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Abstract

Testing the number of components in multivariate normal mixture models is a long-standing

challenge. This paper develops a likelihood-based test of the null hypothesis of M0 components

against the alternative hypothesis of M0 + 1 components. We derive a local quadratic approxi-

mation of the likelihood ratio statistic in terms of the polynomials of the parameters. Based on

this quadratic approximation, we propose an EM test of the null hypothesis of M0 components

against the alternative hypothesis of M0 + 1 components, and derive the asymptotic distribu-

tion of the proposed test statistic. The simulations show that the proposed test has good finite

sample size and power properties.

Key words: asymptotic distribution; EM test; likelihood ratio test; local MLE; multivariate

normal mixture models; number of components

1 Introduction

Finite mixtures of multivariate normal distributions have been widely used in empirical applications

in diverse fields such as statistical genetics and statistical finance. Comprehensive surveys on

theoretical properties and applications can be found, for example, Lindsay (1995), Titterington

et al. (1985), and McLachlan and Peel (2000).

The number of components is an important parameter in applications of finite mixture models.

Despite its importance, testing for the number of components in multivariate normal mixture

models has been a long-standing unsolved problem because the standard asymptotic analysis of

the likelihood ratio test (LRT) statistic breaks down due to problems such as non-identifiable

parameters and the true parameter being on the boundary of the parameter space. Numerous
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papers have been written on the subject of the likelihood ratio test for the number of components

(see, e.g., Ghosh and Sen, 1985; Chernoff and Lander, 1995; Lemdani and Pons, 1997; Chen and

Chen, 2001, 2003; Chen et al., 2004; Garel, 2001, 2005), and the asymptotic distribution of the LRT

statistic for general finite mixture models has been derived as a functional of the Gaussian process

(Dacunha-Castelle and Gassiat, 1999; Azäıs et al., 2009; Liu and Shao, 2003; Zhu and Zhang, 2004).

In multivariate normal mixtures, however, the asymptotic distribution of the LRT statistic

remains an open question because, as discussed in Chen et al. (2012), normal mixtures have an

additional undesirable mathematical property that invalidates key assumptions in these works.

In particular, the normal density with mean µ and variance σ2, f(y;µ, σ2), has the property
∂2

∂µ∂µf(y;µ, σ2) = 2 ∂
∂σ2 f(y;µ, σ2). This leads to the loss of “strong identifiability” condition in-

troduced by Chen (1995). As a result, neither Assumption (P1) of Dacunha-Castelle and Gassiat

(1999) nor Assumption 7 of Azäıs et al. (2009) holds, and Assumption 3 of Zhu and Zhang (2004)

is violated, while Corollary 4.1 of Liu and Shao (2003) does not hold in heteroscedastic normal

mixtures.

This paper develops a likelihood-based test of the null hypothesis of M0 components against the

alternative hypothesis of M0 +1 components for a general M0 ≥ 1 in multivariate normal mixtures.

We propose an EM test by building on the EM approach pioneered by Li et al. (2009) and Li and

Chen (2010). The asymptotic null distribution of the proposed EM test statistic is shown to be

the maximum of random variables, each of which is a projection of a Gaussian random variable on

a cone.

To the best of our knowledge, no likelihood-based test has yet been developed for testing order

of multivariate normal mixtures, even in a simple case of testing the null hypothesis H0 : M = 1

against the alternative hypothesis HA : M = 2. In univariate normal mixtures, Chen and Li (2009)

develop an EM test for M0 = 1 against M0 = 2, and Chen et al. (2012) develop an EM test for

testing H0 : M = M0 against HA : M > M0. Kasahara and Shimotsu (2015) develop an EM test

for testing H0 : M = M0 against HA : M = M0 + 1 for general M0 ≥ 1 in finite normal mixture

regression models.

The remainder of this paper is organized as follows. Section 2 introduces multivariate normal

mixture models. Section 3 derives a version of LaCam’s differentiable in quadratic mean (DQM)

expansion that expands likelihood ratio in terms of a smooth function of parameters. This DQM-

type expansion has advantage over the “classical” approach based on the Taylor expansion that

expands up to the Hessian term because deriving a higher-order expansion becomes tedious in

multivariate normal mixtures. Sections 4 and 5 establish the local quadratic approximation in

testing the null hypothesis of M0 components against the alternative of M0+1 components. Section

6 introduces the modified EM test. Section 7 reports the simulation results. The supplementary

appendix contains proofs and auxiliary results.

We collect notation. Let := denote “equals by definition.” Boldface letters denote vectors or

matrices. For a matrixB, let λmin(B) and λmax(B) be the smallest and the largest eigenvalue ofB,

respectively. For a k-dimensional vector x = (x1, . . . , xk)
> and a matrix B, define |x| := (x>x)1/2
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and |B| := (λmax(B>B))1/2. Let x⊗k := x⊗ x⊗ · · · ⊗ x (k times). Let I{A} denote an indicator

function that takes value 1 when A is true and 0 otherwise. C denotes a generic nonnegative finite

constant whose value may change from one expression to another. Given a sequence {f(Y i)}ni=1,

let νn(f(y)) := n−1/2
∑n

i=1[f(Y i) − Ef(Y i)] and Pn(f(y)) := n−1
∑n

i=1 f(Y i). All the limits are

taken as n→∞ unless stated otherwise.

2 Multivariate finite normal mixture models

Let x = (x1, . . . , xd)
> ∈ Rd follow the normal distribution with mean µ + z>γ and variance Σ.

The density of x is

f(x|z;γ,µ,Σ) := (2π)−
d
2 (det Σ)−

1
2 exp

(
−(x− µ− z>γ)>Σ−1(x− µ− z>γ)

2

)
,

where µ is d× 1, and z and γ are p× 1. Let Θγ ⊂ Rp, Θµ ⊂ Rd, and ΘΣ ⊂ Sd+ denote the space

of γ, µ, and Σ, respectively, where Sd+ denotes the space of d × d positive definite matrices. For

M ≥ 2, denote the density of M -component finite normal mixture distribution as:

fM (x|z;ϑM ) :=
M∑
j=1

αjf(x|z;γ,µj ,Σj), (1)

where ϑM := (α,γ,µ1, . . . ,µM ,Σ1, . . . ,ΣM ) with α := (α1, . . . , αM−1)>, and αM being deter-

mined by αM := 1 −
∑M−1

j=1 αj . µj and Σj are mixing parameters that characterize the j-th

component, and αjs are mixing probabilities. γ is the coefficient of the covariate z, and γ

is assumed to be common to all the components. Define the set of admissible values of α by

Θα := {α : αj ≥ 0,
∑M−1

j=1 αj ∈ [0, 1]}, and let the space of ϑM be ΘϑM := Θα ×Θγ ×ΘM
µ ×ΘM

Σ .

The number of components M is the smallest number such that the data density admits the

representation (1). Our objective is to test

H0 : M = M0 against HA : M = M0 + 1.

3 Quadratic expansion under singular Fisher information matrix

When testing the number of components by the LRT, the Fisher information matrix becomes

singular and the log-likelihood function will be approximated by a quadratic function of polynomials

of parameters. Further, a part of parameter is not identified under the null hypothesis. We derive

a DQM-type expansion for general density that is useful for handling such cases.

Let ϑ be a parameter vector, and let f(y;θ) denote the density function of y. Let Ln(ϑ) :=∑n
i=1 log f(yi;ϑ) denote the log-likelihood function. Split ϑ as ϑ = (ψ>,π>)>, and write Ln(ϑ) =

Ln(ψ,π). π corresponds to the part of ϑ that is not identified under the null. Denote the true
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parameter value of ψ by ψ∗, and denote the set of (ψ,π) corresponding to the null hypothesis by

Γ∗ = {(ψ,π) ∈ Θ : ψ = ψ∗}. Let t(ϑ) be a continuous function of ϑ such that t(ϑ) = 0 if and

only if ψ = ψ∗. For ε > 0, define a neighborhood of Γ∗ by

Nε := {ϑ ∈ Θ : |t(ϑ)| < ε}.

We establish a general quadratic expansion that expresses Ln(ψ,π)−Ln(ψ∗,π) as a quadratic

function of t(ϑ) for ϑ ∈ Nε. Denote the density ratio by

`(y;ϑ) :=
f(y;ψ,π)

f(y;ψ∗,π)
, (2)

so that Ln(ψ,π)−Ln(ψ∗,π) =
∑n

i=1 log `(yi;ϑ). We assume that `(y;ϑ) can be expanded around

`(y;ϑ∗) = 1 as follows.

Assumption 1. `(y;ϑ)− 1 admits an expansion

`(y;ϑ)− 1 = t(ϑ)>s(y;π) + r(y;ϑ), (3)

where s(y;π) and r(y;ϑ) satisfy, for some C ∈ (0,∞) and ε > 0, (a) E supπ∈Θπ |s(Y ;π)|2 <
C, (b) supπ∈Θπ |Pn(s(y;π)s(y;π)>) − Iπ| = op(1) with supπ∈Θπ λmax(Iπ) < C, (c)

E[supϑ∈Nε |r(Y ;ϑ)/(|t(ϑ)||ψ − ψ∗|)|2] < ∞, (d) supϑ∈Nε [νn(r(y;ϑ))/(|t(ϑ)||ψ − ψ∗|)] = Op(1),

(e) 0 < infπ∈Θπ λmin(Iπ), (f) supπ∈Θπ |νn(s(y;π))| = Op(1).

We first establish an expansion Ln(ψ,π) in a neighborhood Nc/√n that holds for any c > 0.

Proposition 1. Suppose that Assumption 1(a)–(e) holds. Then, for all c > 0,

sup
ϑ∈Nc/√n

∣∣∣Ln(ψ,π)− Ln(ψ∗,π)−
√
nt(ϑ)>νn(s(y;π)) + nt(ϑ)>Iπt(ϑ)/2

∣∣∣ = op(1).

The next proposition expands Ln(ψ,π) in An(δ) := {ϑ ∈ Nε : Ln(ψ,π)−Ln(ψ∗,π) ≥ −δ} for

δ ∈ (0,∞). This proposition is useful for deriving the asymptotic distribution of the LRTS because

a consistent MLE is in An(δ) by definition and it is difficult to find a uniform approximation of

Ln(ψ,π) up to an op(1) term in Nε.

Proposition 2. Suppose that Assumption 1 holds. Then, for any δ > 0, (a) supϑ∈An(δ) |t(ϑ)| =

Op(n
−1/2);

(b) sup
ϑ∈An(δ)

∣∣∣Ln(ψ,π)− Ln(ψ∗,π)−
√
nt(ϑ)>νn(s(y;π)) + nt(ϑ)>Iπt(ϑ)/2

∣∣∣ = op(1).
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4 Local quadratic approximation for testing H0 : M = 1 against

HA : M = 2

In this section, we develop a local quadratic approximation for testing the null hypothesis H0 :

M = 1 against HA : M = 2 when the data are from H0. We consider a random sample of

n independent observations {Xi,Zi}ni=1 from the true one-component density f(x|z;γ∗,µ∗,Σ∗).

Here, the superscript ∗ denotes the true population value. Let a two-component mixture density

function with ϑ2 = (α,γ,µ1,µ2,Σ1,Σ2) ∈ Θϑ2 be

f2(x|z;ϑ2) := αf(x|z;γ,µ1,Σ1) + (1− α)f(x|z;γ,µ2,Σ2). (4)

The model (4) yields the true density f(x|z;γ∗,µ∗,Σ∗) if ϑ2 lies in the set Θ∗2 := {ϑ2 ∈ Θϑ2 :

{(µ1,Σ1) = (µ2,Σ2) = (µ∗,Σ∗),γ = γ∗} or {α(1− α) = 0,γ = γ∗}.
We partition the null hypothesis H0 : m = 1 into two as follows:

H01 : (µ1,Σ1) = (µ2,Σ2) and H02 : α(1− α) = 0.

The regularity conditions for a standard asymptotic analysis fails in finite mixture models because

(i) under H01, α is not identified, and the Fisher information matrix for the other parameters

becomes singular; (ii) under H02, α is on the boundary of the parameter space, and either µ1 or

µ2 is not identified.

In addition to the failure of regularity conditions that is common to all finite mixture models,

the normal mixture model (4) has additional undesirable mathematical properties, as discussed in

Chen and Li (2009): (a) The Fisher information for testing H02 is not finite unless the range of

det(Σ1)/ det(Σ2) is restricted. (b) The derivatives of f2(y|x, z;ϑ2) of different orders are linearly

dependent because ∇µiµjf(y|x, z;γ,µ,Σ) = 2∇Σijf(y|x, z;γ,µ,Σ) (loss of strong identifiability).

(c) The log-likelihood function is unbounded and the maximum likelihood estimate fails to exist

(Hartigan, 1985; Kiefer and Wolfowitz, 1956).

In view of problem (a), we focus on testing H01 : (µ1,Σ1) = (µ2,σ2) in the following. We

handle problem (c) by considering a maximum penalized likelihood estimator (PMLE) introduced

by Chen and Tan (2009) and Alexandrovich (2014). Let Sx denote the sample covariance matrix.

Similar to Chen and Tan (2009), we use the following penalty function

pn(ϑM ) =

M∑
m=1

pnm(Σm) =

M∑
m=1

−an
{

tr(SxΣ−1
m )− 2 log(det(SxΣ−1

m ))− d
}
, (5)

with M = 2, where an is non-random. Note that pn(ϑ2) = 0 if Σ1 = Σ2 = Sx. Let ϑ̂2 denote the

PMLE that maximizes PLn(ϑ2) :=
∑n

i=1 f2(Xi|Zi;ϑ2)+pn(ϑ2). The following assumption on the

penalty function is adopted from Chen and Tan (2009), Chen and Li (2009), and Alexandrovich

(2014).
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Assumption 2. (a) For any fixed Σ such that det(Σ) > 0, we have pnm(Σ) = o(n), and

supΣ max{0, pnm(Σ)} = o(n). (b) ∇vec(Σ)pnm(Σ) = o(n1/6) at any fixed Σ such that det(Σ) > 0.

(c) For sufficiently large n, pn(Σ) ≤ (3/4)
√
n log log(n) log(det(Σ)) for det(Σ) ≤ Cn−2d.

Assumption 3. Z has finite second moment, and Pr(Z>i γ 6= Z>i γ
∗) > 0 for any γ 6= γ∗.

The following proposition shows the consistency of ϑ̂2.

Proposition 3. Suppose that Assumptions 2 and 3 hold. Then, under the null hypothesis H0 :

M = 1, infϑ2∈Θ∗2
|ϑ̂2 − ϑ2| →p 0.

For any ϑ̄2 such that (µ1,Σ1) = (µ2,Σ2), the derivatives of the density are linearly dependent

as

∇µ1
f2(x|z; ϑ̄2) =

α

1− α
∇µ2

f2(x|z; ϑ̄2), ∇Σ1f2(x|z; ϑ̄2) =
α

1− α
∇Σ2 l(y|x, z; ϑ̄2), (6)

∇µ1iµ1jf2(x|z; ϑ̄2) = 2∇Σ1,ijf2(x|z; ϑ̄2), ∇µ2iµ2jf2(x|z; ϑ̄2) = 2∇Σ2,ijf2(x|z; ϑ̄2). (7)

Consequently, the Fisher information matrix is degenerate, which invalidates the standard second-

order quadratic approximation analysis. In particular, dependence (7) leads to the loss of strong

identifiability and causes substantial difficulties in existing literature.

We analyze the penalized LRT statistic for testing H01 : (µ1,Σ1) = (µ2,Σ2) by developing

a higher-order approximation of the log-likelihood function that can be expressed in a quadratic

form, when α ∈ (0, 1), through a judiciously designed reparameterization. This reparameterization

extending the result of Rotnitzky et al. (2000) and Kasahara and Shimotsu (2015). Collect the

unique elements in Σ into a d(d+ 1)/2-vector

v = (v11, v12, . . . , v1d, v22, v23, . . . , v2d, . . . , vd−1,d−1, vd−1,d, vdd)
>

:= (Σ11, 2Σ12, . . . , 2Σ1d,Σ22, 2Σ23, . . . , 2Σ2d, . . . ,Σd−1,d−1, 2Σd−1,d,Σdd)
>.

Define the density function of N(µ,Σ) parameterized in terms of µ and v as

fv(µ,v) := f(µ,S(v)), where Sij(v) :=

vii if i = j,

vij/2 if i 6= j.
(8)

For a d× d symmetric matrix A, define a function w(A) ∈ Rd(d+1)/2 as

w(A) := (A11, 2A12, . . . , 2A1d, A22, 2A23, . . . , 2A2d, . . . , Ad−1,d−1, 2Ad−1,d, Add)
>.

Then fv(µ,v) and f(µ,Σ) are related as

f(µ,Σ) = fv(µ,w(Σ)).
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We introduce the following one-to-one mapping between (µ1,µ2,v1,v2) and the reparameter-

ized parameter (λµ,νµ,λv,νv):
µ1

µ2

v1

v2

 =


νµ + (1− α)λµ

νµ − αλµ
νv + (1− α)(2λv + C1w(λµλ

>
µ))

νv − α(2λv + C2w(λµλ
>
µ)

 , (9)

where C1 := −(1/3)(1+α) and C2 := (1/3)(2−α). Collect the reparameterized parameters, except

for α, into one vector ψα defined as

ψα := (γ,νµ,νv,λµ,λv) ∈ Θψα . (10)

In the reparameterized model, the null hypothesis of H01 : (µ1,v1) = (µ2,v2) is written as H01 :

(λµ,λv) = 0, and the density and its logarithm are given by

g(x|z;ψα, α) = αfv

(
x
∣∣∣z;γ,νµ + (1− α)λµ,νv + (1− α)(2λv + C1w(λµλ

>
µ))
)

+ (1− α)fv

(
x
∣∣∣z;γ,νµ − αλµ,νv − α(2λv + C2w(λµλ

>
µ))
)
.

(11)

Partition ψα as ψα = (η>,λ>)>, where η := (γ>,ν>µ ,ν
>
v )> ∈ Θη and λ := (λ>µ ,λ

>
v )> ∈ Θλ.

Denote the true values of η, λ, and ψ by η∗ := ((γ∗)>, (µ∗)>, (v∗)>)>, λ∗ := 0, and ψ∗α =

((η∗)>,0>)>, respectively. The first derivative of (11) w.r.t. η under ψα = ψ∗α is identical to the

first derivative of the density of the one-component model:

∇ηg(x|z;ψ∗α, α) = ∇(γ>,µ>,v>)>fv(x|z;γ∗,µ∗,v∗). (12)

On the other hand, Lemma 3 in the appendix shows that the first, second, and third derivatives of

g(x|z;ψα, α) w.r.t. λµ and the first derivative w.r.t. λv become zero when evaluated at ψα = ψ∗α:

∇λµg(x|z;ψ∗α, α) = 0, ∇λ⊗2
µ
g(x|z;ψ∗α, α) = 0, ∇λ⊗3

µ
g(x|z;ψ∗α, α) = 0,

∇λvg(x|z;ψ∗α, α) = 0.
(13)

Consequently, the information on λµ and λv is provided by the fourth derivative w.r.t. λµ, the

cross-derivative w.r.t. λµ and λv, and the second derivative w.r.t. λv.

We derive a quadratic approximation of the log-likelihood function by applying Proposi-

tion 2. To this end, we collect the relevant score vector and reparameterized parameters that

correspond to s(y;π) and t(ϑ) in Assumption 1. Let f∗v and ∇f∗v denote fv(x|z;γ∗,µ∗,v∗)

and ∇fv(x|z;γ∗,µ∗,v∗), and let dη := (p + d + d(d + 1)/2), dµv := d(d + 1)(d + 2)/6, and
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dµ4 := d(d+ 1)(d+ 2)(d+ 3)/24. Define the score vector s(x, z) as

s(x, z) :=

(
sη

sλ

)
:=

 sηsµv
sµ4

 with sη
(dµ×1)

:=
∇(γ>,µ>,v>)>f

∗
v

f∗v
,

sµv
(dµv×1)

:=

{∇µiµjµkf∗v
f∗v

}
1≤i≤j≤k≤d

, sµ4

(dµ4×1)

:=

{∇µiµjµkµ`f∗v
f∗v

}
1≤i≤j≤k≤`≤d

,

(14)

where we suppress the dependence of (sη, sµv, sµ4) on (x, z). Collect the relevant reparameterized

parameters as

t(ψα, α) :=

(
η − η∗

t(λ, α)

)
:=

η − η
∗

λµv

λµ4

 , (15)

with

λµv
(dµv×1)

= {(λµv)ijk}1≤i≤j≤k≤d, where (λµv)ijk := α(1− α)
∑

(t1,t2,t3)∈p12(i,j,k)

λµt1λvt2t3 ,

λµ4

(dµ4×1)

= {(λµ4)ijk`}1≤i≤j≤k≤`≤d, where (λµ4)ijk` := α(1− α)

×

12
∑

(t1,t2,t3,t4)∈p22(i,j,k,`)

λvt1t2λvt3t4 + b(α)
∑

(t1,t2,t3,t4)∈p(i,j,k,`)

λµt1λµt2λµt3λµt4

 ,

(16)

where b(α) := −(2/3)(α2 − α + 1) < 0, and
∑

(t1,t2,t3)∈p12(i,j,k) denotes the sum over all distinct

permutations of (i, j, k) to (t1, t2, t3) with t2 ≤ t3,
∑

(t1,t2,t3,t4)∈p22(i,j,k,`) denotes the sum over all

distinct permutations of (i, j, k, `) to (t1, t2, t3, t4) with t1 ≤ t2 and t3 ≤ t4, and
∑

(t1,t2,t3,t4)∈p(i,j,k,`)
denotes the sum over all distinct permutations of (i, j, k, `) to (t1, t2, t3, t4).

Let Ln(ψα, α) :=
∑n

i=1 log g(Xi|Zi;ψα, α) denote the reparameterized log-likelihood function.

Define Anα(δ) := {ϑ ∈ Nε : Ln(ψα, α)− Ln(ψ∗α, α) ≥ −δ}.

Assumption 4. (a) Z has finite tenth moment.

Proposition 4. Suppose that Assumptions 3 and 4 hold. Then, under the null hypothesis H0 : m =

1, for α ∈ (0, 1) and εσ ∈ (0, 1) and any δ > 0, we have (a) supϑ∈Anα(δ) |t(ψα, α)| = Op(n
−1/2);

(b) sup
ϑ∈Anα(δ)

∣∣∣Ln(ψα, α)− Ln(ψ∗α, α)−
√
nt(ψα, α)>νn(s(x, z)) + nt(ψα, α)>It(ψα, α)/2

∣∣∣ = op(1),

where t(ψα, α) and s(x, z) are defined in (15) and (14), and I := E[s(X,Z)s(X,Z)>].

Let ψ̂α := arg maxψα∈Θψα (εσ) Ln(ψα, α) denote the (constrained) MLE of ψα, where Θψα(εσ)

is defined so that the value of ϑ2 implied by ψα is in Θϑ2(εσ). Let (γ̂0, µ̂0, Σ̂0) denote the

one-component MLE that maximizes the one-component log-likelihood function L0,n(γ,µ,Σ) :=
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∑n
i=1 log f(Xi|Zi;γ,µ,Σ). Define the penalized LRT statistic for testing H01 as PLRn(ε1) :=

maxα∈[ε1,1−ε1] 2{PLn(ψ̂α, α)− L0,n(γ̂0, µ̂0, Σ̂0)} with ε1 ∈ (0, 1/2).

We proceed to derive the asymptotic distribution of the LRTS. With (sη, sλ) defined in (14),

define
Iη := E[sηs

>
η ], Iλ := E[sλs

>
λ ], Iλη := E[sλs

>
η ],

Iηλ := I>λη, Iλ.η := Iλ − IληI−1
η Iηλ, Zλ := (Iλ.η)−1Gλ.η,

(17)

where Gλ.η ∼ N(0,Iλ.η). The following set characterizes the limit of possible values of
√
nt(λ, α)

defined in (15) as n→∞. For e = (e1, . . . , ed)
> ∈ {0, 1}d, define

Λeλ :=
(
{(teµv)ijk}1≤i≤j≤k≤d, {(teµ4)ijk`}1≤i≤j≤k≤`≤d

)>
∈ Rdµv+dµ4 , (18)

where teµv and teµ4 satisfy, for some λµ ∈ Rd and {λvab}1≤a≤b≤d ∈ Rd(d+1)/2,

(teµv)ijk =
∑

(t1,t2,t3)∈p12(i,j,k)

λµt1λvt2t3 for all e,

(teµ4)ijk` =


∑

(t1,t2,t3,t4)∈p22(i,j,k,`) λvt1t2λvt3t4 if e = 0,∑
(t1,t2,t3,t4)∈p(i,j,k,`) λµt1λµt2λµt3λµt4 if e 6= 0 and ei = ej = ek = e` = 1,

0 otherwise.

(19)

Define t̂
e
λ by

r(̂t
e
λ) = inf

tλ∈Λeλ

r(tλ), r(tλ) := (tλ −Zλ)>Iλ.η(tλ −Zλ). (20)

The following proposition establishes the asymptotic null distribution of the penalized LRT statistic.

This result follows from the local quadratic approximation established in Proposition 4 and the

results in Andrews (1999).

Proposition 5. Suppose that Assumptions 2, 3, and 4 hold. Then, under the null hypothesis of

M = 1, LRn(ε1)→d maxe∈{0,1}d
(

(̂t
e
λ)>Iλ.η t̂

e
λ

)
.

For each e, the random variable (̂t
e
λ)>Iλ.η t̂

e
λ is a projection of a Gaussian random variable on

a cone Λeλ.

5 Local quadratic approximation for testing H0 : M = M0 against

HA : M = M0 + 1 for M0 ≥ 2

In this section, we develop a local quadratic approximation for testing the null hypothe-

sis of M0 components against the alternative of M0 + 1 components for general M0 ≥ 1.

We consider a random sample of n independent observations {Xi,Zi}ni=1 generated from

the M0-component d-variate normal mixture density with the true parameter value ϑ∗M0
=
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(α∗1, . . . , α
∗
M0−1,γ

∗,µ∗1, . . . ,µ
∗
M ,Σ

∗
1, . . . ,Σ

∗
M ):

fM0(x|z;ϑ∗M0
) :=

M0∑
j=1

α∗jf(x|z;γ∗,µ∗j ,Σ
∗
j ), (21)

where α∗j > 0. We assume (µ∗1,Σ
∗
1) < . . . < (µ∗M0

,Σ∗M0
) for identification. Let the density of an

(M0 + 1)-component mixture model be

fM0+1(x|z;ϑM0+1) :=

M0+1∑
j=1

αjf(x|z;γ,µj ,Σj), (22)

where ϑM0+1 = (α1, . . . , αM0 ,γ,µ1, . . . .,µM0+1,Σ1, . . . ,ΣM0+1). Similar to the case of the test of

homogeneity, we partition the null hypothesis into two as H0 = H01∪H02, where H01 := ∪M0
m=1H0,1m

and H02 := ∪M0+1
m=1 H0,2m with

H0,1m : (µ1,Σ1) < · · · < (µm,Σm) = (µm+1,Σm+1) < · · · < (µM0+1,ΣM0+1) and H0,2m : αm = 0.

The inequality constraints are imposed on (µj ,Σj) for identification.

As discussed in Kasahara and Shimotsu (2015), the LRT statistic for testing H02 has infi-

nite Fisher information unless a stringent restriction is imposed on the admissible values of Σj .

Therefore, we focus on testing H01. Define the set of values of ϑM0+1 that yields the true den-

sity (21) as Υ∗ := {ϑM0+1 : fM0+1(X|Z;ϑM0+1) = fM0(X|Z;ϑ∗M0
) with probability one}. Under

H0,1m, the (M0 + 1)-component model (22) generates the true M0-component density (21) when

(µm,Σm) = (µm+1,Σm+1) = (µ∗m,Σ
∗
m). Define the subset of Υ∗ corresponding to H0,1m as

Υ∗1m :=
{
ϑM0+1 ∈ ΘϑM0+1

: αj > 0 for j = 1, . . . ,M0 + 1; αm + αm+1 = α∗m and

(µm,Σm) = (µm+1,Σm+1) = (µ∗m,Σ
∗
m); αj = α∗j and (µj ,Σj) = (µ∗j ,Σ

∗
j ) for j < m;

αj = α∗j−1 and (µj ,Σj) = (µ∗j−1,Σ
∗
j−1) for j > m+ 1; γ = γ∗

}
,

and define Υ∗1 := Υ∗11 ∪ · · · ∪Υ∗1M0
.

Similar to Section 4, we consider the penalized MLE. Let ΘϑM0+1
(ε1) be a subset of ΘϑM0+1

such that αj ∈ [ε1, 1− ε1] for j = 1, . . . ,M0 + 1, and define the penalized LRT statistic for testing

H01

PLRM0
n (ε1) := max

ϑM0+1∈ΘϑM0+1
(ε1)

2{PLn(ϑM0+1)− PL0,n(ϑ̂M0)},

where PLn(ϑM0+1) :=
∑n

i=1 log fM0+1(Xi|Zi;ϑM0+1)+pn(ϑM0+1), PL0,n(ϑM0) =
∑n

i=1 log fM0(Xi|Zi;ϑM0)+

pn(ϑM0), and ϑ̂M0 = arg maxϑM0
∈ΘϑM0

PL0,n(ϑM0). Collect the score vector for testing
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H0,11, . . . ,H0,1M0 into one vector as

s̃(x, z) :=

(
s̃η

s̃λ

)
, where s̃η :=

 sα

sγ

s(µ,v)

 and s̃λ :=



s1
µv

s1
µ4

...

sM0
µv

sM0

µ4


, (23)

where, with f∗0 := fM0(x|z;ϑ∗M0
) and for m = 1, . . . ,M0,

sα :=


fv(x|z;γ∗,µ∗1,v

∗
1)− fv(x|z;γ∗,µ∗M0

,v∗M0
)

...

fv(x|z;γ∗,µ∗M0−1,v
∗
M0−1)− fv(x|z;γ∗,µ∗,v∗M0

)

/f∗0 ,
sγ :=

M0∑
m=1

α∗m∇γfv(x|z;γ∗,µ∗m,v
∗
m)/f∗0 ,

smµv :=
{
α∗m∇µiµjµkf

∗
v (x|z;γ∗,µ∗m,v

∗
m)/f∗0

}
1≤i≤j≤k≤d ,

smµ4 :=
{
α∗m∇µiµjµkµ`f

∗
v (x|z;γ∗,µ∗m,v

∗
m)/f∗0

}
1≤i≤j≤k≤`≤d .

(24)

Define Ĩ := E[s̃(X,Z)s̃(X,Z)>], Ĩη := E[s̃ηs̃
>
η ], Ĩλη := E[s̃λs̃

>
η ], Ĩηλ := Ĩλη, Ĩλ :=

E[s̃λs̃
>
λ ], and Ĩλ.η := Ĩλ− ĨληĨ

−1

η Ĩηλ. Let G̃λ.η = ((G1
λ.η)>, . . . , (GM0

λ.η)>)> ∼ N(0, Ĩλ.η) be an

RM0(dµv+dµ4 )–valued random vector, and define Imλ.η := E[Gm
λ.η(Gm

λ.η)>] and Zm
λ := (Imλ.η)−1Gm

λ.η.

Similar to t̂
e
λ in the test of homogeneity, define t̂

e
λ,m by

rm(̂t
e
λ,m) = inf

tλ∈Λeλ

rm(tλ), rm(tλ) := (tλ −Zm
λ )>Imλ.η(tλ −Zm

λ ).

The following proposition gives the asymptotic null distribution of the penalized LRT statistic for

testing H01. In the neighborhood of Υ∗1h, the log-likelihood function permits a similar quadratic

approximation to the one we derived in Section 4. Consequently, the LRT statistic is asymptotically

distributed as the maximum of M0 random variables.

Assumption 5. (a) α∗j ∈ [ε1, 1− ε1] for j = 1, . . . ,M0. (b) Ĩ is nonsingular.

Proposition 6. Suppose that Assumptions 3 and 5 hold. Then, under the null hypothesis H0 :

m = M0, PLRM0
n (ε1)→d max{v1, . . . , vM0}, where vm := maxe∈{0,1}d

(
(̂t
e
λ,m)>Imλ.η t̂

e
λ,m

)
.

6 EM test

In this section, we develop an EM test of H0 : M = M0 against H1 : M = M0 + 1 for model

(21). We drop the covariate Z in this section. First, we develop an EM test statistic for testing

H0,1m : (µm,Σm) = (µm+1,Σm+1). We construct M0 intervals {D∗1, · · · , D∗M0
} of admissive values
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of (µ,Σ), such that (µ∗m,Σ
∗
m) ∈ D∗m but (µ∗j ,Σ

∗
j ) /∈ D∗m for any j 6= m. For example, as in our

simulation, we may assume that the first element of µ are distinct and set, with µ1j denoting the

first element of µj , D
∗
1 = [Θµ1

, (µ∗11 + µ∗12)/2]×ΘΣ, D∗j = [(µ∗1,j−1 + µ∗1j)/2, (µ
∗
1j + µ∗1,j+1)/2]×ΘΣ

for j = 2, . . . ,M0− 1, and D∗M0
= [(µ∗M0−1 + µ∗M0

)/2,Θµ]×ΘΣ, where Θµ1
and Θµ1 are defined by

Θµ1 = [Θµ1
,Θµ1 ] and may take either the value −∞ or ∞.

Collect the mixing parameters of the (M0 + 1)-component model into one vector as ς :=

(µ1, . . . ,µM0+1,Σ1, . . . ,ΣM0+1) ∈ Θς := ΘM0+1
µ × ΘM0+1

Σ . For m = 1, . . . ,M0, define a re-

stricted parameter space of ς by Ω∗m := {ς ∈ Θς : (µj ,Σj) ∈ D∗j for j = 1, . . . ,m −
1; (µm,Σm), (µm+1,Σm+1) ∈ D∗m; (µj ,Σj) ∈ D∗j−1 for j = m + 2, . . . ,M0 + 1}. Let Ω̂m

and D̂m be consistent estimates of Ω∗m and D∗m, which can be constructed from a consistent

estimate of the M0-component model. We test H0,1m : (µm,Σm) = (µm+1,Σm+1) by estimat-

ing the (M0 + 1)-component model (22) under the restriction ς ∈ Ω̂m. For example, when we

test H0,11 : (µ1,Σ1) = (µ2,Σ2) in a three-component model, the restriction can be given as

(µ1,Σ1), (µ2,Σ2) ∈ D̂1 and (µ3,Σ3) ∈ D̂2.

Let T be a finite set of numbers from (0, 0.5]. We introduce another penalty term p(τ) that

is continuous in τ , p(0.5) = 0, and p(τ) → −∞ as τ goes to 0 or 1. For each τ0 ∈ T , define

the restricted penalized MLE as ϑ
m(1)
M0+1(τ0) := arg maxϑM0+1∈Θm(τ0)(PLn(ϑM0+1) + p(τ0)), where

Θm(τ0) := {ϑM0+1 ∈ ΘϑM0+1
: αM/(αM + αm+1) = τ0 and ς ∈ Ω̂m}. Starting from ϑ

m(1)
M0+1(τ0),

we update ϑM0+1 by the following generalized EM algorithm. Henceforth, we suppress (τ0) from

ϑ
m(k)
M0+1(τ0). Suppose we have already calculated ϑ

m(k)
M0+1. For i = 1, . . . , n and j = 1, . . . ,M0 + 1,

define the weights for an E-step as

w
(k)
ij :=

α
(k)
j f(Xi;µ

(k)
j ,Σ

(k)
j )/fM0+1(Xi;ϑ

m(k)
M0+1) for j = 1, . . . ,m− 1,

α
(k)
j−1f(Xi;µ

(k)
j ,Σ

(k)
j )/fM0+1(Xi;ϑ

m(k)
M0+1) for j = m+ 2, . . . ,M0 + 1,

w
(k)
im :=

τ (k)α
(k)
m f(Xi;µ

(k)
m ,Σ

(k)
m )

fM0+1(Xi;ϑ
m(k)
M0+1)

, w
(k)
i,m+1 :=

(1− τ (k))α
(k)
m f(Xi;µ

(k)
m+1,Σ

(k)
m+1)

fM0+1(Xi;ϑ
m(k)
M0+1)

.

In an M-step, update τ and α by

τ (k+1) := arg max
τ

{
n∑
i=1

w
(k)
im log(τ) +

n∑
i=1

w
(k)
i,m+1 log(1− τ) + p(τ)

}
,

α
(k+1)
j :=


n−1

∑n
i=1w

(k)
ij for j = 1, . . . ,m− 1,

n−1
∑n

i=1

(
w

(k)
im + w

(k)
i,m+1

)
, for j = m,

n−1
∑n

i=1w
(k)
i,j+1 for j = m+ 1, . . . ,M0,
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and update µj and Σj by

Σ
(k+1)
j := arg max

Σj

{
n∑
i=1

w
(k)
ij log f(Xi;µ

(k+1)
j ,Σj) + pnj(Σj)

}
. (25)

The penalized likelihood value never decreases after each generalized EM step (Dempster et al.,

1977, Theorem 1). Note that ϑ
m(k)
M0+1 for k ≥ 2 does not use the restriction Ω̂m. For each τ0 ∈ T

and k, define

Mm(k)
n (τ0) := 2

{
PLn(ϑ

m(k)
M0+1(τ0))− PL0,n(ϑ̂M0)

}
, (26)

where ϑ̂M0 := arg maxϑM0
∈ΘϑM0

PL0,n(ϑM0).

Finally, with a pre-specified number K, define the local EM test statistic for testing H0,1m

by taking the maximum of M
m(K)
n (τ0) over τ0 ∈ T as EM

m(K)
n := max

{
M
m(K)
n (τ0) : τ0 ∈ T

}
.

The EM test statistic is defined as the maximum of M0 local EM test statistics: EM
(K)
n :=

max
{

EM
1(K)
n ,EM

2(K)
n , . . . ,EM

M0(K)
n

}
. The following proposition shows that for any finite K,

the EM test statistic is asymptotically equivalent to the penalized LRT statistic for testing H01.

Proposition 7. Suppose that Assumptions 2, 3, and 5 hold and {0.5} ∈ T . Then, under the null

hypothesis H0 : m = M0, for any fixed finite K, as n → ∞, EM
(K)
n →d max{v1, . . . , vM0}, where

the vms are given in Proposition 6.

7 Simulation

7.1 Choice of penalty function

To apply our EM test, we need to specify the set T , number of iterations K, and penalty functions

for pnm(Σm) and p(τ). Based on our experience, we recommend T = {0.1, 0.3, 0.5} and K =

{1, 2, 3}. For pnm(Σm), we employ a multivariate version of the penalty function used by Chen

et al. (2012), namely,

pnm(Σm; Σ̂m) = −an
{

tr(Σ̂mΣ−1
m )− 2 log(det(Σ̂mΣ−1

m ))− d
}
, (27)

where Σ̂m is the estimate from the M0-component model. pnm(Σm; Σ̂m) satisfies Assumption 2 if

an = op(n
1/4). We set p(τ) = log(2 min{τ, 1 − τ}) as suggested by Chen and Li (2009). We set

an = 1. When estimating the model under the null hypothesis and computing L0,n(ϑ̂M0), we use

the penalty function (5) and set an = n−1/2 as recommended by Chen and Tan (2009).

7.2 Simulation results

We examine the type I error rates and powers of the EM test by small simulations using mixtures of

bivariate normal distributions. Computation was done using R (R Core Team, 2016). The critical
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values are computed by bootstrap with 199 bootstrap replications. We use 1, 000 replications, and

the sample sizes are set to 200 and 400.

Table 1 reports the type I error rates of the EM test of H0 : M = 1 against the alternative

H1 : M = 2 using two models under the null hypothesis. The EM test statistics give accurate type

I errors. Table 2 reports the powers of the EM test under two models under the alternative, namely

M = 2. The EM test shows good power.

Tables 3–5 report the type I error rates and powers of the EM test of H0 : M = 2 against the

alternative H1 : M = 3. Overall, EM test performs well under finite sample size, even though the

type I error rates are less accurate than in testing H0 : M = 1.

14



8 Proof of propositions

Proof of Proposition 1. Define h(y,ϑ) :=
√
`(y,ϑ)− 1. We first show

sup
ϑ∈Nc/√n

∣∣∣nPn(h(y,ϑ)2)− nt(ϑ)>Iπt(ϑ)/4
∣∣∣ = op(1). (28)

To show (28), write 4Pn(h(y,ϑ)2) as

4Pn(h(y,ϑ)2) = Pn

(
4(`(y;ϑ)− 1)2

(
√
`(y;ϑ) + 1)2

)
= Pn(`(y,ϑ)−1)2−Pn

(
(`(y;ϑ)− 1)3 (

√
`(y;ϑ) + 3)

(
√
`(y;ϑ) + 1)3

)
.

(29)

It follows from Assumption 1(a)(b)(c) and (E|XY |)2 ≤ E|X|2E|Y |2 that, uniformly for ϑ ∈ Nε,

Pn(`(y;ϑ)− 1)2 = t(ϑ)>Pn(s(y;π)s(y;π)>)t(ϑ) + 2t(ϑ)>Pn[s(y;π)r(y;ϑ)] + Pn(r(y;ϑ))2

= t(ϑ)>Iπt(ϑ) + op(|t(ϑ)|2) +Op(|t(ϑ)|2|ψ −ψ∗|). (30)

Note that, if X1, . . . , Xn are random variables with max1≤i≤n E|Xi|q < C for some q > 0 and

C <∞, then we have max1≤i≤n |Xi| = op(n
1/q). Therefore, from Assumption 1(a)(c), we have

max
1≤k≤n

sup
ϑ∈Nc/√n

|`(y,ϑ)− 1| = max
1≤k≤n

sup
ϑ∈Nc/√n

|t(ϑ)>s(y;π) + r(y;ϑ)| = op(1).

Therefore, the second term on the right of (29) is op(1)Pn(`(y;ϑ)−1)2, and (28) follows from (30).

Consider the following expansion of h(y,ϑ):

h(y,ϑ) = (`(y;ϑ)− 1)/2− h(yi,ϑ)2/2 = (t(ϑ)>s(y;π) + r(y;ϑ))/2− h(y,ϑ)2/2. (31)

It follows from (28), (31), and Assumption 1(d) that nPn(h(y,ϑ)) =
√
nt(ϑ)>νn(s(y;π))/2 −

nt(ϑ)>Iπt(ϑ)/8 + op(1) uniformly for ϑ ∈ Nc/√n. Using the Taylor expansion of 2 log(1 + x) =

2x− x2(1 + o(1)) for small x, we have, uniformly for ϑ ∈ Nc/√n,

Ln(ψ,π)− Ln(ψ∗,π) = 2

n∑
i=1

log(1 + h(yi,ϑ)) = nPn(2h(y,ϑ)− [1 + op(1)]h(y,ϑ)2)

=
√
nt(ϑ)>νn(s(y;π)− t(ϑ)Iπt(ϑ)>/4 + nPn(h(y,ϑ)2) + op(1)

=
√
nt(ϑ)>νn(s(y;π)− t(ϑ)Iπt(ϑ)>/2 + op(1),

giving the stated result.

Proof of Proposition 2. For part (a), applying the inequality log(1 + x) ≤ x to the log-likelihood
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ratio function and using (31) give

Ln(ψ,π)−Ln(ψ∗,π) = 2

n∑
i=1

log(1+h(yi,ϑ)) ≤ 2nPn(h(y,ϑ)) =
√
nνn(`(y;ϑ)−1)−nPn(h(y,ϑ)2).

(32)

We derive a lower bound on Pn(h(y,ϑ)2). From the first equality in (29), for some Ξ > 0,

Pn(h(y,ϑ)2) ≥ Pn
(

(`(y;ϑ)− 1)2

`(y;ϑ) + 1

)
≥ 1

Ξ + 1
Pn
(
I{`(y;ϑ) ≤ Ξ}(`(y;ϑ)− 1)2

)
≥ 1

Ξ + 1

[
Pn((`(y;ϑ)− 1)2)− Pn

(
I{`(y;ϑ) > Ξ}(`(y;ϑ)− 1)2

)]
.

Let B := supϑ∈Nε |`(y;ϑ) − 1|. From Assumption 1(a)(c), we have EB2 < ∞, and hence

limΞ→∞ supϑ∈NΞ
Pn
(
I{`(y;ϑ) > Ξ}(`(y;ϑ)− 1)2

)
≤ limΞ→∞ Pn

(
I{B + 1 > Ξ}B2

)
= 0 almost

surely. Let κ = (2(Ξ + 1))−1 > 0. By choosing Ξ sufficiently large, it follows from (30) and

Assumption 1(e) that, uniformly for ϑ ∈ Nε,

Pn(h(y,ϑ)2) ≥ κt(ϑ)>Iπt(ϑ) + op(|t(ϑ)|2) +Op(|t(ϑ)|2|ψ −ψ∗|). (33)

Because
√
nνn(`(y;ϑ) − 1) =

√
nt(ϑ)>[νn(s(y;π)) + Op(1)] from Assumption 1(d), it follows

from (32) and (33) that

−δ ≤ Ln(ψ,π)−Ln(ψ∗,π) ≤
√
nt(ϑ)>[νn(s(y;π))+Op(1)]−κnt(ϑ)>Iπt(ϑ)+op(n|t(ϑ)|2). (34)

The rest of the proof is similar to the proof of Theorem 1 of Andrews (1999). Let T n := I1/2
π
√
nt(ϑ).

In view of Assumption 1(e)(f), we can write (34) as −δ ≤ |T n|Op(1) − κ|T n|2 + op(|T n|2). Rear-

ranging this equation gives |T n|2 ≤ 2|T n|sn + δ with sn = Op(1). Then, (|T n| − sn)2 ≤ s2
n + δ,

and taking the square roots gives |T n| ≤ Op(1), giving part (a). Part (b) follows from part (a) and

Proposition 1.

8.1 Proof of Proposition 3

The stated result follows from Theorem 1 of Chen and Tan (2009) and Corollary 3 of Alexandrovich

(2014).

8.2 Proof of Proposition 4

We suppress the subscript α from ψα. We prove the stated result by applying Proposition 2 to

`(y,ϑ) with `(y,ϑ) = `(y,ψ, α) := g(x|z;ψ∗, α)/g(x|z;ψ, α) as defined in (2). Observe that t(ϑ)

defined in (15) satisfies t(ϑ) = 0 if and only if ψ = ψ∗ because λ = 0 if and only if (λµv)iii =

(λµ4)iiii = 0 for all 1 ≤ i ≤ d. We expand l(y,ϑ) − 1 five times with respect to ψ and show that
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the expansion satisfies Assumption 1.

Define

v(y;ϑ) := (∇ψg(x|z;ψ, α)>,∇ψ⊗2g(x|z;ψ, α)>, . . . ,∇ψ⊗5g(x|z;ψ, α)>)>/g(x|z;ψ∗, α). (35)

In order to apply Proposition 2 to `(y,ϑ)− 1, we first show

sup
ϑ∈Nε

∣∣∣Pn[v(y;ϑ)v(y;ϑ)>]− E[v(Y ;ϑ)v(Y ;ϑ)>]
∣∣∣ = op(1), (36)

νn(v(y;ϑ))⇒W (ϑ), (37)

where W (ϑ) is a mean-zero continuous Gaussian process with E[W (ϑ1)W (ϑ2)>] =

E[v(Y ;ϑ1)v(Y ;ϑ2)>]. (36) holds because v(Y i;ϑ)v(Y i;ϑ)> satisfies a uniform law of large num-

bers (see, for example, Lemma 2.4 of Newey and McFadden (1994)) because v(y;ϑ) is continuous

in ϑ and E supϑ∈Nε |v(Y ;ϑ)|2 < ∞ from the property of the normal density and Assumption 4.

(37) follows from Theorem 10.2 of Pollard (1990) if (i) Θϑ is totally bounded, (ii) the finite dimen-

sional distributions of νn(v(y;ϑ)) converge to those of W (ϑ), and (iii) {νn(v(y;ϑ)) : n ≥ 1} is

stochastically equicontinuous. Condition (i) holds because Θϑ is compact in the Euclidean space.

Condition (ii) follows from Assumption 4 and the multivariate CLT. Condition (iii) holds Theorem

2 of Andrews (1994) because v(y;ϑ) is Lipschitz continuous in ϑ.

Note that the (p+ 1)-th order Taylor expansion of f(x) around x = x∗ is given by

f(x) = f(x∗) +

p∑
j=1

1

j!
∇(x⊗j)>f(x∗)x⊗j +

1

(p+ 1)!
∇(x⊗(p+1))>f(x)x⊗(p+1),

where x lies between x and x∗, and x may differ from element to element of ∇(x⊗(p+1))>f(x).

Let g∗ and ∇g∗ denote g(x|z;ψ∗, α) and ∇g(x|z;ψ∗, α), and let ∇g denote ∇g(x|z;ψ, α). Let

η̇ := η−η∗. Expanding `(y;ψ, α) five times around ψ∗ while fixing α and using Lemma 3, we can

write `(y;ψ, α) as follows with ψ− := (η̇>,λ>v )>:

`(y;ψ, α) =
∇η>g∗

g∗
η̇ +

1

2!
λ>
∇λλ>g∗

g∗
λ+

1

2!
η̇>
∇ηη>g∗

g∗
η̇ (38)

+
1

3!

∇(ψ⊗3)>g
∗

g∗
ψ⊗3 +

1

4!

∇(λ⊗4
µ )>g

∗

g∗
λ⊗4
µ (39)

+
3∑
p=0

1

p!(4− p)!

∇
(ψ
⊗(4−p)
− ⊗λ⊗pµ )>

g∗

g∗
(ψ
⊗(4−p)
− ⊗ λ⊗pµ ) (40)

+
1

5!

∇(λ⊗5
µ )>g

g∗
λ⊗5
µ +

4∑
p=0

1

p!(5− p)!

∇
(ψ
⊗(5−p)
− ⊗λ⊗pµ )>

g

g∗
(ψ
⊗(5−p)
− ⊗ λ⊗pµ ). (41)

We first analyze the first two terms on the right hand side of (38) and the second term in (39)
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because these terms constitute the leading term. Let f∗ and ∇f∗ denote f(x|z;γ∗,µ∗,Σ∗) and

∇f(x|z;γ∗,µ∗,Σ∗). The first term on the right hand side of (38) is simply ∇(γ>,µ>,v>)>f
∗/f∗.

Using Lemma 3 and commutativity of partial derivatives, the second term on the right hand side

of (38) is written as

1

2!
λ>
∇λλ>g∗

g∗
λ

= λ>µ
∇λµλ>v g

∗

g∗
λv +

1

2!
λ>v
∇λvλ>v g

∗

g∗
λv

= α(1− α)
∑

1≤i≤d
1≤j≤k≤d

∇µiµjµkf∗

f∗
λµiλvjk +

α(1− α)

2

∑
1≤i≤j≤d
1≤k≤`≤d

∇µiµjµkµ`f∗

f∗
λvijλvk`

= α(1− α)
∑

1≤i≤j≤k≤d

∇µiµjµkf∗

f∗

∑
(t1,t2,t3)∈p12(i,j,k)

λµt1λvt2t3

+
α(1− α)

2

∑
1≤i≤j≤k≤`≤d

∇µiµjµkµ`f∗

f∗

∑
(t1,t2,t3,t4)∈p22(i,j,k,`)

λvt1t2λvt3t4 ,

where
∑

(t1,t2,t3)∈p12(i,j,k) denotes the sum over all distinct permutations of (i, j, k) to (t1, t2, t3) with

t2 ≤ t3, and
∑

(t1,t2,t3,t4)∈p22(i,j,k,`) denotes the sum over all distinct permutations of (i, j, k, `) to

(t1, t2, t3, t4) with t1 ≤ t2 and t3 ≤ t4. From Lemma 3, the second term in (39) is written as

1

4!

∇(λ⊗4
µ )>g

∗

g∗
λ⊗4
µ =

α(1− α)

4!

∑
1≤i≤j≤k≤`≤d

b(α)
∇µiµjµkµ`f∗

f∗

∑
(t1,t2,t3,t4)∈p(i,j,k,`)

λµt1λµt2λµt3λµt4 ,

where
∑

(t1,t2,t3,t4)∈p(i,j,k,`) denotes the sum over all distinct permutations of (i, j, k, `) to

(t1, t2, t3, t4). Combining these results, we obtain the leading term in the expansion

∇η>g∗

g∗
η̇ +

1

2!
λ>
∇λλ>g∗

g∗
λ+

1

4!

∇(λ⊗4
µ )>g

∗

g∗
λ⊗4
µ = s>η η̇ + s>µvλµv + s>µ4λµ4 ,

with (sη, sµv, sµ4) and (λµv,λµ4) defined in (14) and (16).

(sη, sµv, sµ4) clearly satisfies Assumption 1(a)(b)(e)(f) from Assumption 4, the property of the

normal density, (36), and (37). Therefore, the stated result holds if the other terms in (38)–(41) sat-

isfy Assumption 1(c)(d). We proceed to show that these terms can be written as v(y;ϑ)O(|ψ||t(ϑ)|)
with v(y;ϑ) defined in (35). Then, Assumption 1(c)(d) follows from (36) and (37).

First, the third term on the right hand side of (38) is written as (∇η⊗2g∗/g∗)O(|η̇|2). Second,

write the first term in (39) as
∑3

p=0(1/p!(3−p)!)(∇(η⊗p⊗λ⊗(3−p))>g
∗/g∗)(η̇⊗p⊗λ⊗(3−p)). The terms

with p ≥ 1 are written as (∇ψ⊗3g∗/g∗)O(|η̇|)O(|λ|). The term with p = 0 is written as, because
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∇λµiλµjλµk g
∗ = 0 from Lemma 3,

d∑
i=1

d∑
j=1

∑
1≤k≤`≤d

∇λµiλµjλvk`g
∗

g∗
λµiλµjλvk` +

d∑
i=1

∑
1≤j≤k≤d

∑
1≤`≤m≤d

∇λµiλvjkλv`mg
∗

g∗
λµiλvjkλv`m

+
1

3!

∑
1≤i≤j≤d

∑
1≤k≤`≤d

∑
1≤m≤n≤d

∇λvijλvk`λvmng
∗

g∗
λvijλvk`λvmn .

(42)

The first term in (42) can be written as

d∑
i=1

λµi
∑

1≤j≤k≤`≤d

∇λµiλµjλvk`g
∗

g∗

∑
(t1,t2,t3)∈p12(j,k,`)

λµt1λvt2t3 =
∇λ⊗3g∗

g∗
O(|λ||λµv|).

From a similar argument, the second term in (42) is also written as (∇λ⊗3g∗/g∗)O(|λ||λµv|). In

order to bound the third term in (42), observe that, for any sequence aijk`mn,∑
1≤i≤j≤d

∑
1≤k≤`≤d

∑
1≤m≤n≤d

aijk`mnλvijλvk`λvmn

=
∑

1≤m≤n≤d
λvmn

∑
1≤i≤j≤k≤`≤d

aijk`mn

12
∑

(t1,t2,t3,t4)∈p22(i,j,k,`)

λvt1t2λvt3t4

+b(α)
∑

(t1,t2,t3,t4)∈p(i,j,k,`)

λµt1λµt2λµt3λµt4


− b(α)

d∑
i=1

d∑
j=1

d∑
k=1

λµiλµjλµk
∑

1≤`≤m≤n≤d
aijk`mn

∑
(t1,t2,t3)∈p12(`,m,n)

λµt1λvt2t3 .

Therefore, (42) can be written as (∇ψ⊗3g∗/g∗)[O(|λ||λµ4 |) + O(|λ||λµv|)]. We proceed to bound

(40). The terms in (40) with p ≥ 1 are written as (∇ψ⊗4g∗/g∗)[O(|λ||λµv|) + O(|λ||η̇|)] because

they contain either
∑d

i=1

∑
1≤j≤k≤d

∑
1≤`≤m≤d λµiλvjkλv`m or

∑d
i=1 λµi η̇. The term with p = 0 is

written as (∇ψ⊗4g∗/g∗)[O(|λ||λµ4 |) +O(|λ||λµv|)] from a similar argument to bound (42).
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It remains to bound (41). For the first term in (41), observe that, for any sequence aijk`m,

d∑
i=1

d∑
j=1

d∑
k=1

d∑
`=1

d∑
m=1

aijk`mλµiλµjλµkλµ`λµM

=
1

b(α)

d∑
m=1

λµM
∑

1≤i≤j≤k≤`≤d
aijk`m

b(α)
∑

(t1,t2,t3,t4)∈p(i,j,k,`)

λµt1λµt2λµt3λµt4

+12
∑

(t1,t2,t3,t4)∈p22(i,j,k,`)

λvt1t2λvt3t4


− b(α)

12

∑
1≤i≤j≤d

λvij
∑

1≤k≤`≤m≤d
aijk`m

∑
(t1,t2,t3)∈p12(k,`,m)

λµt1λvt2t3 .

Therefore, the first term in (41) can be written as (∇ψ⊗5g/g∗)[O(|λ||λµ4 |) + O(|λ||λµv|)]. The

second term in (41) is written as (∇ψ⊗5g/g∗)[O(|λ||λµv|) +O(|λ||η̇|) +O(|λ||λµ4 |)] from the same

argument as (40), and the stated result follows.

8.3 Proof of Proposition 5

The proof is similar to that of Proposition 3 of Kasahara and Shimotsu (2015). Let tη := η − η∗,
so that t(ψ, α) in (15) is written as (t>η , t(λ, α)>)>. Let

Gn := νn(s(x, z)) =

[
Gηn

Gλn

]
,

Gλ.ηn := Gλn − IληI−1
η Gηn, Zλ.ηn := I−1

λ.ηGλ.ηn,

tη.λ := tη + I−1
η Iηλt(λ, α).

Then, we can split the quadratic form in Proposition 4(b) and write it as

sup
ϑ∈Anα(δ)

∣∣2 [Ln(ψα, α)− Ln(ψ∗α, α)]−Bn(
√
ntη.λ)− Cn(

√
nt(λ, α))

∣∣ = op(1), (43)

where
Bn(tη.λ) = 2t>η.λGηn − t>η.λIηtη.λ,

Cn(t(λ, α)) = 2t(λ, α)>Gλ.ηn − t(λ, α)>Iλ.ηt(λ, α)

= Z>λnIλ.ηZλn − (t(λ, α)−Zλn)>Iλ.η(t(λ, α)−Zλn).

(44)

Observe that 2[L0,n(γ̂0, µ̂0, Σ̂0) − L0,n(γ∗,µ∗,Σ∗)] = maxtη [2
√
nt>ηGηn − nt>ηIηtη] + op(1) =

maxtη.λ Bn(
√
ntη.λ) + op(1) from applying Proposition 2 to L0,n(γ,µ,Σ) and noting that the set

of possible values of both
√
ntη and

√
ntη.λ approaches Rdη . In conjunction with (43), we obtain

2[Ln(ψ̂α, α)− L0,n(γ̂0, µ̂0, Σ̂0)] = Cn(
√
nt(λ̂, α)) + op(1). (45)
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For e = (e1, . . . , ed)
> ∈ {0, 1}d, define

Θeλ := {λ ∈ Θλ : |λµi | ≥ n−1/8(log n)−1 if ei = 1; |λµi | ≤ n−1/8(log n)−1 if ei = 0}, (46)

so that Θλ = ∪e∈{0,1}dΘeλ. Define λ̈
e

by Cn(
√
nt(λ̈

e
, α)) = maxλ∈Θeλ

Cn(
√
nt(λ, α)). Then, we

have

t(λ̈
e
, α) = Op(n

−1/2), (47)

2[Ln(ψ̂α, α)− L0,n(γ̂0, µ̂0, Σ̂0)] = max
e∈{0,1}d

Cn(
√
nt(λ̈

e
, α)) + op(1), (48)

where (47) follows from noting that Cn(
√
nt(λ̈

e
, α)) ≥ op(1) and using the argument follow-

ing (34) in the proof of Proposition 2, and (48) holds because (i) maxe∈{0,1}d Cn(
√
nt(λ̈

e
, α)) ≥

2[Ln(ψ̂α, α)−L0,n(γ̂0, µ̂0, Σ̂0)]+op(1) from the definition of t(λ̈
e
, α) and (45), and (ii) 2[Ln(ψ̂α, α)−

L0,n(γ̂0, µ̂0, Σ̂0)] ≥ maxe∈{0,1}d Cn(
√
nt(λ̈

e
, α)) + op(1) from the definition of ψ̂α and (43).

We proceed to construct a parameter space Λ̃eλ that is locally equal to the cone Λeλ defined in

(18). Observe that (47) and Lemma 4 imply that, with c(α) := α(1− α),

(λ̈
e
µv)ijk = c(α)

∑
(t1,t2,t3)∈p12(i,j,k)

λ̈µt1 λ̈vt2t3 for all e,

(λ̈
e
µ4)ijk` =



12c(α)
∑

(t1,t2,t3,t4)∈p22(i,j,k,`) λ̈vt1t2 λ̈vt3t4 + op(n
−1/2) if e = 0,

c(α)b(α)
∑

(t1,t2,t3,t4)∈p(i,j,k,`) λ̈µt1 λ̈µt2 λ̈µt3 λ̈µt4 + op(n
−1/2)

if e 6= 0 and ei = ej = ek = e` = 1,

op(n
−1/2) otherwise.

(49)

Define

Λ̃eλ :=
(
{(teµv)ijk}1≤i≤j≤k≤d, {(teµ4)ijk`}1≤i≤j≤k≤`≤d

)>
∈ Rdµv+dµ4 , (50)

where teµv and teµ4 satisfy, for some λ ∈ Θλ and

(teµv)ijk = c(α)
∑

(t1,t2,t3)∈p12(i,j,k)

λµt1λvt2t3 for all e,

(teµ4)ijk` =



12c(α)
∑

(t1,t2,t3,t4)∈p22(i,j,k,`) λvt1t2λvt3t4 if e = 0,

c(α)b(α)
∑

(t1,t2,t3,t4)∈p(i,j,k,`) λµt1λµt2λµt3λµt4

if e 6= 0 and ei = ej = ek = e` = 1,

0 otherwise.

(51)

Define t̃
e
λ by Cn(

√
nt̃
e
λ) = max

tλ∈Λ̃eλ
Cn(
√
ntλ). Then, it follows from (49) and (51) that
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maxe∈{0,1}d Cn(
√
nt̃
e
λ) = maxe∈{0,1}d Cn(

√
nt(λ̈

e
, α)) + op(1). Therefore,

2[Ln(ψ̂α, α)− L0,n(γ̂0, µ̂0, Σ̂0)] = max
e∈{0,1}d

Cn(
√
nt̃
e
λ) + op(1).

The asymptotic distribution of the LRTS follows from applying Theorem 3(c) of Andrews (1999)

to {Cn(
√
nt̃
e
λ)}e∈{0,1}d . First, Assumption 2 of Andrews (1999) holds trivially for Cn(

√
nt̃
e
λ). Sec-

ond, Assumption 3 of Andrews (1999) holds with BT = n1/2 because Gλ.ηn →d Gλ.η ∼ N(0,Iλ.η)

and Iλ.η is nonsingular. Assumption 4 of Andrews (1999) holds from the same argument as (47).

Assumption 5 of Andrews (1999) follows from Assumption 5∗ of Andrews (1999) because Λ̃eλ is

locally equal to the cone Λeλ. Therefore, it follows from Theorem 3(c) of Andrews (1999) that

{Cn(
√
nt̃
e
λ)}e∈{0,1}d →d {(̂t

e
λ)>Iλ,η t̂

e
λ}e∈{0,1}d , (52)

and the stated result follows.

8.4 Proof of Proposition 6

For m = 1, . . . ,M0, let N ∗m ⊂ ΘϑM0+1
be a sufficiently small closed neighborhood of Υ∗1m, such

that (µ1,Σ1) < · · · < (µm−1,Σm−1) < (µm,Σm), (µm+1,Σm+1) < (µm+2,Σm+2) < · · · <
(µM0+1,ΣM0+1) and αm, αm+1 > 0 hold and Υ∗1k /∈ N ∗m if k 6= m. For ϑM0+1 ∈ N ∗m, we in-

troduce the following one-to-one reparameterization, which is similar to (9):

βm := αm + αm+1, τ := αm/(αm + αm+1),

(β1, . . . , βm−1, βm+1 . . . , βM0−1)> := (α1, . . . , αm−1, αm+2, . . . , αM0)>,
µm

µm+1

vm

vm+1

 =


νµ + (1− τ)λµ

νµ − τλµ
νv + (1− τ)(2λv + C1w(λµλ

>
µ))

νv − τ(2λv + C2w(λµλ
>
µ)

 ,

(53)

where βM0 = 1 −
∑M0−1

m=1 βm, C1 = −(1/3)(1 + τ), and C2 = (1/3)(2 − τ), and we sup-

press the dependence of (λµ,νµ,λv,νv) on τ . With this reparameterization, the null restriction

(µm,Σm) = (µm+1,Σm+1) implied by H0,1m holds if and only if (λµ,λv) = 0. Collect the repa-

rameterized parameters except for τ into one vector ψmτ , and let ψm∗τ denote its true value. Define

the reparameterized density as

gm(x|z;ψmτ , τ) := βm

[
τfv

(
x|z;γ,νv + (1− τ)(2λv + C1w(λµλ

>
µ))
)

+(1− τ)fv

(
x|z;γ,νµ − τλµ,νv − τ(2λv + C2w(λµλ

>
µ)
)]

+

m−1∑
j=1

βjfv(x|z;γ,µj ,Σj) +

M0∑
j=m+1

βjfv(x|z;γ,µj+1,Σj+1).
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Define the local PMLE of ψmτ by

ψ̂
m

τ := arg max
ψmτ ∈N ∗m

PLmn (ψmτ , τ), (54)

where PLmn (ψmτ , τ) :=
∑n

i=1 log[gm(Xi|Zi;ψ
m
τ , τ)] + pn(ψmτ ). Because ψm∗τ is the only parameter

value in N ∗m that generates true density, ψ̂
m

τ −ψm∗τ = op(1) follows from a straightforward extension

of Proposition 3.

Define the penalized LRT statistic for testingH0,1m as PLRn,1m(ετ ) := maxτ∈[ετ ,1−ετ ] 2{PLmn (ψ̂
m

τ , τ)−
PL0,n(ϑ̂M0)} for some ετ ∈ (0, 1/2). The stated result holds if

(LRn,11(ετ ), . . . , LRn,1M0(ετ ))> →d (v1, . . . , vM0)> (55)

for any ετ ∈ (0, 1/2), where vm := maxe∈{0,1}d
(

(̂t
e
λ,m)>Imλ.η t̂

e
λ,m

)
. We proceed to show (55).

Observe that as in (13), the first, second, and third derivatives of log[gm(x|z;ψmτ , τ)] w.r.t. λµ

and its first derivative w.r.t. λv become zero when evaluated at ψmτ = ψm∗τ . Consequently,

PLmn (ψmτ , τ) − PLmn (ψm∗τ , τ) admits the same expansion as as Ln(ψα, α) − Ln(ψ∗α, α) in Propo-

sition 4 by replacing (t(ψα, α), s(x, z),I) with (tm(ψmτ , τ), sm(x, z),Im), where (sm(x, z),Im)

is defined in the same manner as (s(x, z),I) but using (s̃η, s
m
µv, s

m
µ4) in place of (sη, sλ). Then,

(55) follows from the repeating the proof of Proposition 5 for each local MLE by replacing Gn

with Gn,m := νn(sm(x, z)) and collecting the results while noting that (G>n,1, . . . ,G
>
n,M0

)> →d

(G>1 , . . . ,G
>
M0

)>.

8.5 Proof of Proposition 7

Let ωen,m be the sample counterpart of (̂t
e
λ,m)>Imλ.η t̂

e
λ,m in Proposition 6 such that the local LRT

statistic satisfies 2[Lhn(ψ̂
h

τ , τ)−L0,n(ϑ̂m0)] = max{ωen,m}+op(1), where ψ̂
m

τ is the local MLE defined

in (54).

For τ ∈ (0, 1), define ϑm∗M0+1(τ) := {ϑM0+1 ∈ Υ∗1m : αm/(αm + αm+1) = τ}, which gives the

true density. Observe that from Assumption 2 and |x| ≤ 1 + |x|3, we have pnm(Σm) − pn(Σ∗m) =

op(n
1/6)|vj − v∗j | = op(1 + n1/2|vj − v∗j |3) = op(1 + n1/2(|λv|3 + |λµ|6)). Therefore, in view of the

bound on the third term in (42) and on the first term in (41) in the proof of Proposition 4, for any

ϑM0+1 with αm/(αm +αm+1) = τ ∈ (0, 1) and whose corresponding tm(ψmτ ) is Op(n
−1/2), we have

PLn(ϑM0+1)−pn(ϑM0+1)−PLn(ϑm∗M0+1(τ))+pn(ϑm∗M0+1(τ)) = PLn(ϑM0+1)−PLn(ϑm∗M0+1(τ))+op(1).

(56)

First, we show EM
h(1)
n = max{ωen,m}+op(1). Because ϑm∗M0+1(τ0) is the only value of ϑM0+1 that

yields the true density if ς ∈ Ω∗m and αm/(αm + αm+1) = τ0, ϑ
m(1)
M0+1(τ0) equals a reparameterized

penalized local MLE in the neighborhood of ϑm∗M0+1(τ0). Therefore, EM
h(1)
n = max{ω1

n,m, ω
2
n,m} +

op(1) follows from the proof of Proposition 6 and (56).

We proceed to show that EM
m(K)
n = max{ωen,m} + op(1). Because a generalized EM
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step never decreases the likelihood value (Dempster et al., 1977), we have PLn(ϑ
m(K)
M0+1(τ0)) ≥

PLn(ϑ
h(1)
M0+1(τ0)). Therefore, it follows from induction that ϑ

m(K)
M0+1(τ0) − ϑm∗M0+1(τ0) = op(1)

for any finite K. Let ϑ̃
m
M0+1(τ (K)) be the maximizer of PLn(ϑM0+1) under the constraint

αm/(αm + αm+1) = τ (K) in an arbitrary small closed neighborhood of ϑm∗M0+1(τ (K)); then, we

have PLn(ϑ̃
m
M0+1(τ (K))) ≥ PLn(ϑ

m(K)
M0+1(τ0)) + op(1) from the consistency of ϑ

m(K)
M0+1(τ0). Thus,

2[PLn(ϑ
m(K)
M0+1(τ0))− L0,n(ϑ̃M0)] = max{ωen,m}+ op(1) holds because both 2[PLn(ϑ̃

m
M0+1(τ (K)))−

L0,n(ϑ̃M0)] and 2[PLn(ϑ
m(1)
M0+1(τ0)) − L0,n(ϑ̃M0)] can be written as max{ωen,m} + op(1). Further,

because PLn(ϑ
m(K)
M0+1(τ0)) ≥ PLn(ϑ

m(1)
M0+1(τ0)) ≥ PLn(ϑm∗M0+1(τ0)) + op(1), it follows from applying

Proposition 5 to ϑ
m(K)
M0+1(τ0) in conjunction with (56) that EM

m(K)
n = max{ωen,m}+ op(1) holds for

all m. The stated result follows from the definition of EM
(K)
n .

9 Auxiliary results and their proofs

Lemma 1. Let fv(x;µ,v) := (2π)−d/2(detS(v))−1/2 exp(−(x−µ)>S(v)−1(x−µ)/2) denote the

density of a d-variate normal distribution with mean µ = (µ1, . . . , µd)
> and variance S(v) with

v = {vij}1≤i≤j≤d as specified in (8). Then, the following holds for any t1, t2, t3, t4, t5, t6 ∈ {1, . . . , d}:

∂fv(x;µ,v)

∂vt1t2
=

1

2

∂2fv(x;µ,v)

∂µt1∂µt2
,

∂2fv(x;µ,v)

∂vt1t2∂vt3t4
=

1

4

∂4fv(x;µ,v)

∂µt1∂µt2∂µt3∂µt4
,

∂3fv(x;µ,v)

∂vt1t2∂vt3t4∂vt5t6
=

1

8

∂6fv(x;µ,v)

∂µt1∂µt2∂µt3∂µt4∂µt5∂µt6
.

Proof. Henceforth, we suppress (x;µ,Σ) and (x;µ,v) and from f(x;µ,Σ) and fv(x;µ,v) unless

confusions might arise. In view of the definition of S(v) in (8), the following holds for any function

g(Σ) of Σ:
∂g(S(v))

∂vt1t2
=
∂g(Σ)/∂Σt1t2 + ∂g(Σ)/∂Σt2t1

2
=
∂g(Σ)

∂Σt1t2

. (57)

Let si denote the ith column of Σ−1, and let sij denote the (i, j)th element of Σ−1. A direct

calculation gives ∂2f(x;µ,Σ)/∂µ∂µ> = −Σ−1f+Σ−1(x−µ)(x−µ)>Σ−1f and ∂f(x;µ,Σ)/∂Σ =

−(1/2)Σ−1f+(1/2)Σ−1(x−µ)(x−µ)>Σ−1f . Therefore, the first result follows immediately from

(57).

To prove the second result, we first derive ∂4f(x;µ,Σ)/∂µt1∂µt2∂µt3∂µt4 . Noting

that ∂s>j (x− µ)/∂µi = −sji and ∂f(x;µ,Σ)/∂µi = s>i (x − µ)f and differentiating

∂2f(x;µ,Σ)/∂µt1∂µt2 = [−st1t2 + s>t1(x− µ)s>t2(x− µ)]f with respect to µt3 and µt4 , we obtain

∂4f(x;µ,Σ)

∂µt1∂µt2∂µt3∂µt4
=

 ∑
{i,j},{k,`}

stitjstkt` −
∑

{i,j},{k},{`}

stitjs
>
tk

(x− µ)s>t`(x− µ) +

4∏
i=1

s>ti (x− µ)

 f,

(58)

where
∑
{i,j},{k,`} denotes the sum over all 3 possible partitions of {1, 2, 3, 4} into {{i, j}, {k, `}},

and
∑
{i,j},{k},{`} denotes the sum over all 6 possible partitions of {1, 2, 3, 4} into three sets
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{{i, j}, {k}, {`}}. Recall that

∂f(x;µ,Σ)

∂Σt1t2

= (1/2)[−st1t2 + s>t1(x− µ)s>t2(x− µ)]f. (59)

Let 1i denote a d× 1 vector whose elements are 0 except for the ith element, which is 1. We then

have st1t2 = 1>t1Σ
−11t2 and st1 = Σ−11t1 . Using the symmetry of Σ, we obtain

∂st1t2
∂Σt3t4

=
∂(st1t2 + st2t1)/2

∂Σt3t4

=
∂

∂Σt3t4

(
1>t1Σ

−11t2 + 1>t2Σ
−11t1

)
/2

= −(1/2)
(
Σ−11t11

>
t2Σ
−1 + Σ−11t21

>
t1Σ
−1
)
t3t4

= −(1/2) (st3t1st2t4 + st3t2st1t4) ,

and

∂s>t1(x− µ)

∂Σt3t4

=
∂

∂Σt3t4

(
1>t1Σ

−1(x− µ) + (x− µ)>Σ−11t1

)
/2

= −(1/2)
(
Σ−11t1(x− µ)>Σ−1 + Σ−1(x− µ)1>t1Σ

−1
)
t3t4

= −(1/2)
(
st3t1(x− µ)>st4 + s>t3(x− µ)st1t4

)
.

Therefore, taking the derivative of the right hand side of (59) with respect to Σt3t4 gives

∂2f(x;µ,Σ)

∂Σt1t2∂Σt3t4

=
1

4

[
st3t1st2t4 + st3t2st1t4 −

(
st3t1(x− µ)>st4 + s>t3(x− µ)st1t4

)
s>t2(x− µ)

−s>t1(x− µ)
(
st3t2(x− µ)>st4 + s>t3(x− µ)st2t4

)]
f

+
1

2

(
−st1t2 + s>t1(x− µ)s>t2(x− µ)

) ∂f(x;µ,Σ)

∂Σt3t4

=
1

4

 ∑
{i,j},{k,`}

stitjstkt` −
∑

{i,j},{k},{`}

stitjs
>
tk

(x− µ)s>t`(x− µ) +
4∏
i=1

s>ti (x− µ)

 f.

(60)

Comparing this with (58) and using (57) gives the second result.
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For the third result, differentiating (58) with respect to µt5 and µt6 gives

∂6f(x;µ,Σ)

∂µt1∂µt2∂µt3∂µt4∂µt5∂µt6

=

− ∑
{i,j},{k,`},{m,n}

stitjstkt`stmtn +
∑

{i,j},{k,`},{m},{n}

stitjstkt`s
>
tm(x− µ)s>tn(x− µ)

−
∑

{i,j},{k,`,m,n}

stitjs
>
tk

(x− µ)s>t`(x− µ)s>tm(x− µ)s>tn(x− µ) +
6∏
i=1

s>ti (x− µ)

 f,

(61)

where
∑
{i,j},{k,`},{m,n} denotes the sum over all 15 possible partitions of {1, 2, 3, 4, 5, 6} into

{{i, j}, {k, `}, {m,n}},
∑
{i,j},{k,`},{m},{n} denotes the sum over all 45 possible partitions of

{1, 2, 3, 4, 5, 6} into three sets {{i, j}, {k, `}, {m}, {n}}, and
∑
{i,j},{k,`,m,n} denotes the sum over

all 15 possible partitions of {1, 2, 3, 4, 5, 6} into {{i, j}, {k, `,m, n}}. Differentiating (60) with re-

spect to Σt5t6 gives (61) divided by 8, and the third result follows.

Lemma 2. Let f(x;β) be the density function of a random variable X with parameter β. Then,

Eβ∗ [∇β⊗kf(x;β∗)/f(x;β∗)] = 0 if f(x;β) is k times differentiable in β in a neighborhood of β∗.

Proof. The stated result follows from differentiating both sides of
∫
f(x;β)dx = 1 k times with

respect to β and evaluating at β∗.

Lemma 3. Suppose that g(x|z;ψα, α) is given by (11), where ψ = (η>,λµ,λv)> and η =

(γ>,νµ,νv)>. Let g∗ and ∇g∗ denote g(x|z;ψα, α) and ∇g(x|z;ψα, α) evaluated at (ψ∗α, α),

respectively. Let ∇f∗ denote ∇f(x|z;γ∗,µ∗,Σ∗). Then, with b(α) := −(2/3)(α2 − α+ 1) < 0,

(a) for k = 1, 2, 3 and ` = 0, 1, . . . , ∇λ⊗kµ ⊗η⊗`g
∗ = 0;

(b) ∇λµiλµjλµkλµ`g
∗ = α(1− α)b(α)∇µiµjµkµ`f

∗;

(c) for ` = 0, 1, . . . , ∇λv⊗η⊗`g
∗ = 0;

(d) ∇λµiλvjk g
∗ = α(1− α)∇µiµjµkf

∗;

(e) ∇λvijλvk`g
∗ = α(1− α)∇µiµjµkµ`f

∗.

Proof. We prove part (a) for ` = 0 first. Suppress all arguments in g(x|z;ψα, α) and fv(x|z;γ,µ,v)

except for λµ, and rewrite as follows:

g(λµ) = αfv((1− α)λµ, (1− α)C1w(λµλ
>
µ)) + (1− α)fv(−αλµ,−αC2w(λµλ

>
µ)). (62)
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For a composite function h(a, r(a)) of a d× 1 vector a = (a1, . . . , ad)
>, the following result holds:

∇ai1 ···aikh(a, r(a)) = {(∇ai1 +∇ui1 ) · · · (∇aik +∇uik )}h(a, r(u))|u=a

=
k∑
j=0

∑
p(j,{i1,...,ik})

∇ut1 ···utjatj+1 ···atkh(a, r(u))|u=a,
(63)

where
∑

p(j,{i1,...,ik}) denotes the sum over all the partitions of {i1, . . . , ik} into two sets {t1, . . . , tj}
and {tj+1, . . . , tk}. Because applying (63) to the right hand side of (62) gives the derivatives

of g(λµ), we derive ∇ut1 ···utj fv((1 − α)λµ, (1 − α)C1w(uu>))|u=0. Let c̃ := (1 − α)C1. For

notational convenience, if i > j, define ∇vijh(v) := ∇vjih(v) for any function h(v). Using the fact

∇ukwij(uu>) = 2uiI{j = k}+ 2ujI{i = k}, we obtain

∇ut1fv(·, c̃w(uu>)) =

d∑
i=1

d∑
j=i

∇vijfv(·, c̃w(uu>))c̃∇ut1wij(uu
>)

= 2

t1∑
i=1

∇vit1fv(·, c̃w(uu>))c̃ui + 2

d∑
j=t1+1

∇vt1jfv(·, c̃w(uu>))c̃uj

= 2

d∑
i=1

∇vt1ifv(·, c̃w(uu>))c̃ui.

Differentiating the right hand side with respect to ut2 gives

∇ut1ut2fv(·, c̃w(uu>)) = 4
d∑
i=1

d∑
j=1

∇vt1ivt2jfv(·, c̃w(uu>))c̃2uiuj + 2∇vt1t2fv(·, c̃w(uu>))c̃.

Differentiating the right hand side with respect to ut3 gives

∇ut1ut2ut3fv(·, c̃w(uu>)) = 8

d∑
i=1

d∑
j=1

d∑
k=1

∇vt1ivt2jvt3kfv(·, c̃w(uu>))c̃3uiujuk

+ 4

d∑
i=1

∇vt1ivt2t3fv(·, c̃w(uu>))c̃2ui + 4

d∑
j=1

∇vt1t3vt2jfv(·, c̃w(uu>))c̃2uj

+ 4

d∑
k=1

∇vt1t2vt3kfv(·, c̃w(uu>))c̃2uk.

Finally, evaluating these derivatives at u = 0 and differentiating ∇ut1ut2ut3fv(·, c̃w(uu>)) with
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respect to ut4 and evaluating at u = 0 gives

∇ut1fv(·, c̃w(uu>))|u=0 = 0,

∇ut1ut2fv(·, c̃w(uu>))|u=0 = 2c̃∇vt1t2fv(·, c̃w(uu>)),

∇ut1ut2ut3fv(·, c̃w(uu>))|u=0 = 0,

∇ut1ut2ut3ut4fv(·, c̃w(uu>))|u=0 = 4c̃2∇vt1t4vt2t3fv(·,0) + 4c̃2∇vt1t3vt2t4fv(·,0)

+ 4c̃2∇vt1t2vt3t4fv(·,0),

(64)

and a similar result holds for ∇
ut1 ···utjλ

k−j
µ

fv((1− α)λµ, (1− α)C1w(uu>))|u=0 and

∇
ut1 ···utjλ

k−j
µ

f(−αλµ,−αC2w(uu>))|u=0.

Differentiating (62) with respect to λµ and using (63), (64), C1−C2 = −1, 3((1−α)C1 +αC2) =

2α− 1, and Lemma 1, we obtain

∇λµg(0) = 0,

∇λµiλµj g(0) = α(1− α)∇µiµjfv(0,0) + 2α(1− α)(C1 − C2)∇vijfv(0,0) = 0,

∇λµiλµjλµk g(0) = α(1− α)(1− 2α)∇µiµjµkfv(0,0)

+ 3α(1− α)((1− α)C1 + αC2)2∇µivjkfv(0,0) = 0,

and part (a) for ` = 0 follows. Repeating the same argument with ∇η⊗`g(λµ,η) gives part (a) for

` ≥ 1.

For part (b), differentiating (62) and using (63), (64), and Lemma 1 gives

∇λµiλµjλµkλµ`g(0)

= α(1− α)[(1− α)3 + α3]∇µiµjµkµ`fv(0,0) + 6α(1− α)((1− α)2C1 − α2C2)2∇µiµjvk`fv(0,0)

+ 12α(1− α)((1− α)C2
1 + αC2

2 )∇vijvk`fv(0,0)

= α(1− α)[−(2/3)(α2 − α+ 1)]∇µiµjµkµ`fv(0,0),

and the stated result follows because ∇µiµjµkµ`fv(0,0) = ∇µiµjµkµ`f(0,0). Part (c) follows from a

direct calculation.

Parts (d) and (e) follow from direct calculation and using (63), (64) and Lemma 1.

Lemma 4. Let e ∈ {0, 1}d, and suppose λ = (λ>µ ,λ
>
v )> ∈ Θeλ satisfies t(λ, α) = Op(n

−1/2)

for some α ∈ (0, 1), where Θeλ and t(λ, α) are defined in (46) and (15), respectively. Then, the

following result holds for 1 ≤ i ≤ d:

(a) If ei = 1, then λeµi = Op(n
−1/8);

(b) If ei = 0, then λeµi = Op(n
−1/8(log n)−1);

(c) If ei = 1 for any i, then λev = Op(n
−3/8(log n)3).

(65)

28



Proof. Observe that t(λ, α) = Op(n
−1/2) implies

λeµviii = α(1− α)λeµiλ
e
vii = Op(n

−1/2), (66)

λeµviij = α(1− α)(λeµiλ
e
vij + λeµjλ

e
vii) = Op(n

−1/2), (67)

λeµvijk = α(1− α)(λeµiλ
e
vji + λeµjλ

e
vik

+ λeµkλ
e
vij ) = Op(n

−1/2), (68)

λeµ4
iiii

= α(1− α)[12(λevii)
2 + b(α)(λeµi)

4] = Op(n
−1/2). (69)

First, observe that λevii = Op(n
−3/8 log n) if ei = 1 in view of |λeµi | ≥ n−1/8(log n)−1 and (66).

Part (a) follows from substituting this to (69). Part (b) follows from the definition of Θeλ. We

prove part (c) by dividing part (c) into the following six cases, where i, j, k are all distinct; (c1)

λevii = Op(n
−3/8 log n) if ei = 1; (c2) λevij = Op(n

−3/8(log n)2) if (ei, ej) = (1, 1); (c3) λevij =

Op(n
−3/8(log n)2) if (ei, ej) = (1, 0) or (0, 1); (c4) λevii = Op(n

−3/8(log n)2) if (ei, ej) = (0, 1); (c5)

λevij = Op(n
−3/8(log n)3) if (ei, ej , ek) = (0, 0, 1). (c1) is already proven. (c2) holds because we have

|λeµi | ≥ n−1/8(log n)−1 and λeµiλ
e
vij = Op(n

−1/2 log n), which follows from (67) and parts (a)(c1).

For (c3), observe that, when (ei, ej) = (1, 0), we have λeµiλ
e
vij = Op(n

−1/2 log n) from (67) and

parts (b)(c1). Therefore, (c3) holds because |λeµi | ≥ n−1/8(log n)−1. When (ei, ej) = (0, 1), (c3)

is proven similarly by using λeµvijj = Op(n
−1/2) in place of (67). For (c4), observe that λeµjλ

e
vii =

Op(n
−1/2 log n) from (67) and parts (b)(c2). Therefore, (c4) holds because |λeµj | ≥ n

−1/8(log n)−1.

Finally, (c5) holds because |λeµk | ≥ n−1/8(log n)−1 and λeµkλ
e
vij = Op(n

−1/2(log n)2), which follows

from (68) and parts (b)(c3).

Proposition 8. Suppose that Assumptions 2, 3, and 5 hold. If ϑ
m(k)
m0+1(τ0) − ϑm∗m0+1(τ0) = op(1),

then α
(k+1)
m /[α

(k+1)
m + α

(k+1)
m+1 ]− τ0 = op(1).

Proof. We suppress (τ0) from ϑ
m(k)
M0+1(τ0) and ϑm∗M0+1(τ0). The proof is similar to the proof of

Lemma 3 of Li and Chen (2010). Let fi(γ,µ,Σ) and fi(ϑM0+1) denote f(Xi|Zi;γ,µ,Σ) and

fM0+1(Xi|Zi;ϑM0+1), respectively. Applying a Taylor expansion to α
(k+1)
m = n−1

∑n
i=1w

(k)
ih and

using ϑ
m(k)
M0+1 − ϑ

m∗
M0+1 = op(1), we obtain

α(k+1)
m =

1

n

n∑
i=1

α
(k)
m fi(γ

(k),µ
(k)
m ,Σ

(k)
m )

fi(ϑ
h(k)
M0+1)

=
1

n

n∑
i=1

τ0α
∗
mfi(γ

∗,µ∗m,Σ
∗
m)

fi(ϑ
m∗
M0+1)

+ op(1) = τ0α
∗
m + op(1),

where the last equality follows from E[fi(γ
∗,µ∗m,Σ

∗
m)/fi(ϑ

m∗
M0+1)] = 1 and the law of large numbers.

A similar argument gives α
(k+1)
m = (1− τ0)α∗m + op(1), and the stated result follows.
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Table 1: Type I errors (%) of the EM test of H0 : M = 1

n = 200 n = 400
Level K = 1 K = 2 K = 3 K = 1 K = 2 K = 3

Model 1: µ =

(
0
0

)
, Σ =

(
1 0
0 1

)
10% 9.2 9.3 9.6 10.4 10.0 10.1
5% 5.2 5.0 4.9 4.3 4.4 4.4
1% 1.2 1.1 1.3 1.1 1.1 1.1

Model 2: µ =

(
0
0

)
, Σ =

(
1 0.5

0.5 1

)
10% 9.4 9.3 9.4 10.0 9.9 9.7
5% 6.1 5.9 6.0 4.5 4.6 4.5
1% 1.5 1.5 1.4 1.2 1.2 1.3

Table 2: Powers (%) of the EM test of H0 : M = 1

n = 200 n = 400
Level K = 1 K = 2 K = 3 K = 1 K = 2 K = 3

Model 1: µ1 =

(
−1
0

)
, µ2 =

(
1
0

)
, Σ1 =

(
1 0
0 1

)
, Σ2 =

(
1 0
0 1

)
10% 38.9 38.7 38.0 67.9 67.5 67.3
5% 26.5 26.3 26.1 53.9 54.3 54.0
1% 10.6 10.8 10.8 30.9 30.6 30.5

Model 2: µ1 =

(
−0.5

0

)
, µ2 =

(
0.5
0

)
, Σ1 =

(
1 0
0 5

)
, Σ2 =

(
1 0
0 1

)
10% 94.7 94.8 94.8 100.0 100.0 100.0
5% 92.0 91.9 91.8 99.9 99.9 99.9
1 % 81.2 81.3 81.2 99.7 99.7 99.7

In both models, α is set to (α1, α2) = (0.7, 0.3).
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Table 3: Type I errors (%) of the EM test of H0 : M = 2

n = 200 n = 400
Level K = 1 K = 2 K = 3 K = 1 K = 2 K = 3

α =

(
0.7
0.3

)
, µ1 =

(
−1
0

)
, µ2 =

(
1
0

)
, Σ1 =

(
1 0
0 1

)
, Σ2 =

(
1 0
0 1

)
10% 7.5 7.6 7.7 5.7 5.6 5.9
5% 4.0 4.3 4.2 3.3 3.5 3.4
1% 0.9 1.0 1.0 0.3 0.3 0.3

Table 4: Parameter specifications for testing the power of the EM test of H0 : M = 2

α µ1 µ2 µ3 Σ1 Σ2 Σ3

Model 1

0.15
0.35
0.5

 (
−2
0

) (
0
2

) (
2
0

) (
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

)

Model 2

0.15
0.35
0.5

 (
−2
0

) (
−1
4

) (
2
0

) (
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

)

Table 5: Powers (%) of the EM test of H0 : M = 2

n = 200 n = 400
Level K = 1 K = 2 K = 3 K = 1 K = 2 K = 3

Model 1
10% 26.4 26.3 26.5 30.1 30.3 30.5
5% 17.7 16.7 16.8 22.6 22.6 22.7
1% 5.7 5.6 5.6 8.7 8.5 8.5

Model 2
10% 44.5 44.6 44.5 70.5 70.6 70.7
5% 36.1 36.1 36.0 65.4 65.1 65.1
1 % 17.0 16.9 17.1 48.0 47.7 47.2
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