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Abstract

Testing the number of components in multivariate normal mixture models is a long-standing
challenge. This paper develops a likelihood-based test of the null hypothesis of My components
against the alternative hypothesis of My 4 1 components. We derive a local quadratic approxi-
mation of the likelihood ratio statistic in terms of the polynomials of the parameters. Based on
this quadratic approximation, we propose an EM test of the null hypothesis of My components
against the alternative hypothesis of My + 1 components, and derive the asymptotic distribu-
tion of the proposed test statistic. The simulations show that the proposed test has good finite

sample size and power properties.

Key words: asymptotic distribution; EM test; likelihood ratio test; local MLE; multivariate

normal mixture models; number of components

1 Introduction

Finite mixtures of multivariate normal distributions have been widely used in empirical applications
in diverse fields such as statistical genetics and statistical finance. Comprehensive surveys on
theoretical properties and applications can be found, for example, [Lindsay| (1995)), Titterington
et al.| (1985), and McLachlan and Peel (2000).

The number of components is an important parameter in applications of finite mixture models.
Despite its importance, testing for the number of components in multivariate normal mixture
models has been a long-standing unsolved problem because the standard asymptotic analysis of
the likelihood ratio test (LRT) statistic breaks down due to problems such as non-identifiable

parameters and the true parameter being on the boundary of the parameter space. Numerous
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papers have been written on the subject of the likelihood ratio test for the number of components
(see, e.g., |Ghosh and Sen| |1985; Chernoff and Lander, [1995; [Lemdani and Pons, (1997; |Chen and
Chen, 2001}, [2003}; |Chen et al., |2004; |Garell, 2001}, 2005), and the asymptotic distribution of the LRT
statistic for general finite mixture models has been derived as a functional of the Gaussian process
(Dacunha-Castelle and Gassiat), [1999; |Azals et al., 2009; Liu and Shao|, 2003} |Zhu and Zhangj, [2004).

In multivariate normal mixtures, however, the asymptotic distribution of the LRT statistic
remains an open question because, as discussed in |Chen et al| (2012)), normal mixtures have an
additional undesirable mathematical property that invalidates key assumptions in these works.
In particular, the normal density with mean g and variance o2, f(y;p,c?), has the property
% fly;p,0?) = 2% f(y;p,02%). This leads to the loss of “strong identifiability” condition in-
troduced by (Chen| (1995)). As a result, neither Assumption (P1) of Dacunha-Castelle and Gassiat
(1999) nor Assumption 7 of |Azais et al.| (2009) holds, and Assumption 3 of |Zhu and Zhang| (2004)
is violated, while Corollary 4.1 of Liu and Shao| (2003|) does not hold in heteroscedastic normal
mixtures.

This paper develops a likelihood-based test of the null hypothesis of My components against the
alternative hypothesis of Mg+ 1 components for a general My > 1 in multivariate normal mixtures.
We propose an EM test by building on the EM approach pioneered by |Li et al.| (2009) and |Li and
Chen| (2010). The asymptotic null distribution of the proposed EM test statistic is shown to be
the maximum of random variables, each of which is a projection of a Gaussian random variable on
a cone.

To the best of our knowledge, no likelihood-based test has yet been developed for testing order
of multivariate normal mixtures, even in a simple case of testing the null hypothesis Hy : M =1
against the alternative hypothesis H4 : M = 2. In univariate normal mixtures, |Chen and Li (2009)
develop an EM test for My = 1 against My = 2, and (Chen et al.| (2012) develop an EM test for
testing Hy : M = My against Hy : M > Mj. Kasahara and Shimotsu| (2015) develop an EM test
for testing Hy : M = My against H4q : M = My + 1 for general My > 1 in finite normal mixture
regression models.

The remainder of this paper is organized as follows. Section 2 introduces multivariate normal
mixture models. Section 3 derives a version of LaCam’s differentiable in quadratic mean (DQM)
expansion that expands likelihood ratio in terms of a smooth function of parameters. This DQM-
type expansion has advantage over the “classical” approach based on the Taylor expansion that
expands up to the Hessian term because deriving a higher-order expansion becomes tedious in
multivariate normal mixtures. Sections 4 and 5 establish the local quadratic approximation in
testing the null hypothesis of My components against the alternative of My+1 components. Section
6 introduces the modified EM test. Section 7 reports the simulation results. The supplementary
appendix contains proofs and auxiliary results.

7

We collect notation. Let := denote “equals by definition.” Boldface letters denote vectors or

matrices. For a matrix B, let Apin (B) and Apax(B) be the smallest and the largest eigenvalue of B,

respectively. For a k-dimensional vector = (z1,...,2;)' and a matrix B, define |z| := (zx)'/?



and |B| := (Amax(B"B))/2. Let 2% .=z @ £ ® --- @ « (k times). Let I{A} denote an indicator
function that takes value 1 when A is true and 0 otherwise. C denotes a generic nonnegative finite

constant whose value may change from one expression to another. Given a sequence {f(Y )},
let vn(f(y)) :=n"230 [f(Yi) — Ef(Y;)] and Py(f(y)) :=n~' S0, £(Y;). All the limits are

taken as n — oo unless stated otherwise.
2 Multivariate finite normal mixture models

Let = (21,...,24)' € R? follow the normal distribution with mean g + z '~ and variance X.

The density of x is

_d
2

f(xlz;v, p, 2) := (27)

)

(x—p—2"9)"2 e —p— ZT‘Y))
2

(det E)_% exp <

where p is d x 1, and z and ~ are p x 1. Let ©, C R, ©, C R?, and O5, C Si denote the space
of v, u, and X, respectively, where Si denotes the space of d X d positive definite matrices. For

M > 2, denote the density of M-component finite normal mixture distribution as:

M
fur(@lz00) = o f(@]zy, 15, 2), (1)

j=1
where 937 == (, v, by, fps 21, ..., Bar) with a == (aq,...,aa7-1)", and ays being deter-
mined by ap = 1 — Zj\i;l aj. p; and 3j; are mixing parameters that characterize the j-th

component, and «js are mixing probabilities. -« is the coefficient of the covariate z, and =~
is assumed to be common to all the components. Define the set of admissible values of a by
Oq i ={a:a; >0, Z]]Vizl a; € [0,1]}, and let the space of 91 be Oy,, := Oq X O X @l]‘f x OM.

The number of components M is the smallest number such that the data density admits the

representation . Our objective is to test

Hy: M =My against Hp: M= My+1.

3 Quadratic expansion under singular Fisher information matrix

When testing the number of components by the LRT, the Fisher information matrix becomes
singular and the log-likelihood function will be approximated by a quadratic function of polynomials
of parameters. Further, a part of parameter is not identified under the null hypothesis. We derive
a DQM-type expansion for general density that is useful for handling such cases.

Let ¥ be a parameter vector, and let f(y;0) denote the density function of y. Let L,(9) :=
S log f(y;;9) denote the log-likelihood function. Split 9 as 9 = (", 7 )T, and write L, (9) =
L, (¢, m). m corresponds to the part of ¥ that is not identified under the null. Denote the true



parameter value of ¥ by ¥, and denote the set of (1, ) corresponding to the null hypothesis by
I ={(¢,m) € ©:1 =1*}. Let t(9¥) be a continuous function of ¥ such that ¢(¢) = 0 if and
only if ¥» = 9*. For € > 0, define a neighborhood of T'* by

Ne:={9€0O:[t(V) <e}

We establish a general quadratic expansion that expresses Ly, (¢, w) — L, (¥*, ) as a quadratic
function of ¢(9) for ¥ € N;. Denote the density ratio by

fy: 9, =)
Uy;9) = LYY T 2
;%) fy; ™, m) )
so that L, (¢, ) — L, (¢, w) = > 7" log {(y;; ¥). We assume that /(y; ) can be expanded around
L(y;9%) =1 as follows.

Assumption 1. {(y;9) — 1 admits an expansion
Uy;9) — 1 =t(9) " s(y; ™) +1(y;9), (3)

where s(y; ) and r(y;9) satisfy, for some C € (0,00) and € > 0, (a) Esup,ce, |s(Y;7))? <
C, (b) supreo, |Pu(sy;m)s(y;m)") — x| = o0p(l) with supreo, Imax(Zx) < C, (c)
Elsupgen: [r(Y39) /(D)% — 9] < 00, (4) suppen: [vn(r(ys 9)/(E®) 1 — %°])] = Oy(1),
(e) 0 <infrco, Amin(Zx), (f) subrco, [Vn(s(y;m))| = Op(1).

We first establish an expansion L, (1), 7) in a neighborhood N, //m that holds for any ¢ > 0.

Proposition 1. Suppose that Assumption[i(a)-(e) holds. Then, for all ¢ > 0,

sup ’Ln(w,ﬂ) — Ly (¢, m) — /nt(9) " vn(s(y; m)) + nt(9) Trt(9)/2] = 0,(1).
9EN,, /m
The next proposition expands Ly (1, ) in A, (0) := {9 € Nz : L, (¢, ) — L, (¢*, w) > —4} for
0 € (0,00). This proposition is useful for deriving the asymptotic distribution of the LRTS because
a consistent MLE is in A, (9) by definition and it is difficult to find a uniform approximation of
Ly (3, ) up to an o,(1) term in M.

Proposition 2. Suppose that Assumption |1l holds. Then, for any 6 > 0, (a) supgea, @) [t(I)] =
Op(nfl/Q)’.

() I,ESXP((;) Ly(9, ) = Ln (3", ) = Vnt(9) "wn(s(y; m)) + nt(9) It (9)/2] = 0p(1).



4 Local quadratic approximation for testing H, : M = 1 against
Hy: M =2

In this section, we develop a local quadratic approximation for testing the null hypothesis Hy :
M = 1 against Hy : M = 2 when the data are from Hy. We consider a random sample of
n independent observations {X;, Z;}7 ; from the true one-component density f(z|z;~*, p*,X*).
Here, the superscript * denotes the true population value. Let a two-component mixture density

function with 92 = («, 7, pq, o, X1, X2) € Oy, be
f2($|Z;’l92) = Oéf(m|z§')’,li1> 21) + (1 - a)f(m‘z;77u27 22) (4)

The model yields the true density f(x|z;~v*, p*,X%) if 95 lies in the set ©3F := {¥2 € Oy, :

{(p1, B1) = (B9, B2) = (w0, X7),y =77} or {a(l —a) =0,y =~"}.
We partition the null hypothesis Hy : m = 1 into two as follows:

Hop: (p1,21) = (e, X2) and Hp : a(l — a) = 0.

The regularity conditions for a standard asymptotic analysis fails in finite mixture models because
(i) under Hpi, « is not identified, and the Fisher information matrix for the other parameters
becomes singular; (ii) under Hpg, « is on the boundary of the parameter space, and either p; or
Mo is not identified.

In addition to the failure of regularity conditions that is common to all finite mixture models,
the normal mixture model has additional undesirable mathematical properties, as discussed in
Chen and Li (2009): (a) The Fisher information for testing Hpe is not finite unless the range of
det(X1)/ det(X2) is restricted. (b) The derivatives of fa(y|x, z;92) of different orders are linearly
dependent because V.., f(y|z, 2;v, pu, B) = 2V, f(y|z, z; 7, u, ) (loss of strong identifiability).
(¢) The log-likelihood function is unbounded and the maximum likelihood estimate fails to exist
(Hartigan, [1985; Kiefer and Wolfowitz, 1956)).

In view of problem (a), we focus on testing Ho1 : (p1,21) = (M9, 02) in the following. We
handle problem (c) by considering a maximum penalized likelihood estimator (PMLE) introduced
by |Chen and Tan| (2009) and |Alexandrovich (2014). Let S5 denote the sample covariance matrix.
Similar to Chen and Tan| (2009), we use the following penalty function

M M
Pa(Ox) =D pam(Em) = Y —an {tr(82 X, — 2log(det(S23,,.1)) — d} (5)
m=1 m=1

with M = 2, where a,, is non-random. Note that p,(92) =0 if 1 = Xy = S,. Let 1A92 denote the
PMLE that maximizes PLy(92) := > i fo(Xi|Z;i; 92) +pn(¥2). The following assumption on the
penalty function is adopted from |(Chen and Tan (2009), (Chen and Li (2009), and |Alexandrovich
(2014).



Assumption 2. (a) For any fived ¥ such that det(X) > 0, we have ppm(X) = o(n), and
supy; max{0, pum(X)} = 0(n). (b) Vieem)Prm(X) = o(n'/%) at any fired T such that det(X) > 0.
(c) For sufficiently large n, p(X) < (3/4)/nloglog(n)log(det(X)) for det(X) < Cn~2.

Assumption 3. Z has finite second moment, and Pr(Z]~ # ZI~*) > 0 for any v # ~*.
The following proposition shows the consistency of 1?}2.

Proposition 3. Suppose that Assumptions [ and [3 hold. Then, under the null hypothesis Hy :
M = 1, inf192€@»2« |1A92 — ’192| —>p 0.

For any 95 such that (u;,X31) = (9, X2), the derivatives of the density are linearly dependent

as

_ o _ _ o _
Vi, fa(z|2;92) = mv;@fz(w’z;ﬂz), Vs, fa(z|2z;92) = ngzl(y!w,z;ﬂg), (6)

Vi f2(2]2;02) = 2Vs, | fa(@]2;92), Vi, fo(]2;02) = 2V, ; fo(w]2;92).  (7)

Consequently, the Fisher information matrix is degenerate, which invalidates the standard second-
order quadratic approximation analysis. In particular, dependence leads to the loss of strong
identifiability and causes substantial difficulties in existing literature.
We analyze the penalized LRT statistic for testing Hop : (w1, 21) = (p9, X2) by developing
a higher-order approximation of the log-likelihood function that can be expressed in a quadratic
form, when « € (0, 1), through a judiciously designed reparameterization. This reparameterization
extending the result of Rotnitzky et al.| (2000) and |[Kasahara and Shimotsu| (2015). Collect the
unique elements in ¥ into a d(d + 1)/2-vector
V = (V11,012, -+ -, Uld, V92, V93, « + -, V2ddy « + + » Vd1.d—1, Vd—1.d> Vdd) |

= (11,2812, -, 2814, $22, 2503, -, 2804, -+, Ba_1.4-1, 21,4, Xdd) | -

Define the density function of N(u,X) parameterized in terms of p and v as

Vi if i = j,
fv(lh”) = f(/’l‘a S(”))7 where S’LJ(”) = . . (8)
v /2 it i # g

For a d x d symmetric matrix A, define a function w(A) € RU+1/2 55
w(A) = (AH, 2A12, ceey 2A1d, AQQ, 2A23, ey 2A2d, e aAd—l,d—b 2Ad—1,d7 Add)T.
Then f,(p,v) and f(pu,X) are related as



We introduce the following one-to-one mapping between (g, t9, v1,v2) and the reparameter-

ized parameter (A, vy, Ay, Vyp):

My vp+ (1 —a)iy

Bo | _ vy —aXy )
v1 Vo + (1= a)(2Ay + Crw(AA))) |

vy Vo — a(2Xy + Cow (AL )

where C := —(1/3)(1+«) and Cy := (1/3)(2—«). Collect the reparameterized parameters, except

for o, into one vector v, defined as

¢a = (’77’/#7’/’07)‘#7)"0) € @'l,ll(, (10)

In the reparameterized model, the null hypothesis of Hpy : (p1,v1) = (g, v2) is written as Hoy; :
(Au, Av) = 0, and the density and its logarithm are given by

g(x|z;1,, ) = afy (:L'
+(1-a)f, (@

27,0+ (1= ) A vy + (1 — ) (2A0 + Cm:(A,AI))) .

25,V — QA Vo — (20 + C’Qw(AHAI))) .

Partition 9, as ¥, = (n',A") T, where  := ('7T,1/Z,I/I)T € O, and X\ := ()\;,)\I)T € O,.
Denote the true values of m, A, and ¥ by n* = ((v*)7,(*) ", (v*)")T, A* := 0, and ¥ =
((n*)",07) 7T, respectively. The first derivative of w.r.t. n under ¥, = 1}, is identical to the

first derivative of the density of the one-component model:
Vang(x|z; ¢, a) = V(,YT#T,vT)va($|Z;’)’*,u*,’v*). (12)

On the other hand, Lemma [3] in the appendix shows that the first, second, and third derivatives of

g(x|z; 9., @) wr.t. A, and the first derivative w.r.t. A, become zero when evaluated at 1, = ¢}:

v}\“g(m‘z; ¢Z¢7 Oé) = 07 V}\gﬂg($|z; ’lﬂ:;,Oé) = Oa VA§39($|Z; ’(pr Oé) = 07
Va,9(x|z; 95, ) = 0.

(13)

Consequently, the information on A, and A, is provided by the fourth derivative w.r.t. Ay, the
cross-derivative w.r.t. A, and A,, and the second derivative w.r.t. A,.

We derive a quadratic approximation of the log-likelihood function by applying Proposi-
tion To this end, we collect the relevant score vector and reparameterized parameters that
correspond to s(y; ) and t(¥) in Assumption Let fr and Vf} denote f,(x|z;v*, u*, v*)
and Vf,(x|z;v*, p*,v*), and let d, := (p +d+ d(d + 1)/2), dy = d(d + 1)(d + 2)/6, and



dys :=d(d +1)(d +2)(d + 3)/24. Define the score vector s(zx, z) as

Sn v .
s T T o T ]
S(m, Z) = ( n) = S[J,'U Wlth S'r[ e ('7 Su T, ) v ’

*
Sx (dyux1) 5
oy (14)
* *
Vi fo S Ve £y
Spy = , Syt =N\ m )
(dyw x1) I 1<i<j<k<d  (d,ax1) I3 1<i<j<k<t<d

where we suppress the dependence of (sy, Suv, 8,4) on (, z). Collect the relevant reparameterized

parameters as

- n—n
t(,,a) = = Auw , 15
($ar0) (t(m)> ’ (15)
A
with
)\“U = {(Auv)ijk}lgigjgkgdy where ()‘;Lv)ijk = O[(l — Oé) Z )\Mtl )‘Ut2t3’
(dpox1)

(t1,t2,t3)€p12(3,5,k)

(d,ax1) (16)
X 12 Z )\Utth A'Ut3t4 + b(a) Z Aﬂtl Aﬂtg )\Ht;g )\Ht4 ’
(t1,t2,t3,t4) Ep22(i,5,k,0) (t1,t2,t3,t4)€p(i,5,k,0)
where b(a) = —(2/3)(a® — a + 1) < 0, and D (tr b, t3)Epra(ij.k) denotes the sum over all distinct

permutations of (,j, k) to (t1,t2,t3) With to < 3, D2, 1) 1 t0)epas (it
distinct permutations of (i, j, k, £) to (t1,ta,ts,ts) with ¢; <ty and t3 < t4, and Z(
denotes the sum over all distinct permutations of (i, 7, k, £) to (t1,t2,ts,t4).

Let Ly (v, a) ==Y logg(X;|Zi; ¢, a) denote the reparameterized log-likelihood function.
Define Ao (0) := {3 € Nz : L, (Y, ) — Ly (¢, o) > =5}

) denotes the sum over all

t1,t2,t3 7t4)€p(l7]»k7£)

Assumption 4. (a) Z has finite tenth moment.
Proposition 4. Suppose that Assumptions[3 and[4) hold. Then, under the null hypothesis Hy : m =
1, for a € (0,1) and €5 € (0,1) and any 6 > 0, we have (a) supyea,,(s) [t(Pq, )| = 0,(n=1/?);

(b) sup Ln("vba? a) - Ln('l/):;? a) - \/ﬁt("#ona)TVn(S(w7 Z)) + nt("vbom a)TIt(¢a7 a)/2 = OP(1)7

YEAna(J)

where t(p,,, ) and s(x, z) are defined in and , and I := E[s(X,Z)s(X,Z)"].

Let 1,Aba I= argmaxy, co,, (c,) Ln(¥q, @) denote the (constrained) MLE of ¢, where Oy_(€5)
is defined so that the value of ¥ implied by v, is in Oy,(e;). Let (J0s o, So) denote the

one-component MLE that maximizes the one-component log-likelihood function Lg (v, p, X) :=



Yomylog f(Xi|Zi;y, pu,X). Define the penalized LRT statistic for testing Hoi as PLRy,(e1) =
MaXacle, 1-a1] 2{PLn($, @) — Loy (Fo, s o)} with €1 € (0,1/2).
We proceed to derive the asymptotic distribution of the LRTS. With (s, sx) defined in ,
define
Z,:= E[snsg], Iy := E[SASI], Ihy = E[sAs;’r],

(17)
Ion =Ty Ian=Ta—TanZy'Iyn, Zx:= (Tag) 'Gan,

where Gy .y ~ N(0,Zx.). The following set characterizes the limit of possible values of \/nt(A, o)
defined in asn — 0o. For e = (e1,...,eq)" € {0,1}¢, define

.
= ({(th)z‘jk}lﬁiSjSde» {(tZ4)ijk£}1<i<j<k<£<d) € Rbwrtdut, (18)

where 7, and tz4 satisfy, for some X, € R? and { Moo, Fi<a<b<d € RA(d+1)/2,

(tro)ijk = Z Aty Aveyey  for all e,
(t1,t2,t3)€p12(4,5,k)

Z(tl,tz,t37t4)6p22(i,j,k,€) )\”fltz )\”tsM if e =0, (19)
(tZ4)ijkz = Z(tl,tz,tg,t4)€p(i,j,k,€) Ay My Mg A, L€ #0 and e; =e; = e =€y =1,

0 otherwise.

Define ?;\ by
r(ty) = Jnf r(ta), r(ta) = (Ex - Zx) " Ian(tx — Z»). (20)
ASAX

The following proposition establishes the asymptotic null distribution of the penalized LRT statistic.
This result follows from the local quadratic approximation established in Proposition [4| and the
results in |Andrews| (1999).

Proposition 5. Suppose that Assumptions (3, [3, and[4 hold. Then, under the null hypothesis of
M =1, LRy(€1) =4 maXee(o1)s ((fi)TIMﬁi).

For each e, the random variable (Zi)TI A_,,Zi is a projection of a Gaussian random variable on

e
a cone A§.

5 Local quadratic approximation for testing H, : M = M, against
HAZM:M0+1 for M022

In this section, we develop a local quadratic approximation for testing the null hypothe-
sis of My components against the alternative of My + 1 components for general My > 1.
We consider a random sample of n independent observations {X,;, Z;} ; generated from

the Mop-component d-variate normal mixture density with the true parameter value ¥}, =



(QFs s QY S T oo By 205, )
Mo
Faao (@] 259%,) 1= > o f(wl 27", 1}, 5), (21)
j=1

where af > 0. We assume (pj,37) < ... < (ujy,, X)y,) for identification. Let the density of an

(Mo + 1)-component mixture model be

Mo+1
Fraorr (@2 0041) == > asf ()25, 1y, 55), (22)
j=1
where U1 = (1, Qg Yy 1y -+ - o Bpgg 415 215+ - -5 2Mp+1)- Similar to the case of the test of

homogeneity, we partition the null hypothesis into two as Hy = Hg1 UHg2, where Hy := U%OZIHOJm
and Hy := U%(:l_lﬂoyzm with

Hom : (1, 21) < < By Bin) = (Bypge1: Bmt1) < - < (Bagy 415 2Mmo+1) and Ho 2 @ i = 0.

The inequality constraints are imposed on (g, 3;) for identification.

As discussed in Kasahara and Shimotsu| (2015), the LRT statistic for testing Hp has infi-
nite Fisher information unless a stringent restriction is imposed on the admissible values of X;.
Therefore, we focus on testing Hp;. Define the set of values of 9,41 that yields the true den-
sity as T* := {9np41 1 frgr1(X|Z590011) = fary(X|Z597,,) with probability one}. Under
Ho 1m, the (My + 1)-component model generates the true My-component density when
(B Zm) = (i1, 2mt1) = (13, 25,). Define the subset of T* corresponding to Ho 1, as

Tm = {19M0+1 6@19MO+1 ta; >0forj=1,...,My+1; o+ g1 = o, and

(B> Bom) = (/J'm—i-la Emt1) = (Bms 203 Q5 = Oé; and (:U’ja Ej) = (IJ‘;’ 2;) for j <m;
a5 =y and (1 55) = ()1, Z) for j > m+ 1 v =77}

and define T7 := T3, U---UT], .

Similar to Section {4} we consider the penalized MLE. Let ©y,, ., (€1) be a subset of Oy,, .,
such that o € [e1,1 — €] for j =1,..., My + 1, and define the penalized LRT statistic for testing
Hoy

PLRMo(¢)) := max 2{PLy(9n1,11) — PLon(Y9n,)},
Inrp+1€90 44 (€1)
where P Ly, (9, 11) := i1 108 fatg+1( X Zi; 90t 11) 00 (Onsg+1), PLon(V0s,) = D1 log fary (X il Zi5 Oy )+
Pn(Vn,), and ¥y, = argmaxy o€, PLyn(9r,). Collect the score vector for testing
0

10



Ho11,...,Ho1m, into one vector as

S
_ Sa 3L4
3w, 2) = (f") . where 3= | s, |andsy=]| : |, (23)
> 8(nv) shto
sﬁo
where, with fi := fa, (x|2;9},,) and for m =1,..., My,

fv(m|z;7*’p’>{>v>{) - fv($|z;7*7H*M0>v}k\40)
Sa = /fgu
fo(@|z37" g1 Vi —1) — Jol@®|27" 0% vYy)

My
37 = Z a:nv7fv($|z;7*a“:mv:n)/fgv

m=1

Suv = {O‘:nvliiﬂjukf;(m|z; 7*’ l":m v:n)/fg}lgigjgkgd ’

(24)

Define T := E[3(X,Z)3(X,2)"], I, := E[3,5,], Iy = B3], Zyx = Lag, Ix =

o ~ =~ = ol ~ ~
E[8x33), and Ixy := In—ZanZ, Lna Let Gayn = ((Gy,) ", (GY2)T)T ~ N(0,Zx,) be an
RMo(duotd,4)_yalued random vector, and define Iy, = E[GY,( S\”.n)—r] and Z7%' := ( T'n)_lGKfn.
Similar to ?;\ in the test of homogeneity, define %im by
= inf T’m(t)\), Tm(t)\) = (t)\ — ZT)TITT/(tA — ZT)

tAEA‘;‘\ ’
The following proposition gives the asymptotic null distribution of the penalized LRT statistic for
testing Hop. In the neighborhood of Y7,, the log-likelihood function permits a similar quadratic

approximation to the one we derived in Section[d] Consequently, the LRT statistic is asymptotically

distributed as the maximum of My random variables.
Assumption 5. (a) o} € [e1,1 — €] forj=1,...,My. (b) T is nonsingular.

Proposition 6. Suppose that Assumptions 3 and [J hold. Then, under the null hypothesis Hy :
m = My, PLRMo(e1) —4 max{vi,...,vr,}, where vy, := MaXee(0,1}4 ((?;m)TIK‘n?;m)

6 EM test

In this section, we develop an EM test of Hy : M = My against H; : M = My + 1 for model
. We drop the covariate Z in this section. First, we develop an EM test statistic for testing
Hoam t (Bms Zm) = (Bmy1> Zm+1). We construct My intervals {D7, - -+, Dy, } of admissive values
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of (p,X), such that (u;,,X7,) € Dy, but (u;,X7) ¢ Dy, for any j # m. For example, as in our
simulation, we may assume that the first element of p are distinct and set, with p; denoting the
first element of p;, DT = [©,,, (111 + K1) /2] X Ox, D} = [(1] ;1 + 11;)/2, (11; + 11 j41)/2] X Ox
for j =2,...,Mo—1, and Dy, = [(t3s,_1 + Hhg,)/2, Ol X O, where O, and O, are defined by

Ou = [@m’@#l] and may take either the value —oo or oco.

Collect the mixing parameters of the (M + 1)-component model into one vector as ¢ :=
(15 s a1 D15+ B 41) € O¢ i= @i\f’“l X @gﬁl. For m = 1,..., My, define a re-
stricted parameter space of ¢ by Qy, = {¢ € O¢ : (p;,¥;) € Dj for j = 1,...,m —

L (s Bm)s (g1 Bma1) € Dips (15, %5) € Dy for j = m+2,..., Mg+ 1}. Let Qp
and D,, be consistent estimates of 2 and D}, which can be constructed from a consistent
estimate of the My-component model. We test Ho1m @ (Hps Xm) = (g1, Zm+1) by estimat-
ing the (Mp + 1)-component model under the restriction ¢ € ,,. For example, when we
test Ho11 @ (1, 21) = (i, X2) in a three-component model, the restriction can be given as
(11,21, (112, B2) € Dy and (pg, 53) € Ds.

Let T be a finite set of numbers from (0,0.5]. We introduce another penalty term p(7) that
is continuous in 7, p(0.5) = 0, and p(7) — —oo as 7 goes to 0 or 1. For each 79 € T, define
the restricted penalized MLE as ﬂj\m/[&)_l(m) = arg maxﬁMO+1€@m(TO)(PLn(ﬁMOH) + p(70)), where
O™ (1) = {Pmy+1 € @191\/10+1 say /(o + amg1) = 10 and § € Qm} Starting from 19;}[5)1_?_1(7'0),
we update ¥ps,4+1 by the following generalized EM algorithm. Henceforth, we suppress (79) from
197]\%?1(70). Suppose we have already calculated 19}%?1. Fori=1,...,nand j=1,...,My+1,
define the weights for an E-step as

k k k k .
w(k) — Oé; )f(Xlau’; )725 ))/fMo-i-l(X’n’ﬂﬂg_zl) for J = 17 cee, M — 17

k k) <k mi(k :
a5-21f( z';u;- ),E§» ))/fMo+1(Xz';19ME)421) for j=m+2,...,Mo+1,

k k k
i _ oW F(Xpn B (0= )ald) (X p 200

Wi, += mk o Wimg1 T
fMo-i-l(Xi;ﬁMngl) fMo+1(Xzﬂ9MgJZ1)

In an M-step, update 7 and a by

(k+1) = arg max {Zw log + sz m+1 log(l - T) +p( )}

i=1 =1
_12?1“) k) forj=1,...,m—1,
_1211 ]H for j=m+1,..., My,

12



and update p; and 3; by

ES-kH) = argzmax {sz(jk) log f(X; u§-k+1), ;) —l—pnj(Ej)} . (25)

J =1

The penalized likelihood value never decreases after each generalized EM step (Dempster et al.)
1977, Theorem 1). Note that 197]\'}2?1 for k > 2 does not use the restriction €),,. For each 7y € T

and k, define
M) (7o) 1= 2 { PLu (@3, (70)) = PLon(Ban) } (26)

where 'l/§Mo = ArgMAXY, €0, PLopn(Yn,)-
Finally, with a pre-specified number K, define the local EM test statistic for testing Ho 1m
by taking the maximum of M) (10) over 1p € T as EMI) = max {M,T(K) (10) : 70 € T}.

The EM test statistic is defined as the maximum of M, local EM test statistics: EMSLK) =
maX{EM%L(K),EMi(K), e ,EMnMO(K)}. The following proposition shows that for any finite K,

the EM test statistic is asymptotically equivalent to the penalized LRT statistic for testing Ho;.

Proposition 7. Suppose that Assumptions @, @ and@ hold and {0.5} € T. Then, under the null

)

hypothesis Hy : m = My, for any fized finite K, as n — oo, EM%K —q max{vy,...,vn,}, where

the vy, s are given in Proposition [6

7 Simulation

7.1 Choice of penalty function

To apply our EM test, we need to specify the set 7, number of iterations K, and penalty functions
for ppm(X,) and p(7). Based on our experience, we recommend 7 = {0.1,0.3,0.5} and K =
{1,2,3}. For ppm(X,,), we employ a multivariate version of the penalty function used by |Chen
et al.[(2012), namely,

~

Prm (Bm; ) = —ap, {tr(imE;ll) - 2log(det(§]m2;1)) - d} , (27)

where i‘m is the estimate from the My-component model. Py, (2y; im) satisfies Assumption |2 if
an = op(n'/1). We set p(7) = log(2min{r,1 — 7}) as suggested by (Chen and Li (2009). We set
an = 1. When estimating the model under the null hypothesis and computing Lg . (1A9 M), We use
the penalty function and set a,, = n~'/? as recommended by [Chen and Tan| (2009).

7.2 Simulation results

We examine the type I error rates and powers of the EM test by small simulations using mixtures of

bivariate normal distributions. Computation was done using R (R Core Team, [2016). The critical
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values are computed by bootstrap with 199 bootstrap replications. We use 1,000 replications, and
the sample sizes are set to 200 and 400.

Table [1| reports the type I error rates of the EM test of Hy : M = 1 against the alternative
H, : M = 2 using two models under the null hypothesis. The EM test statistics give accurate type
I errors. Table[2lreports the powers of the EM test under two models under the alternative, namely
M = 2. The EM test shows good power.

Tables report the type I error rates and powers of the EM test of Hy : M = 2 against the
alternative Hy : M = 3. Overall, EM test performs well under finite sample size, even though the

type I error rates are less accurate than in testing Ho : M = 1.
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8 Proof of propositions

Proof of Proposition[1. Define h(y, ) := \/¢(y,9¥) — 1. We first show

sup ’nPn(h(y, 9)?) — nt(9) Tt (9) /4\ = 0,(1). (28)
9EN,, /m

To show (28), write 4P, (h(y,9)?) as

oo [(Ay9) — 12 _ el | (VD) +3)
4Pn<h<y,ﬂ>>—Pn<( m+1)2>—13n<e<y,ﬂ> 1?2 P, ((z(.y,w >( o ﬂ>+1>>
(20)

It follows from Assumption [I[a)(b)(c) and (E|XY])? < E|X|?E|Y|? that, uniformly for 9 € N,

Po(C(y;9) — 1)% = ()" Pu(s(y; m)s(y; m) ED) + 2t(9) " Po[s(y; w)r(y; 9)] + Polr(y; 9))°
= t(9) " Zt(9) + op([t(9)[*) + Op([t(9)[* |9 — 3*|). (30)

Note that, if Xi,...,X,, are random variables with maxj<,<, E|X;|? < C for some ¢ > 0 and

C' < oo, then we have max)<;<p | X;| = 0,(n'/9). Therefore, from Assumption (a)(c), we have

1] = T . . — 1).
IS, S [0 8) ~1] = s sup [t(9) T s(ws )+ r(y:9)| = op(1)

Therefore, the second term on the right of is 0p(1) Py (€(y; V) 2, and (28) follows from (30] .
Consider the following expansion of h(y,9):

Wy, 9) = (L(y;9) = 1)/2 = h(y;,9)* /2 = (€(9) " s(y; ™) +1(y;9))/2 — h(y, 9)*/2. (31)

It follows from , , and Assumption (d) that nP,(h(y,9)) = /nt(9) v, (s(y;m))/2 —
nt(9) " It(9)/8 + 0,(1) uniformly for 9 € N,z Using the Taylor expansion of 2log(1 + x) =
22 — 2%(1 + o(1)) for small x, we have, uniformly for ¥ € Ny

Ln(,m) — Lo (", ) = 2 Z log(1 + h(y;,9)) = nPy(2h(y,9) — [1 + Op(l)]h(ya 19)2)
i=1

= Vnt(9) vy (s(y; w) — ¢(9) Lt (9) ' /4 + nPu(h(y,9)?) + 0p(1)
= /nt(9) v (s(y; w) — t(9)IAt(9) /2 + 0,(1),

giving the stated result. O

Proof of Proposition |2 For part (a), applying the inequality log(1 + z) < z to the log-likelihood
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ratio function and using give

i=1
(32)
We derive a lower bound on P, (h(y,9)?). From the first equality in (29)), for some = > 0,

. _1)\2
fumyﬂfﬁ?&<u%3?y:3>

ZEilﬂdHawﬂ)gaua%ﬂ)na
& E—lk T [Pa((ly; 9) = 1)) = P (I{e(y; 9) > S}y 9) — 1)7)] -

Let B := supgep. [¢(y;9) — 1|. From Assumption a)(c), we have EB? < oo, and hence
limz o0 sUPyens Pn (I{l(y;9) > E}(U(y;9) — 1)?) < limz_oo P, ({B+1>E}B?) = 0 almost

surely. Let x = (2(2 + 1))~! > 0. By choosing = sufficiently large, it follows from and
Assumption (e) that, uniformly for 9 € N,

Pu(h(y, 9)) 2 wt(0) It (9) + 0p([t(9)[*) + Op([t(9)[*[9p — %7 (33)

Because v/nv, (U(y;9) — 1) = /nt(9) " [vn(s(y; m)) + Op(1)] from Assumption (d), it follows
from and that

—6 < Ln(9, m) = Lo(9", ) < Vnt(9) " [vn(s(y; m))+0p(1)] — knt(9) ' Tt (9)+0p(n[t(9)[*). (34)

The rest of the proof is similar to the proof of Theorem 1 of Andrews|(1999). Let T, := I;/ 2\/ﬁt(’l9).
In view of Assumption (e)(f), we can write as —0 < |Tp|0p(1) — K|Th|? + 0p(|Tn|?). Rear-
ranging this equation gives |T',|* < 2|T,|s, + 0 with s, = Op(1). Then, (|T,| — s,)* < s2 + 6,
and taking the square roots gives |T',| < O,(1), giving part (a). Part (b) follows from part (a) and
Proposition [T} O

8.1 Proof of Proposition
The stated result follows from Theorem 1 of|Chen and Tan| (2009) and Corollary 3 of Alexandrovich
(2014). O

8.2 Proof of Proposition

We suppress the subscript o from 1,. We prove the stated result by applying Proposition [2| to
U(y,9) with £(y,9) = l(y, ¥, a) := g(z|z; 9", a)/g(x|z;1, a) as defined in ([2). Observe that ¢(9)
defined in satisfies () = 0 if and only if ¥ = " because A = 0 if and only if (Ayuy)iii =
(Apt)izis = 0 for all 1 <4 < d. We expand [(y, ) — 1 five times with respect to ¢ and show that

16



the expansion satisfies Assumption
Define

v(y;9) = (Vyg(@lz g, a) ', Vyeg(@lzi9.0) ", ... Vyesg(@lz9,0) ") /g(z|z 9% a). (35)

In order to apply Proposition [2 to ¢(y,¥) — 1, we first show

sup Pufo(y; 9)v(y;9) '] — E[u(Y;9)0(Y;9) ]| = 0p(1), (36)
vn(v(y;9)) = W(9), (37)

where W () is a mean-zero continuous Gaussian process with E[W (91)W (92)'] =
Eu(Y;91)v(Y;92) 7). holds because v(Y;;9)v(Y;;9) " satisfies a uniform law of large num-
bers (see, for example, Lemma 2.4 of Newey and McFadden| (1994)) because v(y; ) is continuous
in ¥ and Esupyey. [v(Y;9)[* < oo from the property of the normal density and Assumption
follows from Theorem 10.2 of Pollard, (1990) if (i) O is totally bounded, (ii) the finite dimen-
sional distributions of v, (v(y;¥)) converge to those of W (), and (iii) {v,(v(y;9)) : n > 1} is
stochastically equicontinuous. Condition (i) holds because Oy is compact in the Euclidean space.
Condition (ii) follows from Assumption 4| and the multivariate CLT. Condition (iii) holds Theorem
2 of Andrews| (1994) because v(y;¥) is Lipschitz continuous in 9.
Note that the (p 4+ 1)-th order Taylor expansion of f(x) around & = a* is given by

P 1

f(z) = f(z") + Z ﬁv(m@ﬁ)"' fx")a® +

j=1

Wv(mmpﬂm f@)z®th,
where T lies between & and «*, and  may differ from element to element of V(m®(p+1>)r f(@).

Let g* and Vg* denote g(x|z; %", a) and Vg(z|z;¢*, a), and let Vg denote Vg(x|z;, a). Let
7 :=n —n*. Expanding ¢(y; 1, «) five times around * while fixing @ and using Lemma [3| we can
write £(y; 1, o) as follows with ¥ _ == (i ", A])T:

V,rg* 1.+V * 1.+V *
Uy a) =~ gy g ATy T YT (38)
g* 2! g* 2! g*
lV(d,@S)TQ ®3 + lv(A§4)T‘q >\®4 (39)
3! g* 4! g* K
3 Vv 4— g
1 (¢<§>( P)®>\§P)T ®(4—p)

+ Z ® AP 40
pzop!@l —p)! g* ¥ n') (40)
1 V()\@S)Tg 4 1 V(¢®(5—p)®>\®p)T§ 2(5—p)
i D — @2 e AR (1)
5L g* = !5 -p)! g*

We first analyze the first two terms on the right hand side of and the second term in ([39)
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because these terms constitute the leading term. Let f* and Vf* denote f(x|z;~v*, u*,¥*) and
Vf(x|z;~v* p*, X*). The first term on the right hand side of is simply Vi 7 7,7y [/ f*
Using Lemma [3| and commutativity of partial derivatives, the second term on the right hand side

of is written as

l)‘T VAATQ*A
2! g*
Vaarg® 1 g
2T AuAy LT T AuA,
ST et
Vi I a(l —a A
—at-a) 3o Sl 200 5 Sy
1<i<d 1<i<j<d
1<j<k<d 1<k<t<d
Vi S
sall—a) 3, SR A
1<i<j<k<d (t1,t2,t3)€Ep12(3,5,k)
a(l —a) N
+ 2 Z }*k : Z )\vtliz)\viau’
1<i<j<k<t<d (t1,t2,t3,ta)EP22(4,,k,L)

where Z(t1,t2,t3)€p12(i,j,k) denotes the sum over all distinct permutations of (i, j, k) to (t1, ta, t3) with

tz < t3, and Z(151,152,1t37754)€p22(i
(t1,t2,t3,t4) with t; <t and t3 < t4. From Lemma [3| the second term in is written as

Jkd) denotes the sum over all distinct permutations of (i, j, k,¢) to

1 V(A§4)Tg* ®4 a(l —a) Vﬂiujukuzf*
4 g A = 4! Z b(a) I* Z sty Moy M Ay
1<i<j<k<0<d (t1,t2,t3,ta)€p(i,5,k,L)

where E(tl’t27t37t4)€p(i7jyu) denotes the sum over all distinct permutations of (i,7,k,¢) to

(t1,t2,ts3,t4). Combining these results, we obtain the leading term in the expansion

v,,:g* g+ ATV, 1 Vg
g 2! g* 4! g*

with (85, Spv, 8y4) and (Ayw, Aya) defined in and .

(81, Spw; 8y4) clearly satisfies Assumption (a) (b)(e)(f) from Assumption {4} the property of the
normal density, , and . Therefore, the stated result holds if the other terms in f sat-
isfy Assumption[Ij(c)(d). We proceed to show that these terms can be written as v(y; 9)O(|#|[¢(9)|)
with v(y;9) defined in (35). Then, Assumption [[c)(d) follows from and (37).

First, the third term on the right hand side of is written as (Vpe29*/g*)O(|n|?). Second,
write the first term in as 2;20(1/]9!(3—p)!)(V(n®p®)\®(3_p))Tg*/g*)(7-7®p@)\@(3*10)). The terms
with p > 1 are written as (V,e39%/¢*)O(|n])O(|A[). The term with p = 0 is written as, because

®4 _ Tx T T
Ap =8N+ S Auw + 8,48,
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Va9 = 0 from Lemma

d d x
Vi, k,\ve 9

v *

1 j=11<k<t<d i=1 1<j<k<d 1<f<m<d (42)

*

1 Vi A Ao 9

+§Z > I N Aok v
T 1<i<j<d 1<k<t<d 1<m<n<d g

(2

The first term in (42)) can be written as

d v * *
A s Aoy 9 Ve39
E )\Hi E g]* = E )\Htl )\Ut2t3 = g* O(‘)‘HAIL’UD
=1 1<j<k<t<d (t1,t2,t3)€p12(J:k,¢)

From a similar argument, the second term in is also written as (Vye39*/9%)O(|A||Auw]). In
order to bound the third term in , observe that, for any sequence a;jremn,

)R DI D A e v

1<i<j<d 1<k<<d 1<m<n<d

= Z /\Umn Z Qijktmn 12 Z A”h to A”t3t4

1<m<n<d 1<i<j<k<t<d (t1,t2,t3,4) Ep22 (1,4, ,0)

+b(ax) > Npaey Mpiey Mg Ay
(tl ,to,t3 ,t4)€p(i,j,k,£)

d d d
DD 0. VS VA N v > Mpie, Nvrgey -
i=1 j=1 k=1 1<e<m<n<d (t1,t2,t3)€EP12(£,m,n)
Therefore, can be written as (V,e39%/g")[O(|A|[An1]) + O(|A|[Auo|)]. We proceed to bound
({40). The terms in with p > 1 are written as (Ve1g”/g%)[O(|A[[Apo|) + O(|A[[71])] because
they contain either Zle D o1<i<h<d 2o1<t<m<d M Avji Avgy, OT Zle Au;M- The term with p = 0 is
written as (V219" /g")[O(IA[|Ap4]) + O(|A[[Apo])] from a similar argument to bound .
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It remains to bound . For the first term in , observe that, for any sequence a;;rem.,
d d d d
2200 D cim MmN
=1

d
1
—TZA#M Y ke | b@) > Mty Moy Moy Ay

=1 1<Z<]<k<e<d (t17t27t37t4)€p(i7.j7k7‘€)

412 Y .
(tl t2,t3 ,t4)€p22 (7'7]7sz)

Z )\vij Z Qjjkim Z )‘,utl )\Ut2t3 .

1<i<j<d  1<k<t<m<d (t1,t2,t3)€p12(k,b,m)

Therefore, the first term in can be written as (V,259/g")[O(|A[[Apa]) + O(|A[[Apo])]. The
second term in is written as (V,259/9") [O(|A[|Apo]) + O(Al[7]) + O(IA[|AL4])] from the same
argument as , and the stated result follows. [J

8.3 Proof of Proposition

The proof is similar to that of Proposition 3 of Kasahara and Shimotsul (2015)). Let ¢, := n — n*,
so that t(v, ) in is written as (t;r,t(/\, a))T. Let

Gon Gann = Gxn — IxgZy'Gun,  Zxgn =I5 Gann,
Gy = vp(s(z, 2)) = [ K ] ; K N ! Am

Gxn t77->\ = tn + I;ll'n)‘t()\, a).

Then, we can split the quadratic form in Proposition (b) and write it as

sup ‘2 [Ln(¢a7 a) - Ln("pz’ a)] - Bn(\/atn.)\) - Cn(\/ﬁt(>v a))‘ = Op(l)a (43)

YEAna(9)

where
Bn(tn)\) = Qt:f,—.)\Gnn - t;.AIntn-A»
Cn(t(X, @) = 2¢(A, @) ' Gagn — (X, @) TTxnt(N, Q) (44)
= Z;\rnIA.'r/Z)\n - (t()‘a a) - an)TIA.n(t(A’O‘) - Z)\n)'
Observe that 2[L0,n($/0,ﬁ0,f]g) — Lopn(¥*, u*, X")] = maxy, [Qﬁt;Gnn - nt;lrIntn] +0p(1) =
maxy, y Bn(v/ntya) + 0p(1) from applying Proposition [2[to Lo, (7, #, ) and noting that the set
of possible values of both /nt, and \/nt,  approaches R%. In conjunction with , we obtain

2[Li (Y0, @) — Lon(Fo, o S0)] = Cu(Vnt(X, @) + 0p(1). (45)
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For e = (e1,...,eq)" € {0,1}4, define
S ={AeOx: |\, >nV8ogn)ife; =1; [\, <n Y8(logn) 7t if e; = 0}, (46)

so that Ox = Uggfo,13¢05. Define A% by Cn(vnt(A®, ) = maxxecoe Cn(v/nt(A, a)). Then, we

have

- e

t(A%, @) = 0,(n"1/?), (47)
2L, @) — Lon(Fo, o Bo)] = max  Co(vnt(A%,a)) + 0p(1), (48)

ec{0,1}4
where follows from noting that C,(y/nt(A%, a)) > op(1) and using the argument follow-
ing in the proof of Proposition 2 and holds because (i) maxgc(q 1} Co(Vrt(A®, @) >
2[Ln (Yo, @)—Lon(Yos Hos f)o)]—kop(l) from the definition of t(A°, &) and , and (ii) 2[Ln (¢, ) —
Lo.n(Fo, Bos 30)] > MaXee (01} Cr(Vrt(A®, ) + 0p(1) from the definition of ¥, and .
We proceed to construct a parameter space A§ that is locally equal to the cone A§ defined in
(18). Observe that and Lemma [4] imply that, with c¢(a) := a(1 — ),

(}‘fw)l]k = c(a) Z X%X%ts for all e,
(t17t27t3)€p12(i7j7k)

12¢(ev) Z(tl,t27t3,t4)€p22(i7j7k7f) )\Ut1t2 )\”t3t4 + Op(n_1/2) ife =0,

(Xe4) = c(a)b(a) Z(tl,t2,t3,t4)€p(i,j,k,€) )\'utl )\Mt2 )\th )\Nt4 —+ Op(n_l/Q)
e ife#0 ande; =ej =e, =¢p =1,

Op(n_l/Q) otherwise.

Define

- T
X = ({(tzv)ijk}lgigjgkgd, {(tz4)ijke}1<i<j<k<z<d) € R Fdut, (50)

where £, and t7, satisfy, for some A € © and

(t50)ijk = (o) > Mpie; vy, Tor all e,
(t17t27t3)€p12(i7j,k)

120(&) Z(tl7t27t3,t4)€p22(i7j,k,5) )\”tliz )\”tsm if e =0,

c(a)b(a) E(tl,tg,tg,t4)€p(i,j,k,€) )\'U‘tl )‘m2 )‘mg )‘m4

(tZ4)iij =
ife#0 ande; =¢j =€, =¢€, =1,

0 otherwise.
\

Define ty by C,(vnty) = max, e Cn(y/nty). Then, it follows from and that
A
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MaXee (0,1} Cp(v/nty) = MaXe(0,1}d Cn(V/nt(AS, @) + op(1). Therefore,

2ALa(bar @) = Loa(To, o, To)] = max Cu(ViEs) +0p(1)

The asymptotic distribution of the LRT'S follows from applying Theorem 3(c) of Andrews) (1999)
to {Cn(\/ﬁzi)}ee {0,13¢- First, Assumption 2 of |Andrews (1999) holds trivially for Ch(v/nty). Sec-
ond, Assumption 3 of |Andrews| (1999) holds with By = n'/2? because Gingn —d Gan ~ N(0,Zxy)
and I  is nonsingular. Assumption 4 of Andrews| (1999) holds from the same argument as (47).
Assumption 5 of Andrews (1999) follows from Assumption 5* of |Andrews| (1999) because A§ is
locally equal to the cone A§. Therefore, it follows from Theorem 3(c) of Andrews| (1999) that

{Ca(Vt3)Yeeqoays —a {0 Tantatecqoyo (52)

and the stated result follows. [

8.4 Proof of Proposition [6]

For m = 1,..., My, let N}, C 9‘9Mo+1 be a sufficiently small closed neighborhood of Y7, , such

that ([11,21) < - < (“m—l?zm—l) < (Mm?zm)7(um+172m+1) < (um+272m+2) < - <
(Bargr1> BMo+1) and ooy, @pgr > 0 hold and Y5, ¢ Ny if & # m. For dyy41 € N, we in-

troduce the following one-to-one reparameterization, which is similar to @]):

Bm = Qm + i1, T := am/(am + amt1),

(ﬁb C) Bmflyﬁerl o 7BM0—1)T = (ala e A1, 042, - - -, aMo)Ta
P v+ (L=7)Au (53)
Bmr | _ Vp —TAu
Vi Uy + (1 —7)(2Ay + Clw()‘u}‘l)) '
Vsl Vo — T(2Ay + Cow(AuA))
where By, = 1 — S Moolg ¢ = —(1/3)(1 + 7), and Co = (1/3)(2 — 7), and we sup-

press the dependence of (A, vy, Ay, Vy) on 7. With this reparameterization, the null restriction
(B Bm) = (Mypy1 Bmt1) implied by Ho 15, holds if and only if (A,, Ay) = 0. Collect the repa-
rameterized parameters except for 7 into one vector 17", and let """ denote its true value. Define
the reparameterized density as
9" (x|z; ] 7)== B [va (iB|Z;")’, vy + (1= 7)(2Ay + Clw(AuA;)))
+(1—=7)fy (a:|z; YiVp — TAp, Vo — T(2Ay + ng()\“)\;))}

m—1 Mo
+ Y Bifu@lzy s )+ Y Bifo(@lzy, mis Bin).
j=1 j=m+1
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Define the local PMLE of %" by

P, = arg e, PL($77), (54)
where PLI' (¢, 1) := > loglg™ (X Zs; 97, 7)] + pn (7). Because 97 is the only parameter
value in NV} that generates true density, ;L\v:n — " = 0,(1) follows from a straightforward extension
of Proposition

Define the penalized LRT statistic for testing Ho,1m as PLRy 1m(€r) = maX ¢, 1—¢,] 2{PL?(1ZT, T)—
PLO,n(aMO)} for some €, € (0,1/2). The stated result holds if

(LRy11(er)s -y LRy 1nty (6)) T —a (01, ..., vpp,) " (55)

for any e € (0,1/2), where vy, := maxec(g 1} ((fim)—rl'gfnfim> We proceed to show .
Observe that as in , the first, second, and third derivatives of log[g™(x|2z; 7", 7)) w.rt. Ay,
and its first derivative w.r.t. A, become zero when evaluated at ¥" = 7"*. Consequently,

PL (T, 1) — PLY (47", 7) admits the same expansion as as Ly, (1,,«) — L,(¢}, a) in Propo-

sition {4| by replacing (t(v,, a), s(x, z),Z) with (t,(Y7,7), sm(x, 2),Z™), where (sp,(x,z), ™)

T 9
is defined in the same manner as (s(x, z),Z) but using (8, s}, 32”4) in place of (sy,sx). Then,

follows from the repeating the proof of Proposition [5| for each local MLE by replacing G,

+
n,ly- e

with Gy = vp(sm(x, 2)) and collecting the results while noting that (G
(G,....G,)". O

T T
. ’GTL,M()) —>d

8.5 Proof of Proposition

Let wy ,,, be the sample counterpart of (/t\im)TIS\”nfim in Proposition |§| such that the local LRT
statistic satisfies 2[LZ(1,ABZ, T)—Lon (1A9m0)] = max{wy, ,, } +0p(1), where 1,Ab7Tn is the local MLE defined
in .

For 7 € (0,1), define 9% 1 (7) := {9np1 € Y1, ¢ @m/(@m + amy1) = 7}, which gives the
true density. Observe that from Assumption [2{and |z| < 1+ |2|3, we have pum(Zm) — pu(2F,) =
op(n'/%)|v; — vl =op(1 + n/2v; — v;|3) = 0p(1+n'2(|Ap]® + [Aul)). Therefore, in view of the
bound on the third term in and on the first term in in the proof of Proposition |4} for any

Isp 1 With ap,/(am + amy1) = 7 € (0,1) and whose corresponding t,,, (™) is Op(n~'/2), we have

PLn(90y41) =P (Onso41) = PLn (977541 (7)) 400 (977541 (7)) = P L1 11) =P L5 11 (7)) +-0p(1).-
(56)

First, we show EMAY = max{wy, ., } +0,(1). Because 97 1 (70) is the only value of 9,11 that
1)

+1
penalized local MLE in the neighborhood of 9%’ ,;(70). Therefore, EMAY = max{w;, ., wa .} +

0p(1) follows from the proof of Proposition [6] and (56).
We proceed to show that EM?(K)

yields the true density if ¢ € QF, and ay,/(am + @mi1) = 70, 19;\”/[2 (70) equals a reparameterized

= max{wy,,} + 0p(1). Because a generalized EM
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step never decreases the likelihood value (Dempster et al., |1977), we have PL (19%{2(7@) >

PLn(’ﬂL(él_l(To)) Therefore, it follows from induction that ﬂ%gi)l(m) — Ip41(10) = o0p(1)
for any finite K. Let @EOH(T(K)) be the maximizer of PL,(9p,+1) under the constraint
am/(Qm + amy1) = 5
have PLy (9, 41(70)))

)
PL, (075 (7)) — Lo
(9

in an arbitrary small closed neighborhood of 97 L1(75); then, we
2~ (19%%1 (10)) + 0p(1) from the consistency of 197/15012 (19). Thus,
(9r1,)] = max{we,,} + 0,p(1) holds because both 2[PLy, (9, 41 (1K) —
Lon(P9n,)] and 2[PL, TA,E) ( 0)) — Lon(P9n,)] can be written as max{wy; ,,} + op(1). Further,
because PL, (9 ;&gil(m)) > PL, (09 M(le(To)) > PLn (9%} 11(70)) + 0p(1), it follows from applying
Proposition |5| to 19M0+1( 7p) in conjunction with that EMT) = max{wy; ,,,} + 0p(1) holds for
all m. The stated result follows from the definition of EM%K). O

9 Auxiliary results and their proofs

Lemma 1. Let f,(x; p,v) := (27)~%?(det S(v)) /2 exp(—(x — ) " S(v)~Yx — p)/2) denote the
density of a d-variate mormal distribution with mean p = (u1,...,pq)" and variance S(v) with
v = {vij }1<i<j<d as specified in (@) Then, the following holds for any t1,ta,t3,t4,t5,t6 € {1,...,d}:

fulwipn®) 1Pf(mmy)  Phlmme) 1 0 u@mo)
8'Ut1t2 2 8,u’t1 8/’Lt2 ’ avtﬂfg 8’1)159,154 4 auh a,utz 8lu’t3 8lu’t4 ’

Ffo(m;pv) 1 O fu(@; p, v)
8’1)151152 a7}153154 8vt5t6 8 a/“Llfl 8:“*252 auts 3/%4 aﬂts a:ute .

Proof. Henceforth, we suppress (x; u, 3) and (x; p, v ) and from f(x;p, X) and f,(x; @, v) unless
confusions might arise. In view of the definition of S(v) in . the following holds for any function

g(X) of X
P0(S() _ 09(S)/0S e, +0(2)/08us, _ D9(2) -
Ovt, 1, 2 041ty

Let s; denote the ith column of X! and let s;; denote the (i,j)th element of £~1. A direct
calculation gives 02 f (z; p, 8)/0udp’ = —Z 1 f+ S N z—p)(z—pn) =71 f and 0f (x; u, 2) /0% =
—(1/2)27f+(1/2)Z Nz — p)(z — p) TS 7L f. Therefore, the first result follows immediately from
BD.

To prove the second rtesult, we first derive O%f(x;u,X)/Ops, OpiryOpiesOtit,. Noting
that 83}(3@ —p)/0u; = —sj and Of(x;p,X)/0u; = s](x — p)f and differentiating
O f(x; p, 2) /O, Oty = [—St11, + 8¢ ( — p)s (z — p)] f with respect to pi, and i, we obtain

ANAC AT
Mo B[S = Y sk wsle- H .
O OpaOpsOhits \ ¢, 350 TR

(58)
where Z{i,j},{k,é} denotes the sum over all 3 possible partitions of {1,2,3,4} into {{4,j},{k,¢}},
and Z{i,j},{k},{e} denotes the sum over all 6 possible partitions of {1,2,3,4} into three sets
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{{i,7}, {k},{¢}}. Recall that

Of (x5 pu, )

o = (1/2)[sui+ s (@ — s (@ — S (59)

Let 1; denote a d x 1 vector whose elements are 0 except for the i¢th element, which is 1. We then

have s, = 11?1 > 11,, and s;, = £711;,. Using the symmetry of X, we obtain

88t1t2 _ 8(3t1t2 + Stztl)/2
82,53154 azt3t4

__9

82153154

— (1/2) (2—11t11tzz—1 n 2—11@1;2—1)

(1{12—11152 + 122—11&) /2

t3ta

= _(1/2) (Ststl Staty + 5t3t25t1t4) )

and

0s/ (x — p) 0 Tw-1 Ty-1
aztsm B 82t3t4 (1t12 (m N “) - (w - “) > 1t1> /2

— _(1/2) (2—11t1(m RED Y S ,;,)1;22—1)

tatg

= _(1/2) <3t3t1 (w - N)TSM + s;; (w - “’)SHM) :
Therefore, taking the derivative of the right hand side of with respect to X, gives

O f (5 pu, )

1
050, 4 [8t3t15t2t4 + Styty Styty — (8t3t1 (x —p) " st + 54, (@ — H)8t1t4) sy (@ — p)
—S;[ (w - /'l') (St3t2 (33 - II')TSM + S;l; (ZB - N)3t2t4>] f
1 T T of (z; u, X)
5 (st sl @ = wys @ — ) S
. 4
=7 Z Stit; Styty — Z stitjsgc(:c - u)stz(:c — W) + H sl(w —p) | f
{i,5}.{k,0} {i,5}{k}.{€} i=1

(60)
Comparing this with and using gives the second result.
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For the third result, differentiating with respect to p, and g, gives

O f(z; 1, %)
a/‘h 8/”2 3Mt3 a:U’t4 a:ul‘/5 a:ute

_ T T
= |- > Stity Stity Stmtn + > Stit; Stity St,,, (T = 1)Sy,,

{i.}{k. £} {m,n} {i.5}{k.e}{m}.,{n}

6
- > suysh(@—ps(@—ps) (@ —p)s) (x—p)+ ] s (@ -

{i,5},{k,t;m,n}

)

where Z{i,j},{k,é},{m,n} denotes the sum over all 15 possible partitions of {1,2,3,4,5,6} into

i, b Ak G Am,n}y, 326 1 (k03 im) {ny denotes the sum over all 45 possible partitions of
{1,2,3,4,5,6} into three sets {{i,j}, {k,},{m},{n}}, and > ¢ ;s 1y} denotes the sum over
all 15 possible partitions of {1,2,3,4,5,6} into {{7,j},{k,¢,m,n}}. Differentiating with re-

spect to Xt gives divided by 8, and the third result follows.

O]

Lemma 2. Let f(x;3) be the density function of a random variable X with parameter 3. Then,
Eg- [Vﬁmf(x;ﬁ*)/f(m;f)’*)] =0 if f(z;08) is k times differentiable in B in a neighborhood of B*.

Proof. The stated result follows from differentiating both sides of [ f(z;8)dx = 1 k times with

respect to B and evaluating at 3*.

O]

Lemma 3. Suppose that g(x|z;v,,q) is given by , where 1 = (nT,)\u,)\v)T and n =
(Y, vp,ve) . Let g* and Vg* denote g(x|z;1,,a) and Vg(x|z;v,,a) evaluated at (¢, ),
respectively. Let V f* denote V f(x|z;v*, u*, *). Then, with b(a) := —(2/3)(a? —a +1) <0,

(a) for k=1,2,3 and £ =0,1,. VAgk(@n@gg* = 0;
(0) Vi A he 8 = (1 = a)b(Q) Vi uypue £

(c) for £ =0,1,..., Vx gnotg” = 0;

(d) Vi n, 9" =l =)V

(e) V

€ )\Wg = ol - a)v#iﬂj#kuef*'

Proof. We prove part (a) for £ = 0 first. Suppress all arguments in g(x|z; v, «) and f,(x|z;v, p,v)

except for Ay, and rewrite as follows:

9 = afol(1 = )X (1~ )CrwAAL) + (1 — ) ful—ade, —aChw(NAL).  (62)
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For a composite function h(a,r(a)) of a d x 1 vector @ = (a1, ...,aq)", the following result holds:

Vflil"'aikh(a7 r(a)) = {(vail + v’uil) e (Vaik + Vuzk)}h(a’ r(u))\u:a

: 63
:Z Z Vg, cugjaeg, - ~ar, (@, 7(w))|u=a; (©3)

J=0p(5,{i1,ir})

where 37 ;. ..y denotes the sum over all the partitions of {1, ..., i} into two sets {t1,...,¢;}
and {tji1,...,tx}. Because applying to the right hand side of gives the derivatives
of g(An), we derive Vg, g, fo((1 = @)Xy, (1 = &)Crw(uu’))|y—o. Let é := (1 — a)C;. For
notational convenience, if i > j, define V,, h(v) =V, h(v) for any function h(v). Using the fact

Vij

Vu,wij(uu’) = 2u1{j = k} + 2u;1{i = k}, we obtain

d

d
Vutl fv( (uu ) = Z Z vUij fv(" 6w(uuT))évutl Wi (uuT)

i=1 j=1

t1 d
=2 Vi, folew(un)eu +2 > Vi, fol, éw(uu"))éy;
i=1 j=t1+1
d

=2V, fol, cw(uu’))éu;.
=1

Differentiating the right hand side with respect to u, gives

d d
Vu, ug, fU(-,Ew(uuT)) = 422 Vo, i1y fU(-,Ew(uuT))Ezuiuj + 2V, fU(-,Ew(uuT))E.

i=1 j=1
Differentiating the right hand side with respect to u, gives

d
Z Vorivigsvign fo (o w(uu"))Eusujuy
1 k=1

M=
M=

vut1“t2ut3 fv(', 5’lU(uuT =8

s
Il
—

<.
Il

d
Vo, vyt fuls Efw(uuT))E2ui +4 Z Vi, 140605 fu(s Ew(uuT))EQUj
j=1

+
o

) 11

+
B

vvt1t2vt3k fv('7 5w(UUT))62uk

i

1

Finally, evaluating these derivatives at w = 0 and differentiating Vu, u,u., fo(,éw(uu)) with
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respect to u, and evaluating at u = 0 gives

Vs, fol-s ew(uu’))|uzo =
Vuy ury fo (5 cw(un"))|u—o = 2cvvtlt2fv( cw(uu')),
Vg, sy usg fol: ,éw(uuT))|u 0= (64)
Ve uryurguey Jo (- Cw(uw"))u—o = 452vvt1t4vt2t3 Fo(-,0) + 48V, vy, fo(+ 0)

+ 462vUt1t21}t3t4 fv('v )7

and a similar result holds for V, & fo((1 =)y, (1 — a)Crw(uu’))|y—o and
1 A

Vutl---ut.Af[j f(=adu, —aCow(uu"))|u—o.
J

Differentiating (62) with respect to A, and using (63), (64), C1—C> = —1, 3((1—a)C1+aCs) =
2a — 1, and Lemma [} we obtain

V}VLQ(O) = 07
V,\#iAujg(O) = a(l = a)Vyu, f(0,0) + 2a(1 — a)(Cy — C2)V,,; £,(0,0) = 0,
v)‘ui)‘uj)‘ukg(o) = a(l - Oé)(l - 20‘)vmujukfv(0> 0)

+3a(l — a)((1 — a)C1 + aC9)2V 4,4, f4(0,0) = 0,

and part (a) for £ = 0 follows. Repeating the same argument with V,s:g(Ay,n) gives part (a) for
(> 1.
For part (b), differentiating and using , , and Lemma gives

Vi Mg Ay 9(0)

=a(l = a)[(1 = a)®+ a®|V e f0(0,0) + 6a(1 — a)((1 — a)*Cy — &*C2)2V ;000 f5(0,0)
+120(1 — @) ((1 — @)CF + aC3) Vo, 0, £5(0,0)

= a(l = a)[=(2/3)(a® = &+ V)]V jupne (0, 0),

and the stated result follows because V., 1, f0(0,0) = Vi g £ (0, 0). Part (c) follows from a

direct calculation.
Parts (d) and (e) follow from direct calculation and using (63)), and Lemma [1] O

Lemma 4. Let e € {0,1}%, and suppose X = ()\I,)\I)T € 0% satisfies t(A, o) = Op(n~1/?)
for some o € (0,1), where ©F and t(X\, ) are defined in @) and , respectively. Then, the
following result holds for 1 <i <d:

(a) Ifei=1, then X}, = O, (n~1/%);
(b) Ife; =0, then XS, = Op(n~/®(logn)™"); (65)
(¢) Ife;=1 for any i, then A = Op(n_3/8(log n)?).
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Proof. Observe that t(\, ) = O,(n~/?) implies

€, = (L= AN = Op(n™1/?), (66)
o = (1= a)AR A+ A5 A5,) = Op(n™?), (67)
)\ﬁ%k = a1 = a)AG A, + AL, +ALAS) = Op(n™ /), (68)
Aes = a(l—a)[12(X5,)% + b(@) (A7) 1] = Op(n~1/2). (69)

First, observe that \j = O,(n~3/8logn) if e; = 1 in view of ALl > n~Y8(logn)~! and .
Part (a) follows from substituting this to (69). Part (b) follows from the definition of ©%. We
prove part (¢) by dividing part (c¢) into the following six cases, where i, j, k are all distinct; (cl)
Ap, = O,(n~3%logn) if e; = 1; (c2) Aoy = Op(n _3/8(logn)2) if (e5,e5) = (1,1); (3) A, =
0,(n=3/%(logn)?) if (ei,e;) = (1,0) or (0, ) (c4) Xe. = O,(n=3/8(logn)?) if (e;,e;) = (0,1); (c5)
Aoy = 0,(n~3/%(log n)?’) if (es,e5,ex) = (0,0,1). (cl) is already proven. (c2) holds because we have
AL > n~/#(logn)~! and Aoy, = Op(n™ 1/210g n), which follows from and parts (a)(cl).
For (c3), observe that, when (e;,e;) = (1,0), we have Af AT =~ = O,(n~"?logn) from and
parts (b)(cl). Therefore, (c3) holds because |Af | > n~1/8(logn)~'. When (e;,e;) = (0,1), (c3)
is proven similarly by using AL, = O,(n~1/?) in place of @ For (c4), observe that A A7 =
O,(n~Y?logn) from and parts (b)(c2). Therefore, (c4) holds because |Af | > n~Y8(logn)~t.
Finally, (c5) holds because |Af, | > n~/8(logn)~! and A¢ \¢ = O,(n"/2(logn)?), which follows

ki

from and parts (b)(c3). O

Proposition 8. Suppose that Assumptions @ @ and@ hold. If 19m0+1(7'0) mot1(10) = 0p(1),

W a4+ o] — 1 = 0,(1).

Proof. We suppress (19) from ﬂgﬂ/lﬁl(m) and 97 1(70). The proof is similar to the proof of

Lemma 3 of |Li and Chen| (2010). Let fi(v, s, X) and f;i(9p,+1) denote f(X;i|Zi;~y,p,X) and
faro+1(Xi|Zi; Op+1), respectively. Applying a Taylor expansion to a(kH) =n! S wz(:) and

then «
using 19?&@1 — 9 1 = op(1), we obtain

_ ! b o
e Y n; oy et = mam top(l)

(k+1) _ 1 Zn:agi)f( (k) (k)’zgs)) 1 ¥ Toa:nfi( 7Hm72 )
alitt = =
n

where the last equality follows from E[f;(~v*, ), 37,)/ fi(973; +1)] = 1 and the law of large numbers.

A similar argument gives alf ) = = (1 —710)a;, + 0p(1), and the stated result follows. O
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Table 1: Type I errors (%) of the EM test of Hy : M =1

n = 200 n = 400
Level K=1 K=2 K=3 K=1 K=2 K=3

0 10
Model 1: p = <O)’ 3= <0 1)

10% 9.2 9.3 9.6 10.4 10.0 10.1
5% 5.2 5.0 4.9 4.3 4.4 4.4
1% 1.2 1.1 1.3 1.1 1.1 1.1
0 1 05
Model 2: p = (O)’ Y= 05 1

10% 9.4 9.3 9.4 10.0 9.9 9.7
5% 6.1 5.9 6.0 4.5 4.6 4.5
1% 1.5 1.5 1.4 1.2 1.2 1.3

Table 2: Powers (%) of the EM test of Hy: M =1

n = 200 n = 400
Level K=1 K=2 K=3 K=1 K=2 K =

3
-1 1 1 0 1 0
i ()= ()= 2 ()
67.

10% 38.9 38.7 38.0 67.9 67.5

5% 26.5 26.3 26.1 53.9 54.3 54.0

1% 10.6 10.8 10.8 30.9 30.6 30.5
ot 2= (09) = () 3 (3 O)ma (1 2)

10% 94.7 94.8 94.8 100.0 100.0 100.0

5% 92.0 91.9 91.8 99.9 99.9 99.9

1% 81.2 81.3 81.2 99.7 99.7 99.7

In both models, a is set to (a1, a2) = (0.7,0.3).
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Table 3: Type I errors (%) of the EM test of Hy : M = 2

n = 200 n = 400
Level K=1 K=2 K=3 K=1 K=2 K=3
o = <8; 7“’1: 01)711’2 (é)azl <é ?)aEQ (é (1)>
10% 7.5 7.6 7.7 5.7 5.6 5.9
5% 4.0 4.3 4.2 3.3 3.5 3.4
1% 0.9 1.0 1.0 0.3 0.3 0.3

Table 4: Parameter specifications for testing the power of the EM test of Hy: M =2

o My o 3 3 3 33

v i) (2) )6 6 6 6
w2 (1) (3) () 6) 69 €9 69

Table 5: Powers (%) of the EM test of Hy : M = 2

n = 200 n = 400
Level K=1 K=2 K=3 K=1 K=2 K=3
Model 1
10% 26.4 26.3 26.5 30.1 30.3 30.5
5% 17.7 16.7 16.8 22.6 22.6 22.7
1% 5.7 5.6 5.6 8.7 8.5 8.5
Model 2
10% 44.5 44.6 44.5 70.5 70.6 70.7
5% 36.1 36.1 36.0 65.4 65.1 65.1
1% 17.0 16.9 17.1 48.0 47.7 47.2
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