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Abstract

This paper proposes a new fuzzy logic (FL)-based expert system with particle filtering
and anomaly detection to create high-performance investment portfolios. In particular, our
FL system selects a portfolio with fine risk-return profiles from a number of candidates by
integrating multilateral performance measures including Sharpe, Sortino and Sterling ra-
tios. The candidates consist of various mean-variance portfolios with multiple time-series
models estimated by a particle filter and anomaly detectors. In an out-of-sample numerical
experiment with a dataset of international financial assets, we demonstrates our expert sys-
tem successfully generates a series of mean-variance portfolios with satisfactory investment
records.

Keywords: expert system, fuzzy logic, performance measure, mean-variance portfolio, par-
ticle filtering, anomaly detection

1



1 Introduction

It is well-recognized both in academia and industry that financial markets are highly complex
and non-linear systems with large noise, which are affected by economic, political, geopolitical
and psychological factors. Therefore, in the analysis of financial investment problems, machine
learning (ML) techniques based on sophisticated computer science are widely used since they are
effective to deal with non-linearity and uncertainty (e.g., Cavalcante, Brasileiro, Souza, Nobrega,
& Oliveira, 2016).

Fuzzy logic (FL) is considered to be one of the ML techniques, which is applied with great suc-
cess in financial investment problems. Especially, fuzzy set theory, introduced by Zadeh (1965),
is used in portfolio optimization problems since it enables to represent imperfect knowledge or
ambiguity for the future asset return. For example, although a mean-variance (MV) portfolio
(Markowitz, 1952) has been one of the most famous strategies, there is a well-known serious prob-
lem that the direct MV optimization amplifies the effects of estimation errors (e.g., Michaud,
1989). Consequently, many researchers introduce the fuzziness in portfolio optimization prob-
lems from various perspectives (e.g., Chen & Huang, 2009; Fang, Lai & Wang, 2006; Huang,
2008; Jalota, Thakur, & Mittal, 2017; Li, Guo & Yu, 2015; Li & Xu, 2009, 2011; Liu, 2011;
Mehlawat, 2016; Mehlawat & Gupta, 2014; Nguyen & Gordon-Brown, 2012; Nguyen, Gordon-
Brown, Khosravi, Creighton, & Nahavandi, 2015; Pai, 2016; Wang, Wang, & Watada2011; Zhou,
Li, & Pedrycz, 2016).

Also, a fuzzy logic (FL) system (e.g., Mamdani & Assilian, 1975) is applied to the con-
struction of trading strategies based on technical indicators, fundamental analysis and text data
(e.g., Dourra & Siy, 2002; Dymova, Sevastianov & Bartosiewicz, 2010; Geva & Zahavi, 2014;
Goumatianos, Christou & Lindgren, 2013; Kosaka, Mizuno, Sasaki, Someya, & Hamada, 1991;
Lam, 2001; Lincy & John, 2016; Simutis, 2000). In trading practice, domain expert knowledge is
often expressed in the linguistic form, which can be incorporated into trading strategies through
IF-THEN rules of FL systems.

For instance, Chourmouziadis and Chatzoglou (2016) have designed a short-term trading
fuzzy system based on novel technical indicators. Also, Yunusoglu and Selim (2013) have devel-
oped a fuzzy rule-based expert system (ES) for stock evaluation and portfolio construction by
using technical and fundamental analysis with an application to Istanbul Stock Exchange.

This paper provides a new FL-based expert system (ES) to create a high-performing portfolio.
Specifically, our ES consists of three stages: estimation, portfolio construction and FL-based
selection. That is, we first estimate expected return and volatility with several time-series
models, and then calculate MV optimal portfolio weights based on the predictors. Finally, our
FL system, which combines multiple investment criteria, evaluates the historical performances
of each portfolio and selects the best one. We remark that our FL system is applicable to fund
of funds investment since it provides a general framework to portfolio evaluation.

In the estimation step, we introduce state space models to obtain the estimates of expected
return and volatility for MV portfolio construction. State space models are commonly used
in various fields to represent the dynamic dependence between the latent state and observed
variables. Their dynamics are described as stochastic processes called system and observation
models. Moreover, applying filtering methods, we can partially observe latent state variables
with noises through the observation model.

In the current work, we regard expected return and volatility as state variables, which are
observed with noise as asset return. For model estimation, we resort to a particle filtering
(PF) method applicable to non-linear and non-Gaussian models (Gordon, Salmond, & Smit,
1993; Kitagawa, 1996). PF is an on-line estimation algorithm to a time-series data under the
state-space representation of models, which takes much less computational time than repeated
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implementation of off-line algorithms with sliding windows.
In particular, we assume an exponential moving average (EMA) and generalized EMA as

system models. The former is often used both in investment practice and previous ML researches
(e.g., Huang, Yang, & Chuang, 2008; Patel, Shah, Thakkar, & Kotecha, 2015a, 2015b; Rather,
Agarwal, & Sastry, 2015), and the latter is introduced in Nakano, Takahashi, and Takahashi
(2017) to obtain marginally better predictions based on EMA.

In addition, we exploit three anomaly detection (AD) methods to refine investment universe
(Nakano et al., 2017). Since we can obtain the model likelihoods or the distributions of state
variables for each time step, PF is easily combined with on-line detection schemes. In our
investment problem, realized asset returns sometimes largely deviate from the models, whence
it is inappropriate to implement predictions. Hence, by excluding the assets for which anomalies
are detected from investment universe, we can enhance portfolio performance.

Our investment universe is designed by international equities, REITs and bonds with cash.
Besides, we employ various investment criteria, i.e., compound return (CR), standard deviation
(SD), downside deviation (DD), maximum drawdown (MDD), Sharpe ratio (ShR), Sortino ratio
(SoR) and Stering ratio (StR), which enable multilateral assessment.

The remainder of this paper is organized as follows. Section 2 presents composition of our ES:
PF-based estimation with AD scheme, MV portfolio simulation and FL-based selection. Section
3 shows the results of out-of-sample numerical experiments. Finally, Section 4 concludes.
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2 Expert system

Our expert system (ES) is summarized by the following flowchart.

Fig. 1: Flowchart of our expert system

Here, we shortly describe the composition of our ES. Firstly, we apply particle filtering with
anomaly detectors to various time-series models, which provides expected return, volatility and
investment universe in real-time. Secondly, at each time, we simulate MV portfolios based on
each estimation result for several risk aversion parameters. At this stage, we run L kinds of
MV portfolio simulations. Thirdly, we assess these simulated MV portfolios with M kinds of
investment performance measures commonly used in practice. Lastly, we exploit a FL system
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for integrating these evaluations, which gives us the final portfolio.

2.1 Estimation

2.1.1 State space modeling

In constructing mean-variance (MV) portfolios, we need to estimate expected return and volatil-
ity. For estimation, this paper employs a state space model that consists of the following system
and observation model.

Yt = H(Zt, ut), [observation model]

Zt = F (Zt−1, vt), [system model]
(1)

where Zt and Yt denote a n-dim state and m-dim observation vector at time t, respectively. In
state space modeling, we suppose that there exist unobservable latent/state variables Zt driven
by the system model Zt = F (Zt−1, vt), which are observed with noise as Yt = H(Zt, ut). Here,
H : Rn×Rm → Rm and F : Rn×Rn → Rn are non-linear functions, and the observation noise ut
and system noise vt are random variables which do not necessarily follow Gaussian distributions.

In general, unobservable state variables are estimated by the statistical on-line algorithm
called filtering. Hence, we can sequentially estimate expected return and volatility by regarding
them as state variables, which are observed with noise as realized asset return.

2.1.2 Particle filtering

The objective of filtering is to sequentially estimate the unobservable state variables Zt through
the observation variables Y1:t ≡ (Y1, · · · , Yt) until time t, that is, to estimate the density
p(Zt|Y1:t) called the filtering density.

Especially, particle filtering (PF) resorts to Monte Carlo simulations for state estimation,
whereby it is applicable to non-linear and non-Gaussian settings. We first explain the PF
algorithm in the case that all parameters are known (Gordon et al., 1993; Kitagawa, 1996).

First of all, Bayes formula shows

p(Zt|Y1:t) ∝ p(Yt|Zt)p(Zt|Y1:t−1). (2)

Therefore, we exploit a sampling important resampling (SIR) method to obtain the samples

{Ẑ(r)
t }r=1,··· ,L from the posterior p(Zt|Y1:t). That is, by regarding the prior p(Zt|Y1:t−1) as an

importance function, we first draw {Z(r)
t }r=1,··· ,L from the distribution p(Zt|Y1:t−1), then resam-

ple from them with weights proportional to the likelihood p(Yt|Zt), which gives us {Ẑ(r)
t }r=1,··· ,L.

Here, we get the samples {Z(r)
t }r=1,··· ,L from the prior p(Zt|Y1:t−1) by the following way.

Note that

p(Zt|Y1:t−1)

=

∫ ∫
p(Zt, Zt−1, vt|Y1:t−1)dZt−1dvt

=

∫ ∫
p(Zt|Zt−1, vt, Y1:t−1)p(vt|Zt−1, Y1:t−1)p(Zt−1|Y1:t−1)dZt−1dvt

=

∫ ∫
p(Zt|Zt−1, vt)p(vt)p(Zt−1|Y1:t−1)dZt−1dvt

=

∫ ∫
δ(Zt − F (Zt−1, vt))p(vt)p(Zt−1|Y1:t−1)dZt−1dvt,

(3)
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where δ(z) is Dirac delta function. Then, for given the samples of {v(r)t }r=1,··· ,R and {Ẑ(r)
t−1}r=1,··· ,R

from p(vt) and p(Zt−1|Y1:t−1), we obtain the samples {Z(r)
t }r=1,··· ,R from p(Zt|Y1:t−1) by setting

Z
(r)
t = F (Ẑ

(r)
t−1, v

(r)
t ).

Particle filtering (PF) algorithm� �
1. Generate the initial state vector {Ẑ(1)

0 , · · · , Ẑ(R)
0 }.

2. Apply the following steps (a)∼(d) to each time t = 1, · · · , T .

(a) Generate system noise v
(r)
t , r = 1, · · · , R.

(b) Compute for each r = 1, · · · , R Z
(r)
t = F (Ẑ

(r)
t−1, v

(r)
t ).

(c) Evaluate the weights of particles {Z(1)
t , · · · , Z(R)

t } as δ
(r)
t ≡ p(Yt|Z(r)

t ), r =
1, · · · , R by using the likelihood function.

(d) Resample {Ẑ(1)
t , · · · , Ẑ(R)

t } from {Z(1)
t , · · · , Z(R)

t }. More precisely, resample each

Ẑ
(r′)
t , r′ = 1, · · · , R from {Z(1)

t , · · · , Z(R)
t } with the probability given by

Prob.(Ẑ
(r′)
t = Z

(r)
t |Yt) =

δ
(r)
t∑R

k=1 δ
(k)
t

, r = 1, · · · , R.

� �
Here, the likelihood at time t, p(Yt|Zt), is approximately calculated by

p(Yt|Zt) ≃
1

R

R∑
k=1

δ
(k)
t . (4)

Next, we discuss the case that there exist unknown parameters. The unknown parameters’
vector θt is sequentially estimated by augmenting the state vector as Z̃t = (Zt, θt). If the
transition of θt follows

θt = θt−1, (5)

this algorithm will degenerate in the sense that almost all of the particles quickly reach zero
weight. Besides, parameter estimation does not work when the true values are not included in
particles generated by initial distributions. Then, we add an artificial noise ζt to Eq. (5):

θt = θt−1 + ζt. (6)

This framework is called ”self-organizing state space model” by Kitagawa (1998), which enables
us to estimate states and parameters simultaneously.

For implementing the self-organizing method, it is necessary to specify the distribution of
the artificial noise ζt conditioned on θt−1. In this paper, we use a kernel smoothing (KS) method
developed by Liu and West (2001). In the KS method, the distribution of ζt conditioned on θt−1

is given by

p(ζt|θt−1) ∼ N((a− 1)(θt−1 − θ̄t−1), (1− a2)s2t−1), (7)

i.e. the conditional distribution of θt is

p(θt|θt−1) ∼ N(aθt−1 + (1− a)θ̄t−1, (1− a2)s2t−1), (8)
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where a = (3d−1)/2d. θ̄t and s2t represent the mean and variance of the particles {θ(r)t }r=1,··· ,R,
respectively. d is a shrinkage factor which usually takes a value between 0.95 and 0.99. Here,
we set d = 0.98.

In this paper, we execute PF individually for each asset using 1,000,000 particles. In other
words, we do not take into account the correlations among asset returns, which reduces estima-
tion errors and computational complexity.

2.1.3 Asset return model

In the current work, we assume that the dynamics of observed asset returns y = {yt; t =
0, 1, · · · , T} are represented by the following observation model:

yt = µt + σtϵt, ϵt ∼ i.i.d. N(0, 1), t ≥ 0, (9)

where µ = {µt; t = 0, · · · , T} and σ = {σt; t = 0, · · · , T} are state variables which stand for
expected return and volatility processes, respectively.

With regard to system models, we use the next two time-series models for µ.

• EMA model:

µt = βµyt−1 + (1− βµ)µt−1, t ≥ 1,

µ0 = αµ ∈ R,
(10)

• generalized EMA (GEMA) model:

µt = βµyt−1 + (1− βµ)µt−1 + σµηt, t ≥ 1,

µ0 ∼ N(αµ, σ
2
µ/(1− β2

µ)), ηt ∼ i.i.d. N(0, 1), Cov(ϵt, ηt) = 0,
(11)

where σµ(> 0) is a constant unknown parameter and βµ ∈ (0, 1) is the so-called smoothing
factor that represents the degree of weighting decrease in EMA. Note that the GEMA model is
a stochastic model which aims to obtain marginally better estimation than EMA.

As well, we assume EMA and GEMA model for volatility process σt.

• EMA (IGARCH(1,1)) model:

σ2
t = βσ(yt−1 − µt−1)

2 + (1− βσ)σ
2
t−1,

σ0 = ασ ∈ R
(12)

• GEMA model:

log σ2
t = log{βσ(yt−1 − µt−1)

2 + (1− βσ)σ
2
t−1}+ σσξt, t ≥ 1,

log σ2
0 ∼ N(logα2

σ, σ
2
σ), ξt ∼ i.i.d. N(0, 1), Cov(ϵt, ξt) = Cov(ηt, ξt) = 0,

(13)

where βσ ∈ (0, 1) is the so-called smoothing factor of EMA and σσ(> 0) is a constant unknown
parameter.

Now, let us summarize the system models, i.e. the combinations of µ and σ processes.
Namely, “EMA+GEMA”, “GEMA+EMA” and “GEMA+GEMA” are stochastic models for
improving estimation of simple EMA in volatility, expected return and both expected return &
volatility, respectively. Here, we employ the notation “model I + model II” representing model
I for µ and model II for σ.

Let us remark that as the estimates of expected return and volatility for time t, we take
averages of one-step-ahead predictions at time t − 1 for state variables µt and σt, that is the
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particles {Z(r)
t }r=1,··· ,R obtained from the step (b) of PF algorithm, described in Section 2.1.2.

With regard to correlation, we employ the standard EMA model, i.e.,

ρt,i,j =
σt,i,j

σt,i,iσt,j,j
, (14)

where σt,i,j = βρ(yt−1,i − µt−1,i)(yt−1,j − µt−1,j) + (1− βρ)σt−1,i,j .
Here, we describe the setting of model parameters. First, we notice that in the above models

the smoothing factors of EMA/GEMA are fixed. In detail, we consider the case βµ = βσ = βρ
(≡ β) for simplicity and set β = 0.2, 0.4, 0.6, 0.8 in advance. Although this parameter strongly
affects the investment results, it is very difficult to know the optimal level in advance. It may
seem natural to estimate it by a self-organizing framework, but its estimates are optimal in
terms of likelihood, not investment performance. Therefore, we do not estimate β in this stage.
Instead, our FL system, introduced later, selects the best one in terms of investment record.

Second, as for constant αµ and ασ in EMA/GEMA, we set as the sample mean and standard
deviation of asset returns in the first two years, {yt}t=0,··· ,23, respectively. With regard to an
unknown parameter σµ in GEMA, we guess the value to utilize the data during the training
period. That is, we use 0.5 times the sample standard deviation of EMAs in the first two years,
Different from σµ, it is difficult to guess a reasonable value of σσ. Therefore, we estimate it
with a self-organizing approach. For their initial distributions, we draw σσ from the uniform
distribution U(0, 1) following the previous research (Nakano et al., 2017).

2.1.4 Anomaly detection

We also adopt three types of anomaly detectors in order to judge whether the models really
capture asset returns’ dynamics, introduced in Nakano et al. (2017). If an anomaly is detected
for an asset return at time t, yt, we exclude the asset from investment universe at time t, which
makes it possible to enhance our investment performances.

The first type utilizes the log-likelihoods. Here we define the log-likelihood at time t by
ℓ(yt) ≡ log p(yt|Zt) which is approximately calculated with taking log of the right hand side of
Eq. (4). In our PF algorithm, we are able to obtain {ℓ(yt)}t for each asset. Then, if ℓ(yt) takes
a lower value than a predetermined threshold at time t, we regard yt as an anomaly.

In the second type, we employ the traditional Hotelling approach since the observational
noise ϵt follows the standard normal distribution. In this approach, we define an anomaly
indicator a(yt) by the negative log-likelihood −ℓ(yt). We rewrite a(yt) by using only the term
which includes yt as follows.

a(yt) =

(
yt − µt

σt

)2

. (15)

Note that in our models a(yt) coincides with the square of observation error, ϵ2t . Again, this
can be approximately calculated in our estimation algorithm. Then the remaining task is to
determine a threshold as in the first approach. Here, we make use of the fact that this a(yt)
asymptotically follows a chi-squared distribution with one degrees of freedom χ2(1). Although
the number of our data may not be large enough to utilize this asymptotic property, we approx-
imately use the 95 percentile of χ2(1) as a threshold.

In the third type, we test a method by the one-step-ahead predictive distribution of asset
returns, p(yt|y1:t−1) where y1:t−1 ≡ (y1, · · · , yt−1). In PF algorithm, we can obtain the ap-
proximation of predictive distribution p(yt|y1:t−1) based on Monte Carlo simulation. Then, we
are able to detect an anomaly by calculating the 2.5 and 97.5 percentiles of p(yt|y1:t−1). If
the realized return yt of some asset is outside these percentiles, we exclude this asset from our
investment universe.
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In the following, we call those three AD methods AD1, AD2 and AD3, respectively. Note
that all the methods are implemented in our PF algorithm quite easily. In contrast to Nakano
et al. (2017) not offering a useful way for deciding in advance which AD is the best, our ES
proposes a method for its decision.

2.2 Mean-variance portfolio and performance measure

Suppose that there exists a risk-free asset in the financial market and the risk-free rate is zero.
We also put no-short-sale constraint. Then, the weight of MV portfolio at each time step t =
0, 1, · · · , T − 1 is given by the solution of the following optimization problem for given estimates
of an expected return vector µt = (µt,i)i=1,··· ,N and a covariance matrix Σt = (σt,i,j)i,j=1,··· ,N .

max
ωt

ω′
tµt −

γ

2
ω′
tΣtωt,

s.t. ωt,i ≥ 0 ,

N∑
i=1

ωt,i ≤ 1,
(16)

where N denotes the number of risky assets composing the investment universe, and ωt =
(ωt,1, · · · , ωt,N )′ is a portfolio weight vector of risky assets in the time interval [t, t+1). Besides,
the parameter γ indicates degree of risk aversion and we test γ = 1, 5, 10, 20, 50. Although the
investment result of MV portfolio largely depends on risk aversion parameter, our ES can select
its optimal value in terms of portfolio performance as well as the smoothing factor. We notice
that there are sometimes abnormal periods when the investment universe is not large enough
to construct MV portfolio due to the anomaly detectors, that is N = 0, 1. In this case, we do
not invest risky asset at all. Remark that the weight of risk-free asset ωt,N+1 is determined by

ωt,N+1 = 1−
∑N

i=1 ωt,i.
The portfolio values {Vt}t=0,··· ,T and portfolio returns {Rt}t=1,··· ,T are defined as follows.

Vt+1 = Vt

(
1 +

N∑
i=1

ωt,iyt,i

)
−

N∑
i=1

ci|ωt,iVt − ωt−1,iVt−1(1 + yt,i)| , V0 = 1,

Rt+1 =
Vt+1

Vt
− 1,

(17)

where ci and yt,i denote a transaction spread and a return of i-th risky asset, respectively.

The penalty term
∑N

i=1 ci|ωt,iVt − ωt−1,iVt−1(1 + yt,i)| of Eq. (17) is the total transaction
cost arising from the portfolio re-balance at time t. Since ωt−1,i and ωt,i are portfolio weights
of the i-th risky asset during [t − 1, t) and [t, t + 1), ωt−1,iVt−1(1 + yt,i) and ωt,iVt indicate the
values of the i-th risky asset before and after the position change at time t, respectively. That is,
|ωt,iVt − ωt−1,iVt−1(1 + yt,i)| represents the necessary amount of money for the position change
of asset i at time t. Hence, the total transaction cost at time t equals to the summation of
ci|ωt,iVt − ωt−1,iVt−1(1 + yt,i)| for all i. In this paper, we set ci = 10 bps for all risky assets.

In the following, we briefly describe the well-known performance measures used in our fuzzy
inference system.

• Compound Return (CR): We define CR as the annualized geometric average of the portfolio
returns {Rt} defined in Eq. (17), which is a standard measure of investment returns.

CR ≡

{
T∏
t=1

(1 +Rt)

}12/T

− 1. (18)

9



• Standard Deviation (SD), Downside Deviation (DD): SD is a well-known investment risk
measure defined as the annualized standard deviation of {Rt}, while DD only regards
negative returns as risk.

SD ≡

{
12

T

T∑
t=1

(Rt − R̄)2

}1/2

, DD ≡

{
12

T

T∑
t=1

min(0, Rt)
2

}1/2

, R̄ ≡ 1

T

T∑
t=1

Rt. (19)

• Maximum Drawdown (MDD):

MDD ≡ max
1≤t≤T

Mt − Vt

Mt
, Mt ≡ max

0≤s≤t
Vs. (20)

The drawdown is the decline from the past peak value Mt to the present value Vt. In
general, portfolio performance depends on the investment timing. The MDD contributes
to the performance analysis because it is independent of the investment timing given the
horizon [0, T ].

• Sharpe Ratio (ShR): ShR is usually defined as portfolio excess average returns divided by
portfolio standard deviation. Since interest rates on cash are assumed to be zero, we define
ShR as follows.

ShR ≡ AR/SD, AR ≡ 12R̄. (21)

Here, AR denotes the annualized arithmetic average of {Rt}, which corresponds to a simple
return.

• Sortino Ratio (SoR): SoR does not regard upside volatility as a risk while ShR penalizes
both upside and downside volatility, which is often pointed out as a weakness of ShR.

SoR ≡ AR/DD. (22)

• Sterling Ratio (StR): StR is a measure of risk-adjusted return that uses drawdown measures
as denominator. We adopt the following definition:

StR ≡ AR/MDD. (23)

2.3 Fuzzy logic system

In the above sections, there exists much variety for time-series modeling, that is EMA+GEMA,
GEMA+EMA and GEMA+GEMA for each β = 0.2, 0.4, 0.6, 0.8 and anomaly detectors, AD1,
AD2 and AD3. Moreover, we assume three cases of risk aversion parameter γ = 1, 5, 10, 20, 50.
In practice, it is important to select the ”best” case from these 180 candidates (= 3× 4× 3× 5),
though we cannot know in advance which is the best.

One of the effective approaches to this problem is to choose a portfolio whose past perfor-
mance is the best in terms of some measures introduced in Section 2.2. Then, we apply a FL
system to integrating the practically well-known performance measures, which is meaningful
since a unified evaluation is difficult due to the variety of these measures.

Suppose that there are L kinds of portfolios, which are evaluated with M kinds of perfor-
mance measures. Our fuzzy system is a nonlinear mapping from RM×L into RL, that is, the
inputs areM well-known performance measures {xt,l,m}l=1,··· ,L, m=1,··· ,M and the output is a new
integrated performance measure {x̂t,l}l=1,··· ,L. More concretely, our fuzzy system implements
the following procedures at each investment time t = ts, · · · , te, where ts > 0, te = T .
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(i) Firstly, performance measures {xt,l,m}l=1,··· ,L, m=1,··· ,M are calculated by time-series of the
past portfolio values {Vs,l; 0 ≤ s ≤ t} for each portfolio l = 1, · · · , L as the inputs.

(ii) Secondly, these inputs are fuzzified by the following Gaussian membership functions asso-
ciated with three kinds of fuzzy sets Xk, k = 1, 2, 3, i.e. High, Medium and Low.

MFk(xt,l,m) = exp

(
−
(xt,l,m − am,k)

2

2b2m

)
, m = 1, · · · ,M, (24)

where k = 1, 2, 3 correspond with the three fuzzy sets, high, medium and low, respectively.
Here, for eachm = 1, · · · ,M , we set am,1, am,2, am,3 to be maximum, median and minimum
of xt,l,m over l = 1, · · · , L and bm to be a quarter of the difference between the maximum
and the minimum.

(iii) Thirdly, we employ the following form of IF-THEN rule:

– The case of return or risk-adjusted return measures (CR, ShR, SoR, StR):
“IF xt,l,m is X1/X2/X3, i.e. High/Medium/Low, THEN x̂t,l,m,k = 2/1/0.”

– The case of risk measures (SD, DD, MDD):
“ IF xt,l,m isX3/X2/X1, i.e. Low/Medium/High, THEN the output x̂t,l,m,k = 2/1/0.”

Here, the strength of each IF-THEN rule is evaluated by using grades of the membership
function:

gk(xt,l,m) =
MFk(xt,l,m)∑

k=1,2,3, m=1,··· ,M MFk(xt,l,m)
. (25)

Note that we use 3×M number of IF-THEN rules.

(iv) Lastly, the output x̂t,l is calculated by the Takagi-Sugeno-Kang inference method (Sugeno
& Kang, 1988; Takagi & Sugeno, 1985):

x̂t,l =
∑

k=1,2,3, m=1,··· ,M
gk(xt,l,m)x̂t,l,m,k. (26)

Then, by comparing the values of this integrated measure {x̂t,l}l=1,··· ,L, the final investment
portfolio at time t is created. Specifically, we use the MV portfolio which attains the highest
performance in terms of the new measure at each time.

Remark that since this FL system enables to evaluate a number of portfolios in a unified
framework, it is applicable to fund of funds investment. For instance, by assessing various
investable funds instead of the MV portfolios, we can construct a new portfolio of the hedge
funds with weights proportional to the new integrated measures {x̂t,l}l=1,··· ,L.

3 Numerical experiment

3.1 Data

We use monthly total returns of 8 indexes corresponding to stocks, bonds, and REITs as listed in
Table 1. Hereafter we employ the abbreviations of the index names in this table. The time period
of the return data is 156 months, from April 2003 to March 2016. As the PF estimation during
the first several periods are strongly affected by the initial distribution, we discard the estimation
results over the first 24 periods, which means t = 0 is April 2005. Moreover, t = ts is set to be
April 2007 for the FL system that requires historical portfolio value processes, as described in
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Section 2.3. Further, the threshold of AD1 is set to be the 5 percentile of {ℓ(yt)}t=6,··· ,47. We
omit the first six months of the log-likelihoods because this period seems to be strongly affected
by initial distributions.

An asset monthly return yt is given by yt = 100× (Pt/Pt−1 − 1) where Pt denotes the asset
price at time t. Our data are downloaded from Bloomberg in JPY (Japanese yen)-denominated
form so that we consider the global investment with no currency hedging, where the initial
investment is made in JPY. Table 2 shows the descriptive statistics of the asset returns.

Table 1: Data

Index name Ticker (Bloomberg) Abbreviation

Tokyo Stock Price Index TPXDDVD.Index JPE
Tokyo Stock Exchange REIT Index TPXDREIT.Index JPR
S&P500 Index SPTR.Index USE
Morgan Stanley REIT Index RMS.G.Index USR
FTSE Developed ex North America Net Tax (US RIC) Index TGPVAN33.Index DE
FTSE Emerging Total Return Index FTS5ALEM.Index EE
Barclays US Treasury 10 Year TERM Index BCEY4T.INDEX USB
JPMorgan Emerging Market Bond Index JPEIGLBL.INDEX EB

JPE = Japanese equity index, JPR = Japanese REIT index, USE = US equity index, USR = US REIT index,
DE = developed countries’ equity index, EE = emerging countries’ equity index, USB = US bond index, EB =
emerging countries’ bond index.

REIT, or Real Estate Investment Trust, is a security that invests in real estate through property or mortgages,

and often trades on major exchanges like equities. REITs provide investors with an extremely liquid stake in real

estate.

Table 2: Descriptive statistics

Mean Std. Dev. Skew Kurtosis

JPE 0.629 5.273 -0.407 0.855
JPR 0.953 5.721 -0.206 3.531
USE 0.853 5.279 -0.724 1.764
USR 1.193 7.338 -0.941 6.002
DE 0.825 5.903 -0.933 2.384
EE 1.216 7.188 -0.833 2.598
UB 0.430 2.572 -0.181 0.720
EB 0.726 3.486 -1.528 8.993

Skew = 1
T

∑T
t=1

(
yt−µ̂

σ̂

)3
, Kurtosis = 1

T

∑T
t=1

(
yt−µ̂

σ̂

)4−3, where µ̂ and σ̂ denote Mean and Std. Dev., respectively.

3.2 Out-of-sample investment result

Table 3 compares the investment results of our proposed ES with the traditional strategies such
as buy-and-hold (BH) and equally-weighted (EW) strategy.
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Table 3: Performance comparison with traditional strategies (%)

CR SD DD MDD ShR SoR StR

our ES 12.23 11.62 4.64 8.76 105.39 264.05 139.70

EW strategy 3.91 17.26 12.61 53.63 31.25 42.76 10.05

BH strategy

JPE -0.66 19.77 14.25 56.23 6.67 9.26 2.35
JPR 1.88 21.98 15.34 67.56 19.62 28.12 6.38
USE 5.96 20.58 14.56 59.79 38.77 54.80 13.35
USR -0.05 23.07 17.19 63.04 11.80 15.83 4.32
DE 4.37 28.58 20.75 73.94 30.22 41.63 11.68
EE 1.37 27.17 19.67 67.67 19.29 26.65 7.75
USB 5.72 9.16 5.71 15.25 65.44 104.95 39.32
EB 6.18 13.30 9.68 33.00 52.12 71.63 21.00

First of all, Table 3 shows that our proposed ES substantially outperforms the traditional
strategies in all performance measures other than SD, which is also confirmed by Fig. 2. Al-
though our proposed ES is slightly worse than BH strategy of USB in terms of SD, this is not
problem at all because the result of DD suggests that the higher SD results from the upside
deviation, i.e., the positive portfolio return.

Fig. 2: Comparison of portfolio values Vt: our ES vs EW strategy
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Table 4: Performance comparison with simulated MV portfolios (%)

CR SD DD MDD ShR SoR StR FL-based measure

0th percentile 3.51 6.57 3.43 7.43 27.95 45.29 12.47 0.03
25th percentile 8.32 12.68 5.76 14.05 69.99 132.87 50.68 1.00
50th percentile 12.68 14.97 6.88 17.03 90.70 195.85 80.31 1.17
75th percentile 15.15 16.13 7.79 19.50 98.95 220.71 96.17 1.27
100th percentile 17.81 19.19 11.90 42.66 109.74 272.46 145.40 1.67

our ES 12.23 11.62 4.64 8.76 105.39 264.05 139.70 1.62
ranking (out of 181) 95 35 24 9 10 3 5 3

We summarize 180 + 1 pattern of investments by using their quantiles in each performance measure, i.e., CR,

SD, DD, MDD, ShR, SoR, StR and FL-based integrated measure.

We also evaluate the final output portfolio compared to those 180 simulated MV portfolios,
which are too many to present all the records. Therefore, we summarize those investment results
as the quantiles for each performance measure in Table 4. It also shows ranking of the final
portfolio.

From Table 4, it is clear that our ES can successfully construct a MV portfolio achieving
fine risk-return profiles, though the investment performance substantially changes depending on
the models, smoothing factors, anomaly detectors and risk aversion parameters. Particularly, all
risk adjusted return measures (ShR, SoR and StR) of our proposed ES rank in top 10. Moreover,
we can see from this table that our proposed ES in fact achieves a considerably high ranking in
terms of FL-based measure. This is also clearly observed by the red line in the Fig. 3, which
indicates the ranking of output portfolio in the histogram of FL-based measure.

Fig. 3: Histogram of FL-based performance measure

Lastly, to test the validity of our FL system, we also construct portfolios by using just each
performance measure (CR, SD, DD, MDD, ShR, SoR and StR), instead of our FL-based criteria.
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Table 5: Comparison with single performance measure based evaluation

CR SD DD MDD ShR SoR StR

our ES 12.23 11.62 4.64 8.76 105.39 264.05 139.70
ranking (out of 181) 95 35 24 9 10 3 5

CR-based 11.25 16.47 8.61 26.54 72.94 139.50 45.26
ranking (out of 181) 107 144 167 166 133 134 144

SD-based 3.56 6.59 3.65 14.09 56.48 101.99 26.39
ranking (out of 181) 180 3 7 48 166 166 174

DD-based 3.93 7.08 3.78 14.43 58.04 108.71 28.46
ranking (out of 181) 176 10 10 49 162 159 170

MDD-based 7.73 9.22 4.13 12.72 85.49 191.07 62.01
ranking (out of 181) 144 16 16 30 109 95 123

ShR-based 10.72 15.07 6.94 14.66 75.00 162.95 77.07
ranking (out of 181) 109 93 94 53 129 127 98

SoR-based 9.63 11.30 4.86 12.05 87.07 202.32 81.66
ranking (out of 181) 122 31 26 27 103 77 87

StR-based 11.35 11.68 4.72 12.86 98.06 242.50 89.04
ranking (out of 181) 103 36 24 30 50 12 63

Table 5 shows the investment records of single measure-based portfolios compared with our
FL system. From Table 5, it is obvious that the single measure-based assessment does not
work at all, especially in return measures and risk adjusted returns. That is, in the cases of
CR, ShR, SoR and StR, the investment performances drastically get worse than our FL-based
evaluation. With regard to the risk measures, i.e., SD, DD and MDD, even if portfolio risk
becomes relatively low, investment return and risk-adjusted return (CR, ShR, SoR and StR) are
much worse than our FL case. As a result, our FL system, which combines various investment
criteria, substantially contributes to the selection of a well-performed MV portfolio.

4 Conclusion

In this paper, we have proposed a novel fuzzy logic (FL)-based expert system (ES) to select a
portfolio with fine risk-return profiles from a number of investment candidates. In particular,
our ES directly links to high performance because it chooses the best portfolio in terms of various
evaluation criteria frequently used in practice.

Concretely, our ES consists of three stages: estimation, portfolio construction and selection
with a FL system. First, we assume EMA-based models for multiple smoothing factors to pre-
vent model misspecification, which are estimated by particle filtering with anomaly detectors.
Then, we calculate MV portfolio weights with regard to various models, anomaly detectors and
risk aversion parameters. Lastly, we assess historical records for each portfolio based on a FL
system through integrating well-known performance measures, and select the best portfolio. Fur-
ther, an out-of-sample numerical experiment has confirmed that our ES generates a satisfactory
investment record.

Although the current paper has considered the limited cases, i.e. only EMA-based models
and MV portfolios, the proposed ES is effective in more general settings such as different time-
series models and investment strategies, which will be shown in our future researches. For
example, our ES is applicable to fund of funds investment, since it provides a unified scheme to
comprehensive portfolio evaluation.
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