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Abstract

Although stochastic volatility and GARCH models have been successful to describe

the volatility dynamics of univariate asset returns, their natural extension to the multi-

variate models with dynamic correlations has been difficult due to several major problems.

Firstly, there are too many parameters to estimate if available data are only daily returns,

which results in unstable estimates. One solution to this problem is to incorporate addi-

tional observations based on intraday asset returns such as realized covariances. However,

secondly, since multivariate asset returns are not traded synchronously, we have to use

largest time intervals so that all asset returns are observed to compute the realized co-

variance matrices, where we fail to make full use of available intraday informations when

there are less frequently traded assets. Thirdly, it is not straightforward to guarantee

that the estimated (and the realized) covariance matrices are positive definite.

Our contributions are : (1) we obtain the stable parameter estimates for dynamic

correlation models using the realized measures, (2) we make full use of intraday informa-

tions by using pairwise realized correlations, (3) the covariance matrices are guaranteed

to be positive definite, (4) we avoid the arbitrariness of the ordering of asset returns, (5)

propose the flexible correlation structure model (e.g. such as setting some correlations

to be identically zeros if necessary), and (6) the parsimonious specification for the lever-

age effect is proposed. Our proposed models are applied to daily returns of nine U.S.

stocks with their realized volatilities and pairwise realized correlations, and are shown to

outperform the existing models with regard to portfolio performances.
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+81-3-5841-5516. Fax: +81-3-5841-5521.
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1 Introduction

Modelling time-varying volatility and correlations of multivariate time series is one of most

important problems in the financial risk management, and there has been vast literature

that tackles modelling time-varying volatility of univariate time series using the GARCH or

stochastic volatility (SV) models. However, the extension of their models to multivariate

model with dynamic correlations has not been straightforward due to the following several

major problems.

Firstly, there are too many parameters to estimate if available data are only daily re-

turns, which results in unstable estimates. An intuitive solution to reduce the number of

parameters is to introduce the factor structure assuming that a small number of common

factors describe the dynamics of time-varying covariance matrices as discussed in the factor

stochastic volatility models (e.g. Pitt and Shephard (1999), Chib et al. (2006) and Lopes

and Carvalho (2007)). However, factor modelling requires to decide the number of factors a

priori and we need to restrict the structure of factors for identification of parameters (e.g.

Lopes and West (2004)). Further, the estimation results and the prediction performance of

the model are usually subject to the ordering of asset returns.

An alternative effective approach is to incorporate additional observations based on in-

traday asset returns such as realized covariances, which recently become available in financial

market. In univariate SV models, realized SV (RSV) models which estimate time-varying

volatilities using daily returns and realized volatility simultaneously have been proposed to

show that parameter estimates are more accurate than those of SV models using only daily

returns and that the RSV models outperform SV models in forecasting volatilities (e.g. Taka-

hashi et al. (2009), Dobrev and Szerszen (2010), Koopman and Scharth (2013), Zheng and

Song (2014), Omori and Watanabe (2015), Takahashi et al. (2016)). Although the realized

volatilities are subject to microstructure noises and non-trading hours, and hence are bi-

ased estimates of the integrated volatilities, such biases are adjusted automatically within

the proposed model. Similarly, the univariate GARCH model is extended to the realized

GARCH models which incorporates the realized volatilities into the variance equations and

it is shown to lead to substantial improvements in the empirical fit and quantile forecasts over

the standard GARCH model that only uses daily returns (Hansen et al. (2012), Watanabe

(2012)).

The extension to the multivariate RSV model is also considered in Cholesky RSV model
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(Shirota et al. (2016)) where Cholesky decompositions of the realized covariance matrices

are used as additional sources for measurement equations, and it modelled the dynamics

for the logarithm of diagonal elements and off-diagonal elements of Cholesky decomposed

covariance matrices respectively. It is shown that the portfolio performances of the proposed

model outperformed other SV models without realized measures in the empirical studies, but

it should also be noted that the performance of Cholesky RSV models may depend on the

ordering of asset returns in the vector of the response.

Secondly, however, high-frequency data are not observed synchronously, which causes

difficulties in the extension of the univariate RSV model to the multivariate RSV model. For

example, in the Cholesky RSV model, it is implicitly assumed that the multivariate assets are

traded synchronously to compute the realized covariance matrices. Since multivariate assets

are not traded synchronously, we have to use largest time intervals so that all asset returns

are observed to compute the realized covariance matrices. The non-synchronous trading leads

to ignore some of frequently traded asset return data, and hence that we fail to make full use

of available intraday informations when there are less frequently traded assets.

Thirdly, it is not straightforward to guarantee that the estimated (and the realized)

covariance matrices are positive definite. The model parameters may be difficult to estimate

in practice under the constraints which satisfy the positive definiteness. Using Cholesky

decomposition of the time-varying covariance matrices is one way to guarantee the positive

definiteness (Shirota et al. (2016)), but it also requires that the multivariate assets are traded

synchronously to compute the realized covariance matrices as mentioned above. Also, the

interpretation of each latent variable of the decomposition is not straightforward since it

does not correspond to each pair of asset returns and it is subject to the ordering of the asset

returns. If we use each element of realized covariances for each pair of asset returns, it may

result in the non-positive definite covariance matrices.

To overcome these difficulties, we propose a multivariate realized SV (MRSV) model with

pairwise realized correlations, where we incorporate dynamic latent correlation variables in

addition to latent volatility variables with realized measures for each pairwise correlation

and volatilities in the framework of multivariate SV models with realized volatilities. Model

parameters are estimated using Markov chain Monte Carlo simulations, and we sample la-

tent correlation variables one at a time given others so that we keep the covariance ma-

trices positive definite. Realized Beta GARCH model proposed by Hansen et al. (2014) is

such a promising multivariate GARCH model with realized measures for volatilities and co-
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volatilities where they used measurement equations for pairwise realized correlations with

market returns and modelled dynamics of Fisher transformed conditional correlation coef-

ficients. However, they focused on pairwise correlations between the market return and an

individual asset return, assuming that individual asset returns are conditionally independent

given the market return. Another useful approach for the joint modelling of returns and

realized covariances are based on Wishart processes (e.g. Jin and Maheu (2013), Windle

et al. (2014), Jin and Maheu (2016), So et al. (2016)). The covariance matrix is assumed to

follow Wishart distribution whose scale matrix depends on past realized covariance matrices

which are computed using larger time intervals than necessary to be positive definite.

Our approach, on the other hand, is based on modelling individual volatilities and pairwise

covariances rather than the covariance matrix simultaneously, and we are able to make full

use of available intraday informations even when there are less frequently traded assets.

This implies our model still can be constructed even though some of realized measures are

missing. Also, our model is far more flexible in the sense that it is possible to restrict any

correlation coefficients to be zero for very high dimensional asset returns data, which reduces

the number of parameters and may lead to improve the forecasting performances. Among the

multivariate SV models in the literature, our model is a natural extension of univariate RSV

model to the multivariate model, and it gives us straightforward interpretation of estimated

parameters.

Furthermore, we extend our model to incorporate the leverage effect which is well-known

to exist in stock markets. The leverage effect refers to the negative correlation between an

asset return and its volatility. That is, the decrease in the stock return is followed by the

increase in its volatility. In the forecasting mean and covariance of asset returns for e.g. the

portfolio optimization, it is expected that incorporating leverage effect in econometric models

improves the accuracy of prediction. However, it may increase the number of parameters to

estimate and the realized measures are not available for such an effect. Thus we also consider

the parsimonious parameterization for the leverage effect.

Our contributions are : (1) we obtain the stable parameter estimates for dynamic cor-

relation models using the realized measures, (2) we make full use of intraday informations

by using pairwise realized correlations, (3) the estimated covariance matrices are guaranteed

to be positive definite, (4) we avoid the arbitrariness of the ordering of asset returns, (5)

propose the flexible correlation structure model such as setting some correlations to be iden-

tically zeros if necessary, and, further, (6) introduce the parsimonious specification for the
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leverage effect.

The structure of this paper is as follows. Section 2 introduces the multivariate realized

SV model with daily returns, realized volatilities, and pairwise realized correlations. Section

3 describes estimation algorithms using Markov Chain Monte Carlo simulation. Section 4

extends it to incorporate the leverage effect. In Section 5, we give an illustrative numerical

example using simulated data. Finally, in Section 6, the proposed model is applied to nine

U.S. stock return data and the model with leverage effect is shown to outperform other

competing models with regard to the portfolio performances.

2 Multivariate realized stochastic volatility model

This section introduces multivariate realized stochastic volatility (MRSV) model, which uses

realized measures for volatility and pairwise correlations of asset returns. By using additional

information of realized measure for asset returns, we can overcome the curse of dimension

in estimating dynamic covariance matrices. Cholesky RSV model proposed by Shirota et al.

(2016) also uses realized measure of variances and covariances (which we call a realized

covariance matrix) to estimate the latent covariance matrix of asset returns. However, the

realized covariance matrix is less informative when there exist less frequent series of asset

returns. This is because we require synchronous observations of all the asset return series

to compute the realized covariance matrix. To utilize full information of realized measure

for the correlations, we propose using realized measures for the latent pairwise correlations.

It should be noted that the pairwise correlation can be computed if that pair of series is

synchronously observed. We call the realized measure for the correlation coefficient pairwise

realized correlation. Using the realized correlations, to guarantee the positive definiteness

of the latent covariance matrices, we propose MCMC algorithm where we sample latent

correlation coefficients from the conditional posterior distribution so that the matrices are

positive definite.

2.1 Multivariate stochastic volatility model with dynamic correlations

First, we define the multivariate SV (MSV) model without realized measures. Let yt =

(y1t, . . . , ypt)
′ and ht = (h1t, . . . , hpt)

′ denote a p×1 stock return vector and its corresponding
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log volatility latent vector at time t. The basic MSV model is given by

yt = mt+V
1/2
t ϵt, ϵt ∼ N(0,Rt), t = 1, . . . , T, (1)

ht+1 = µ+Φ(ht−µ) + ηt, ηt ∼ N(0,Ω), t = 1, . . . , T − 1, (2)

mt+1 = mt+νt, νt ∼ N(0,Σm), t = 1, . . . , T − 1, (3)

h1 ∼ N(µ,Ω0), m1 ∼ N(0, κΣm), (4)

where Rt = {ρij,t} is a correlation matrix, we assume that hit follows stationary autoregres-

sive process (with its coefficient |ϕj | < 1) and that the mean process mt = (m1t, . . . ,mpt)
′

follows random walk process, and

ϵt = (ϵ1t, . . . , ϵpt)
′, ηt = (η1t, . . . , ηpt)

′,

νt = (ν1t, . . . , νpt)
′, Vt = diag(exp(h1t), . . . , exp(hpt)),

Σm = diag(σ2
m), σ2

m = (σ2m,1, . . . , σ
2
m,p)

′,

Φ = diag(ϕ), ϕ = (ϕ1, . . . , ϕp)
′.

We denote a diagonal matrix A with diagonal elements a = (a11, . . . , amm)
′ by A = diag(a).

For the initial distributions of m1 and h1, we set κ to some large constant for m1 for

simplicity and set Ω0 to satisfy the stationary condition Ω0 = ΦΩ0Φ+Ω for h1 such that

vec(Ω0) = (Ip2 −Φ⊗Φ)−1 vec(Ω), (5)

where Ip2 denotes a p
2×p2 unit matrix. To model dynamics of correlation matrix, we consider

the following Fisher transformation gij,t+1 of the correlation coefficient ρij,t, and assume that

it follows random walk process for simplicity:

gij,t+1 = gij,t + ζij,t, ζij,t ∼ i.i.d. N(0, σ2ζ,ij), t = 1, . . . , T − 1, (6)

gij,1 ∼ N(0, κσ2ζ,ij), gij,t = log(1 + ρij,t)− log(1− ρij,t), (7)

for i, j = 1, . . . , p (j < i) and we denote

ρt = (ρ21,t, . . . , ρpp−1,t)
′, gt = (g21,t, . . . , gpp−1,t)

′,

ζt = (ζ21,t, . . . , ζpp−1,t)
′, σ2

ζ = (σ2ζ,21, . . . , σ
2
ζ,pp−1)

′.

Non-arbitrary ordering of asset returns and the flexible correlation structure. We note that

above specification (1) – (7) is independent of the ordering of asset returns in yt, while
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the conventional factor SV models or the Cholesky SV models (Shirota et al. (2016)) may

be affected by the selection of the ordering. Further, it allows us to model the structure of

correlations in a flexible way. For example, we can easily restrict some correlation coefficients

to be exactly equal to zero when the dimensional of yt is very high.

Remark 1. It is easy to assume that mt and gij,t’s follow stationary autoregressive processes

alternatively. However, since it imposes the mean reversion properties on these processes, we

rather consider random walk processes without such properties for simplicity. For the long

term prediction, we may need such a stationarity condition.

2.2 Realized stochastic volatilities and pairwise realized correlations

Realized measures as an additional source of information. In the MSV models above, there

are too many parameters to estimate using only daily asset returns, and it is often that

parameter estimates are unstable. Recently, high frequency data in the financial market

has become available, and it plays more important role in the empirical studies in finance,

since the realized measures of variances and covariances, are more informative estimators

of true variances and covariances (see e.g. Andersen et al. (2001), Andersen et al. (2001),

Barndorff-Nielsen and Shephard (2002), Barndorff-Nielsen and Shephard (2004)).

Let xit = logRVit and wij,t = log{(1 + RCORij,t)/(1 − RCORij,t)} where RVit and

RCORij,t are realized measures of the volatility of the i-th asset return and the correlation

between i-th and j-th asset returns at time t. Thus we introduce the additional measurement

equations based on realized measures:

xit = ξi + hit + uit uit ∼ N(0, σ2u,i), t = 1, . . . , T, (8)

wij,t = δij + gij,t + vij,t vij,t ∼ N(0, σ2v,ij), t = 1, . . . , T, (9)

for i, j = 1, . . . , p (i > j). The terms ξj ’s and δij ’s are included to adjust the biases due

to the microstructure noise, non-trading hours, non-synchronous trading and so forth. The

multivariate realized stochastic volatility model with pairwise realized correlations are defined
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by (1) – (9). We denote

xt = (x1t, . . . , xpt)
′, wt = (w21,t, . . . , wpp−1,t)

′,

ut = (u1t, . . . , upt)
′, vt = (v21,t, . . . , vpp−1,t)

′,

ξ = (ξ1, . . . , ξp)
′, δ = (δ21, . . . , δpp−1)

′,

σ2
u = (σ2u,1, . . . , σ

2
u,p)

′, σ2
v = (σ2v,21, . . . , σ

2
v,pp−1)

′,

Use of pairwise realized correlations. As the realized correlation RCORij,t, we will use the

pairwise realized correlations. If there exist less frequent series of asset returns, the realized

covariance matrix may lose a large part of information since it is calculated only when all

the series are observed synchronously. On the other hand, the pairwise realized correlation

coefficients can be calculated for each pair of series of returns separately, so we can use the full

information of the realized measures for correlations. Moreover, we can estimate parameters

even if we cannot obtain realized measures for some pairs.

Bias corrections of realized measures. Realized volatilities and pairwise realized correlations

have more information about true volatilities and correlations, but there may be biases due

to market microstructure noise, non-trading hours, nonsynchronous trading and so forth.

To correct these biases of realized measures, we model the observation equations of realized

volatilities and pairwise realized correlations with bias adjustment terms, ξj , δij . Although

daily returns have relatively less information about true volatilities and correlations, they

are less subject to the biases caused by the high frequency data. Therefore, we can estimate

biases in realized measures using the information of daily returns and, at the same time, get

the additional information with regard to true volatilities and correlations using the realized

measures.

3 Posterior inference

3.1 Prior distributions for parameters

Since there are many latent variables in our proposed model and hence it is difficult to

evaluate the likelihood, we take Bayesian approach and estimate model parameters using

Markov chain Monte Carlo simulation. First we assume the prior distribution of θ ≡

(ϕ,µ, ξ, δ,σ2
u,σ

2
v,σ

2
ζ ,Σm,Ω) as follows. For the prior distributions of µi, ξi and δij , we as-

sume multivariate independent normal distributions. The prior distributions of σ2u,i, σ
2
v,ij , σ

2
ζ,ij
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and σ2m,i are assumed to be independent inverse gamma distributions. For ϕi and Ω, we as-

sume (1 + ϕi)/2 ∼ Beta(a, b) and inverse Wishart distribution respectively. In summary, we

assume the following prior distributions:

µi ∼ N(mµ, s
2
µ), ξi ∼ N(mξ, s

2
ξ), δij ∼ N(mδ, s

2
δ), (10)

σ2u,i ∼ IG

(
nu
2
,
du
2

)
, σ2v,ij ∼ IG

(
nv
2
,
dv
2

)
, σ2ζ,ij ∼ IG

(
nζ
2
,
dζ
2

)
, (11)

1 + ϕi
2

∼ Beta(a, b), σ2m,i ∼ IG

(
nm
2
,
dm
2

)
, Ω ∼ IW(ν,S), (12)

for i, j = 1, . . . , p (j < i), and a, b,mµ, sµ,mξ, sξ,mδ, sδ, nu, du, nv, dv, nζ , dζ , nm, dm, ν,S are

hyperparameters. In our empirical studies, these hyperparameters are chosen to reflect that

we have little prior information about parameters.

3.2 Markov chain Monte Carlo simulation

Let g = (g′
1, . . . , g

′
T )

′, h = (h′
1, . . . ,h

′
T )

′ and m = (m′
1, . . . ,m

′
T )

′. Further, let w =

(w′
1, . . . ,w

′
T )

′, x = (x′
1, . . . ,x

′
T )

′ and y = (y′
1, . . . ,y

′
T )

′. Then, the joint posterior proba-

bility density function is given by

π(θ, g,h,m |w,x,y)

∝
T∏
t=1

|V1/2
t RtV

1/2
t |−1/2 exp

{
−1

2
(yt−mt)

′(V
1/2
t RtV

1/2
t )−1(yt−mt)

}
× |Ω0 |−1/2 exp

{
−1

2
(h1−µ)′Ω−1

0 (h1−µ)

}
×
T−1∏
t=1

|Ω|−1/2 exp

[
−1

2
{ht+1−(Ip −Φ)µ−Φht}′Ω−1{ht+1−(Ip −Φ)µ−Φht}

]

×
T∏
t=1

|Σu |−1/2 exp

{
−1

2
(xt−ξ − ht)

′Σ−1
u (xt−ξ − ht)

}

×
p∏
i>j

σ−1
ζ,ij exp

(
−

g2ij,1
2κσ2ζ,ij

)
T−1∏
t=1

σ−1
ζ,ij exp

{
−(gij,t+1 − gij,t)

2

2σ2ζ,ij

}

×
p∏
i>j

T∏
t=1

σ−1
v,ij exp

{
−(wij,t − δij − gij,t)

2

2σ2v,ij

}

×
p∏
i=1

σ−1
m,i exp

(
−

m2
i,1

2κσ2m,i

)
T−1∏
t=1

σ−1
m,i exp

{
−(mi,t+1 −mi,t)

2

2σ2m,i

}
× π(θ), (13)

whereΣu = diag(σ2u,1, . . . , σ
2
u,p) and π(θ) is a prior probability density function of parameters.

To conduct the statistical inference on parameters, we implement Markov chain Monte Carlo
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simulation in nine blocks. Let θ\β denote the parameter θ excluding β. Then,

1. Initialize g,h,m and θ.

2. Generate g |θ,h,m,w,x,y.

3. Generate h |θ,m, g,w,x,y.

4. Generate m |θ,h, g,w,x,y.

5. Generate ϕ |θ\ϕ,h,m, g,w,x,y.

6. Generate (µ, ξ, δ)|θ\(µ,ξ,δ,),h,m, g,w,x,y.

7. Generate (σ2
u,σ

2
v,σ

2
ζ ,Σm)|θ\(σ2

u,σ2
v ,σ2

ζ ,Σm),h,m, g,w,x,y.

8. Generate Ω |θ\Ω,h,m, g,w,x,y.

9. Go to Step 2.

We describe the MCMC sampling algorithm in more details below.

3.2.1 Generation of gt for the dynamic correlation matrix Rt

The conditional posterior probability density function of gij,t given other parameters and

latent variables is

π(gij,t|·) ∝ exp

{
− 1

2σ2t∗
(gij,t −mt∗)

2 + r(gij,t)

}
, (14)

where

r(gij,t) = −1

2
log|Rt| −

1

2
(yt−mt)

′(V
1/2
t RtV

1/2
t )−1(yt−mt), (15)

and

mt∗ =


σ2t∗

{
σ−2
ζ,ijgij,2 + σ−2

v,ij(wij,1 − δij)
}
, t = 1,

σ2t∗

{
σ−2
ζ,ij(gij,t−1 + gij,t+1) + σ−2

v,ij(wij,t − δij)
}
, t = 2, . . . , T − 1,

σ2t∗

{
σ−2
ζ,ijgij,T−1 + σ−2

v,ij(wij,T − δij)
}
, t = T,

(16)

σ2t∗ =



{
(κ−1 + 1)σ−2

ζ,ij + σ−2
v,ij

}−1
, t = 1,(

2σ−2
ζ,ij + σ−2

v,ij

)−1
, t = 2, . . . , T − 1,(

σ−2
ζ,ij + σ−2

v,ij

)−1
, t = T.

(17)
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Positive definiteness of Rt. When sampling Rt, we need sample each correlation coefficient

ρij,t (or equivalently gij,t) so that we guarantee that the correlation matrix Rt to be positive

definite. We first state the condition for ρij,t to guarantee that Rt is positive definite given

other elements of Rt and other ρij,s (s ̸= t) .

Proposition 1. Suppose that Rt = {ρij,t} is a correlation matrix and let ρit denote the

transpose of the i-th row vector of Rt excluding 1, ρit = (ρi1,t, . . . , ρii−1,t, ρii+1,t, . . . , ρip,t)
′,

and Rit denotes the submatrix excluding the i-th row and the i-th column from Rt. The

condition for ρij,t to guarantee that Rt is positive definite is ρij,t ∈ (Lijt, Uijt) where bounds

Lijt and Uijt are given by

−b′j ρi,−j,t±
√

(b′j ρi,−j,t)
2 − aj(ρ′

i,−j,tCj ρi,−j,t−1)

aj
, (18)

and ρi,−j,t is the vector excluding the j-th element of ρit, aj is the (j, j)-th element of R−1
it ,

bj is the vector excluding aj from the j-th column of R−1
it , and Cj is the matrix excluding

the j-th row and j-th column from R−1
it .

Proof: Since Rit is positive definite, its principal submatrices are all positive definite.

Further, noting that

|Rt| = |Rit| × |1− ρ′
itR

−1
it ρit|, (19)

the condition for Rt to be positive definite is

1− ρ′
itR

−1
it ρit > 0, (20)

which reduces to

−ajρ2ij,t − 2b′j ρi,−j,t ρij,t − ρ′
i,−j,tCj ρi,−j,t+1 > 0, (21)

Therefore the inequality (21) implies that the lower and upper bounds for ρij,t are given by

(18).

□

Thus we propose a candidate g†ij,t from normal distribution truncated on the interval (aijt, bijt),

TN(aijt,bijt)(mt∗, σ
2
t∗), and accept it with probability min{1, exp(r(g†ij,t)− r(gij,t))}, where

(aijt, bijt) ≡
(
log

1 + Lij,t
1− Lij,t

, log
1 + Uij,t
1− Uij,t

)
. (22)

11



3.2.2 Generation of ht for the dynamic volatility Vt

We use a single-move sampler for ht where we sample ht given other parameters and latent

variables. Such a sampler is efficient when the realized measures are available as the additional

information source for ht. The conditional posterior probability density function of ht is given

by

π(ht |·) ∝ exp

[
−1

2
(ht−mt∗)

′Ω−1
t∗ (ht−mt∗) + l(ht)

]
, (23)

where

l(ht) = −1

2
(yt−mt)

′(V
1/2
t RtV

1/2
t )−1(yt−mt), (24)

and

mt∗ =



Ω1∗
[
Ω−1

0 µ+ΦΩ−1 {h2−(Ip−Φ)µ}

+Σ−1
u (x1− ξ)− 1

2 1p
]
, t = 1,

Ωt∗
[
Ω−1 {(Ip−Φ)µ+Φht−1}

+ΦΩ−1 {ht+1−(Ip−Φ)µ}+Σ−1
u (xt− ξ)− 1

2 1p
]
, t = 2, . . . , T − 1,

ΩT∗
[
Ω−1 {(Ip−Φ)µ+ΦhT−1}+Σ−1

u (xT − ξ)− 1
2 1p

]
, t = T,

(25)

Ωt∗ =


[
Ω−1

0 +ΦΩ−1Φ+Σ−1
u

]−1
, t = 1,[

Ω−1+ΦΩ−1Φ+Σ−1
u

]−1
, t = 2, . . . , T − 1,[

Ω−1+Σ−1
u

]−1
, t = T,

(26)

where 1p denotes a p × 1 vector with all elements equal to one. Therefore, we generate a

candidate h†
t from N(mt∗,Ωt∗), and accept it with probability min{1, exp(l(h†

t)− l(ht))}.

3.2.3 Generation of mt for the mean process of yt

Although the conditional mean of yt given ht is almost equal to zero in the empirical studies,

it is important to consider such a non-zero mean process for the portfolio optimization as we

shall see in Section 6. Noting that

E[yt |ht] = mt, Var[yt |ht] = V
1/2
t RtV

1/2
t ≡ Γt, (27)

it can be shown that the conditional posterior distribution of mt’s is the same as that of the

following linear Gaussian state space model:

yt = mt+ϵ̂t, ϵ̂t ∼ N(0,Γt), (28)

mt+1 = mt+νt, νt ∼ N(0,Σm), (29)
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where ϵ̂t and νt are independent. Thus we generate m simultaneously at one time using a

simulation smoother (e.g. de Jong and Shephard (1995), Durbin and Koopman (2002)).

3.2.4 Generation of θ

See Appendix A.1.

4 Extension to incorporate the leverage effect

This section extends our model to incorporate the leverage effect. The leverage effect, which

corresponds to the well-known negative correlation between asset returns and their volatilities

in the stock market, is expected to improve the performance of the forecast of mean processes

and volatility processes of asset returns.

4.1 Matrix variate normal distribution

We first define the matrix variate normal distribution and show its probability density func-

tion, which will be used in modelling the leverage effect.

Definition 1. The random matrix X (p × n) is said to have a matrix variate normal

distribution with mean matrix M (p×n) and covariance matrix Ψ⊗Σ where Ψ (p× p) and

Σ (n × n) are positive definite matrices if vec (X′) ∼ N(vec (M′),Ψ⊗Σ). We denote such

matrix as X ∼ Np,n(M,Ψ⊗Σ).

If X ∼ Np,n(M,Ψ⊗Σ), the probability density function for X is given by

f(X) = (2π)−np/2|Ψ |−n/2|Σ |−p/2 × exp

{
−1

2
tr
(
Ψ−1(X−M)Σ−1(X−M)′

)}
, (30)

since

tr
(
Ψ−1(X−M)Σ−1(X−M)′

)
= vec

(
(X−M)′

)′ (
Ψ−1⊗Σ−1

)
vec
(
(X−M)′

)
=
{
vec(X′)− vec(M′)

}′ (
Ψ−1⊗Σ−1

) {
vec(X′)− vec(M′)

}
.

13



4.2 Modeling the leverage effect

We extend our proposed model to incorporate the leverage effect as follows. The joint dis-

tribution of (yt,ht+1) is given by yt

ht+1

 ∼ N

 mt

µ+Φ(ht−µ)

 ,

V
1/2
t RtV

1/2
t V

1/2
t R

1/2
t Λ′

ΛR
1/2′

t V
1/2
t Ψ+ΛΛ′

 . (31)

The marginal distributions of yt and ht+1 given ht are the same as before with Ω = Ψ+ΛΛ′,

but we note that

ht+1|yt,ht,θ ∼ N
(
µ+Φ(ht−µ) +ΛR

−1/2
t V

−1/2
t (yt−mt),Ψ

)
.

If Λ = O, it reduces to the model without leverage effect. The matrix Λ is the coefficient of

the leverage for

zt = R
−1/2
t V

−1/2
t (yt −mt). (32)

We assume that the prior distribution of Λ given Ψ is Np,p(M0,Ψ⊗Γ0). That is,

Λ|Ψ ∼ Np,p(M0,Ψ⊗Γ0). (33)

Remark 2. There are several ways to choose R
1/2
t . For example, we can use the spectral

decomposition of the correlation matrix Rt = PtQtP
′
t and R

1/2
t = PtQ

1/2
t where the i-

th diagonal element of the diagonal matrix Qt is the i-th largest eigenvalue of Rt and the

i-th column of Pt is the corresponding i-th eigenvector (and we set the first elements of

the eigenvectors to be positive for the identification purpose). Thus the i-th element of zt

can be interpreted as the i-th market factor among p asset returns. Alternatively, Cholesky

decomposition, Rt = R
1/2
t R

1/2′

t , can be used so that R
1/2
t is a lower triangular matrix where

all the diagonal elements are equal to one, but we note that it is affected by the ordering of

the asset returns.

Remark 3. The alternative specification for the leverage effect is to consider yt

ht+1

 ∼ N

 mt

µ+Φ(ht−µ)

 ,

V
1/2
t RtV

1/2
t V

1/2
t Λ′

ΛV
1/2
t Ψ+ΛR−1

t Λ′

 ,

so that

ht+1|yt,ht,θ ∼ N
(
µ+Φ(ht−µ) +ΛR−1

t V
−1/2
t (yt−mt),Ψ

)
.
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However, we do not use this specification since it is difficult to interpret Λ and to justify the

time-varying unconditional covariance matrix for ht+1’s where ht may not be stationary and

its initial distribution is unknown.

4.2.1 Generation of Λ

The conditional posterior distribution of Λ is derived in the following Proposition.

Proposition 2. Suppose that the prior distribution of Λ given Ψ is Np,p(M0,Ψ⊗Γ0).

Then the conditional posterior distribution of Λ given other parameters and latent variables

is Np,p(M1,Ψ⊗Γ1) where

M1 =
(
A+Γ−1

0

)−1 (
B+Γ−1

0 M0

)
, Γ1 =

(
A+Γ−1

0

)−1
, (34)

A =

T−1∑
t=1

ztz
′
t, B =

T−1∑
t=1

ztη
′
t, (35)

and zt = R
−1/2
t V

−1/2
t (yt −mt) and ηt = ht+1 − µ−Φ(ht − µ).

Proof: Since

f(ht+1|yt, gt,ht,mt,θ)

∝ |Ψ|−1/2 exp

{
−1

2

(
ht+1−µ−Φ(ht−µ)−ΛR

−1/2
t V

−1/2
t (yt−mt)

)′
Ψ−1

(
ht+1−µ−Φ(ht−µ)−ΛR

−1/2
t V

−1/2
t (yt−mt)

)}
, (36)

and

π(Λ|Ψ) ∝ |Ψ |−p/2|Γ0|−p/2 exp
{
−1

2
tr
(
Ψ−1(Λ−M0)Γ

−1
0 (Λ−M0)

′)} , (37)

the conditional posterior probability density function of Λ is

π(Λ |·) ∝ exp

[
−1

2

{
T−1∑
t=1

(yt−mt)
′V

−1/2
t R

−1/2′

t Λ′Ψ−1ΛR
−1/2
t V

−1/2
t (yt−mt)

−2

T−1∑
t=1

(ht+1−µ−Φ(ht−µ))′Ψ−1ΛR
−1/2
t V

−1/2
t (yt−mt)

}]
× π(Λ |Ψ)

∝ exp

[
−1

2

{
tr(Ψ−1Λ(A+Γ−1

0 )Λ′)− 2 tr(Ψ−1Λ(B+Γ−1
0 M0))

}]
∝ exp

[
−1

2
tr
{
Ψ−1(Λ−M1)(A+Γ−1

0 )(Λ−M1)
′}] , (38)

and the result follows.
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□

From Proposition 2, we generate vec(Λ)|· ∼ N(vec(M′
1),Ψ⊗Γ1).

4.2.2 Generation of Ψ

As a prior distribution of Ψ, we assume Ψ ∼ IW(νψ,Sψ). Then the conditional posterior

probability density function of Ψ is

π(Ψ|·) ∝ m(Ψ)× |Ψ|−(ν̃ψ+p+1)/2 exp

{
−1

2
tr
(
Ψ−1S̃ψ

)}
, (39)

where

m(Ψ) = |Ω0 |−1/2 exp

(
−1

2
(h1−µ)′Ω−1

0 (h1−µ)

)
, (40)

ν̃ψ = νψ + p+ T − 1, (41)

S̃ψ = Sψ + (Λ−M0)Γ
−1
0 (Λ−M0)

′

+

T−1∑
t=1

{
ht+1−µ−Φ(ht−µ)−ΛR

−1/2
t V

−1/2
t (yt−mt)

}
{
ht+1−µ−Φ(ht−µ)−ΛR

−1/2
t V

−1/2
t (yt−mt)

}′
. (42)

Thus we propose a candidate Ψ† from IW(ν̃ψ, S̃ψ), and accept it with probability

min{1,m(Ψ†)/m(Ψ)}.

For the generations of other parameters and latent variables, see Appendix A.2 .

4.3 Parsimonious specification of the leverage effect

This subsection proposes the parsimonious specification for Λ = [λ1, · · · ,λp], to reduce the

number of leverage parameters from p2 to pq (q ≪ p) by setting Λ = [λ1, · · · ,λq,0, . . . ,0]

since we do not have additional measurement equations for the leverage effect. Using the

spectral decomposition to compute R
1/2
t , we can interpret the i-th column corresponds to the

i-th market factor among asset returns (i = 1, . . . , q). The number of factors, q, is expected

to be small, e.g., q = 1 or q = 2.

4.3.1 Generation of Λ = [λ1, · · · ,λq,0, . . . ,0]

The following proposition and the corollary shows the conditional posterior distribution of

parameters for the leverage effect under parsimonious specifications.
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Proposition 3. Let Λ = [λ1, · · · ,λq,0, . . . ,0] and λ = (λ′
1, . . . ,λ

′
q)

′. If the prior distribu-

tion of λ is assumed to be normal, λ ∼ N(m0,Γ0), then the conditional posterior distribution

of λ is λ |· ∼ N(m1,Γ1) where

m1 = Γ1

{
Γ−1
0 m0 + (Iq ⊗Ψ−1B′)vec ({e1, . . . , eq})

}
, (43)

Γ1 =
(
Γ−1
0 +A1:q,1:q ⊗ Ψ−1

)−1
, (44)

A,B are defined in (35), A1:q,1:q denotes the first q rows and the q columns of A, vec(X) ≡

(x′
1, . . . ,x

′
m)

′ denotes a vectorization of the matrix X = {x1, . . . ,xm}, and ⊗ denotes Kro-

necker product.

Proof: Using Λ =
∑q

j=1 e
′
j ⊗λj where ej is the p × 1 unit vector with the j-th element

being one, the posterior probability density function of Λ is

π(λ|·)

∝ exp

−1

2


T−1∑
t=1

z′
t

 q∑
j=1

ej ⊗λ′
j

Ψ−1

 q∑
j=1

e′j ⊗λj

zt−2
T−1∑
t=1

η′
tΨ

−1

 q∑
j=1

e′j ⊗λj

zt




× π(λ)

∝ exp

−1

2


T−1∑
t=1

 q∑
j=1

z′
t ej ⊗λ′

j

Ψ−1

 q∑
j=1

e′j zt⊗λj

− 2
T−1∑
t=1

η′
tΨ

−1

 q∑
j=1

e′j zt⊗λj




× π(λ)

∝ exp

−1

2


T−1∑
t=1

q∑
i=1

q∑
j=1

(e′i zt z
′
t ej)λ

′
iΨ

−1 λj −2

T−1∑
t=1

q∑
j=1

e′j zt η
′
tΨ

−1 λj


× π(λ)

∝ exp

−1

2


q∑
i=1

q∑
j=1

(e′iA ej)λ
′
iΨ

−1 λj −2

q∑
j=1

λ′
j Ψ

−1B′ ej


× π(λ)

∝ exp

[
−1

2

{
λ′ (Γ−1

0 + A1:q,1:q ⊗Ψ−1
)
λ−2λ′ (Γ−1

0 m0 + (Iq ⊗Ψ−1B′)vec ({e1, . . . , eq})
)}]

,

(45)

and the result follows.

□

We derive the conditional posterior distribution for the case q = 1 in the following corollary.
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Corollary 1. Let Λ = [λ,0, . . . ,0]. If the prior distribution of λ is assumed to be normal,

λ ∼ N(m0,Γ0), then the conditional posterior distribution of λ is λ |· ∼ N(m1,Γ1) where

m1 = Γ1

{
Γ−1
0 m0 +Ψ−1 b

}
, Γ1 =

(
Γ−1
0 +a×Ψ−1

)−1
, (46)

a =

T−1∑
t=1

z21t, b =

T−1∑
t=1

z1t {ht+1 − µ−Φ(ht − µ)} ,

and z1t is the first element of zt = R
−1/2
t V

−1/2
t (yt −mt).

4.3.2 Generation of Ψ

As the prior distribution of Λ is changed, the conditional posterior probability density func-

tion of Ψ is now replaced by

π(Ψ|·) ∝ m(Ψ)× |Ψ|−(ν̃ψ+p+1)/2 exp

{
−1

2
tr
(
Ψ−1S̃ψ

)}
, (47)

where

m(Ψ) = |Ω0 |−1/2 exp

(
−1

2
(h1−µ)′Ω−1

0 (h1−µ)

)
, (48)

ν̃ψ = νψ + T − 1, (49)

S̃ψ = Sψ +
T−1∑
t=1

{
ht+1−µ−Φ(ht−µ)−ΛR

−1/2
t V

−1/2
t (yt−mt)

}
{
ht+1−µ−Φ(ht−µ)−ΛR

−1/2
t V

−1/2
t (yt−mt)

}′
. (50)

Thus we propose a candidateΨ† from IW(ν̃ψ, S̃ψ), and accept it with probability min{1,m(Ψ†)/m(Ψ)}.

5 Illustrative example using simulated data

In this section, we give illustrative examples for our proposed multivariate stochastic volatility

models with leverage effect using simulated data where we use the spectral decomposition to

compute R
−1/2
t . The number of observations is set T = 2000 and the dimension of the daily

returns is p = 9, which is the same as in empirical studies. The parsimonious specification is

used such that Λ = [λ,0, . . . ,0] with q = 1. We set true values of parameters as

µ = 0.5× 1p, ξ = 0.1× 1p, δ = 0.1× 1p(p−1)/2, λ = −0.1× 1p,

ϕ = 0.9× 1p, σu = 0.1× 1p, σv = 0.3× 1p(p−1)/2,

σζ = 0.005× 1p(p−1)/2, σm = 0.05× 1p, Ψ = 0.1× Ip,
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where σu = (σu,1, . . . , σu,p)
′, σv = (σv,21, . . . , σv,p p−1)

′, σm = (σm,1, . . . , σm,p)
′ and σζ =

(σζ,21, . . . , σζ,p p−1)
′. The prior distributions are assumed to be vague and flat to reflect the

fact that we have little information with regard to the parameters, and are given by

µi ∼ N(0, 104), ξi ∼ N(0, 104), δij ∼ N(0, 104), λi ∼ N(0, 104)

1 + ϕi
2

∼ Beta(1, 1), σ2u,i ∼ IG(10−5/2, 10−5/2), σ2v,ij ∼ IG(10−5/2, 10−5/2),

σ2ζ,ij ∼ IG(10−6/2, 10−6/2), σ2m,i ∼ IG(10−6/2, 10−6/2), Ψ ∼ IW(10, I9),

for i = 1, . . . , p, j = 1, . . . , i− 1.

The number of iteration for MCMC is 12000, and the first 2000 samples are discarded

as burn-in samples. Table 1 shows posterior means, 95% credible intervals and inefficiency

factors (IF)1 for µ, ξ, ϕ, σu, σm and λ. The posterior means are close to their corresponding

true values in the sense that almost all of them are included in 95% credible intervals. Also

the inefficiency factors are not very high and our sampling algorithms worked well. Similar

results are obtained for δ, σv, σζ and Ψ as shown in Tables 2 and 3. The inefficiency factors

for µ, ξ, ϕ, σu, σm and λ are at most 135, which are much smaller than those for other

multivariate stochastic volatility models.

Figure 1 shows the time series plot of 95% credible intervals and true values for h1t, . . . , h9t.

The credible intervals indicate that we succeed to capture the dynamics of hjt’s. Similarly,

we also show the time series plot of 95% credible intervals and true values for the selected

ρij,t’s in Figure 2. The transitions of ρij,t’s are covered by the credible intervals successfully

throughout the sample period.

1The inefficiency factor is defined as 1 + 2
∑∞
g=1 ρ(g), where ρ(g) is the sample autocorrelation at lag g.

This is interpreted as the ratio of the numerical variance of the posterior mean from the chain to the variance

of the posterior mean from hypothetical uncorrelated draws. The smaller the inefficiency factor becomes, the

closer the MCMC sampling is to the uncorrelated sampling.
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Table 1: Simulated data. Posterior means, 95% credible intervals and inefficiency

factors for µ, ξ, ϕ, σu, σm and λ. Spectral decomposition is used to compute R
−1/2
t .

Par. True Mean 95% interval IF Par. True Mean 95% interval IF

µ1 0.5 0.584 [0.428,0.737] 16 σu,1 0.1 0.102 [0.072,0.134] 98

µ2 0.5 0.626 [0.482,0.771] 13 σu,2 0.1 0.082 [0.035,0.115] 120

µ3 0.5 0.549 [0.387,0.711] 21 σu,3 0.1 0.071 [0.031,0.105] 130

µ4 0.5 0.605 [0.460,0.751] 22 σu,4 0.1 0.107 [0.076,0.132] 95

µ5 0.5 0.332 [0.192,0.478] 24 σu,5 0.1 0.105 [0.081,0.127] 81

µ6 0.5 0.386 [0.250,0.519] 36 σu,6 0.1 0.058 [0.030,0.084] 123

µ7 0.5 0.516 [0.339,0.692] 15 σu,7 0.1 0.092 [0.066,0.122] 100

µ8 0.5 0.385 [0.237,0.540] 23 σu,8 0.1 0.074 [0.024,0.110] 127

µ9 0.5 0.432 [0.276,0.587] 19 σu,9 0.1 0.092 [0.055,0.122] 117

ξ1 0.1 0.069 [ 0.017,0.127] 112 σm,1 × 10 0.5 0.487 [0.380,0.636] 76

ξ2 0.1 0.053 [-0.002,0.094] 115 σm,2 × 10 0.5 0.440 [0.307,0.584] 89

ξ3 0.1 0.069 [ 0.007,0.115] 128 σm,3 × 10 0.5 0.461 [0.355,0.605] 81

ξ4 0.1 0.046 [-0.016,0.102] 120 σm,4 × 10 0.5 0.503 [0.370,0.652] 82

ξ5 0.1 0.162 [ 0.097,0.227] 120 σm,5 × 10 0.5 0.516 [0.401,0.677] 84

ξ6 0.1 0.125 [ 0.074,0.192] 135 σm,6 × 10 0.5 0.417 [0.299,0.565] 96

ξ7 0.1 0.072 [ 0.011,0.126] 119 σm,7 × 10 0.5 0.472 [0.339,0.619] 87

ξ8 0.1 0.039 [-0.032,0.094] 126 σm,8 × 10 0.5 0.497 [0.357,0.669] 96

ξ9 0.1 0.109 [ 0.056,0.174] 122 σm,9 × 10 0.5 0.457 [0.354,0.594] 78

ϕ1 0.9 0.897 [0.876,0.918] 17 λ1 −0.1 −0.095 [-0.111,-0.080] 2

ϕ2 0.9 0.891 [0.870,0.912] 21 λ2 −0.1 −0.095 [-0.110,-0.080] 2

ϕ3 0.9 0.903 [0.883,0.922] 21 λ3 −0.1 −0.109 [-0.124,-0.095] 2

ϕ4 0.9 0.895 [0.876,0.914] 14 λ4 −0.1 −0.104 [-0.119,-0.089] 2

ϕ5 0.9 0.896 [0.876,0.915] 12 λ5 −0.1 −0.107 [-0.122,-0.093] 4

ϕ6 0.9 0.873 [0.852,0.895] 8 λ6 −0.1 −0.099 [-0.113,-0.084] 2

ϕ7 0.9 0.911 [0.893,0.929] 12 λ7 −0.1 −0.010 [-0.115,-0.085] 2

ϕ8 0.9 0.891 [0.870,0.911] 19 λ8 −0.1 −0.099 [-0.114,-0.084] 2

ϕ9 0.9 0.897 [0.876,0.918] 18 λ9 −0.1 −0.095 [-0.110,-0.080] 3
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Table 2: Simulated data. Posterior means for δ and σv.

True values: δ = 0.1× 136, σv = 0.3× 136.

δij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

i = 2 0.084

i = 3 0.086 0.097

i = 4 0.082 0.097 0.087

i = 5 0.101 0.095 0.111 0.103

i = 6 0.104 0.093 0.090 0.110 0.097

i = 7 0.089 0.090 0.112 0.109 0.111 0.106

i = 8 0.087 0.091 0.101 0.097 0.099 0.010 0.105

i = 9 0.111 0.098 0.112 0.077 0.090 0.113 0.125 0.102

σv,ij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

i = 2 0.294

i = 3 0.301 0.300

i = 4 0.295 0.294 0.293

i = 5 0.297 0.296 0.294 0.302

i = 6 0.300 0.304 0.298 0.298 0.299

i = 7 0.304 0.304 0.304 0.301 0.295 0.300

i = 8 0.299 0.288 0.307 0.309 0.299 0.303 0.303

i = 9 0.300 0.301 0.308 0.301 0.307 0.301 0.307 0.297

*Red figures indicate that 95% credible interval includes true value.
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Table 3: Simulated data. Posterior means for σζ and Ψ.

True value: σζ ×102 = 0.5× 136, Ψ = 0.1× I9.

σζ,ij × 102 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

i = 2 0.611

i = 3 0.593 0.422

i = 4 0.616 0.589 0.643

i = 5 0.323 0.488 0.536 0.422

i = 6 0.511 0.520 0.539 0.391 0.512

i = 7 0.459 0.490 0.679 0.310 0.526 0.497

i = 8 0.641 0.667 0.387 0.687 0.404 0.485 0.589

i = 9 0.285 0.410 0.497 0.629 0.417 0.465 0.598 0.417

ψij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9

i = 1 0.107

i = 2 0.005 0.106

i = 3 0.006 0.002 0.102

i = 4 0.000 0.004 0.001 0.098

i = 5 0.001 -0.002 -0.003 0.002 0.090

i = 6 -0.006 0.005 0.001 -0.001 -0.002 0.106

i = 7 0.000 -0.003 -0.002 0.002 -0.002 0.000 0.109

i = 8 0.002 0.001 0.005 0.002 0.001 -0.002 0.002 0.111

i = 9 0.000 0.003 -0.003 0.004 0.001 0.000 0.003 0.003 0.106

*Red figures indicate that 95% credible interval includes true value.
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Figure 1: Time series plot of 95% credible intervals (blue) and true values (red) for

h1t, . . . , h9t.
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Figure 2: Time series plot of 95% credible intervals (blue) and true values (red) for

ρ21,t, . . . , ρ62,t
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6 Application to U.S. stock returns

This section applies our proposed model to daily returns of nine U.S. stocks (p = 9) with

realized volatilities and pairwise realized correlations. The nine series of stock returns are

JP Morgan (JPM), International Business Machine (IBM), Microsoft (MSFT), Exxon Mobil

(XOM), Alcoa (AA), American Express (AXP), Du Pont (DD), General Electric (GE), and

Coca Cola (KO). The sample period is from February 1, 2001 to December 31, 2009, and

the number of observation is T = 2242. The daily returns for the i-th stocks are defined as

yit = 100× (log pit − log pi,t−1), where pit is the closing price of the i-th asset at time t.

Time series plots of yit’s are shown in Figure 3, where there is a very high volatility period

in 2008 (the financial crisis when Lehman Brothers filed for Chapter 11 bankruptcy protec-

tion). Also, there are other relatively high volatility periods in 2001 (the dot-com bubble and

the September 11 attacks) and in 2002 (the market turmoil during which Worldcom filed for

Chapter 11 bankruptcy protection).

The realized volatilities and pairwise realized correlations are computed from the realized

covariance matrices for these assets which can be downloaded from Oxford Man Institute

website (see, Noureldin et al. (2012)). We assume the same prior distributions as in Section

5 except assuming

σ2ζ,ij ∼ IG(10−5/2, 10−5/2),

for i = 1, . . . , p, j = 1, . . . , i− 1. These prior distributions are still found to be vague enough

to reflect the fact we have little prior information regarding these parameters as we shall see

in the estimation results. The proposed model is estimated where we use the parsimonious

specification of the leverage effect with the number of factors q = 1.

6.1 Estimation results

We run 12,000 MCMC iterations and the first 2,000 iterations are discarded as the burn-in

period. Table 4 shows the posterior means, 95% credible intervals and inefficiency factors

for µ, ξ,ϕ,σu,σm and λ. The inefficiency factors are relatively small (less than 130 ) in the

multivariate stochastic volatility models and our algorithm works well. The posterior means

and posterior standard deviations for δ, σv, σζ and Ψ are shown in Tables 5, 6, 7 and 8.
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Figure 3: Time series plots of nine US stock (close-to-close) returns.

Mean processes and volatilities. The posterior means of σm,i’s are around 0.067 ∼ 0.098,

which indicates the magnitude of the mean process, mt, is much smaller than that of the

stochastic volatility component, V
1/2
t ϵt, as we expected. The unconditional means of log

volatilities, µi’s, are estimated to be from 0.203 to 1.582 where the posterior mean of µ5

(corresponding to Alcoa) is much larger than those of others. The stock returns of Alcoa are

found to be the most volatile among others, while those of Coca Cola are the least volatile.

Since all posterior means of autoregressive coefficients, ϕi’s, are around 0.9, log volatilities are

found to have high persistence. The elements of Ψ (the conditional covariance matrix of ht+1

given yt) are all around 0.1 and the probability that ψij is positive are greater than 0.975 for

all i, j. The log volatilities, hi,t+1’s, are positively correlated with each other given yt. Figure

4 shows 95% credible intervals for hit with xit−ξi where ξi is the estimated posterior mean of
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the i-th bias correction term. The estimated 95 % credible intervals have smaller fluctuation

than that of bias-adjusted realized measures. These estimates succeeded to extract the mean

trends of volatilities and adjust the measurement errors automatically. Overall, 95% credible

intervals captures the traceplot of the (bias-corrected) realized volatilities, suggesting that

our proposed model is successful to describe the dynamics of latent log volatilities.

Dynamic correlations. The posterior means of the standard deviations of the disturbance

terms in the state equations corresponding to the dynamic correlations, σζ,ij ’s, are shown in

Table 7. They are 0.039 ∼ 0.071 and much smaller than those posterior means of the standard

deviations for the measurement errors of the realized measures, σu,i’s and σv,ij ’s (shown in

Tables 4 and 6) which are found to be similar for all i, j around 0.30. Figure 5 shows time

series plots of 95% credible intervals of the selected dynamic correlations, ρ21,t, . . . , ρ62,t with

{exp(x21,t− δ21)− 1}/{exp(x21,t− δ21) + 1}, . . . , {exp(x62,t− δ62)− 1}/{exp(x62,t− δ62) + 1}

where δij is the estimated posterior mean. Again, the estimated 95% credible intervals of

ρij,t have much smaller fluctuation than that of bias-adjusted realized measures, {exp(xij,t−

δij)− 1}/{exp(xij,t − δij) + 1}. These intervals seem to extract the mean trends of the bias-

adjusted realized measures which has relatively large noises in the measurement equation.

The correlations between asset returns are found to be time-varying in the sample period,

and they seem to increase after the financial crisis in 2008. This result corresponds to our

intuition that each asset return has a larger positive correlation with others when the market

faces the stress than in an usual period.

Biases in realized volatilities and correlations. The bias correction terms, ξi’s, of the realized

volatilities are estimated to be negative, indicating that the realized volatilities have down-

ward biases and underestimate the volatilities by ignoring the overnight non-trading hours.

Since the realized volatilities tend to overestimate the volatilities due to the microstructure

noises, the effect of non-trading hours seems to dominate in the direction of the biases. We

also note that the magnitude of the bias depends on the series of stock returns. Table 5 shows

the estimation result of the bias term δ of correlation coefficients. All δij ’s are estimated

to be negative, and the posterior probability that δij is negative is greater than 0.975. This

implies that the realized correlations underestimate the latent correlations, suggesting the

existence of Epps effect.
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Table 4: Stock returns data. Posterior means, 95% credible intervals and inefficiency

factors for µ, ξ, ϕ, σu, σm and λ. Spectral decomposition is used to compute R
−1/2
t .

Par. Mean 95% interval IF Par. Mean 95% interval IF

µ1 1.221 [1.020,1.430] 8 σu,1 0.285 [0.270,0.300] 40

µ2 0.644 [0.495,0.794] 16 σu,2 0.286 [0.271,0.303] 57

µ3 0.914 [0.759,1.070] 9 σu,3 0.291 [0.278,0.304] 14

µ4 0.684 [0.541,0.827] 11 σu,4 0.274 [0.261,0.287] 20

µ5 1.582 [1.430,1.730] 8 σu,5 0.318 [0.304,0.332] 17

µ6 1.136 [0.918,1.360] 9 σu,6 0.307 [0.293,0.321] 20

µ7 0.873 [0.726,1.020] 12 σu,7 0.291 [0.278,0.304] 20

µ8 0.861 [0.670,1.050] 10 σu,8 0.303 [0.289,0.317] 18

µ9 0.203 [0.055,0.352] 15 σu,9 0.294 [0.281,0.308] 18

ξ1 −0.520 [-0.582,-0.470] 102 σm,1 0.087 [0.067,0.108] 118

ξ2 −0.554 [-0.610,-0.495] 101 σm,2 0.070 [0.053,0.089] 126

ξ3 −0.549 [-0.594,-0.501] 90 σm,3 0.076 [0.053,0.106] 129

ξ4 −0.442 [-0.487,-0.394] 88 σm,4 0.087 [0.067,0.106] 117

ξ5 −0.537 [-0.582,-0.494] 78 σm,5 0.098 [0.073,0.135] 129

ξ6 −0.586 [-0.651,-0.533] 109 σm,6 0.088 [0.071,0.118] 119

ξ7 −0.428 [-0.480,-0.376] 102 σm,7 0.087 [0.063,0.111] 123

ξ8 −0.535 [-0.589,-0.474] 100 σm,8 0.078 [0.060,0.108] 125

ξ9 −0.322 [-0.376,-0.263] 93 σm,9 0.067 [0.048,0.088] 124

ϕ1 0.914 [0.904,0.924] 19 λ1 −0.0626 [-0.0852,-0.0403] 7

ϕ2 0.888 [0.874,0.901] 22 λ2 −0.0541 [-0.0757,-0.0330] 7

ϕ3 0.900 [0.887,0.913] 19 λ3 −0.0430 [-0.0638,-0.0216] 7

ϕ4 0.890 [0.876,0.904] 21 λ4 −0.0518 [-0.0722,-0.0311] 6

ϕ5 0.907 [0.895,0.920] 20 λ5 −0.0424 [-0.0625,-0.0219] 7

ϕ6 0.926 [0.916,0.935] 25 λ6 −0.0518 [-0.0735,-0.0303] 6

ϕ7 0.899 [0.886,0.911] 22 λ7 −0.0536 [-0.0736,-0.0331] 9

ϕ8 0.908 [0.897,0.920] 21 λ8 −0.0538 [-0.0767,-0.0308] 8

ϕ9 0.903 [0.889,0.916] 21 λ9 −0.0436 [-0.0637,-0.0235] 10
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Table 5: Stock returns data. Posterior means (posterior standard deviations) of δ.

δij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

i = 2 -0.313

(0.029)

i = 3 -0.265

(0.031)

-0.333

(0.053)

i = 4 -0.301

(0.048)

-0.180

(0.035)

-0.149

(0.065)

i = 5 -0.410

(0.065)

-0.227

(0.027)

-0.246

(0.038)

-0.287

(0.043)

i = 6 -0.629

(0.040)

-0.265

(0.032)

-0.295

(0.048)

-0.353

(0.045)

-0.391

(0.036)

i = 7 -0.472

(0.047)

-0.276

(0.029)

-0.219

(0.030)

-0.312

(0.025)

-0.532

(0.035)

-0.477

(0.032)

i = 8 -0.526

(0.053)

-0.370

(0.041)

-0.319

(0.065)

-0.340

(0.037)

-0.440

(0.029)

-0.563

(0.048)

-0.478

(0.033)

i = 9 -0.194

(0.043)

-0.081

(0.033)

-0.098

(0.026)

-0.249

(0.050)

-0.150

(0.029)

-0.246

(0.030)

-0.158

(0.026)

-0.172

(0.057)

*Bold figures indicate that the 95% credible interval does not include zero.

Table 6: Stock returns data. Posterior means (posterior standard deviations) of σv.

σv,ij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

i = 2 0.329

(0.006)

i = 3 0.325

(0.005)

0.325

(0.005)

i = 4 0.329

(0.005)

0.329

(0.006)

0.310

(0.005)

i = 5 0.329

(0.005)

0.322

(0.005)

0.314

(0.005)

0.328

(0.005)

i = 6 0.350

(0.006)

0.331

(0.006)

0.315

(0.005)

0.319

(0.006)

0.332

(0.006)

i = 7 0.338

(0.006)

0.338

(0.006)

0.319

(0.005)

0.334

(0.006)

0.344

(0.006)

0.338

(0.006)

i = 8 0.334

(0.006)

0.320

(0.006)

0.304

(0.005)

0.322

(0.006)

0.317

(0.005)

0.332

(0.006)

0.326

(0.005)

i = 9 0.314

(0.005)

0.329

(0.006)

0.307

(0.005)

0.317

(0.006)

0.320

(0.005)

0.321

(0.005)

0.337

(0.006)

0.328

(0.006)
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Table 7: Stock returns data. Posterior means (posterior standard deviations) of σζ .

σζ,ij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

i = 2 0.047

(0.005)

i = 3 0.039

(0.004)

0.043

(0.004)

i = 4 0.061

(0.004)

0.062

(0.006)

0.061

(0.005)

i = 5 0.047

(0.004)

0.044

(0.004)

0.042

(0.004)

0.047

(0.004)

i = 6 0.058

(0.005)

0.046

(0.005)

0.044

(0.005)

0.069

(0.006)

0.047

(0.004)

i = 7 0.041

(0.004)

0.044

(0.005)

0.041

(0.005)

0.061

(0.005)

0.053

(0.005)

0.049

(0.005)

i = 8 0.048

(0.005)

0.052

(0.005)

0.055

(0.005)

0.071

(0.005)

0.049

(0.004)

0.054

(0.006)

0.049

(0.005)

i = 9 0.049

(0.005)

0.042

(0.005)

0.040

(0.004)

0.064

(0.006)

0.043

(0.004)

0.045

(0.005)

0.044

(0.005)

0.048

(0.004)

Table 8: Stock returns data. Posterior means (posterior standard deviations) of Ψ.

ψij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9

i = 1 0.165

(0.011)

i = 2 0.129

(0.009)

0.142

(0.009)

i = 3 0.119

(0.008)

0.114

(0.007)

0.127

(0.009)

i = 4 0.111

(0.008)

0.105

(0.007)

0.097

(0.007)

0.124

(0.008)

i = 5 0.104

(0.007)

0.088

(0.006)

0.082

(0.006)

0.089

(0.006)

0.103

(0.008)

i = 6 0.137

(0.009)

0.112

(0.008)

0.105

(0.008)

0.102

(0.007)

0.094

(0.007)

0.142

(0.010)

i = 7 0.116

(0.008)

0.102

(0.007)

0.097

(0.007)

0.101

(0.007)

0.089

(0.006)

0.108

(0.007)

0.115

(0.008)

i = 8 0.141

(0.009)

0.124

(0.008)

0.116

(0.008)

0.109

(0.008)

0.100

(0.007)

0.128

(0.009)

0.113

(0.008)

0.157

(0.011)

i = 9 0.101

(0.007)

0.095

(0.007)

0.087

(0.006)

0.086

(0.006)

0.069

(0.005)

0.091

(0.006)

0.087

(0.006)

0.099

(0.007)

0.103

(0.007)

*Bold figures indicate that the 95% credible interval does not include zero.
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Figure 4: Stock returns data. Time series plots of 95% credible intervals (blue) of hit, and

xit − ξi (red) where ξi is the estimated posterior mean for i = 1, . . . , 9.
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Figure 5: Time series plots of 95% credible intervals (blue) of ρ21,t, . . . , ρ62,t and {exp(x21,t−

δ21)− 1}/{exp(x21,t − δ21) + 1}, . . . , {exp(x62,t − δ62)− 1}/{exp(x62,t − δ62) + 1} where δij is

the estimated posterior mean.
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Leverage effect and the selection of the number of factors q. The parameters for leverage

effect, λi’s, are estimated to be negative in Table 4 and the posterior probability that λi

is negative is greater than 0.975 for all i. This implies the existence of the leverage effect.

Table 9 also shows the estimation results for the correlation between the first element of

zt = V
−1/2
t R

−1/2
t yt and hi,t+1, i.e., ρ

∗
i = Corr(z1t, hi,t+1) = λii/

√
λ2ii + ψii for i = 1, . . . , 9.

The posterior means of ρ∗i ’s are estimated to be negative, from −0.22 to −0.15. If we regard

z1t as the market factor, the increase in the log volatility (hi,t+1) is followed by the decrease

in the market return (z1t), which implies the existence of the leverage effect.

To investigate whether the number of factors is q = 1, we also fit the proposed model

with q = 2 where we set Λ = [λ1,λ2,0, . . . ,0] for the leverage effect. Table 10 shows the

posterior means, 95% credible intervals and inefficiency factors for ρ∗1i = Corr(z1t, hi,t+1) and

ρ∗2i = Corr(z2t, hi,t+1) for i = 1, . . . , 9 where zt = R
−1/2
t V

−1/2
t (yt − mt). The estimation

results for ρ∗1i’s are almost the same as those for ρ∗i ’s in Table 9. On the other hand, the

posterior means of ρ∗2i’s are close to zeros, and 95% credible intervals include zero. This

suggests that one factor (q = 1) is enough to describe the leverage effect for our dataset.

Cholesky and spectral decompositions to compute R
−1/2
t . We also estimated our proposed

models with q = 1 and 2 using Cholesky decomposition instead of the spectral decomposition.

The estimation results using Cholesky decomposition are very similar to those using the

spectral decomposition (and hence omitted) except for the parameters of the leverage effect.

Table 11 shows the estimation results for the correlation, ρ∗i , with q = 1. All posterior means

are estimated to be negative and the posterior probability that ρ∗i is negative is greater than

0.975 for all i. However, we note that the absolute values of ρ∗i are smaller than those in

the model using the spectral decomposition. Table 12 shows the estimation results for the

correlations, ρ∗1i and ρ
∗
2i, with q = 2. The estimation results for ρ∗1i’s are similar to those for

ρ∗i ’s in Table 11, but all posterior means of ρ∗2i are estimated to be negative, and the posterior

probability that ρ∗2i is negative is greater than 0.975 for i = 2, 3, 7. This implies that we need

to include more factors when we use Cholesky decomposition. Since the number of factors q

depends on the order of the asset return, we have to find the order which minimizes q for the

parsimonious specification. On the other hand, the spectral decomposition does not depend

on the order of the asset returns and it is much faster to find a parsimonious specification.

We will compare these models using different decompositions in portfolio performances.
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Table 9: Stock returns data. Posterior means, 95% credible intervals and inefficiency

factors for ρ∗i = Corr(z1t, hi,t+1) where zt = R
−1/2
t V

−1/2
t (yt −mt) and q = 1.

Spectral decomposition is used.

Par. Mean 95% interval IF

ρ∗1 −0.199 [-0.306,-0.113] 8

ρ∗2 −0.187 [-0.302,-0.100] 8

ρ∗3 −0.153 [-0.261,-0.067] 7

ρ∗4 −0.199 [-0.327,-0.101] 7

ρ∗5 −0.179 [-0.322,-0.076] 8

ρ∗6 −0.177 [-0.288,-0.089] 8

ρ∗7 −0.224 [-0.374,-0.114] 10

ρ∗8 −0.171 [-0.278,-0.087] 8

ρ∗9 −0.187 [-0.334,-0.083] 11

Table 10: Stock returns data. Posterior means, 95% credible intervals and inefficiency

factors for ρ∗1i = Corr(z1t, hi,t+1) and ρ
∗
2i = Corr(z2t, hi,t+1) where q = 2.

Spectral decomposition is used.

Par. Mean 95% interval IF Par. Mean 95% interval IF

ρ∗11 −0.195 [-0.305,-0.107] 6 ρ∗21 −0.009 [-0.103,0.071] 35

ρ∗12 −0.183 [-0.305,-0.091] 10 ρ∗22 0.016 [-0.084,0.096] 41

ρ∗13 −0.147 [-0.254,-0.063] 8 ρ∗23 −0.001 [-0.141,0.106] 64

ρ∗14 −0.199 [-0.334,-0.097] 6 ρ∗24 0.037 [-0.054,0.116] 41

ρ∗15 −0.187 [-0.343,-0.080] 11 ρ∗25 0.025 [-0.096,0.114] 51

ρ∗16 −0.166 [-0.276,-0.079] 7 ρ∗26 −0.013 [-0.109,0.070] 31

ρ∗17 −0.225 [-0.400,-0.111] 8 ρ∗27 −0.012 [-0.125,0.081] 45

ρ∗18 −0.173 [-0.284,-0.084] 8 ρ∗28 0.021 [-0.079,0.099] 39

ρ∗19 −0.183 [-0.337,-0.075] 13 ρ∗29 0.054 [-0.066,0.143] 55
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Table 11: Stock returns data. Posterior means, 95% credible intervals and inefficiency

factors for ρ∗i = Corr(z1t, hi,t+1) where zt = R
−1/2
t V

−1/2
t (yt −mt) and q = 1.

Cholesky decomposition is used.

Par. Mean 95% interval IF

ρ∗1 −0.170 [-0.266,-0.092] 7

ρ∗2 −0.118 [-0.199,-0.049] 4

ρ∗3 −0.091 [-0.174,-0.021] 8

ρ∗4 −0.118 [-0.206,-0.045] 7

ρ∗5 −0.123 [-0.239,-0.044] 7

ρ∗6 −0.119 [-0.205,-0.048] 7

ρ∗7 −0.141 [-0.244,-0.061] 9

ρ∗8 −0.144 [-0.237,-0.067] 10

ρ∗9 −0.148 [-0.271,-0.058] 8

Table 12: Stock returns data. Posterior means, 95% credible intervals and inefficiency

factors for ρ∗1i = Corr(z1t, hi,t+1) and ρ
∗
2i = Corr(z2t, hi,t+1) where q = 2.

Cholesky decomposition is used.

Par. Mean 95% interval IF Par. Mean 95% interval IF

ρ∗11 -0.168 [-0.271,-0.087] 7 ρ∗21 -0.029 [-0.089, 0.024] 5

ρ∗12 -0.132 [-0.230,-0.056] 6 ρ∗22 -0.113 [-0.200,-0.043] 7

ρ∗13 -0.100 [-0.189,-0.029] 7 ρ∗23 -0.073 [-0.147,-0.009] 6

ρ∗14 -0.120 [-0.212,-0.046] 4 ρ∗24 -0.019 [-0.080, 0.036] 7

ρ∗15 -0.128 [-0.240,-0.045] 9 ρ∗25 -0.044 [-0.117, 0.018] 8

ρ∗16 -0.125 [-0.215,-0.051] 8 ρ∗26 -0.028 [-0.093, 0.029] 5

ρ∗17 -0.149 [-0.262,-0.064] 7 ρ∗27 -0.081 [-0.160,-0.016] 8

ρ∗18 -0.145 [-0.239,-0.066] 6 ρ∗28 -0.011 [-0.071, 0.042] 5

ρ∗19 -0.151 [-0.269,-0.058] 10 ρ∗29 -0.003 [-0.069, 0.052] 7
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6.2 Comparison of portfolio performances

To compare the performance of forecasts among our proposed models and other existing mod-

els, we consider three portfolio strategies: (1) minimum-variance strategy (2) mean-variance

strategy (3) maximum-expected return strategy (see Han (2006)). Denote the conditional

mean and the conditional covariance matrix of the stock return yt+1 given the information

set F t at time t by

mt+1|t ≡ E[yt+1 | F t] = mt,

Σt+1|t ≡ Var[yt+1 | F t] = V
1/2
t+1Rt+1V

1/2
t+1+Σm .

Let rp,t+1 denote the portfolio return at time t + 1. Further, denote the conditional mean

and conditional variance of rp,t+1 given the information set F t at time t by

µp,t+1 ≡ E[w′
t yt+1+(1−w′

t 1p)rf | F t] = w′
tmt+1|t+(1−w′

t 1p)rf ,

σ2p,t+1 ≡ Var[w′
t yt+1+(1−w′

t 1p)rf | F t] = w′
tΣt+1|twt,

where rf is the risk free asset return, and wt is a portfolio weight vector for the stock return

yt+1. The weight wt is optimized depending on the portfolio strategies as follows.

Minimum-variance strategy

In this strategy, we minimize the conditional variance σ2p,t+1 for the target level µ∗p

of conditional expected return µp,t+1. The solution is given by

ŵt = Σ−1
t+1|t(mt+1|t−rf 1p)

µ∗p − rf

κt
,

where

κt = (mt+1|t−rf 1p)′Σ−1
t+1|t(mt+1|t−rf 1p).

Mean-variance strategy

This strategy solves the following utility maximization problem:

max
wt

{
µp,t+1 −

γ

2
σ2p,t+1

}
,

where γ is the coefficient of absolute risk aversion. The solution is given by

ŵt =
1

γ
Σ−1
t+1|t(mt+1|t−rf 1p).
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Maximum expected return strategy

We maximize the conditional expected return µp,t+1 given the target conditional

variance σ2p,t+1 = σ2∗p . The solution is given by

ŵt = Σ−1
t+1|t(mt+1|t−rf 1p)

√
σ2∗p
κt
.

We compare the portfolio performances based on the rolling forecast:

Step 1. First, we estimate parameters using the first 1742 observations from February 1,

2001 to January 8, 2008 and forecast the mean, the volatility and the correlation of the

multiple stock returns for January 9, 2008. Use them to obtain the optimal weights of

the assets for the above portfolio strategies where the federal funds rate is used for the

risk free asset return rf .

Step 2. Next, we drop the first observation (February 1, 2001) from the sample period and

add the new observation (January 9, 2008). The new sample period is from February 2,

2001 to January 9, 2008. We estimate parameters using these observations and forecast

the mean, the volatility and the correlation for January 10, 2008. Use them to obtain

the optimal weights in a similar manner.

Step 3. We iterate these rolling forecasts until December 31, 2009 to obtain the 500 one-day

ahead forecasts and corresponding weights.

To compute the optimal weight ŵt, we also need the estimates of mt+1|t and Σt+1|t. Let

N denote the number of MCMC iterations, and (θ(i), {h(i)
t }Tt=1, {R

(i)
t }Tt=1, {m

(i)
t }Tt=1) denote

the i-th MCMC sample (i = 1, . . . , N). Using m
(i)
t+1|t,V

(i)
t+1|t,R

(i)
t+1|t,Σ

(i)
m , we estimate mt+1|t

and Σt+1|t by

m̂t+1|t =
1

N

N∑
i=1

m
(i)
t+1|t,

Σ̂t+1|t =
1

N

N∑
i=1

Σ
(i)
t+1|t =

1

N

N∑
i=1

(
V

(i)1/2
t+1|t R

(i)
t+1|tV

(i)1/2
t+1|t +Σ(i)

m

)
.

In our empirical study, we set N = 1500 where we discard 500 samples as burn-in period for

each MCMC rolling estimation (Steps 2 and 3)2. We compare the five multivariate stochastic
2The number of samples being discarded as burn-in period is sufficient after we obtain MCMC posterior

samples from the previous sample period since we use the posterior means of parameters and latent variables

for the initial values of the next MCMC runs.
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volatility models as follows.

1. MSV model: Basic multivariate stochastic volatility model without leverage, realized

variances and correlations.

2. MRSV model: Multivariate stochastic volatility model without leverage and with real-

ized variances and pairwise realized correlations.

3. MRSV-L1-C model : Multivariate stochastic volatility model with leverage, realized

variances and pairwise realized correlations. The parsimonious specification is assumed

to model the leverage effect, Λ = [λ1,0, . . . ,0] with q = 1. Cholesky decomposition is

used to compute R
−1/2
t .

4. MRSV-L2-C model : Multivariate stochastic volatility model with leverage, realized

variances and pairwise realized correlations. The parsimonious specification is assumed

to model the leverage effect, Λ = [λ1,λ2,0, . . . ,0] with q = 2. Cholesky decomposition

is used to compute R
−1/2
t .

5. MRSV-L1-S model : Multivariate stochastic volatility model with leverage, realized

variances and pairwise realized correlations. The parsimonious specification is assumed

to model the leverage effect, Λ = [λ1,0, . . . ,0] with q = 1. The spectral decomposition

is used to compute R
−1/2
t .

Cumulative realized objective functions. Table 13 shows the cumulative values of the realized

objective functions for five multivariate SV models under three portfolio strategies. Under

the minimum-variance strategy and the maximum-return strategy, the MRSV-L1-S model

outperforms other models. Among MRSV models, the models with leverage outperform

the models without leverage, indicating the existence of the leverage effect. MRSV-L2-

C model outperforms MRSV-L1-C model, but its performance is not as good as that of

MRSV-L1-S model. We could improve the performance of the MRSV models using Cholesky

decomposition by changing the order of the assets or increasing the number of non-zero

columns of Λ, but it is more efficient to use the spectral decomposition to compute R
−1/2
t .

Under the mean-variance strategy, MSV model outperforms other competing models, but

this is because γ is relatively large (i.e., ŵt becomes very small) and most of the weights

are allocated to the risk free asset whose weight is 1 − ŵ′
t1p. The time series plots of the

cumulative realized objective functions of five models are also shown in Figure 6.
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Table 13: The cumulative values of realized objective functions.

Minimum-Variance Strategy

µ∗p = 0.004 µ∗p = 0.01 µ∗p = 0.1

MSV 1.454 8.598 1275

MRSV 0.733 4.556 637

MRSV-L1-C 0.346 2.110 295

MRSV-L2-C 0.333 2.057 288

MRSV-L1-S 0.316 1.914 268

Mean-Variance Strategy

γ = 6 γ = 10 γ = 15

MSV 0.730 1.001 1.137

MRSV 0.024 0.577 0.854

MRSV-L1-C −1.399 −0.277 0.285

MRSV-L2-C −1.134 −0.118 0.391

MRSV-L1-S −1.333 −0.237 0.311

Maximum-Return Strategy

σ2∗p = 0.001 σ2∗p = 0.01 σ2∗p = 0.1

MSV 0.663 −0.947 −6.039

MRSV 0.916 −0.146 −3.507

MRSV-L1-C 1.093 0.414 −1.735

MRSV-L2-C 1.192 0.726 −0.746

MRSV-L1-S 1.324 1.143 0.571

*Bold figures indicates the optimal values. For the maximum return strategy, the cumulative

realized returns are computed as
∑2241

t=1742{ω̂′
tyt+1 + (1− ω̂′

t1p)rf} where ω̂t is the vector of portfolio

weights estimated at time t.
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Figure 6: Time series plot of the cumulative realized objective functions of MSV (yellow),

MRSV (green), MRSV-L1-C (blue) , MRSV-L2-C (purple) and MRSV-L1-S (red).
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Figure 7: Time series plot of portfolio weights for minimum-variance strategy in MRSV-L1-S:

µ∗p = 0.004 (red), µ∗p = 0.01 (green) and µ∗p = 0.1 (blue).
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Figure 8: Time series plot of portfolio weights for mean-variance strategy in MRSV-L1-S:

γ = 6 (red), γ = 10 (green) and γ = 15 (blue).
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Figure 9: Time series plot of portfolio weights for maximum-return strategy in MRSV-L1-S:

σ∗2p = 0.001 (red), σ∗2p = 0.01 (green) and σ∗2p = 0.1 (blue).
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Time series plots of portfolio weights. Tables 7, 8 and 9 show the time series plots of portfolio

weights for three strategies in MRSV-L1-S. For the minimum-variance strategy, the weights

for Exxon Mobil (w4t) are overall largest throughout the forecasting period, but toward the

end of the period, the weights for IBM, Microsoft and Alcoa (w2t, w3t, w5t) tend to become

large. For the mean-variance strategy, we note that all weights (w1t − w9t) for the stock

returns are very small and most of the weights are allocated to the risk free asset. Finally,

for the maximum-return strategy, we found similar weight patterns to those for the minimum-

variance strategy.

7 Conclusion

The multivariate SV model with flexible dynamic correlation structures is proposed with

Markov chain Monte Carlo estimation method. Making full use of the realized variances and

realized pairwise correlations, we obtain the stable parameter estimates where the covariance

matrices are guaranteed to be positive definite. The spectral decomposition is used for the

correlation matrices to avoid the arbitrariness of the ordering of asset returns. The parsimo-

nious specification for the leverage effect is also proposed. Our models are applied to daily

returns of nine U.S. stocks with their realized volatilities and pairwise realized correlations,

and are shown to outperform the existing models with regard to portfolio optimizations under

minimum-variance and maximum-return strategies.
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Appendix

A MCMC algorithm

A.1 MRSV model without the leverage effect

A.1.1 Generation of ϕ

It can be shown that the conditional posterior probability density function of ϕ is

π(ϕ|·) ∝ k(ϕ)× exp

(
−1

2
(ϕ− µϕ)′Σ−1

ϕ
(ϕ− µϕ)

)
× I {|ϕi| < 1, i = 1, . . . , p} , (51)

where I(B) is an indicator function such that I(B) = 1 if B is true and 0 otherwise,

k(ϕ) = |Ω0|−1/2
p∏
i=1

(
1 + ϕi

2

)a−1(1− ϕi
2

)b−1

exp

(
−1

2
(h1 − µ)′Ω−1

0 (h1 − µ)

)
, (52)

µϕ = Σϕb, Σ−1

ϕ
= Ω−1 ⊙A, (53)

A =

T−1∑
t=1

(ht − µ)(ht−µ)′, b = diagonal

{
T−1∑
t=1

(ht − µ)(ht+1 − µ)′Ω−1

}
, (54)

⊙ is Hadamard product, and diagonal(B) denotes a column vector with diagonal elements

of B. We propose a candidate ϕ† ∼ TNR(µϕ,Σϕ), where R = {ϕ : |ϕi| < 1, i = 1, . . . , p},

and accept it with probability min{1, k(ϕ†)/k(ϕ)}.

A.1.2 Generation of µ, ξ, δ

The µ, ξ and δ are conditionally independent and we generate them from the following normal

distributions:

µ|· ∼ N(m̃µ, Ω̃µ), ξ|· ∼ N(m̃ξ, Σ̃ξ), δ|· ∼ N(m̃δ, Σ̃δ), (55)

where

m̃µ = Ω̃µ

[
s−2
µ mµ +Ω−1

0 h1+(Ip−Φ)Ω−1
T−1∑
t=1

(ht+1−Φht)

]
, (56)

Ω̃µ =
[
s−2
µ Ip+Ω−1

0 +(T − 1)(Ip−Φ)Ω−1(Ip−Φ)
]−1

, (57)

m̃ξ = Σ̃ξ

[
s−2
ξ mξ +Σ−1

u

T∑
t=1

(xt−ht)

]
, Σ̃ξ = (s−2

ξ Ip+T Σ−1
u )−1, (58)

m̃δ = Σ̃δ

[
s−2
δ mδ +Σ−1

v

T∑
t=1

(wt− gt)

]
, Σ̃δ = (s−2

δ Ip+T Σ−1
v )−1. (59)
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A.1.3 Generation of (σ2
u,σ

2
v,σ

2
ζ ,Σm)

The σ2u,i, σ
2
v,ij , σ

2
ζ,ij , σ

2
m,i are conditionally independent and we generate them from inverse

gamma distributions:

σ2u,i ∼ IG

(
ñui
2
,
d̃ui
2

)
, σ2v,ij ∼ IG

(
ñv,ij
2

,
d̃v,ij
2

)
, (60)

σ2ζ,ij ∼ IG

(
ñζ,ij
2
,
d̃ζ,ij
2

)
, σ2m,i ∼ IG

(
ñmi
2
,
d̃mi
2

)
, (61)

where

ñui = nu + T, d̃ui = du +

T∑
t=1

(xit − ξi − hit)
2, (62)

ñv,ij = nv + T, d̃v,ij = dv +

T∑
t=1

(wij,t − δij − gij,t)
2, (63)

ñζ,ij = nζ + T, d̃ζ,ij = dζ + κ−1g2ij,1 +
T−1∑
t=1

(gij,t+1 − gij,t)
2, (64)

ñmi = nm + T, d̃mi = dm + κ−1m2
i1 +

T−1∑
t=1

(mi,t+1 −mit)
2, (65)

for i, j = 1, . . . , p (i > j).

A.1.4 Generation of Ω

The conditional posterior probability density function of Ω is

π(Ω|h,µ,ϕ) ∝ m(Ω)× |Ω|−(ν̃+p+1)/2 exp

{
−1

2
tr
(
Ω−1S̃

)}
, (66)

where

m(Ω) = |Ω0 |−1/2 exp

(
−1

2
(h1−µ)′Ω−1

0 (h1−µ)

)
, ν̃ = ν + T − 1, (67)

S̃ = S +

T−1∑
t=1

{ht+1−(Ip−Φ)µ−Φht}{ht+1−(Ip−Φ)µ−Φht}′. (68)

We propose a candidateΩ† ∼ IW(ν̃, S̃), and accept it with probability min{1,m(Ω†)/m(Ω)}.

A.2 MRSV model with the leverage effect

We need to modify the sampling procedures of g,h,m,ϕ and µ for the model with the

leverage effect. Generations of other parameters are the same as in the previous section.

46



A.2.1 Generation of gt

We only need to modify (15) in Section 3.2.1 as follows.

r(gij,t) =− 1

2
log|Rt| −

1

2
(yt−mt)

′(V
1/2
t RtV

1/2
t )−1(yt−mt)

− 1

2
y′
tV

−1/2R
−1/2′

t Λ′Ψ−1ΛR
−1/2
t V

−1/2
t (yt−mt) + y′

tV
−1/2
t R

−1/2′

t Λ′Ψ−1 ηt,

(69)

for t = 1, . . . , T − 1 where ηt = ht+1 − µ−Φ(ht − µ).

A.2.2 Generation of ht

The conditional posterior probability density function of ht is given by

π(ht |·) ∝ exp

[
−1

2
(ht−mt∗)

′Ω−1
t∗ (ht−mt∗) + l(ht)

]
, (70)

where

l(ht)

=



−1
2(yt−mt)

′V−1/2R−1
t V

−1/2
t (yt−mt)− 1

2(yt−mt)
′V

−1/2
t R

−1/2′

t Λ′Ψ−1

×
{
ΛR

−1/2
t V

−1/2
t (yt−mt)− 2(ht+1−(I−Φ)µ−Φht)

}
,

t = 1, . . . , T − 1,

−1
2(yT −mT )

′V
−1/2
T R−1

T V
−1/2
T (yT −mT ), t = T,

(71)

and

mt∗ =



Ψ1∗
[
Ω−1

0 µ+ΦΨ−1 {h2−(Ip−Φ)µ}+Σ−1
u (x1− ξ)− 1

2 1p
]
, t = 1,

Ψt∗

[
Ψ−1

{
ΛR

−1/2
t−1 V

−1/2
t−1 (yt−1−mt−1) + (Ip−Φ)µ+Φht−1

}
+ΦΨ−1 {ht+1−(Ip−Φ)µ}+Σ−1

u (xt− ξ)− 1
2 1p

]
,

t = 2, . . . , T − 1,

ΨT∗

[
Ψ−1

{
ΛR

−1/2
T−1 V

−1/2
T−1 (yT−1−mT−1) + (Ip−Φ)µ+ΦhT−1

}
+Σ−1

u (xT − ξ)− 1
2 1p

]
, t = T,

(72)

Ψt∗ =


[
Ω−1

0 +ΦΨ−1Φ+Σ−1
u

]−1
, t = 1,[

Ψ−1+ΦΨ−1Φ+Σ−1
u

]−1
, t = 2, . . . , T − 1,[

Ψ−1+Σ−1
u

]−1
, t = T.

(73)

We generate a candidate h†
t from N(mt∗,Ωt∗), and accept it with probability min{1, exp(l(h†

t)−

l(ht))}.
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A.2.3 Generation of m

Noting that

E[yt |ht,ht+1,θ] = mt+V
1/2
t R

−1/2
t Λ′(Ψ+ΛΛ′)−1{ht+1 − µ−Φ(ht − µ)}, (74)

Var[yt |ht,ht+1,θ] = V
1/2
t RtV

−1/2
t −V

1/2
t R

−1/2
t Λ′(Ψ+ΛΛ′)−1ΛR

−1/2′
t V

1/2
t ≡ Γt, (75)

we define

ŷt = yt−ΛR
−1/2′
t V

1/2
t (Ψ+ΛΛ′)−1{ht+1 − µ−Φ(ht − µ)}, (76)

and consider the linear Gaussian state space model (28) and (29) with Γt in (75). We generate

m simultaneously using a simulation smoother.

A.2.4 Generation of ϕ

In Section A.1.1, we replace µϕ and Σϕ as follows.

µϕ = Σϕb, Σ−1

ϕ
= Ψ−1 ⊙A,

where

A =

T−1∑
t=1

(ht − µ)(ht−µ)′,

b = diagonal

[
T−1∑
t=1

(ht − µ)
{
ht+1 − µ−ΛR

−1/2
t V

−1/2
t (yt−mt)

}′
Ψ−1

]
.

A.2.5 Generation of µ

We generate µ|· ∼ N(m̃µ, Ψ̃µ), where

m̃µ = Ψ̃µ

[
s−2
µ mµ +Ω−1

0 h1+(I−Φ)Ψ−1
T−1∑
t=1

{
ht+1−Φht−ΛR

−1/2
t V

−1/2
t (yt−mt)

}]
Ψ̃µ =

[
s−2
µ I+Ω−1

0 +(T − 1)(I−Φ)Ψ−1(I−Φ)
]−1

.
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