case when d = 2 and

then there is only one extra term in the likelihood function because

p = 2d − 1.

We assume the stationarity condition (3.11) and the existence of

second order moments of C(X) = cij(X(s)) in the statistical inference

of Hawkes-type point processes. Also we take λ(u) as the stationary

conditional intensity and some q× p predictable processes ξ(t) having

the second order moments. Then, because of the martingale property,

it is straightforward to show the asymptotic properties as we have

1

T

∫ T

0
ξ(t)[N(t, u)− λ(t,u)]dt −→ 0 (a.s.)(4.24)

and
1

T

∫ T

0
ξ(t)[λ(t, u)− λ(u)]dt

p−→ 0(4.25)

as T → ∞.

For the one-dimensional point processes with the stationary intensity

function, Ogata (1978) have given a set of sufficient conditions for

the consistency and asymptotic normality of the maximum likelihood
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(ML) estimation. His derivations are based on a martingale central

limit theorem (MCLT) and it is straightforward to extend his argu-

ments to the multi-dimensional cases. For the sake of completeness,

we have given some detail of our arguments based on a new MCLT in

Mathematical Appendix, which may be more general than the stan-

dard literature as the ones given by Ogata (1978). We will also give

the outline of our proofs of Theorem 6.1 and Theorem 6.2 in Appendix,

which are used as the non-causality tests in our empirical study.

5 Simulations

To examine the relevance of our estimation procedure proposed in

this paper we have done a set of simulations. The model we have used

in our simulations are the simultaneous Hawkes-type model with two

dimension and the intensity functions are given by

λn
1(t) = λn

10 +
∫ t

0
α11e

−γ(t−s)X1dN
n
1 (s) +

∫ t

0
α12e

−γ(t−s)X2dN
n
2 (s)

+
∫ t

0
α13e

−γ(t−s)[max
i

Xi]dN
n
12(s) ,

λn
2(t) = λn

20 +
∫ t

0
α21e

−γ(t−s)X1dN
n
1 (s) +

∫ t

0
α22e

−γ(t−s)X2dN
n
2 (s)

+
∫ t

0
α23e

−γ(t−s)[max
i

Xi]dN
n
1,2(s) ,

λn
12(t) = λn

12,0 +
∫ t

0
α31e

−γ(t−s)X1dN
n
1 (s) +

∫ t

0
α32e

−γ(t−s)X2dN
n
2 (s)

+
∫ t

0
α33e

−γ(t−s)[max
i

Xi]dN
n
1,2(s) .

We first generate the stock price returns by using the generalized

Pareto distribution as marginal and the two-dimensional Gaussian

copura. Then we use the maximum likelihood (ML) method to obtain
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the estimates of the underlying parameters. We give several figures

(Figures 5.1-5.6) among many results and all figures of the finite sam-

ple distributions of the ML estimator are standardized as

I1/2n (θ̂ − θ) ,(5.26)

where θ = (θi) is the vector of parameters and and θ̂ is the ML

estimator. This makes possible to compare them to the standard

normal distributions.

In our numerical evaluations we sometimes hit the boundaries of the

non-negativity of intensity functions with finite samples, which make

the simulation some instabilities. Thus we have set non-negativity re-

strictions on parameters in our simulations. Then we have reasonable

results, but then sometimes we observe that the maximum likelihood

estimators of coefficients have the resulting biases, which are basically

not very large. We summarize the setting of our numerical experi-

ments : the simulation size N = 100, and for GPD(σj, ξj) we set

(σ1, ξ1) = (0.007, 0.22), and (σ2, ξ2) = (0.008, 0.15). These numerical

values are based on our preliminary the empirical study, which give

reasonable estimates.

Among many simulations we illustrate our results in Table 5-1 and

Figures. Because we have taken α∗
12 = 0, the resulting estimate is not

significant. Other estimates of αij take resonable values on average.

There are some positive biases on αij and negative biases on the initial

intensities, which are the results of the non-negativity of parameter
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Figure 5-1 : α∗
12

Figure 5-2 :α∗
21
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Figure 5-3 :α∗
23

Figure 5-4 :α∗
31
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Figure 5-5 :γ∗

Figure 5-6 :λ∗
3,0
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α∗
11 α∗

12 α∗
13 α∗

21 α∗
22 α∗

23

True 0.57000 0.00000 0.19000 0.00010 0.71000 0.09500

Mean 0.63641 0.00259 0.12387 0.03994 0.76318 0.07905

RMSE 0.01045 0.00426 0.00913 0.00568 0.01004 0.00557

α∗
31 α∗

32 α∗
33 γ∗ λ∗

1,0 λ∗
2,0 λ∗

3,0

True 0.05900 0.12000 0.20000 0.02700 0.00930 0.00530 0.00084

Mean 0.06748 0.13922 0.11315 0.02859 0.00853 0.00427 0.00107

RMSE 0.00272 0.00380 0.00963 0.00033 0.00019 0.00017 0.00007

Table 5-1 : Simulation results

restrictions.

We will also use the χ2−distributions as the limiting distributions of

the likelihood ratio statistics for hypotheses testing in our empirical

study. We have confirmed that the χ2− approximations with finite

samples are often appropriate.

6 Empirical Applications

In this section we will report two empirical examples by using the

SHPP models. The first one is the three major stock markets, namely,

Tokyo, New-York, and London. Since there are some time differences

when each markets are open and close, it is reasonable to assume

that there is no co-jumps. As the second example, we will report the

empirical analysis of Tokyo and HK (Hong Kong) markets. Since two

markets are open and time difference is negligible, it may be reasonable

to use the extended Hawkes models with co-jumps. Our data used
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Table 6-1 : Tail Distributions

Log Likelihood σ∗
i ξi

J -1190.72 0.00806 0.16874

SD　 0.00065 0.06431

Log Likelihood σ∗
i ξi

NY -797.385 0.00765 0.21538

SD　 0.00076 0.08082

Log Likelihood σ∗
i ξi

L -775.779 0.00850 0.10799

SD　 0.00084 0.07717

are daily data of Nikkei225, S&P500 and FTSE100 during 1990/1/2-

2015/8/25. We have chosen u = 2% because Kunitomo, Ehara and

Kurisu (2016) have analysed this case and obtained reasonable results.

6.1 Example 1 (Tokyo-NY-London)

We first maximize the likelihood L2 to estimate the marginal distribu-

tions of financial market returns. As we have shown in Table 6.1, we

have confirmed that the marginal distributions of market returns have

thicker tails than the normal distribution. Hence, it may be appropri-

ate to use the generalized Pareto distribution in our estimation. The

standard deviations (SD) are estimated by the nimerical evaluation of

Fisher Information matrix.

As the estimated models with two dimension (d = p = 2), we take

the impact functions c(x) as Case (1) c(x) = 1, Case (2) c(x) = x,

21



and Case (3) c(x) = xc (0 < c < 1). The estimated values of the log-

likelihood and AIC are those with the marginal distributions L1. The

full likelihood can be calculated by using L1 and L2. The standard

deviations of the estimated coefficients are evaluated numerically by

using the inverse of the estimated Fisher information matrix.

Case 1

We estimated the intensity function as

λn
1(t) = λn

10 +
∫ t

0
α11e

−γ(t−s)dNn
1 (s) +

∫ t

0
α12e

−γ(t−s)dNn
2 (s) ,

λn
2(t) = λn

20 +
∫ t

0
α21e

−γ1(t−s)dNn
1 (s) +

∫ t

0
α22e

−γ(t−s)dNn
2 (s) .

The maximum likelihood estimates can be sometimes unstable numer-

ically, we set the restriction that the discounted parameters γi have

the same value γ. We show the estimation results in Table 6.2.

Table 6-2 (1): Tokyo-NY

Log Likelihood AIC α11 α12

Tokyo-NY　 -2444.14 4902.27 0.01490 0.00452

SD　 0.002102 0.00162

α21 α22 γ λ10 λ20

0.00000 0.01796 0.0234 0.00583 0.00390

0.00070 0.00247 0.0030 0.00126 0.00093

In the above table N1 corresponds to Tokyo and N2 corresponds

to NY in Tokyo-NY markets. In Tokyo-London, N1 corresponds to
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Table 6-2 (2) : Tokyo-London

Log Likelihood AIC α11 α12

Tokyo-London　 -2421.02 4856.04 0.01692 0.00437

SD　 0.00235 0.00173

α21 α22 γ λ10 λ20

0.00062 0.02028 0.02729 0.00683 0.00361

0.00073 0.00284 0.00341 0.00126 0.00087

Tokyo while N2 correponds to London.

Case 2

We estimated the intensity function as

λn
1(t) = λn

10 +
∫ t

0
α11e

−γ(t−s)X1dN
n
1 (s) +

∫ t

0
α12e

−γ(t−s)X2dN
n
2 (s) ,

λn
2(t) = λn

20 +
∫ t

0
α21e

−γ(t−s)X1dN
n
1 (s) +

∫ t

0
α22e

−γ(t−s)X2dN
n
2 (s) ,

and we show our estimation results in Figure 6.3.

Table 6-3 (1) : Tokyo-NY

Log Likelihood AIC α11 α12

Tokyo-NY　 -2441.59 4897.19 4.83076e-01 1.31388e-01

SD　 0.07110 0.05232

α21 α22 γ λ10 λ20

3.12087e-07 5.81280e-01 2.32784e-02 6.72085e-03 4.31518e-03

0.02584 0.08305 0.00310 0.00131 0.00095

Case 3
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Table 6-3 (2) : Tokyo-London

Log Likelihood AIC α11 α12

Tokyo-London　 -2418.77 4851.55 0.57164 0.13416

SD　 0.08127 0.05768

α21 α22 γ λ10 λ20

0.02901 0.68684 0.02833 0.007645 0.00388

0.02905 0.09947 0.0037 0.00130 0.00089

We estimated the intensity function as

λn
1(t) = λn

10 +
∫ t

0
α11e

−γ(t−s)X1
c11dNn

1 (s) +
∫ t

0
α12e

−γ(t−s)X2
c12dNn

2 (s) ,

λn
2(t) = λn

20 +
∫ t

0
α21e

−γ(t−s)X2
c21dNn

1 (s) +
∫ t

0
α22e

−γ(t−s)X2
c22dNn

2 (s) .

The maximum likelihood estimates are sometimes unstable numeri-

cally, we set the restriction that the discounted parameters γi have

the same value γ and also we set the restriction c11 = c12, c21 = c22.

We show the estimation results in Table 6.4.

Table 6-4 (1) : Tokyo-NY

Log Likelihood AIC α11 α12 α21 α22

Tokyo-NY　 -2440.769 4899.538 0.0789 0.02271 0.0000 0.0948

SD　 0.3553 0.1005 0.0053 0.1169

γ λ10 λ20 c11 = c12 c21 = c22

0.02320 0.006132 0.00403 0.4739 0.47605

0.00305 0.00159 0.00096 1.28043 0.35940

From our estimated results, we find that Model 2 and Model 3 are
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Table 6-4 (2) : Tokyo-NY

Log Likelihood AIC α11 α12 α21 α22

Tokyo-London　 -2417.74 4853.48 0.21233 0.05087 0.00656 0.17068

SD　 0.27649 0.06779 0.01023 0.17829

γ λ10 λ20 c1,1=c1,2 c2,1=c2,2

0.02800 0.00730 0.00373 0.71330 0.59962

0.00363 0.00133 0.00089 0.37337 0.29613

better than Model 1. Also by using AIC Model 2 is better than Model

3. In other worlds, Model 3 has too many parameters and Model 2 is

better than Model 3 as Tokyo-NY markets.

Granger-noncausality Tests

We use the non-causality tests based on the likelihood ratio principle.

In particular, our results in Appendix include not only the multivariate

cases, but also the limiting Fisher information matrix can be random

variables. Under a regularity conditions including the conditions of

no-cojumps, we summarize the basic results, which is called Wilks-

property.

Theorem 6.1 : Let the log-likelihood function of the Hawkes-type

point processes with true parameters be LT (θ0), the log-likelihood

function with the maximum likelihood estimator θ̂ML be LT (θ̂ML) un-

derΘ ∈ θ and the log-likelihood function with the restricted maximum

likelihood estimator θ̂RML be LT (θ̂RML) under Θ1 ∈ θ (Θ1 ⊂ Θ). We

assume that the sufficient conditions for the stationarity, the existence
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of the second order moment condition of C(X), and the parameter

spaceΘ ∈ θ inRr the parameter space andΘ1 ∈ θ inRr1 (0 ≤ r1 < r)

are compact sets. Under a set of regularity conditions (see Theorem

A-3 in Appendix), as T → ∞,

2{LT (θ̂ML)− LT (θ̂RML)} d→ χ(r − r1) ,(6.27)

where r − r1 is the number of restrictions of θ = (θk) and χ(r − r1) is

the χ2− random variable with r − r1 degrees of freedom.

Some details of the regularity conditions will be discussed in Appendix.

When we apply the Granger-causality test procedure, we set the im-

pact function as c(x) = x. We report our empirical results for the

hypothesis H0 : αij = 0 by using the likelihood ratio test statis-

tics. For the null-hypothesis H0 : α21 = 0, the likelihood ratio was

2 × (−2441.594 + 2441.594) ∼ 0 and we could not reject the null-

hypothesis. (The 95% upper-percentage point of χ2(1) is 3.481 in

Table 6-5(1).) This means that the change of the Japanese financial

market has little impact on the U.S. financial market.

Next, for testing the null-hypothesis H0 : α12 = 0, the likelihood

ratio test statistics was 2× (−2441.594+2446.297) = 9.406, and then

the null-hypothesis was rejected. This means that there is a significant

effect from the U.S. market to the Japanese financial markets (see

Table 6-5(2)).
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Table 6-5(1) : Tokyo-NY

Log Likelihood AIC α11 α12

Tokyo-NY　 -2441.59 4895.19 0.48299 0.13130

SD　 0.06967 0.05249

α21 α22 γ λ10 λ20

null 0.58119 0.02327 0.00672 0.00432

null 0.08278 0.00302 0.00131 0.00084

Table 6-5(2) : Tokyo-NY

Log Likelihood AIC α11 α12

Tokyo-NY　 -2446.30 4904.59 0.47794 null

SD　 0.06887 null

α21 α22 γ λ10 λ20

0.0000 0.53663 0.021209 0.008161 0.00414

0.02415 0.07646 0.00279 0.00129 0.00095

Similarly, we have done empirical analysis on Tokyo-London mar-

kets. For the null-hypothesis H0 : α21 = 0, the likelihood ratio statistic

was 2× (−2418.773 + 2419.359) = 1.172 and the null-hypothesis was

not rejected. This means that the effect of Japanese financial market

on London is rather limited.

For the null-hypothesis H0 : α12 = 0, the likelihood ratio statistic

was 2 × (−2418.773 + 2422.848) = 8.15 and the null-hypothesis was

rejected. This means that there is an effect of London market on

Tokyo (see Table 6-6(1),(2)).
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Table 6-6(1) : Tokyo-London

Log Likelihood AIC α11 α12

Tokyo-London　 -2419.36 4850.72 0.56271 0.13039

SD　 0.07960 0.05631

α21 α22 γ λ10 λ20

null 0.68456 0.02774 0.00759 0.00442

null 0.09854 0.00356 0.00130 0.00079

Table 6-6(2) : Tokyo-London

Log Likelihood AIC α11 α12

Tokyo-London　 -2422.85 4857.70 0.57022 null

SD　 0.08093 null

α21 α22 γ λ10 λ20

0.02494 0.64452 0.02626 0.00874 0.00380

0.02690 0.09437 0.00346 0.00130 0.00090

To summarize our findings among three major financial markets,

the effects of Japanese market on the U.S. and London are rather

limited while we can find significant effects of U.S. financial market

and London financial market on Tokyo market were rather significant.

6.2 Example 2 : Tokyo-HK markets

For the second example, we have used daily data of Nikkei-225 and

Hansen Inde of Hong-Kong(HK) during 1990/1/2-2015/8/25. Since

the trading periods in two financial markets are quite similar, there
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Table 6-7 : Tail Distributions

Log Likelihood σ∗
i ξi

J -1919.307 0.00757 0.22778

SD　 0.00051 0.05552

Log Likelihood σ∗
i ξi

HK -1888.716 0.00861 0.15773

SD　 0.00055 0.05076

should be simultaneous movements in two markets. Because there can

be many additional parameters in Case 3, the estimated results are

often not statistically significant and we omit the results of Case 3.

We first maximize the likelihood L2 to estimate the marginal dis-

tributions of financial market returns. As we have shown before, we

have confirmed that the marginal distributions of market returns have

thicker tails than the normal distribution as in Table 5.9. Hence, it

may be appropriate to use the generalized Pareto distribution in our

estimation.

The estimated models with two dimensions (d = 2 and p = 3), we

take the impact functions c(x) as Case (1) c(x) = 1 and Case (2) c(x) =

x. The estimated values of the log-likelihood and AIC are those with

the marginal distributions L1. The full likelihood can be calculated by

using L1 and L∗
2. The standard deviations of the estimated coefficients

are evaluated numerically by using the inverse of the estimated Fisher

information matrix.

Case 1
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We estimated the intensity function as

λn
1(t) = λn

10 +
∫ t

0
α11e

−γ(t−s)dNn
1 (s) +

∫ t

0
α12e

−γ(t−s)dNn
2 (s)

+
∫ t

0
α13e

−γ(t−s)dNn
1,2(s) ,

λn
2(t) = λn

20 +
∫ t

0
α21e

−γ(t−s)dNn
1 (s) +

∫ t

0
α22e

−γ(t−s)dNn
2 (s)

+
∫ t

0
α23e

−γ(t−s)dNn
1,2(s) ,

λn
12(t) = λn

12,0 +
∫ t

0
α31e

−γ(t−s)dNn
1 (s) +

∫ t

0
α32e

−γ(t−s)dNn
2 (s)

+
∫ t

0
α33e

−γ(t−s)dNn
12(s) .

The maximum likelihood estimates can be sometimes unstable numer-

ically, we set the restriction that the discounted parameters γi have

the same value γ. We show the estimation results in Table 6-8.

Table 6-8 : Tokyo-HK

Log Likelihood AIC α11 α12 α13

Tokyo-HK　 -3954.73 7935.47 0.015 0.000 0.012

SD　 0.002 0.001 0.0036

α31 α32 α33

Tokyo-HK　 0.0015 0.0035 0.0086

SD　 0.0007 0.0008 0.0022

α21 α22 α23 γ λ1 λ2 λ3

Tokyo-HK 0.000 0.020 0.007 0.0262 0.0090 0.0048 0.0008

SD 0.00074 0.0025 0.0033 0.0028 0.0016 0.0012 0.0007

In the above table N1 corresponds to Tokyo and N2 corresponds to

NY in Tokyo-NY markets.
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Case 2

We estimated the intensity function as

λn
1(t) = λn

10 +
∫ t

0
α11e

−γ(t−s)X1dN
n
1 (s) +

∫ t

0
α12e

−γ(t−s)X2dN
n
2 (s)

+
∫ t

0
α13e

−γ(t−s)[max
i

Xi]dN
n
1,2(s) ,

λn
2(t) = λn

20 +
∫ t

0
α21e

−γ(t−s)X1dN
n
1 (s) +

∫ t

0
α22e

−γ(t−s)X2dN
n
2 (s)

+
∫ t

0
α23e

−γ(t−s)[max
i

Xi]dN
n
12(s) ,

λn
12(t) = λn

12,0 +
∫ t

0
α31e

−γ(t−s)X1dN
n
1 (s) +

∫ t

0
α32e

−γ(t−s)X2dN
n
2 (s)

+
∫ t

0
α33e

−γ(t−s)[max
i

Xi]dN
n
1,2(s) .

We show the estimation results in Figure 6.9.

Table 6-9 : Tokyo-HK

Log Likelihood AIC α11 α12 α13

Tokyo-HK　 -3944.79 7915.58 0.5675 0.000 0.1930

SD　 0.764 0.0373 0.0738

α31 α32 α33

Tokyo-HK　 0.0586 0.1242 0.0547

SD　 0.0007 0.0008 0.0022

α21 α22 α23 γ λ1 λ2 λ3

Tokyo-HK 0.0001 0.7147 0.0950 0.0267 0.0094 0.0053 0.0008

SD 0.0241 0.0871 0.0701 0.0029 0.0016 0.0012 0.0007

From our estimated results, we find that Model 2 is better than

Model 1.
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Granger-noncausality Tests

We use the non-causality tests based on the likelihood ratio principle.

Although we allow the possible co-jumps, it is possible to apply the

martingale central limit (MCLT) theorem for point processes. For the

sake of completeness, we re-state the Wilks-property.

Theorem 6.2 : Let the log-likelihood function of the Hawkes-type

point processes with true parameters be LT (θ0), the log-likelihood

function with the maximum likelihood estimator θ̂ML be LT (θ̂ML) un-

derΘ ∈ θ and the log-likelihood function with the restricted maximum

likelihood estimator θ̂RML be LT (θ̂RML) under Θ1 ∈ θ (Θ1 ⊂ Θ). We

assume that the sufficient conditions for the stationarity, the existence

of the second order moment condition of C(X), and the parameter

spaceΘ ∈ θ inRr the parameter space andΘ1 ∈ θ inRr1 (0 ≤ r1 < r)

are compact sets. Under a set of regularity conditions (see Theorem

A-3 in Appendix), as T → ∞,

(i) The maximum likelihood estimator θ̂ML under the misspecified

likelihood function LT (θ̂ML) is not consistent when there are some co-

jumps.

(ii) Under a set of regularity conditions even when co-jumps exist, as

T → ∞,

2{LT (θ̂ML)− LT (θ̂RML)} d→ χ(r − r1) ,(6.28)

where r − r1 is the number of restrictions of θ = (θk) and χ(r − r1) is

the χ2− random variable with r − r1 degrees of freedom.
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Some details of the regularity conditions will be discussed in Appendix.

When we apply the Granger-causality test procedure, we set the im-

pact function as c(x) = x. We report our empirical results for the

hypothesis H0 : αij = 0 by using the likelihood ratio test statistics.

For the null-hypothesis H0 : α13 = 0, the likelihood ratio was 11.14

and we reject the null-hypothesis. (The 95% upper-percentage point of

χ2(1) is 3.481 in Table 6-10(1)). This means that we have a significant

instantaneous causal relation between the Japanese financial market

and Hong-Kong financial market.

Table 6-10(1) : Tokyo-HK

Log Likelihood AIC α11 α12 α13

Tokyo-HK　 -3950.36 7924.72 0.6163 0.0023 null

SD　 0.077 0.028 null

α31 α32 α33

Tokyo-HK　 0.057 0.124 0.02055

SD　 0.027 0.030 0.054

α21 α22 α23 γ λ1 λ2 λ3

Tokyo-HK 0.000 0.701 0.092 0.0262 0.0103 0.0012 0.0007

SD 0.024 0.085 0.069 0.0029 0.0017 0.0012 0.0007

Next, for testing the null-hypothesis H0 : α12 = 0, the likelihood

ratio test statistics was 0.0, and then the null-hpothesis was accepted.

Next, for testing the null-hypothesis H0 : α12 = 0, α13 = 0 the

likelihood ratio test statistics was 11.14, and then the null-hypothesis

was rejected (see Table 6-10(3)).
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Table 6-10(2) : Tokyo-HK

Log Likelihood AIC α11 α12 α13

Tokyo-HK　 -3944.79 7913.58 0.5644 null 0.1932

SD　 0.076 null 0.068

α31 α32 α33

Tokyo-HK　 0.058 0.1229 0.2071

SD　 0.0268 0.0297 0.0544

α21 α22 α23 γ λ1 λ2 λ3

Tokyo-HK 0.000 0.7099 0.0916 0.0265 0.0093 0.0053 0.0008

SD 0.0239 0.0895 0.0691 0.0029 0.0015 0.0012 0.0007

For the null-hypothesis H0 : α21 = 0, the likelihood ratio was 0.006

and we reject the null-hypothesis. (The 95% upper-percentage point

of χ2(1) is 3.481 in Table 6-10(4)).

Next, for testing the null-hypothesis H0 : α23 = 0, the likelihood

ratio test statistics was 2.42, and then the null-hypothesis was ac-

cepted(see Table 6-10(5)).

Similarly, for testing the null-hypothesis H0 : α21 = 0, α23 = 0 the

likelihood ratio test statistics was 2.66, and then the null-hypothesis

could not be rejected (see Table 10-6(6)).

To summarize our findings among Tokyo and Hong Kong financial

markets, the simultaneous effects of two markets are significant.

6.3 A Further Empirical Analysis

We also use the spectral decomposition and the relative power contri-

butions as we explained in Section 3. Three figures of US, UK and HK
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Table 6-10(3) : Tokyo-HK

Log Likelihood AIC α11 α12 α13

Tokyo-HK　 -3950.36 7922.72 0.6181 null null

SD　 0.0762 null null

α31 α32 α33

Tokyo-HK　 0.0576 0.1229 0.2077

SD　 0.0267 0.0297 0.0541

α21 α22 α23 γ λ1 λ2 λ3

Tokyo-HK 0.00003 0.7047 0.09145 0.0263 0.0104 0.0053 0.0008

SD 0.0237 0.0854 0.0688 0.0029 0.0015 0.0012 0.0007

are given as Figure 6-1, 6-2 and 6-3. In the first two decompositions

we assume that there are no co-jumps while in the last one we do have

co-jumps terms. We have adopted the cases when cij(x) = x because

the resulting models have the minimum AIC.

For the relashionship between Tokyo-NY financial markets, the self

contribution play major contribution while there is some contribution

from NY to Tokkyo in the low frequency, which corresponds to the

long-run relation. On the other hand, for the relashionship between

Tokyo-HK financial markets, the instantaneous contribution plays a

major contribution in all frequencies as well as the self contribution.

This aspect reflects the fact that we have used the SHPP models.
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Figure 6-1 : Relative Power Contributions

Figure 6-2 : Relative Power Contributions
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Table 6-10(4) : Tokyo-HK

Log Likelihood AIC α11 α12 α13

Tokyo-HK　 -3944.79 7913.58 0.5647 0.0000 0.1912

SD　 0.0759 0.0371 0.0733

α31 α32 α33

Tokyo-HK　 0.0595 0.1229 0.2084

SD　 0.0271 0.0298 0.0547

α21 α22 α23 γ λ1 λ2 λ3

Tokyo-HK null 0.7082 0.0972 0.0266 0.0094 0.0053 0.0008

SD null 0.0859 0.0679 0.0029 0.0016 0.0010 0.0007

7 Conclusions

In this paper we developed a new method of econometric analysis

of multivariate time series of events and proposed the simultaneous

Hawkes-type point process modeling. Unlike some existing litera-

tures, we can use statistical models for simultaneous sudden and large

events and delayed events occurred explicitly. By using the simultane-

ous multivariate Hawkes-type point process approach and the SHPP

models, we have investigated the Granger-causality and the instanta-

neous Granger causality on different financial markets and economies

and developed the non-causality tests.

By applying the non-causality tests for both the Granger non-

causality (GNC) and the Granger instantaneous non-causality (GINC),

we have found the important relations among major financial markets

and several empirical findings. In Tokyo-NY financial markets, there
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Table 6-10(5) : Tokyo-HK

Log Likelihood AIC α11 α12 α13

Tokyo-HK　 -3946.0 7916.0 0.5628 0.000 0.1911

SD　 0.0754 0.0369 0.0732

α31 α32 α33

Tokyo-HK　 0.0577 0.1230 0.2067

SD　 0.0267 0.0297 0.0543

α21 α22 α23 γ λ1 λ2 λ3

Tokyo-HK 0.0112 0.737 0.0264 0.0093 0.0054 0.0008

SD 0.0239 0.0857 0.0029 0.0016 0.0012 0.0007

is a strong one way direction in causation while in Tokyo-HK financial

markets the simultaneous effects are dominant.

There are several questions remained to be answered. Although we

have used the Hawkes-type point processes, there can be many possible

non-linear point processes and it may be interesting to investigate

the robustness of our empirical results. Also the choice of threshold

parameters is an important one, which is related to the relevance of the

generalized Pareto distribution (GPD) in the statistical extreme value

theory and we need a more convincing statistical theory on the choice

of theresholds. These questions are currently under investigation.
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APPENDIX : Mathematical Details

In this Appendix, we give some mathematical details we have used

in the previous sections. In the statistical analysis of point processes,

Ogata (1978) derived the asymptotic properties of consistency and

asymptotic normality of the maximum likelihood estimation for one

dimensional intensity models, which have been classical and often cited

in the related studies. He obtained the results by using a martingale

central limit (CLT) theorem for point processes, which has not been

well-known for econometricians, and also the asymptotic normality

holds under more general conditions often cited. Hence, we first dis-

cuss some properties of jump martingales with continuous time pa-

rameter. We omit the subscript n without any loss of generality in

this Appendix.

(i) A Martingale CLT

We present a general martingale CLT for one-dimensional point pro-

cesses and then we can apply to our situation as an application.

Theorem A.1 : Let an F−adapted simple point process on R+ be

N and the F−(continuous)compensator be A. We assume that for

any T (> 0) there exists an F−adapted gT (t) and an F0−adapted

(positive) random variable η, which satisfy the following conditions.

(i) E[ 1T
∫ T
0 (gT (x))

2dA(x)] < ∞ ,

(ii) For any δ (> 0),
1

T 1+δ
A(T )

p−→ 0,(A.29)
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(iii) As T −→ ∞

1

T

∫ T

0
(gT (x))

2dA(x)
p−→ η2,(A.30)

(iv) For any c > 0, as c → ∞

E[
1

T

∫ T

0
(gT (x)I(|gT (x)| > c))2dA(x)|F0]

p−→ 0 .(A.31)

Then

XT =
1√
T

∫ T

0
gT (x)[dN(x)− dA(x)](A.32)

converges to Uη in the sense of F0−(stable convergence sense), where

U is N(0, 1), which is independent of F0.

Note : The method of proof is basically a modification of the one

given in Daley=Vere-Jones (2008, VolII), Theorem 14.5.I. They de-

rived a martingale CLT under a Lyapunov condition. Our condition

includes the speed of compensator, which may be a reasonable condi-

tion.

Proof : For any real number y and fT (u) = (1/
√
T )gT (u), we define

ζT (t, y) = exp

(
iy
∫ t

0
fT (u)[dN(u)− dA(u)] +

1

2
y2
∫ t

0
[fT (u)]

2dA(u)

)
.

(A.33)

By using Lemma A-1, when A(t) and N(t) are a continuous process

and a pure jump process, respectively, we can represent

ζT (t, y) = exp

(
(
1

2
y2[fT (u)]

2 − iy
∫ t

0
fT (u))dA(u)

)
(A.34)

×
∏
i

[1 + (exp(iy
∫ t

0
fT (ti)− 1)∆N(ti)] ,
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where ti are jump times. By using the transformation of jump process,

we have

= ζT (t, y)− 1 =
∫ t

0
ζT (u−, y)

[
1

2
y2[fT (u)]

2 − iyfT (u)]dA(u)

+[exp(iyfT (u))− 1]dN(u)]

=
∫ t

0
ζT (u−, y)(exp(iyfT (u))− 1)(dN(u)− dA(u))

+
∫ t

0
ζT (u−, y)

[
exp(iyfT (u))− 1− iyfT (u) +

1

2
y2[fT (u)]

2
]
dA(u) .

We define the stopping time τ by τ = inf{t :
∫ T
0 [fT (u)]

2dA(u) ≥

η2}. Then for any F0−measureable and essentially bounded random

variable Z, we set t = T ∧ τ . By the martingale property we have

E

[
Z
∫ T∧τ

0
ζT (u−, y)(exp(iyfT (u))− 1)(dN(u)− dA(u))|F0

]
= 0 .

Hence

|E(ZζT (T ∧ τ)|F0]−Z)| ≤ E[|Z|
∫ T∧

0
|ζ(u−, y)R(fT (u), y)|dA(u)|F0] ,

where

R(fT (u), y) = exp(iyfT (u))− 1iyfT (u) +
1

2
y2[fT (u)]

2 .

For 0 < u < T ∧ τ we have

|ζT (T ∧ τ)| ≤ exp(
1

2
y2
∫ T∧τ

0
[fT (u)]

2dA(u)) ≤ exp(
1

2
y2η2) .

Also by the Taylor-expansion,

|R(fT (u), y)| ≤ y2|fT (u)|2I[|fT (u)| > cT ]+
|θy|3

3!
|fT (u)|3I[|fT (u)| ≤ cT ]
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and then

|E(ZζT (T ∧ τ)|F0]− Z|

≤ |Z|[y2
∫ T∧τ

0
|fT (u)|2I[|fT (u)| > cT ]dA(u)

+y3
∫ T∧τ

0
|fT (u)|3I[|fT (u) ≤ cT ]dA(u) ,

where |θ| ≤ 1. Therefore the right-hand side multiplying exp(−1/2y2η2)

is bounded by

|E(Z[ρTeiyXT − e−1/2y2η2])| ,

where

ρT = exp

[
iy
∫ T

T∧τ
fT (u)([dN(u)− dA(u)]− 1

2
(η2 −

∫ T

0
[fT (u)]

2dA(u))+

]
.

We set gT (u) = fT (u)/
√
T and c = cT/

√
T . Then

∫ T∧τ

0
|fT (u)|3I[|fT (u) ≤ cT ]dA(u) ≤

c3

T 3/2
A(T ∧ τ) ,

which converges to zero by our conditions. Here we have

ζT (u−, y)e−y2η2/2 = eiyXT

[
eiy

∫ T∧τ

0
fT (u)(dN−dA)+y2

2

∫ T

0
fT (u)

2dA−iy
∫ T

0
fT (u)(dN−dA)−y2η2

2

]
= eiyXTρT .

Because |ρT | ≤ 1 and ρ → 1, we find that E[Z(ρT − 1)eitXT )] → 0 and

then

E[Z exp(iyXT )] −→ E[Ze−
1
2y

2η2/2] .

Then by the use of weak-convergence and stable convergence (Dalay=Vere-

Jones(2008), Jacod=Protter (2012)), we have that XT −→ X (F0)-

stably). This means that for any bounded F0−measurable random
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variable Z, E [ZeiyX ] = E [Ze−y2η2/2], which implies E [eiyXT /η|F0] =

e−y2/2.

Q.E.D.

We give the integration-by-parts formula, which has been known in

stochastic analysis (see Chapter II of Protter (2003), for instance).

Lemma A.1 : Let

G1(t) =
∏
i

(1 + w(ti))∆N(ti), G2(t) = exp

(∫ t

0
v(u)dA(u)

)
,(A.35)

where v(u) = (y2/2)[fT (u)]
2 − iyfT (u) and w(ti) exp(iyfT (ti) − 1).

Then by the integration-by-parts formula,

G1(t)G2(t)−G1(0)G2(0)(A.36)

=
∫ t

0
G1(u)dG2(u) +

∫ t

0
G2(u)dG1(t)

=
∫ t

0
G1(u−)G2(u)v(u)dA(u) +

∑
i

G2(ti)G1(ti−)w(ti)∆N(ti) .

By using Theorem A.1, it is straightforward to obtain a martingale

convergence result under the same assumptions of Theorem A.1. That

is, for any ϵ > 0 we have

YT =
1

T 1/2+ϵ

∫ T

0
gT (x)[dN(x)− dA(x)]

p−→ 0 .(A.37)

Thus, we do not need to use the Ergodic Thorem for stationary stochas-

tic processes, which was one of key arguments on the asymptotic re-

sults obtained by Ogata (1978).

It is also straightforward to extend Theorem A.1 to the multivariate
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cases. Let N = (Ni) be a p × 1 vector F−adapted simple point pro-

cesses onR+ andA = (Ak) are the F−(continuous)compensators. For

any T (> 0) we consider q × p F−adapted and predictable processes

gT (t) = (gijT (t)) and a q × q F0−adapted (positive-definite) random

matrix η = (ηij), we assume the following conditions.

(i)
′
max1≤i,j≤q max1≤k≤pE[

1
T

∫ T
0 |gikT (t)||gikT (t)|dAk(t)] < ∞ ,

(ii)
′
For any δ (> 0),

1

T 1+δ
max
1≤k≤p

Ak(T )
p−→ 0,(A.38)

(iii)
′
As T −→ ∞

1

T

∫ T

0

p∑
k=1

gikT (t)g
jk
t (x)dAk(t)

p−→ ηij ,(A.39)

where η = (ηij) is a q × q non-negative definite matrix.

(iv)
′
For any c > 0, as c → ∞

max
1≤k≤p

E[
1

T

∫ T

0
∥g·,k

T (t)∥2I(∥g· k
T (t)∥ > c)dAk(t)|F0]

p−→ 0 ,(A.40)

where g·k
T (t) = (g1,kT , · · · , gp,kT )

′
.

Then we have the result.

Theorem A.2 : For the proint processes N = (Ni) and their com-

pensators A = (Ai) stated, we assume the conditions (i)
′−(iv)

′
. Then

a q × 1 vector process

XT =
1√
T

∫ T

0

p∑
i=1

g·,k
T (t)[dNk(t)− dAk(t)](A.41)

converges to η1/2U in the sense of F0−(stable convergence sense),

where U is Nq(0, Iq), which is independent of F0 and we have used
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the notation η1/2η1/2 = η.

(ii) A Wilks Property

We consider the parametric point process models for the case when

the intensity function is λi(s, θ) for the point processes Ni(s, θ) (i =

1, · · · , p) over the observation period [0, T ]. We take θ = (θi) ∈ Rr.

Then the log-likelihood function is given by

LT (θ) =
p∑

i=1

LiT (θ) ,(A.42)

where

LiT (θ) =
∫ T

0
log λi(s, θ)dNi(s)−

∫ T

0
λi(s, θ)ds ,(A.43)

and its derivatives are given by

∂LiT (θ)

∂θ
=
∫ T

0

log λi(s, θ)

∂θ
[dNi(s)− λi(s, θ)ds] ,(A.44)

and

∂2LiT (θ)

∂θ∂θ′ =
∫ T

0

1

λi

∂2λi

∂θ∂θ′ [dNi(s)−λi(s, θ)ds]−
∫ T

0
[
log λi(s, θ)

∂θ
∂θ

′
]λi(s, λ)ds .

(A.45)

Theorem A.3 : Let the log-likelihood function be LT (θ), the log-

likelihood function under the true parameter θ0 be LT (θ0), and the

log-likelihood function under the maximum likelihood estimator θ̂ML

be LT (θ̂ML). Then under the following regularity conditions as T → ∞

2{LT (θ̂ML)− LT (θ0)} d→ χ(r) ,(A.46)
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where r is the dimension of θ = (θk) and χ(r) is the χ2−distribution

with degrees of freedom r. The conditions are

1

T

p∑
i=1

∫ T

0
[
∂ log λi

∂θ

∂ log λi

∂θ′ ]λi(s, θ)ds
p−→ I(θ0) > 0 (a positive definite matrix),

(A.47)
1√
T

p∑
i=1

∫ T

0
[
∂ log λi

∂θ
][dNi(s)− λi(s, θ)ds]

w−→ Nr(0, I(θ0)) ,(A.48)

1

T

p∑
i=1

∫ T

0
[
∂2λi

∂θ∂θ′ ]
1

λi
[dNi(s)− λi(s, θ)ds]

p−→ 0 ,(A.49)

and
1

T

p∑
i=1

∫ T

0
[
∂ log λi

∂θ

∂ log λi

∂θ′ ][dNi(s)− λi(s, θ)ds]
p−→ 0 ,(A.50)

where I(θ0) is the Fisher information matrix.

As Corollaries of Theorem A.2, it may be straightforward to give

the proofs of Theorem 6.1 and Theorem 6.2 as the non-causality tests

we have used in Section 6.

Finally, we should notice that while Ogata (1978) has discussed

a set of sufficient conditions for the consistency and the asymptotic

normality of the ML estimator in one-dimensional self-exciting point

processes, we have extended his results significantly to the multivariate

point processes under a set of weaker conditions. For instance, I(θ0) is

not necessarily a constant matrix and our conditions means the mixed

Gaussianity in our formulation. Then the limiting χ2 property of the

statistics is called the Wilks Property of statistics. As an example,
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Kunitomo, Ehara and Kurisu (2016) have used Theorem 6.1 for the

non-causality test in the sense of Granger.
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