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Abstract

The Anglo-Dutch auction of Klemperer (1998) is the unit-demand precursor of the many
two-stage hybrid auctions currently used for the allocation of high value goods such as
mobile telephony licenses, bus routes, and public procurement. This breadth of practi-
cal applications has been largely matched by an absence of theoretical results regarding
the performance of hybrid auctions relative to their simpler component counterparts: the
ascending and first-price auctions. To address this imbalance, I analyze an asymmetric
discrete-valuation model of the Anglo-Dutch auction and derive a complete revenue ranking
between the Anglo-Dutch, ascending and first-price auctions. I find that the Anglo-Dutch
auction can revenue-dominate for a small set of parameters, and ranks revenue-last in an
even smaller number of cases. For most parameter values the Anglo-Dutch auction ranks
as intermediate. I also show that the auction performs particularly well when bidders face
small entry costs and almost-common values. Overall, the Anglo-Dutch auction is rarely
“the best of both worlds”, but even more rarely performs worst - for this reason, it may be
a prudent policy choice if the auctioneer has imprecise information about the magnitude of
asymmetries across bidders.

JEL Classification: D44, D47

Keywords: auction, Anglo-Dutch auction, ascending auction, first-price auction, hybrid
auction, asymmetric auction

1. Introduction

Hybrid auctions, where a dynamic ascending or clock stage is followed by a single round
of final sealed bids, have been recently used in many high-stakes auctions, including mo-
bile spectrum licenses (Cramton, 2013), and public procurement (Lunander and Lundberg,
2013). Much of the intuitive appeal of hybrid auctions is that they are the “best of both
worlds”, outperforming both their pure ascending and first-price counterparts on both rev-
enue and efficiency. Despite a breadth of practical applications, as surveyed by Ausubel and
Baranov (2017), few economic models explicitly analyze the properties of hybrid auctions,
due to their inherent complexity: models where the ascending phase is analytically solvable
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result in a sealed-bid stage that is intractable, or vice versa. Though some experimen-
tal results, empirical case-studies, and theoretical conjectures are available for the general
setting,2 a general theoretical equilibrium analysis has not been feasible yet.

In this paper, I revisit one of the early formalizations of a hybrid auction: the Anglo-
Dutch auction of Klemperer (1998), where each bidder has a unit demand. An Anglo-Dutch
auction proceeds in two phases. First an ascending (i.e. English or Japanese) auction is
run, until all but the last two bidders drop out. The price at which the last bidder drops
out is noted, and set as the reserve price in a first-price auction among the remaining two
bidders. After these ‘best and final’ offers have been submitted (the “Dutch” phase), the
highest bidder wins and pays their bid.3 ,4

Prior work on Anglo-Dutch auctions, such as Āzacis and Burguet (2008) and Bustos and
Costinot (2003), have obtained only partial rankings of the Anglo-Dutch auction against
the ascending auction. While Levin and Ye (2008) obtain a ranking relative to the first-
price auction, their results are driven by risk-aversion and affiliation in bidders’ values. My
analysis complements these three papers by providing a full revenue ranking in a model with
asymmetries, but no risk-aversion. This formulation allows me to highlight the significance
of the information-revelation step, prior to the first-price phase of the Anglo-Dutch auction.

I present a one-item three-bidder model with discrete valuations and no entry, which
admits a closed-form solution. Under these assumptions, I show that the Anglo-Dutch
auction is revenue-dominant for a small range of parameters, but even more rarely ranks as
revenue-worst. The auction also performs particularly well when bidders face small entry
costs and almost-common values. While it may be unwise to put excessive trust in policy
implications of simplified microeconomic models, the modest suggestion of my results is that
a hybrid auction may be a good compromise when the auctioneer has imprecise information
about relative valuations among the bidders: if the auctioneer is confident about bidders’
characteristics, they may obtain superior revenue by picking the appropriate single-stage
auction.

In Section 2 I survey the literature that analyzes the properties of Anglo-Dutch auctions.
I introduce the discrete-valuation setup that underlies my analysis in Section 3. Equilibrium
bidding strategies for the first-price, ascending and Anglo-Dutch auctions are derived in
Sections 4, 5 and 6 respectively. I present analytical revenue rankings, for parameter values
that admit such solutions, in Section 7, and proceed to present numerical results in Section 8.
Section 9 covers the efficiency characteristics of the three auctions, and Section 10 concludes.

2See Kagel et al. (2014), National Audit Office (2014), and Kagel et al. (2010), respectively.
3The Anglo-Dutch auction can be directly generalized to K > 1 units, so long as all bidders have unit

demands. See, for example, Āzacis and Burguet (2008).
4For clarity of exposition, I use the term “Anglo auction” to refer to the ascending phase of the Anglo-

Dutch auction, and the “Dutch auction” to refer to the first-price sealed-bid phase. This is to keep the two
phases of the hybrid auction more clearly separate from its single-phase component auctions.
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2. Background and Literature review

Under standard independent private value (IPV) assumptions,5 the Anglo-Dutch auc-
tion satisfies the conditions for applying the revenue equivalence theorem, and is therefore
revenue-equivalent to the first-price and ascending auctions. For practical applications, this
is a minor concern, as IPV assumptions are restrictive, and unlikely to ever hold in practice.
To build theory models which do not collapse into revenue-equivalence, one or more of the
IPV assumptions must be relaxed. In this vein, Levin and Ye (2008) relax independence
and risk-aversion, while Āzacis and Burguet (2008) and Bustos and Costinot (2003) relax
the assumption of bidder symmetry and change the assumption of “fixed number of bidders”
to model entry endogenously. Against this backdrop, my model retains the assumption of
risk-neutrality and independent private values, and focuses on the impacts of the asymmetry
in bidder valuations only. In terms of outcome, in the models of Āzacis and Burguet (2008)
and Bustos and Costinot (2003) the main explanation for revenue-differences is entry, while
in Levin and Ye (2008) the results are driven by risk-aversion. In my model, the divergence
follows from the different patterns of information-revelation across the auctions, stemming
from the two-stage hybrid nature of the Anglo-Dutch auction.

When IPV assumptions do not hold, there are three main areas where the Anglo-Dutch
auction aims to improve over its two components: firstly in encouraging entry and thus
boosting seller revenue, secondly in furthering efficiency and in preventing collusion. Thirdly,
the Anglo-Dutch auction uses the first-price phase to take advantage of risk-aversion.

The first-price stage at the end of the Anglo-Dutch auction encourages entry by the
following logic. In a pure ascending auction advantaged bidders always get a chance to
out-bid weaker rivals, hence weaker entrants can never win (Bulow et al., 1999). This is
not true in the Anglo-Dutch auction, where the Dutch (first-price) phase gives the entrants
a chance to out-bid a stronger incumbent in case the incumbent chooses to bid cautiously.
More generally: weaker bidders have stronger incentives to participate in auctions with a
first-price component (Marszalec et al., 2020).

Theoretical work by Āzacis and Burguet (2008) and Bustos and Costinot (2003) evaluates
the importance of entry in the Anglo-Dutch auction in models with endogenous entry and
asymmetric bidders. Both papers show that Anglo-Dutch auctions can revenue-dominate
ascending auctions, and induce more entry. However, both papers use models of asymmetry
which favor the first-price auction over the ascending auction; it is thus unsurprising that
the Anglo-Dutch auction out-performs its ascending counterpart. The performance of the
first-price auction relative to Anglo-Dutch remains an open question in both papers; it is
plausible that if the Anglo-Dutch outperformed the ascending auction, first-price may have
performed better still.

5IPV assumptions require that each bidder’s value for the object is an independent draw from the same
continuous, and atomless, distribution. Furthermore, bidders are assumed to be symmetric, risk-neutral,
and not face budget constraints. The number of bidders is assumed to be fixed, and there is no additional
entry at any point in the auction.
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The results of Āzacis and Burguet (2008) and Bustos and Costinot (2003) are not robust
to some small perturbations in the valuation model such as “almost-common values” in
Klemperer (1998), or “toeholds” in Bulow et al. (1999). Here, when the incumbent has
an arbitrarily small but certain value advantage, no entry occurs in any purely ascending
auction, and revenue from such auctions is low.6 The Anglo-Dutch auction would induce
more entry, but it is likely that first-price could be most attractive to entrants.

The first-price phase of the Anglo-Dutch auction makes collusion more difficult by mak-
ing the final bids unobservable, and hence non-punishable. Even if bidders can observe each
other’s bids in the Anglo phase and bid collusively in that phase, the final sealed-bid stage
gives each bidder an incentive to renege on a collusive agreement, without the threat of
punishment.7 Brunner et al. (2010) find supporting evidence for this phenomenon in an
experimental setting.8

Information revealed in the ascending phase of the Anglo-Dutch auction is also useful
to bidders if their values are correlated, or risk-aversion is present. Here the points at
which each bidder drops out in the ascending phase provides the remaining bidders with
information about value of the object they are bidding for (in case of common values), or
on the intensity of competition (if values are private, but affiliated). The influence of this
information effect is compounded if bidders are risk averse. In the theoretical model of Levin
and Ye (2008), where bidders are symmetric and risk averse, with affiliated private values,
any hybrid auction with a first-price stage at the end will out-perform pure ascending
auction. However, if bidders are sufficiently risk-averse, the first-price auction becomes
revenue-dominant over any hybrid auction, including the Anglo-Dutch.

The empirical auction literature on two-stage auctions, relevant to this paper, has focused
primarily on what van Bochove et al. (2012) call Anglo-Dutch premium auctions: auctions
where the winner of the first open (ascending) phase is paid a premium for winning that
round, before bidding proceeds to the second round, where sealed bids are submitted.9 As
the authors note, historical records show that such auctions have been in use since the 16th
century for auctioning real estate in the Netherlands, and had since then also been used to
sell timber, wine, and financial securities.

While the literature on premium auctions is broad and interesting in it’s own right,10

6Āzacis and Burguet (2008) also introduce an Anglo-Anglo auction: a two-stage ascending auction with a
high reserve in the first round, and entry at both stages. Due to multi-stage entry and the first-round reserve
price, the Anglo-Anglo auction generates highest revenue and efficiency. In practice setting an appropriate
reserve may not be feasible, and since my model does not include entry, I also exclude the Anglo-Anglo
auction from my analysis. Furthermore, just like a standard ascending auction, the Anglo-Anglo auction
induces no entry under a valuation model that features “almost-common values”.

7The intuition here follows Robinson (1985), who shows that collusion is easiest in ascending auctions.
8Abbink et al. (2005), conversely, cannot find a significant difference between the performance of the

Anglo-Dutch and multi-item ascending auctions in their experiment; the paper does not specifically look
for collusion effects.

9Goeree and Offerman (2004) call a more general version of this auction the “Amsterdam auction”: here,
the sealed bid phase can consist of either second-price or first-price sealed bids.

10See, among others, Goeree and Offerman (2004); Hu et al. (2011); Brunner et al. (2014).
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the emphasis there is on the influence of the premium on bidder behavior and auction
performance. The existence of the premium distorts bidding incentives, relative to those
in a standard Anglo-Dutch auction: since there is now a prize for wining the first stage
irrespective of the result of the second stage, some bidders may aim to “win” the first phase,
without actually wanting to win the item (and bid timidly in the second phase). Therefore
results from premium auctions are not directly transferable to the context of Anglo-Dutch
auctions in general.

3. The value model

My aim is to provide a ranking of the Anglo-Dutch auction relative to both the ascend-
ing and first-price auctions using a valuation model that is robust to small perturbations.
I construct a discrete valuation model where a single object is sold to three risk-neutral
bidders, two of whom are ‘weak’ and one of whom is ‘strong’. This setting could be consid-
ered to model an auction with a single incumbent and two entrants, or a market that has
one clearly advantaged bidder. I thus examine one of two chief motivations for the Anglo-
Dutch auction discussed in Klemperer (1998): how revenues are affected by the presence of
a (possibly advantaged) incumbent.

I assume there are two weak (W), and one strong (S) bidders. The realized value (or
type) of a weak bidder, vw, is either high (H) or low (L), with probability µ and 1−µ. The
strong bidder’s value, v, is common knowledge. Subsequent to the weak bidders’ receiving
their value signals, all three bidders participate in a one-off auction. I assume that bidders
are risk-neutral, and do not face budget constraints. In what follows, I use bi to denote
bidder type i’s bidding function.

While I assume that v > L, I do not insist that v > H, though for a non-degenerate
first-price equilibrium to exist it is necessary that v > w̄ = µH+(1− µ)L : for a non-trivial
analysis, the strong bidder’s value must exceed the expected value of the weak bidders’
value.11 There are no entry costs in the base model, though I discuss an extension with
entry costs in Section 7.2.

Similarly to Āzacis and Burguet (2008) solution concept I use is perfect Bayesian equi-
librium (PBE) in undominated strategies. Since the S-type’s value is common knowledge,
only the beliefs over the W-types’ valuations may get updated in the course of the auction.
I will use γi(vj = H) to denote type i′s prior belief over the probability that the j type’s
valuation is H, and mi(vj = H|bj) to denote the posterior belief that bidder type i assigns
to bidder j’s valuation being vj, after having observed the bid bj. Furthermore, since in the
first-price auction all bids are submitted before any additional information is revealed, no
updating of beliefs happens in that auction.

Due to the discreteness of the valuation setup, multiple bidders may submit the same
bid with positive probability, and thus a tie-breaking rule is necessary. To break ties, I

11See Online Appendix C, Section 13.1.
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assume that when two bidders with different values submit the same bid, the bidder with
the higher value wins; if both bidders have the same value, ties are broken randomly.12

4. The first-price sealed bid auction

Given the nature of asymmetry used in my model, both a pure strategy and a hybrid
equilibrium is possible.13 Depending on where the value of v is relative to an interval [vα, vβ] ,

with vα = H − (1−µ)2

1+(1−µ)2
(H − L) and vβ = H + (1−µ)2

1−(1−µ)2
(H − L) , one of three cases applies;

they are summarized in Propositions 1.1, 1.2, and 1.3.
When v > vβ, then v is much higher than w̄ and only a pure strategy equilibrium exists.

Here the strong bidder’s value is so high that he doesn’t risk competing with the weak
bidders at all, and prefers to win for sure by bidding bS = H always; the weak bidders then
bid their value, and never win.14

Proposition 1.1. When v > vβ, the equilibrium of the first-price auction is characterized
as follows:

• Type L weak bidders bid L, Type H weak bidders bid H; the strong bidder bids H.

• The expected revenue is H.

Proof. See Online Appendix C, Section 13.

When v ∈ [vα, vβ] , the strong bidder’s value is moderate, and a hybrid equilibrium exists.
Here the L-type weak bidder always bids L, while the H-type weak bidders and the strong
bidder mix over a common interval.15 By standard arguments, I can rule out the presence
of atoms at the supremum or on the interior of the mixing interval. Similarly, I can rule out

12This tie-breaking rule is one way of eliminating open-set problems with payoffs in a discrete-valuation
setup like mine. It is standard within this literature, including Āzacis and Burguet (2008) who also use a
discrete-valuation model of auctions.
Furthermore, there are two other economic intuitions for justifying this tie-breaking rule. Firstly, this type

of tie-breaking rule is also common in price-setting Bertrand games with asymmetric costs. For example, in
a two-player version of this game, the equilibrium price is the marginal cost of the higher-cost player, and
the low-cost player attracts all the buyers. What is usually meant here is that the low-cost player actually
undercuts the other player by some arbitrarily small ε, without specifying the size of ε.
Secondly, the situation can be viewed in terms of pricing on a discrete grid. In this model the tie-breaking

rule is particularly important since the bidder whose valuation is common knowledge will have an atom in
his bidding distribution at L. The tie-breaking rule is constructed in such a way that if prices were set on a
discrete grid, the strong bidder would have an atom at L, and mix thereafter, while the H-type weak bidder
would mix over a range which starts from L + (1 increment).

13My use of the terminology here parallels the literature on signaling games: in a hybrid equilibrium,
some bidder types play a pure strategy, while others mix. This is in contrast to a fully mixed equilibrium,
where every type plays a mixed strategy.

14In the pure strategy equilibrium the strong bidder wins the auction due to the tie-breaking rule. The
dependence on tie-break rule can be removed by specifying that the strong bidder bids H + ε instead.

15Suppose one of the bidders bids over a closed interval. Then the rival has no incentive to bid above
the supremum of that interval (since that only decreases his expected surplus when he wins). Submitting
a bid below the infimum of such an interval, conversely, would never win. Hereby the mixing interval must
be the same for both types.
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the case where both types’ distributions have an atom at the infimum of the interval, but I
cannot exclude the case in which at most one type has such an atom.16

Proposition 1.2. When v ∈ [vα, vβ], the equilibrium of the first-price auction is character-
ized as follows:

• Type L weak bidders bid L. Type H weak bidders and the strong bidder mix over an
interval

[
L, b̄
]
, following the distributions GH and GS:

GH (b) = 1−µ
µ

(√
v−L−

√
v−b√

v−b

)
GS (b) = 1

1−µ
(H−b̄)√
v−L

√
v−b

(H−b)

where b̄ = v − (1− µ)2 (v − L)

(1)

• The expected revenue is:

RF = v − (1− µ)2 (v − L)− (1− µ)
(
H − b

)
(v − L)

1
2

b∫
L

1

(H − t) (v − t)
1
2

dt (2)

Proof. See Online Appendix C, Section 13.

When v < vα the strong bidder’s value is very low, and he will not compete with the H-
type bidders at all. Instead, the strong bidder bids bS = L, hoping to win in case both weak
bidders have a value of L. The H-type bidders then bid according to a mixing distribution
over a common interval.

Proposition 1.3. When v ∈ [L, vα), the equilibrium of the first-price auction is character-
ized as follows:

• Type L weak bidders bid L, and the strong bidder also bids L.

• Type H weak bidders bid according to the distribution GHα (b) , over the
interval [L,L+ µ (H − L)] :

GHα (b) =
1− µ
µ

b− L
H − b

• The expected revenue is :

RFα = (1− µ)2

(
L+ 2

∫ L+µ(H−L)

L

(H − L)2

(H − t)3 tdt

)

16If both players did have an atom at the infimum, one of them could deviate such that his mixing
distribution starts just an ε above the opponent’s atom. This reduces the expected surplus only by an
arbitrarily small ε, but increases winning probability by a discrete amount.
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Proof. See Online Appendix C, Section 13.

In the case where v ∈ [vα, vβ] the strong bidder has an atom at L. Its derivative with
respect to µ is given by:

d (GS (L))

dµ
=

1

(1− µ)2 (H − L)
(H + L− 2v − (2− µ)µ (L− v))

This is always negative when v > H : the weight of the atom decreases with µ when
the strong bidder’s valuation is high. An increase in µ makes it more likely that the strong
bidder is bidding against H-type weak bidders, and makes the strong bidder more aggressive.
When v ∈ (vα, H), the mass of the atom varies non-monotonically with µ : the derivative
is negative for small µ, and positive for large µ. When µ is high, the competition from the
H-type weak bidders is so intense that the strong bidder prefers to not compete with them:
even if the strong bidder would win, the expected surplus would be low. Thus the strong
bidder instead plays L with a higher probability and hopes for a large surplus when both
weak bidders turn out to be type L. In the limit, when v < vα, it becomes equilibrium
behavior for the strong bidder to always bid L.

5. The ascending auction

In an ascending auction, it is a weakly dominant strategy for each bidder is to bid up to
their value.17 The auction stops once all but one bidders have dropped out, and the object
is sold to the highest value bidder, at a price equal to the second highest value. Depending
on the position of v relative to H, there are two possible outcomes.

When v ∈ (L,H], if both weak bidders are of type L, the auction stops at price L,
with the strong bidder winning. If one weak bidder is of L type, then the auction proceeds
up to the strong bidder’s valuation, v, and terminates there, with the H-type weak bidder
winning. Finally, if both weak bidders are of type H, the auction terminates at H.

When v ∈ (H,∞), the strong bidder can always out-bid the weak bidders. The weak
bidders never win, but the winning price is determined by the highest realized valuation
held by a weak bidder. With probability (1− µ)2, both weak bidders have valuation L, and
with probability (1− (1− µ)2) at least one of them has value H. Hence:

Proposition 2. The revenue from the ascending auction is:

RASC = (1− µ)2 L+ 2µ(1− µ) min(v,H) + µ2H (3)

17As Li (2017) shows, “staying in” until the price reaches a bidder’s own value is an “obviously dominant”
strategy; and Pycia and Troyan (2019) further show that this strategy is also One-Step-Foresight dominant.
Therefore, I restrict myself to this equilibrium.
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6. The Anglo-Dutch auction

Modeling the Anglo-Dutch auction has two main differences from the first-price auction:
firstly, only two of three bidders are present in the final bidding stage, and secondly, the
remaining bidders have more information since they will have seen at what price one of
the bidders dropped out. This observed drop-out point also serves as a reserve price in the
Dutch phase of the auction.

I assume that if two bidders drop out simultaneously in the Anglo phase, one of these
two is selected at random to play in the Dutch phase. Furthermore, I assume that the
remaining bidder does not know whether or not his opponent in the Dutch phase previously
tried to drop out of the Anglo phase, or not.18

The L-type bidder always bids up to L in the Anglo phase of the Anglo-Dutch auction,
and provided he is allowed into the second stage, he also submits a bid of L. In case an
L-type does make it to the Dutch stage, they know for sure that the other weak bidder was
also an L-type, implying γL(H|L) = 0. Since the strong bidder always has a value above L,
the L-type never wins.

Next, observe that the Anglo phase of the auction will never terminate above min(v,H).
If an H-type weak bidder is still present in the Anglo-Dutch auction when the Anglo-phase
terminates at min(v,H), he knows for sure that the rival he is facing has a valuation of at
least H.19 In such a situation the H-type bidder must bid H in the Dutch phase of the auction.
Similar reasoning applies to the strong bidder. If the auction terminates at min(v,H), then
provided that the strong bidder is admitted to the Dutch stage, he submits a sealed bid
of min(v,H).20 The posterior beliefs then are γH(H|min(v,H)) = γS(H|min(v,H)) = 1:
if the ascending phase terminates at v, and an H-type made it to the Dutch phase, then
v < H, and the H-type knows they are facing another H-type for sure. If, conversely, the
Anglo phase stopped at H, then it must the case that v > H, and it will an H-type and the
strong bidder that remain in the Dutch phase.

18Āzacis and Burguet (2008) make the same assumption regarding simultaneous drop-outs at the end of
the Anglo stage.
While it may seem counter-intuitive that the remaining bidder does not know whether their opponent

previously tried to drop out, it is in line with most current implementations of Anglo-Dutch auctions that I
am aware if. For example, rather than having all bidders physically present in the same room “holding up
paddles” to indicate that they are still in the auction, the Anglo phase is frequently implemented using an
electronic clock, with bidders indicating their activity in the Anglo stage remotely, without observing each
other directly.
The auctioneer may indicate at each clock step how many bidders are still active, but when the Anglo

phase ends, typically that is the only information that is communicated to the bidders who make it to the
Dutch phase. The bidder who did not try to drop out at the final step therefore does not know whether
one, or two, of their rivals in fact tried to exit at the final step.

19If the Anglo phase terminates at v, it must be the case that v < H, and both remaining bidders have a
valuation of H. When the Anglo phase terminates at H, then v ≥ Hfor sure, and so the H-type bidder will
be facing a strong bidder with valuation v ≥ H in the second round.

20If the ascending phase terminates at v, it must be the case that v < H, and the strong bidder is not
admitted to the second round. If the ascending phase terminates at H, the strong bidder knows that his
opponent in the second round has valuation H. Due to the tie-breaking rule, the strong bidder can then
ensure winning by bidding H = min(H, v).
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In the only remaining case, the Anglo phase terminates at L. This can occur either
because one of the weak bidders is an L-type, or both of them are. As in the first-price
auction, there are now two possible equilibria, depending on the strong bidder’s value. If v
is very high, a pure strategy equilibrium prevails in the Dutch stage: the strong bidder will
bid H, and win for sure, while the H-type weak bidder also bids H. If the value of v is not
extremely high, both the strong bidder and the H-type weak bidder will mix. Conditional
on the Anglo phase terminating at L, the remaining weak bidder will learn that the other
weak bidder must have been an L-type, so γL(H|L) = γH(H|L) = 0. The strong bidder
learns at this point that not both weak bidders are H-types, whereby γS(L|L) = (1−µ)2

1−µ2 , and
γS(H|L) = 2µ(1−µ)

1−µ2 .
Proposition 3 summarizes these equilibria fully.

Proposition 3. Define the boundary value vγ as: vγ = H + 1−µ
2µ

(H − L) , and the corre-

sponding upper bound of a bidding distribution b∗ = v− (1−µ)2

1−µ2 (v − L). Then the equilibrium
strategies in an Anglo-Dutch auction are:

When v ∈ (L, vγ) (i.e. b∗ ≤ H)

• The L-type weak bidder bids L in both the Anglo and Dutch phases.

• The strong bidder bids up to v in the Anglo phase. If the Anglo phase terminates at
min(v,H),the strong bidder submits a bid of min(v,H) in the Dutch phase. If the Anglo
phase terminates at L, the strong bidder submits bids in the Dutch phase according to
the distribution:

G∗S (b) =
H − b∗

H − b
(4)

• The H-type weak bidder bids up to H in the Anglo phase. If the Anglo phase terminates
at min(v,H), the H-type bidder submits a bid of H in the Dutch phase. If the Anglo
phase terminates at L, the H-type bidder submits bids in the Dutch phase according to
the distribution:

G∗H (b) =
1− µ

2µ

(
b− L
v − b

)
(5)

• The expected revenue is:

RAD = µ2H +
(
1− µ2

)
v − (1− µ)2 (v − L)

− (1− µ)2 (H − b∗) (v − L)

∫ b∗

L

1

(H − t) (v − t)
dt (6)

When v > vγ (i.e. b∗ > H) :

• The L-type weak bidder bids L in both the Anglo and Dutch phases.

• The H-type weak bidder bids H in both the Anglo and Dutch phases.
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• Strong bidder bids v in the Anglo phase, and bids H in the Dutch phase

• The expected revenue is H.

In both cases, the updated beliefs are:

• If the Anglo phase terminates at min(v,H), then γH(H|min(v,H)) = 1, and
γS(H|min(v,H)) = 1.

• If the Anglo phase terminates at L, then γL(H|L) = γH(H|L) = 0, while γS(L|L) =
(1−µ)2

1−µ2 , and γS(H|L) = 2µ(1−µ)
1−µ2 .

Proof. See Online Appendix D, Section 14.

Comparing the first-price and Anglo-Dutch auction equilibria, two corollaries follow.

Corollary 1. If for given parameter values an equilibrium in mixed strategies exists in the
first-price auction, then it also exists in the Anglo-Dutch auction.

Corollary 2. There exist parameters for which an equilibrium in mixed strategies exists in
the Anglo-Dutch auction, but not in the first-price auction. If v > vα, and an equilibrium
in mixed strategies does not exist in the first-price auction, the strong bidder always bids H
in that auction.

These corollaries capture the intuition that, in expectation, the strong bidder faces
stricter competition in an outright first-price auction, than in Anglo-Dutch. In the first-
price, the strong bidder knows that he can be facing up to two H-types, whereas in Anglo-
Dutch, conditional on getting to the Dutch phase, he faces at most one H-type. Thus in
the first-price auction the strong bidder switches to the “always bid H” equilibrium under a
broader range of parameters.

The mass of the strong bidder’s atom in the Anglo-Dutch auction is always decreasing in
µ, and does not exhibit the non-monotonicity seen in the first-price auction. As expected,
when the likelihood of facing an H-type increases, the strong bidder plays L with lower
probability.

It is straightforward to show that GH first-order stochastically dominates G∗H , which
means that H-type bidders bid more aggressively in the first-price than in Anglo-Dutch
auctions, when an equilibrium in mixed strategies exists in both.21 If an equilibrium in
mixed strategies occurs in the Anglo-Dutch auction, then the H-type weak bidder knows he
is only bidding against one strong bidder. In mixed-strategy equilibrium in the first-price
auction an H-type knows he is facing a strong bidder, but with probability µ he also faces
an H-type weak bidder; H-type expects more competition in the first-price auction, and bids
more aggressively.

21No similar stochastic dominance ranking is available for the distributions of the strong bidder’s bids,
GS and G∗

S ; the relative shapes of these two distributions depend on µ and v, and for most (µ, v)− pairs
the two distribution functions intersect at some b ∈ (L, b∗).
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7. Analytical Revenue Comparisons

The integrals in the revenue functions for the first-price and the Anglo-Dutch auctions
do not, in general, admit analytical solutions. Proposition 4 summarizes the outcomes for
parameter values where analytical comparisons are possible.

Proposition 4. An analytical revenue ranking among Anglo-Dutch, ascending and first-
price auctions can be established in the following three cases:

Case 1. When v = H, ascending generates most revenue, followed by Anglo-Dutch. The
first-price auction gives least revenue.

Case 2. When v ∈ [vβ, vγ), such that b̄ ≥ H, first-price gives higher revenue than both
ascending and Anglo-Dutch.

Case 3. When v > vγ, such that b∗ ≥ H, Anglo-Dutch and first-price tie on revenue, and
both give higher revenue than ascending.

Proof. See Online Appendix E, Section 15.4.

In Case 1 of Proposition 4 the ascending auction gives revenue H when at least one weak
bidder is H. The Anglo-Dutch auction only gives revenue H if both weak bidders are H, and
the first-price auction never gives such high revenue. This effect dominates over the higher
revenues given by ascending and first-price when more of the weak bidders are of L-type.

Cases 2 and 3 of Proposition 4 relate to the switch-over points in first-price and Anglo-
Dutch auctions. When v ∈ [vβ, vγ), the strong bidder switches to always bidding H in
the first-price auction, while this has not yet occurred in the Anglo-Dutch auction. Hence
the first-price revenue is always H, which is more than in the other auctions.22 At the
point where v > vγ, the strong bidder always bids H in the Dutch phase of the Anglo-
Dutch auction also, giving the same expected as in the first-price. While I have presented
Proposition 4 in terms of cut-off values for v, a dual set of propositions could be presented
in terms of µ, as these parameters play a dual role in determining b̄ and b∗.

7.1. Relating the Results to Maskin and Riley (2000)

The intuition behind the revenue results above can be explained within the framework
of Maskin and Riley (2000). They consider thee types of asymmetries, two of which are
relevant to my model. When the strong bidder’s value distribution is a stretch of the
weak bidder’s distribution, the authors find that the first-price auction out-performs the
ascending auction. However, when the weak bidder’s distribution has been obtained from
the strong bidder’s distribution by shifting some mass from the upper end to the lower end,
the ascending auction performs better.

22The relative position of ascending and Anglo-Dutch auctions in this case is ex-ante ambiguous, and
depends on the model’s parameters, as discussed in Section 8.
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In my model, the weak bidder has a binary distribution on (L,H), and the strong bidder
has a point distribution at v. We can get from one to the other using two transformations
of the kind described in Maskin and Riley (2000). First, stretch the upper end of the weak
bidder’s distribution such that it terminates at v, rather than H. Second, move (1− µ)

of mass from the lower end (L), to the upper end of the distribution, v. This two-step
transformation gives a degenerate distribution at v. The magnitude of the stretch-effect
depends on the difference between H and v, while the magnitude of the mass-reallocation
effect grows as µ becomes smaller, as then more mass is shifted to v.

The Maskin and Riley framework can explain why the first-price auction performs better
when v is larger. In the case when v > H, the stretch effect and the mass-shift effect both
work to favor the first-price auction - and the effects become more pronounced as v increases.
When v < H, the two effects work in opposite directions: the stretch effect now works to
lower the upper end of the distribution, which favors an ascending auction, but the mass-
reallocation effect moves (1− µ) of probability from L to v > L, and so still favors the
first-price auction. Thus the first-price auction performs particularly badly when v is low.
Overall, in my model when v is large the first-price auction is favored by the value structure;
when v is low, the value-structure favors the ascending auction. These results are consistent
with those in Maskin and Riley (2000).

The results so far suggest that the Anglo-Dutch auction never ranks at either extreme of
the revenue ranking, and in the context of Maskin and Riley (2000), it would seem intuitive
that a combination of two auctions would give a revenue that is a convex combination of
its components. This alone, however, does not take into account the effect of the reserve
price that is set after the Anglo phase of the Anglo-Dutch auction, nor the updating in
the bidding distributions that occurs after information is revealed at the end of the Anglo
phase. Numerical result in the next section show that there exist parameters for which the
revenue of the Anglo-Dutch auction is not a convex-combination of ascending and first-price
revenues.

7.2. Small Entry Costs and Almost-Common Values

If my model is modified to include small entry costs for the weak bidders, the relative
performance of the Anglo-Dutch auction improves considerably. Recall that for Case 1 in
Proposition 4 when v = H, the revenue ranking is RFirst−price < RAnglo−Dutch < RAscending.

Suppose that the two weak bidders are instead "potential entrants", and they have to
pay a small entrance cost c > 0 to participate in the auction and observe their value, while
the strong bidder pays no such cost. There will be no entry in the ascending auction, since
none of the entrants have a positive surplus conditional on entering; the revenue from a
no-reserve ascending auction will be minimal. However, for c small enough, both entrants
will enter in both the Anglo-Dutch and first-price auctions.

Conditional on both bidders participating, Proposition 4 shows that in this case the
Anglo-Dutch auction outperforms the first-price auction on revenue. Since the expected
revenue functions from the first-price and Anglo-Dutch auctions are continuous in v, the
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above argument extends to the case when v = H + ε, which results in an "almost-common
value" model with one advantaged incumbent, similar to that in Klemperer (1998). In
my model, then, the Anglo-Dutch auction performs particularly well when entry costs and
almost-common values are an issue.

8. Numerical revenue comparisons

In this section I present two kinds of graphs which more broadly characterize the behavior
of the three auctions at hand. The first kind shows how revenues vary with v, for given
values of µ, L and H. The second kind shows how revenue behaves when µ is varied, for
a particular fixed set of L,H, and v. While my graphs are drawn with L and H fixed at 0
and 1, this is without loss of generality: different (L,H) pairs would only stretch and shift
the graphs. Qualitatively, the graphs would have the same shape, and the same relative
relationships would hold.

8.1. Revenue variation with v, with other parameters fixed

Figure 1a shows how revenues from all three auctions behave when µ is high (µ = 0.8).

Based on the results from Section 7, we should expect that the Anglo-Dutch auction performs
quite poorly for this parameter value. The behaviour of the first-price auction changes
depending on whether v < vα: this jump in behavior is due to the strong bidder essentially
exiting the market, and not actively trying to win against an H-type.

(a) Anglo-Dutch performs poorly
at high µ.

(b) Anglo-Dutch performs better
at lower µ.

(c) Anglo-Dutch can be revenue-
dominant for small µ

Figure 1: Revenue comparisons with variable v, with other parameters fixed.

For these parameter values the Anglo-Dutch auction never performs best, and ranks last
for v in the range [1.02, 1.07]. When v is large enough (e.g. greater than 1.126), the optimal
strategy for the strong bidder in both the first-price and Anglo-Dutch auctions is to always
bid H; for large v the first-price and Anglo-Dutch auctions both out-perform the ascending
auction. Figure 1b shows that when µ is decreased, the range over which the Anglo-Dutch
auction performs worst becomes smaller.
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When µ becomes even smaller, the Anglo-Dutch auction eventually ranks first for a
range of v. The largest value of µ for which this occurs is µ = 0.16. Figures 1c illustrates
an example of parameters at which the superiority of the Anglo-Dutch auction is possible.

As suggested by the analytical comparisons, the Anglo-Dutch auction is revenue-dominant
at some parameter values. This requires a high value of v, and a low value of µ, for a given
pair of H and L. Under such parameters, the ascending auction performs poorly, since the
revenue in that auction never depends on v. In the auctions which have a first-price ele-
ment a higher value of v leads to more aggressive bidding by the strong bidder even if the
opponent’s signal realization is low.

8.2. Revenue variation with µ, with other parameters fixed.

This section shows how the three auctions perform when the probability of a weak
bidder’s being an H-type is changed. I start with the case where the strong bidder’s valuation
is between that of the two weak bidders, as depicted by Figure 5, where v = 0.95. The shape
of the graph is similar for all v ∈ (L,H).

(a) Anglo-Dutch ranks
intermediate when v < H.

(b) When v > H, auctions with a
first-price stage can dominate.

(c) Anglo-Dutch is revenue-
dominant for a range of µ.

Figure 2: Revenue comparisons with variable µ, with other parameters fixed.

In Figure 2a, the Anglo-Dutch auction always ranks above the first-price auction, but
below the ascending auction. The downward jump in revenue of the first-price auction is
due to the strong bidder stopping to compete with the H-types: as µ increases with v < H,
it is more likely that we end up in the v < vα case. With high µ and low v, the strong
bidder prefers to bid very low, and hope to make a profit if both of his opponents turn out
to be L-types. The consequent fall in revenue is substantial.

When v > H, there is a range of values of µ for which the auctions with a first-price
component dominate the ascending auction. Figure 2b depicts such a case, with v = 1.1.

When µ is large, both the Anglo-Dutch and first-price auctions dominate the ascending
auction, but there is also a range of µ values for which the Anglo-Dutch auction performs
worst. Finally, by picking v appropriately, I can also illustrate a range of µ−values for
which the Anglo-Dutch auction is revenue-dominant. Figure 2c illustrates one such case,
with v = 2.8.
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8.3. The Overall Picture

Figures 3 and 4 summarize the revenue-dominance and revenue-inferiority results for
each pairing of µ and v. The range of parameters at which the Anglo-Dutch auction is
revenue-dominant is small, but equally, it ranks worst in an even smaller area.

Figure 3: Areas of revenue-dominance, by auc-
tion. Anglo-Dutch is dominant for a small subset
of parameters only.

Figure 4: Areas of revenue-inferiority, by auc-
tion. Anglo-Dutch performs worst for a similarly
small subset of parameters.

As v increases, the area where the Anglo-Dutch auction dominates grows, while it never
performs worst when v > 2. While the other two auctions are revenue-dominant for larger
sets of parameters, as suggested by Figure 9, they also rank last in a larger number of cases
(as shown in Figure 10). The ascending auction, in particular, under-performs when v is
high - and ranks last in the large area where the first-price and Anglo-Dutch auctions are
tied. Depending on the auctioneer’s beliefs over the likely values of µ and v, the Anglo-
Dutch auction can best “on average”. For example, assuming uniform distribution over the
parameter space defined by µ ∈ [0, 1] and v ∈ [0, V ], the Anglo-Dutch auction is best on
average whenever V > 2.5.

If small entry costs are present, the Anglo-Dutch auction would also be revenue-dominant
in the whole area where the ascending auction was dominant for v > H; the ascending
auction would rank revenue-last, instead of first-price. In this case, if we average the per-
formance of the three auctions using the same uniform parameter-rectangle as above, the
Anglo-Dutch auction ranks first for all V. Overall, then, the Anglo-Dutch auction is rarely
best, but even more rarely worst - and may well be best on average.

9. Efficiency and welfare: numerical comparisons

Following the same convention as Bustos and Costinot (2003), I measure efficiency by
the expected value of the winning bidder’s valuation. In my setup the ascending auction is
always efficient, since the highest-value bidder always wins. To obtain a relative measure
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for the other two auctions, I divide the winner’s expected valuations in the Anglo-Dutch
and first-price auctions by the valuation of the winning bidder in the ascending auction.

When v = H, all auctions are equally efficient, since irrespective the identity of the
winner, he will have a valuation of H. Furthermore, all auctions will also be fully efficient
when v > vγ, since in that case the strong bidder always wins in all three auctions.

Figure 5 shows that when µ is high, the Anglo-Dutch auction may be more efficient than
the first-price auction for some values of v < H, and is more efficient for moderately high
v > H.When µ decreases, we see from Figure 6 that the Anglo-Dutch auction is less efficient
than the first-price for v < H, but is still more efficient for a range of v > H. In the range
where the Anglo-Dutch revenue-dominates, it is also more efficient than the first-price.

Figure 5: Efficiency comparison with a high µ.
No clear dominance pattern emerges.

Figure 6: With low µ: Anglo-Dutch outperforms
first-price for most v > H.

Figure 7: Anglo-Dutch is relatively inefficient in
the case when v < H.

Figure 8: When v > H, Anglo-Dutch is relatively
efficient for most µ.

From figure 7 we see that for v < H, the first-price auction is more efficient than the
Anglo-Dutch auction for most µ. Conversely, figure 8 shows that the conclusions are reversed
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when v > H, and for most µ-values the Anglo-Dutch auction is more efficient than the first-
price. In the range in which the Anglo-Dutch auction revenue-dominates the first-price
auction (for µ < 0.16), the Anglo-Dutch auction is also more efficient.

The relative efficiency of the Anglo-Dutch and first-price auction are sensitive to the
assumption of discrete values: when moving around the parameter space, the equilibria in
first-price and Anglo-Dutch auctions can switch between hybrid and pure-strategy equilibria.
This, in turn, may lead to large shifts in efficiency for small parameter changes. Nonetheless,
in the current setting the efficiency differences are small.

Intuitively, we would expect that the Anglo-Dutch is more efficient than the first-price
because in the Anglo-Dutch auction it is always one of the two highest-valuing bidders who
win. However, when v is very large, the equilibrium in the first-price auction more readily
switches to min(v,H) being played by the strong bidder, and H being played by the H-type
- here the first-price becomes more efficient. This effect also dominates for values of v for
which v is slightly less than vβ. The argument for the case when v < H is analogous to the
argument for revenue: Anglo-Dutch performs better than the first-price for the cases when
both weak bidders obtain a value of H, but worse in the case when one weak bidder is H and
the other is L, since the H-types bid more aggressively in the first-price auction. Figures 7
and 8 show that either effect can dominate, depending on model parameters.

Figures 9 and 10 summarize the overall efficiency performance of Anglo-Dutch and first
price auctions.23 Each auction ranks worst over a similar size of the parameter space, but at
high enough v both also achieve full efficiency. The overall differences in efficiency are small,
especially compared to potential differences in revenue. Thus for a policymaker who has a
compound objective function which includes both efficiency and revenue, the Anglo-Dutch
auction is likely to perform well if revenue is relatively more important.

Figure 9: Areas of efficiency-dominance between
first-price and Anglo-Dutch auctions. For most
parameters, all three auctions tie.

Figure 10: Areas of efficiency-inferiority between
first-price and Anglo-Dutch auctions. When v >
H, Anglo-Dutch rarely ranks last.

23The ascending auction is always efficient, and therefore not included in the figures, for clarity.
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10. Extensions, limitations, and conclusions

The model in this paper does not include features that would inherently bias the outcome
in favor of the Anglo-Dutch auction. Most significantly, there is no endogenous entry or
risk aversion - so my model produces results which are conservative with respect to the
performance of the Anglo-Dutch auction. In the base model the range of parameters in
which the Anglo-Dutch auction performs best is narrow, but if we extend the model to
consider small entry costs, we can obtain a broader class of examples in which the Anglo-
Dutch auction dominates its rivals: the assumption of almost-common values falls in this
category.

Extending the base model to consider budget constraints, and an alternative process of
information revelation - as covered in Online Appendix A, Section 11 - does not improve
the relative performance of the Anglo-Dutch auction. Overall, the Anglo-Dutch auction
is quite robust: across all variants of my model, the range of parameters for which the
auction performs worse than both alternatives is usually small, or non-existent. Thus if a
policymaker has a relatively inaccurate prior information about the auction context, the
Anglo-Dutch auction can perform better on average than both of its components alone.

The assumptions of exogenous entry and discrete values allowed me to derive a complete
ranking between the Anglo-Dutch auction, and its component auctions, which is an exten-
sion of the existing literature. These assumptions are restrictive, and though my results do
not directly generalize to multi-unit hybrid auctions, they indicate that evaluating whether
hybrid auctions are “the best of both worlds” is not trivial. Results from more complex
settings, including multi-unit and package demand patterns, still remain theoretically in-
tractable - hence obtaining equilibria via numerical optimization is a likely and fruitful next
avenue of research in this area.
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11. Online Appendix A − Modifications of the Base Model

This section discusses two tractable extensions of the base model.

11.1. Different Pattern of Information Revelation - the L+/L− Model

My basic model of the Anglo-Dutch auction assumes that both of the weak bidders are
identical. This assumption is analogous to saying that the strong bidder "doesn’t see" the
identity of the bidder that drops out in the first round, if the ascending phase ends at L. In
practice this is unlikely to be true, and the identity of the drop-out bidders can be identified.
To model a situation where the identity of the drop-out can be seen by the strong bidder,
I can modify the valuation structure in the model. Instead of assuming that both weak
type bidders are ex-ante identical, I now assume that there are two ex-ante types of weak
bidders. One of the weak bidders is of type W+, and has value of H with probability of µ,
and L+ with probability of (1− µ) . The other bidder is of type W−, and has valuation of
H with probability µ, and L− with probability (1− µ) . I assume that L+ is just above L,
and L− is just below L.

Given the new value structure, the strong bidder now gains more information after the
Anglo stage is over. In the case in which the Anglo auction terminates at L−, he still doesn’t
know whether his rival has a value of L+ or H; the conditional probability of the rival’s
being an H-type changes. Is is straightforward to show that the conditional probability of
the rival’s being H is lower in the L+/L− variant relative to the base model, so we should
expect less aggressive bidding when an equilibrium in mixed strategies exists. Yet if the
Anglo auction ends at L+, the bidder knows that the only situation in which the W− type
would stay in at a price of L+ is when his valuation is H. Thus in this case the strong bidder
behaves "as if" he had observed a price of min(v,H) at the end of the Anglo phase. He
thus bids min(v,H) for sure, rather than mixing (as was the case in the base model). The
equilibrium mixing distributions are then given by:

ĜH (b) =
(1− µ)

µ

(
b− L
(v − b

)
ĜS (b) =

H − b̂
H − b

b̂ = v − (1− µ) (v − L) < b∗

Thus an equilibrium in mixed strategies exists in the L+/L− model, whenever it exists
in the basic model. Furthermore, mixing now occurs for a broader range of v. Comparing
ĜH and ĜS with G∗H and G∗S it is clear that the G∗ distributions first-order stochastically
dominate their Ĝ equivalents. This suggests that bidding is more aggressive in the base
model. The reason for this finding is that in the L+/L− model, it is less likely that actual
mixing occurs in the Dutch stage: in the base model mixing occurs with probability 1−µ2,

whereas in the new model it occurs only with probability µ (1− µ) . Conditional on a mixed-
strategy equilibrium being played, it is more likely in the basic model that the strong bidder
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is facing an H-type in the second round (this probability is 2µ(1−µ)
1−µ2 ), compared with the

L+/L− variant (where the probability is µ < 2µ(1−µ)
1−µ2 , ∀µ ∈ (0, 1) ). There are thus two new

effects on revenue, when we compare the L+/L− model with the base case. Firstly, since
the probability of an equilibrium in mixed strategies occurring is now lower, the probability
of the revenue being directly min(v,H) is larger - this effect enhances expected revenue. In
the second case when mixing does occur, bidding is less aggressive, and so expected revenue
from the mixing scenario falls.

It can be shown analytically that the expected revenue from the L+/L− model is less
than it would be in the base model, so the modified version of the Anglo-Dutch auction
performs revenue-wise worse than the base model. I find that in the modified model the
range of parameters for which the Anglo-Dutch auction performs worse than both rivals is
now increased, but for majority of parameter values the Anglo-Dutch auction still ranks
intermediate. Despite being revenue-inferior to the base model, the L+/L− model of the
Anglo-Dutch auction is more efficient than in the base model, for some parameter values.

11.2. Budget Constraints Model with Common Values

The model I have discussed in this paper can be straightforwardly extended to consider
different budget constraints, instead of different valuations. I thus assume in this section
that the values of L, H and v are in fact budget constraints of the different types of bidders,
and the object has a true common value of x to each bidder. All bidders know the value
of x, and I assume it is larger than all the budget constraints. I use the same tie-breaking
rule as before, though now I make all the decisions contingent on budgets rather than
valuations. Deriving equilibrium bidding distributions in this model is exactly analogous
to the standard model, and in fact when an equilibrium in mixed strategies exists in the
first-price auction, bidding distributions for the first-price and Anglo-Dutch auctions can be
obtained by substituting x for v and H in equations (1), (4) and (5). The interesting new
comparison in this model is to keep L,H, v and µ fixed, and vary x.

Results from the budget constrained model are unfavorable for the Anglo-Dutch auction.
The auction never ranks strictly first in terms of expected revenue, but ranks last for a
relatively small range of parameters. As before, for the majority of parameter values the
Anglo-Dutch auction ranks as intermediate. Hence while the Anglo-Dutch auction would
never be strictly preferred by a policymaker who knows x exactly, it might nonetheless be
a desirable option when the policymaker is uncertain of the position of x.

12. Online Appendix B: The Degenerate Case, when v∈ [0,L]

12.1. First-price auction

Here the strong bidder’s value is so low that his maximum bid is of no viable threat to
the weak bidders. Hence, the lowest "active" valuation against which weak bidders have
to compete is L, which is the lowest possible valuation for a weak bidder. Thus I can
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construct an equilibrium similar to that of Āzacis and Burguet (2008). The properties of
the equilibrium are that:

• Strong bidder bids v, and never wins

• Weak bidder of type L bids L, and can only win of both weak bidders are of L-type.

• H-type weak bidders mix on [L, b̄0], with cumulative bidding density GH0 (b) .

By similar reasoning as in the cases when v > vα for the first-price auction, at most one
of the bidders can have an atom at L, so it follows that GH0 cannot have such an atom
(else, in the case when there are two H types, both players would have an atom, which is a
contradiction). Given the above description, the profit function for an H-type is:

ΠH0 (b) = ((1− µ) + µGH0 (b)) (H − b) (7)

Using the fact that, GH0 (L) = 0 and GH0

(
b̄
)

= 1, and the fact that all values in the support
of the mixing distribution give the same payoff:

ΠH0 (L) = ΠH0

(
b̄
)

= ΠH0 (b)

Hence:

(1− µ) (H − L) =
(
H − b̄0

)
=⇒ b̄0 = H − (1− µ) (H − L)

And:

(1− µ) (H − L) = ((1− µ) + µGH0 (b)) (H − b)

=⇒ GH0 (b) =
1− µ
µ

(
b− L
H − b

)
Proposition 3. The equilibrium in the FPS for v < L is thus fully characterized as follows:

Strong bidder always plays v
L-type weak bidder always plays L
H-type weak bidder mixes according to:

GH0 (b) =
1− µ
µ

(
b− L
H − b

)
The expected revenue in Case A is:

R0
FPS =

(
1− µ2

)
L+ µ2H (8)
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12.2. Ascending Auction

In this case, the strong bidder’s value is below the lowest conceivable value for the weak
bidders, so the strong bidder never wins in the auction - indeed, he never even determines
the final price.

If both weak bidders are of type H, they both bid up to H, and this is where the ascending
auction terminates; the probability of this event is µ2. In all the remaining cases, when at
least one bidder is of type L, the auction stops at L; the probability of this happening is
(1− µ2) .Hence:

Proposition 4. The revenue from an ASC auction, when v < L is:

R0
ASC = (1− µ2)L+ µ2H = R0

FPS (9)

12.3. Anglo-Dutch auction

In this case the Anglo-Dutch auction will be equivalent to the first-price auction with
v ∈ (0, L]: the dropping bidder is always the incumbent, so in the Dutch phase it is the
two entrants playing against each other, which is essentially the same as playing in a first-
price auction, since the "reserve price" has no bite. That is, in the first-price auction the
incumbent also always bids v, which has the same effect as the reserve price in the Anglo-
Dutch. In this context, the additional information revealed by the Anglo-Dutch auction has
no value.

Proposition 5. The equilibrium of the Anglo-Dutch auction when v < L is analogous to the
equilibrium of the FPS auction for the case when v < L. More fully, the complete strategies
require the strong bidder to bid up to v in the Anglo-stage, and bid v in the Dutch stage
also. The L-type weak bidder bids up to L in the Anglo phase, and submits a bid equal to
L in the Dutch phase. Finally, the H-type weak bidder bid up to H in the Anglo-phase, and
bid according to GH0 in the Dutch phase.

12.4. Comparison

Comparing the revenues from the first-price and ascending auctions, and noting that
the first-price and the Anglo-Dutch auction are revenue-equivalent, we see that indeed all
three auctions are revenue equivalent for when v ∈ [0, L]. This result is not surprising,
and can be related to Riley (1989) and his derivation of revenue equivalence in discrete
valuation models. In my model, as it stands when v < L, what we essentially have is a
setting where two ex-ante symmetric weak bidders bid against each other, and they both
have valuations drawn from the same discrete distribution; we also have risk-neutrality, and
other independent private value assumptions. So my model satisfies the assumptions of
Riley’s model, and hence the conclusion of revenue-equivalence follows.

25



13. Online Appendix C: Details on the First Price Auction in the Non-Degenerate
Case (when v > L).

13.1. Deriving the FPS Equilibrium (Proposition 1.2)

Proposition 1.2 covers all values of v, except the case when v < L, which generates
revenue-equivalence among the three auctions, and is covered in Online Appendix B, Section
12. The behavior of the expected revenue at the two boundary points, vα and vβ will be
very different. At vβ, all mixing types switch to bidding H in a continuous manner - the
mixing distributions put more and more mass close to H, until it becomes optimal for the
strong bidder to bid this value for sure. However, when v falls below vα, the change in
revenue is discrete: the strong bidder decides ’not to participate’, so while the H-type weak
bidders still mix in equilibrium, they only expect to be bidding against one viable opponent
at most. The lower revenue is thus caused by loss of competition if the value of the strong
bidder is too low.

The main characteristics of the equilibrium are thus:

• L-type weak bidder bids L, and expects no surplus.

• The H-type weak bidders and the strong bidder mix on an interval [L, b̄], according to
the cumulative distributions GH and GS respectively.

• The strong bidder’s bidding distribution has an atom at L.

The profit functions are derived step-wise, as follows. If a high type is to win, he must beat
the strong bidder, and either beats an L-type opponent for sure (happens with probabil-
ity (1− µ)), or he must bid higher than another H-type, which happens with probability
µGH (b) . Thus:

ΠH (b) = GS (b) ((1− µ) + µGH (b)) (H − b) (10)

If the strong bidder is to win, he must either beat two L-types (occurs with proba-
bility (1− µ)2), or he must beat one H type, and one L type (occurs with probability
2µ (1− µ)GH(b)), or he must beat two H-types (with probability µ2G2

H (b)) . Hereby:

ΠS(b) =
(
(1− µ)2 + 2µ (1− µ)GH (b) + µ2G2

H(b)
)

(v − b)

From the structure of the surplus functions above, it follows that it is the strong bidder
who has an atom at L. Indeed, if the valuation realizations were such that we would have
two H-types bidding in the auction, we would end up in a situation where two bidders have
an atom at L - but I showed in Section 4 that this cannot happen in equilibrium.

Using the fact that, GH (L) = 0 and GH

(
b̄
)

= GS

(
b̄
)

= 1, and the fact that all values
in the support of the mixing distribution give the same payoff, ΠS (L) = ΠS

(
b̄
)
and so:

(1− µ)2 (v − L) = v − b̄

=⇒ b̄ = v − (1− µ)2 (v − L)
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To obtain the bidding distributions, solve the two equations for GS and GH :

ΠS (b) = ΠS (L)

ΠH (b) = ΠH (L)

This yields:24

GH (b) =
(1− µ)

µ

√
v − L−

√
v − b√

v − b
(11)

GS (b) =
1

1− µ

(
H − b̄

)
√
v − L

√
(v − b)

(H − b)
(12)

To complete the definition of equilibrium for v > L, two issues remain. Firstly, when
v is very small, the above bidding distribution for the strong bidder is not well-defined.
Secondly, when v is very large, b̄ > H, and an equilibrium in mixed strategies cannot exist,
since it would require bidding distributions where the H-type bidder bids above his valuation
with positive probability.

With respect to the first problem I notice that for v close to L, GS is first increasing, and
then decreasing; in this case it cannot be a well-defined (cumulative) equilibrium bidding
distribution. To check for the conditions when an admissible cumulative density exists,
consider the marginal density:

∂GS

∂b
=

1

1− µ

(
H − b̄

)
√
v − L

1

(H − b) (v − b)
1
2

(
v − b
H − b

− 1

2

)
The expression in brackets is decreasing in b, whence it takes the minimum value when

b = b̄, and must be non-negative at that point. The condition for a well-defined cumulative
density then becomes:

v − L ≥ 1

(1− µ)2 (H − vα)

v ≥

(
H − (1− µ)2

1 + (1− µ)2 (H − L)

)

Define the lower bound for v, for which equilibrium in mixed strategies exists, as:

vα = H − (1− µ)2

1 + (1− µ)2 (H − L)

Subtracting from this µH + (1− µ)L gives us an indication of the magnitude of vα

24Derivations in Online Appendix D, Section 14.
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relative to the (ex-ante) expected valuation of a weak bidder. I thus find:

vα − (µH + (1− µ)L) =

(
1− (1− µ)

1 + (1− µ)2

)
(1− µ) (H − L) > 0

We see that vα is always larger than the expectation of the weak bidder’s valuation. This
requirement can naturally be interpreted as requirement for the strong bidder to be "strong
enough" for an equilibrium in mixed strategies to exist. When v < vα, the strong bidder
switches to always bidding L, as described in Proposition 1.2.

With respect to the second issue, observe that for some parameter values b̄ > H (for
example, when v is very large). In this event, the "top" of the mixing distribution exceeds
the valuation of the H-type weak bidder - and no H-type bidder would play according to
such a distribution in equilibrium. There is a natural way for the players to behave in this
case: the H-type bidder bids H, and the strong bidder also bids H (and obtains the good via
the tie-breaking rule). The rationale for this switching of behavior is that when v is high
enough, the strong bidder doesn’t want to risk losing to the H-type weak bidder, and bids
H (and wins) for sure. I show, in Online Appendix D, Section 13.4, that when b̄ > H, then
playing H for sure gives the strong bidder a higher surplus than a mixing strategy would.
The values of v at which the strong bidder prefers to always bid H satisfy the following
inequality.

b̄ ≥ H

v − (1− µ)2 (vβ − L) ≥ H

v ≥

(
H +

(1− µ)2

1− (1− µ)2 (H − L)

)
> H

The boundary value of v at which the switch-over in behavior occurs is thus:

vβ = H +
(1− µ)2

1− (1− µ)2 (H − L)

Observe again that this critical value depends on L, H and µ - and will change if we
change one of those parameters. Combining the above arguments, I obtain a full specification
of equilibrium behavior in the first-price auction.

13.2. First Price Auction - deriving the mixing distributions for v ∈ [vα, vβ]

For the strong bidder, the profit function is:

ΠS (b) =
(
(µ)2GH (b)2 + 2µ (1− µ)GH (b) + (1− µ)2) (v − b)

For the H-type weak bidder:

ΠH (b) = (µGH (b) + (1− µ))GS (b) (H − b)
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Using GH (L) = 0:
ΠS (L) = (1− µ)2 (v − L) = ΠS (b)

The last equality follows due to the fact that all bids which the bidder submits with positive
probability, must give the same expected payoff. Writing this out:

(
(µ)2GH (b)2 + 2µ (1− µ)GH (b) + (1− µ)2) (v − b) = (1− µ)2 (v − L)

This is a quadratic in GH .

GH (b)2 (µ)2 (v − bI)︸ ︷︷ ︸
A

+GH (b) 2µ (1− µ) (v − bI)︸ ︷︷ ︸
B

+ (1− µ)2 [L− bI ]︸ ︷︷ ︸
C

= 0

Applying the quadratic formula to the above equation, taking the positive root, gives us:

GH (b) =
−B +

√
B2 − 4AC

2A

=
−2µ (1− µ) (v − b)

2 (µ)2 (v − b)
+

+

√
(2µ (1− µ) (v − b))2 − 4 (µ)2 (v − b)

[
(1− µ)2 [L− b]

]
2 (µ)2 (v − b)

=
(1− µ)

µ

[√
v − L−

√
(v − b)√

(v − b)

]

This gives one of the bidding distributions. For the other, I observe that since GH

(
b̄
)

= 1 :

ΠS

(
b̄
)

=
(
v − b̄

)
= (1− µ)2 (v − L)

=⇒ b̄ = v − (1− µ)2 (v − L)

Again, since all bids that are played with positive probability must give the same expected
payoff, we have:

ΠH (b) = ΠH

(
b̄
)

=
(
H − b̄

)
Writing this out, and solving for GS :

(µGH (b) + (1− µ))GS (b) (H − b) =
(
H − b̄

)
GS (b) =

1

(1− µ)

(
H − b̄

)
√
v − L

√
(v − b)

(H − b)
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For an equilibrium in mixed strategies to exist, we need:

b̄ ≤ H

=⇒ v − (1− µ)2 (v − L) ≤ H

=⇒ v ≤ H +
(1− µ)2

1− (1− µ)2 (H − L)

This means that the strong bidder’s valuation cannot be "too large" (since then he will just
bid H, and win always).

13.3. First Price Auction - deriving the mixing distributions for v ∈< vα

In this equilibrium, the strong bidder does not mix. For the H-type weak bidder:

ΠHα (b) = (µGHα (b) + (1− µ)) (H − b)

Using GHα (L) = 0:
ΠHα (L) = (1− µ) (H − L) = ΠHα (b)

Rearranging this expression to obtain GHα results in:

GHα(b) =
1− µ
µ

b− L
H − b

.

As in the previous case, the upper bound of the mixing distribution, bα is defined by
the condition GHα

(
bα
)

= 1. Since each strategy played in equilibrium must give the same
expected profit:

ΠHα

(
bα
)

= ΠHα (L)

Solving this equation yields bα = L+ µ(H − L).

13.4. Justifying "switch-over" of strong bidder’s strategy when b̄ > H

I now look for an equilibrium in the case when b̄ > H. Then:

v > H +
(1− µ)2

1− (1− µ)2 (H − L)

The profit the strong bidder would then get by "mixing" would be:

(1− µ)2 (v − L)

Whereas by bidding H he gets the item for sure (via the tie-breaking rule):

v −H
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The difference between these two cases is

∆ = (v −H)− (1− µ)2 (v − L)

=
(
2µ− µ2

)
v + (1− µ)2 L−H

>
(
2µ− µ2

)(
H +

(1− µ)2

1− (1− µ)2 (H − L)

)
+ (1− µ)2 L−H = 0

Hence my desired conclusion of ∆ > 0. That is:

v −H > (1− µ)2 (v − L)

when : b̄ > H

13.5. Revenue in the First Price Auction

13.5.1. When v ∈ [0, L]

I consider different combinations of weak bidders separately, and then aggregate to get
total revenue.

Both weak bidders are L. This happens with probability: (1− µ)2 . Revenue is then L.

One weak bidder is L, other is H. This happens with probability 2µ (1− µ) . The cumulative
density is of the winning bid is then GH (b) . The density is thus:

G′H =
1− µ
µ

(
H − L

(H − b)2

)
The expected revenue can be obtained as:

1− µ
µ

∫ b̄

L

t
H − L

(H − t)2dt

Both weak bidders are H. This happens with probability µ2. The winning bid has cumulative
density GH (b)2 . Hence density of the winning bid is:

2GH (b)G′H (b)

= 2

(
1− µ
µ

)2

(H − L)
b− L

(H − b)3

So the expected revenue is:

2

(
1− µ
µ

)2

(H − L)

∫ b̄

L

t
t− L

(H − t)3dt
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Total expected revenue. Aggregating the above expressions, after proper pre-multiplication
by event probabilities, I have:

R0
FPS = (1− µ)2 L+

+2µ (1− µ)
1− µ
µ

∫ b̄

L

t
H − L

(H − t)2dt

+µ22

(
1− µ
µ

)2

(H − L)

∫ b̄

L

t
t− L

(H − t)3dt

R0
FPS = (1− µ)2 L+

+2 (1− µ)2 (H − L)

∫ b̄

L

t

(
1

(H − t)2 +
t− L

(H − t)3

)
dt

Using partial fractions:

R0
FPS = (1− µ)2 L+

+2 (1− µ)2 (H − L)

∫ b̄

L

(
H

H − L
(H − t)3 −

H − L
(H − t)2

)
dt

R0
FPS = (1− µ)2 L+

+2 (1− µ)2 (H − L)
1

2

[
(L−H)

(t−H)2 (H − 2t)

]b̄
L

R0
FPS = (1− µ)2 L+

+2 (1− µ)2 (H − L)
1

2

[
(L−H)

((1−µ)(H−L))2
(H − 2 (H − (1− µ) (H − L)))

− (L−H)

(L−H)2
(H − 2L)

]

Simplifying the above I get:

R0
FPS = (1− µ)2 L+ µ2H + 2µ (1− µ)L = RA

ASC

13.5.2. When v ∈ [L, vα]

I consider different combinations of weak bidders separately, and then aggregate to get
total revenue.

Both weak bidders are L. This happens with probability: (1− µ)2 . Revenue is then L.

One weak bidder is L, other is H. This happens with probability 2µ (1− µ) . The cumulative
density is of the winning bid is then GHα (b) . The density is thus:

G′Hα (b) =
1− µ
µ

H − L
(H − b)2 ,
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and the corresponding expected revenue is:

1− µ
µ

∫ L+µ(H−L)

L

H − L
(H − t)2 tdt

Both weak bidders are H. This happens with probability µ2. The cumulative density is of
the winning bid is then [GHα (b)]2 . The density is thus:

2GHα (b)G′Hα (b) = 2

(
1− µ
µ

)2
(H − L) (b− L)

(H − b)3 ,

and the corresponding expected revenue is:

2

(
1− µ
µ

)2 ∫ L+µ(H−L)

L

(H − L) (t− L)

(H − t)3 tdt

Overall revenue . Aggregating the three above cases with appropriate probability-weights
yields:

Rα
FPS(Total)

= (1− µ)2 L

+2µ (1− µ)
1− µ
µ

∫ L+µ(H−L)

L

H − L
(H − t)2 tdt

+2µ2

(
1− µ
µ

)2 ∫ L+µ(H−L)

L

(H − L) (t− L)

(H − t)3 tdt

= (1− µ)2

(
L+ 2

∫ L+µ(H−L)

L

(H − L)2

(H − t)3 tdt

)

13.5.3. When v > vα

The following derivation only applies under parameter values under which the strong
bidder’s bidding distribution is well behaved. The equilibrium bidding behavior is defined
in Proposition 1.2. I proceed by calculating revenue separately from all the possible combi-
nations of realized strong and weak bidder valuations, and then I aggregate

Expected revenue calculations - the sub-cases. The following list of cases is jointly exhaustive
(and mutually exclusive):

• Two weak bidders are L, strong bidder plays Atom

• Two weak bidders are L, strong bidder mixes

• Exactly one weak bidder is L, one is H, strong bidder plays Atom

• Exactly one weak bidder is L, one is H, strong bidder mixes
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• Both weak bidders are H, strong bidder plays Atom

• Both weak bidders are H, strong bidder mixes

Two weak bidders are L, strong bidder plays Atom. The probability of this event is:

(1− µ)2

(
H − b̄

)
(1− µ) (H − L)

Revenue in this case is
RFPS(2L, atom) = L

Two weak bidders are L, strong bidder mixes. The probability of this event is:

(1− µ)2

(
1−

(
H − b̄

)
(1− µ) (H − L)

)

The cumulative density of the winning bid is then:

GS(b)−GS(L)

1−GS(L)

The corresponding density of winning bid is:

1

1−GS (L)
G′S(b)

The relevant derivative is given by:

G′S (b) =

(
1

1− µ

) (
H − b̄

)
(v − L)

1
2

(
−1

2
(v − b)−

1
2 (H − b) + (v − b)

1
2

(H − b)2

)

=

(
1

1− µ

) (
H − b̄

)
(v − L)

1
2

(
−1

2
(v − b)−

1
2

(H − b)
+

(v − b)
1
2

(H − b)2

)

Revenue under the appropriate density is then:

RFPS(2L,mix) =
1(

1− (H−b̄)
(1−µ)(H−L)

) ( 1

1− µ

) (
H − b̄

)
(v − L)

1
2

·

·
∫ b̄

L

t

(
−1

2
(v − t)−

1
2

(H − t)
+

(v − t)
1
2

(H − t)2

)
dt

Exactly one weak bidder is L, one is H, strong bidder plays Atom. The probability of this
event is:

2µ (1− µ)

(
H − b̄

)
(1− µ) (H − L)

(13)
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The cumulative density of a winning bid is then GH (b) . Hence the density of the winning
bid is:

G′H (b) =

(
1− µ
µ

) 1
2

(v − b)−
1
2 (v − b)

1
2 + 1

2
(v − b)−

1
2

(
(v − L)

1
2 − (v − b)

1
2

)
(v − b)


=

(
1− µ

2µ

)(
1

(v − b)
+

(v − L)
1
2 − (v − b)

1
2

(v − b)
3
2

)

The expected revenue is then:

RFPS(1L,Atom) =

(
1− µ

2µ

)∫ b̄

L

t

(
1

(v − t)
+

(v − L)
1
2 − (v − t)

1
2

(v − t)
3
2

)
dt

Exactly one weak bidder is L, one is H, strong bidder mixes. This occurs with probability

2µ (1− µ)

(
1−

(
H − b̄

)
(1− µ) (H − L)

)

The cumulative density of the winning bid is:

F =
GS(b)−GS(L)

1−GS (L)
GH (b)

=

[
1

1−GS (L)

1

µ

(
H − b̄

)
(v − L)

1
2

][
(v − b)

1
2

(H − b)
− (v − L)

1
2

(H − L)

]
(v − L)

1
2 − (v − b)

1
2

(v − b)
1
2

Differentiating:

F ′ =

[
1

1−GS (L)

1

µ

(
H − b̄

)
(v − L)

1
2

]
·

·

[
(v − L)

1
2 − (v − b)

1
2

(H − b)2 −
1
2

(v − L)

(H − L) (v − b)
3
2

+
1
2

(v − b)
1
2

(H − b) (v − b)

]

=

 1

1− (H−b̄)
(1−µ)(H−L)

1

µ

(
H − b̄

)
(v − L)

1
2

 ·
·

[
(v − L)

1
2 − (v − b)

1
2

(H − b)2 −
1
2

(v − L)

(H − L) (v − b)
3
2

+
1
2

(v − b)
1
2

(H − b) (v − b)

]
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The expected revenue is then:

RFPS(1L,mix) =

 1

1− (H−b̄)
(1−µ)(H−L)

1

µ

(
H − b̄

)
(v − L)

1
2

 ∗
∗
∫ b̄

L

t

 (v−L)
1
2−(v−t)

1
2

(H−t)2 −

−
1
2

(v−L)

(H−L)(v−t)
3
2

+
1
2

(v−t)
1
2

(H−t)(v−t)

 dt
Both weak bidders are H, strong bidder plays atom. The event has probability:

µ2

( (
H − b̄

)
(1− µ) (H − L)

)
In this case the winning bid has the cumulative density GH (b)2 . The relevant density is
then:

2GH (b)G′H (b)

Substituting in for GH and G′H :

2

(
1− µ
µ

)
(v − L)

1
2 − (v − b)

1
2

(v − b)
1
2

(
1− µ

2µ

)(
1

(v − b)
+

(v − L)
1
2 − (v − b)

1
2

(v − b)
3
2

)

=

(
1− µ
µ

)2
(v − L)

1
2 − (v − b)

1
2

(v − b)
3
2

+

(
(v − L) + (v − b)− 2 (v − L)

1
2 (v − b)

1
2

)
(v − b)2


The revenue is then:

RFPS(2H,Atom) =

(
1− µ
µ

)2 ∫ b̄

L

t

 (v−L)
1
2−(v−t)

1
2

(v−t)
3
2

+

(
(v−L)+(v−t)−2(v−L)

1
2 (v−t)

1
2

)
(v−t)2

 dt

Both weak bidders are H, strong bidder mixes. The probability of this event is:

µ2

(
1−

(
H − b̄

)
(1− µ) (H − L)

)
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The cumulative density of the winning bid is:

GS (b)−GS (L)

1−GS (L)
[GH (b)]2

=
1

1−GS (L)

[(
1

1− µ

) (
H − b̄

)
(v − L)

1
2

(v − b)
1
2

(H − b)
−

(
H − b̄

)
(1− µ) (H − L)

]
·

·

[(
1− µ
µ

)
(v − L)

1
2 − (v − b)

1
2

(v − b)
1
2

]2

=

(
H − b̄

)
1−GS (L)

(
1− µ
µ2

)[
1

(v − L)
1
2

(v − b)
1
2

(H − b)
− 1

(H − L)

]
·

·

[
(v − L) + (v − b)− 2 (v − b)

1
2 (v − L)

1
2

(v − b)

]

The corresponding density is:(
H − b̄

)
1−GS (L)

(
1− µ
µ2

)
∗

1

(v − b)


[[

(v−L)(v−b)
1
2 +(v−b)

3
2−2(v−b)(v−L)

1
2

]
(v−L)

1
2 (H−b)2

]
+

[
1
2

(v−L)− 1
2

(v−b)

(v−L)
1
2 (H−b)(v−b)

1
2
− (v−L)−(v−b)

1
2 (v−L)

1
2

(v−b)(H−L)

]


Whereby the expected revenue is:

RFPS (2H,mix) =

(
H − b̄

)
1− (H−b̄)

(1−µ)(H−L)

(
1− µ
µ2

)
∗

∫ b̄

L

t


[[

(v−L)(v−t)
1
2 +(v−t)

3
2−2(v−t)(v−L)

1
2

]
(v−L)

1
2 (H−t)2(v−t)

]
+

[
1
2

(v−L)− 1
2

(v−t)

(v−L)
1
2 (H−t)(v−t)

3
2
− (v−L)−(v−t)

1
2 (v−L)

1
2

(v−t)(H−L)(v−t)

]
 dt
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Overall Expected Revenue.

RFPS(Total)

= (1− µ)2

(
H − b̄

)
(1− µ) (H − L)

L

+ (1− µ)2

(
1−

(
H − b̄

)
(1− µ) (H − L)

)
1(

1− (H−b̄)
(1−µ)(H−L)

) ( 1

1− µ

) (
H − b̄

)
(v − L)

1
2

∗

∗
∫ b̄

L

t

(
−1

2
(v − t)−

1
2

(H − t)
+

(v − t)
1
2

(H − t)2

)
dt

+2µ (1− µ)

(
H − b̄

)
(1− µ) (H − L)

(
1− µ

2µ

)∫ b̄

L

t

(
1

(v − t)
+

(v − L)
1
2 − (v − t)

1
2

(v − t)
3
2

)
dt

+2µ (1− µ)

(
1−

(
H − b̄

)
(1− µ) (H − L)

) 1

1− (H−b̄)
(1−µ)(H−L)

1

µ

(
H − b̄

)
(v − L)

1
2

 ∗
∗
∫ b̄

L

t

[
(v − L)

1
2 − (v − t)

1
2

(H − t)2 −
1
2

(v − L)

(H − L) (v − t)
3
2

+
1
2

(v − t)
1
2

(H − t) (v − t)

]
dt

+µ2

( (
H − b̄

)
(1− µ) (H − L)

)(
1− µ
µ

)2

∗

∗
∫ b̄

L

t

(v − L)
1
2 − (v − t)

1
2

(v − t)
3
2

+

(
(v − L) + (v − t)− 2 (v − L)

1
2 (v − t)

1
2

)
(v − t)2

 dt

+µ2

(
1−

(
H − b̄

)
(1− µ) (H − L)

) (
H − b̄

)
1− (H−b̄)

(1−µ)(H−L)

(
1− µ
µ2

)
∗

∗
∫ b̄

L

t


[[

(v−L)(v−t)
1
2 +(v−t)

3
2−2(v−t)(v−L)

1
2

]
(v−L)

1
2 (H−t)2(v−t)

]
+

[
1
2

(v−L)− 1
2

(v−t)

(v−L)
1
2 (H−t)(v−t)

3
2
− (v−L)−(v−t)

1
2 (v−L)

1
2

(v−t)(H−L)(v−t)

]
 dt

After some algebra, the above simplifies to:

RFPS = (1− µ)2

(
H − b̄

)
(1− µ) (H − L)

L+

+ (1− µ)
(
H − b̄

)
(v − L)

1
2

∫ b̄

L

t

(
(v − t)

1
2

(H − t)2 (v − t)
+

1
2

(v − t)
1
2

(H − t) (v − t)2

)
dt

38



Integrating by parts:

RFPS = (1− µ)2

(
H − b̄

)
(1− µ) (H − L)

L+

+ (1− µ)
(
H − b̄

)
(v − L)

1
2

[ t

(H − t) (v − t)
1
2

]b̄
L

−
∫ b̄

L

1

(H − t) (v − t)
1
2

dt


Substituting for boundaries:

RFPS = (1− µ)

(
H − b̄

)
(H − L)

L+

+ (1− µ)
(
H − b̄

)
(v − L)

1
2

((
b̄(

H − b̄
)

(v − t̄)
1
2

)
−

(
L

(H − L) (v − L)
1
2

))

− (1− µ)
(
H − b̄

)
(v − L)

1
2

∫ b̄

L

1

(H − t) (v − t)
1
2

dt

Simplifying and substituting for b̄:

RFPS = (1− µ) (v − L)
1
2

(
v − (1− µ)2 (v − L)

(1− µ) (v − L)
1
2

)

− (1− µ)
(
H − b̄

)
(v − L)

1
2

∫ b̄

L

1

(H − t) (v − t)
1
2

dt

Canceling the appropriate terms, I finally obtain:

RFPS = v − (1− µ)2 (v − L)− (1− µ)
(
H − b

)
(v − L)

1
2

b∫
L

1

(H − t) (v − t)
1
2

dt

14. Online Appendix D: Details of the Anglo-Dutch Auction in the Non-Degenerate
Case (when v > L).

14.1. Deriving the Anglo-Dutch Equilibrium (Proposition 3)

The profit functions in this case are as constructed as follows.
If the Anglo phase terminated at L, and an H-type bidder is present in the first-price

stage, he knows that he is the only H-type left in the auction, and he is bidding against the
single strong bidder. Given a bid of b, the H-type beats the strong bidder with probability
G∗S(b). The surplus from bidding b is thus:

Π∗H (b) = G∗S (b) (H − b)

If the strong bidder is present in the Dutch stage, he doesn’t know his opponent’s identity
for sure - the only thing he knows at this point is that not both of his opponents were H-
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types. Thus with the (posterior) probability of (1−µ)2

1−µ2 the strong bidder is in fact facing an
L-type bidder, whom he would beat with certainty by bidding any b ≥ L. However, with the
probability 2µ(1−µ)

1−µ2 the strong bidder’s opponent is in fact an H-type, and the probability of
beating the H-type by bidding b is G∗H(b). The expected surplus of the strong bidder from
bidding b is then:

Π∗S (b) =

(
2µ (1− µ)

1− µ2
G∗H (b) +

(1− µ)2

1− µ2

)
(v − b)

Solving these two equations proceeds exactly analogously to the first-price case, and the
derivations are provided in Online Appendix B. The upper bound of the mixing distribution
is given by:

b∗ = v − (1− µ)

(1 + µ)
(v − L) = v − (1− µ)2

1− µ2
(v − L) ≤ b̄

14.2. Deriving the mixing distributions for the Anglo-Dutch Auction

The only case in which I need to derive an equilibrium bidding distribution for the
Anglo-Dutch auction is in the case when the Anglo phase terminates at L. So suppose the
Anglo phase stops at L. Then with probability 2µ(1−µ)

1−µ2 the strong bidder is facing an H type

weak bidder, and with probability (1−µ)2

1−µ2 he is facing a type L. A low type weak bidder will
bid L, and an H-type weak bidder will mix over [L, b∗], for some b∗ ≤ H. The profit for the
strong bidder will be:

Π∗S (b) =

(
2µ (1− µ)

1− µ2
G∗H (b) +

(1− µ)2

1− µ2

)
(v − b)

=

(
2µ

(1 + µ)
G∗H (b) +

(1− µ)

(1 + µ)

)
(v − b)

The profit for H-type weak bidder will be:

Π∗H (b) = G∗H (b) (H − b)

Using G∗H (L) = 0

Π∗S (L) =
(1− µ)

(1 + µ)
(v − L) = Π∗S (b)

The last equality follows from the fact that each bid played with positive probability must
give the same expected payoff in equilibrium. Hence:

(1− µ)

(1 + µ)
(v − L) =

(
2µ

(1 + µ)
G∗H (b) +

(1− µ)

(1 + µ)

)
(v − b)

G∗H (b) =
(1− µ)

2µ

(
b− L
v − b

)
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Using G∗H (b∗) = 1:

(1− µ)

2µ

(
(v − L)

(v − b∗)
− 1

)
= 1

b∗ = v − 1− µ
1 + µ

(v − L) = v − (1− µ)2

1− µ2
(v − L) < b̄

Similarly, since GS(b∗) = 1 :

Π∗H (b∗) = (H − b∗) = Π∗H (b)

(H − b∗) = G∗S (b) (H − b)

G∗S (b) =
(H − b∗)
(H − b)

=

(
H − v + 1−µ

1+µ
(v − L)

)
(H − b)

14.3. Justifying "switch-over" of strong bidder’s strategy when b∗ > H

I now also look for the equilibrium when b∗ > H. We must have:

v > H +
(1− µ)

2µ
(H − L)

The profits obtainable from just bidding H are:

(v −H)

Whereas the mixing strategy delivered:

1− µ
1 + µ

(v − L)

The difference is thus:

∆ = (v −H)− 1− µ
1 + µ

(v − L)

=
2µ

1 + µ
v −H +

1− µ
1 + µ

L

>

(
2µ

1 + µ

)(
H +

(1− µ)

2µ
(H − L)

)
−H +

1− µ
1 + µ

L = 0

In this case also we have the conclusion of ∆ > 0. That is:

(v −H) > (1− µ)2 (v − L)

when : b∗ > H

14.4. Revenue in the Anglo-Dutch Auction

14.4.1. When v ∈ [0, L].

In this case the Anglo-Dutch auction is equivalent to the first-price.
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14.4.2. When v > L

As in the first-price auction, here I also proceed by considering the expected revenues
from sub-cases first, and then aggregate them.

Expected revenue calculations - the sub-cases. The following list of cases is jointly exhaustive
(and individually mutually exclusive):

• Two weak bidders are L, strong bidder plays Atom

• Two weak bidders are L, strong bidder mixes

• Exactly one weak bidder is L, one is H, strong bidder plays Atom

• Exactly one weak bidder is L, one is H, strong bidder mixes

• Both weak bidders are H, and strong bidder plays min(v,H).

Two weak bidders are L, strong bidder plays Atom. Probability of this event is:

(1− µ)2 (H − b∗)
(H − L)

Revenue is :
RAD (2L, atom) = L

Two weak bidders are L, strong bidder mixes. Probability of this case is:

(1− µ)2

(
1− (H − b∗)

(H − L)

)
The cumulative density of the winning bid is then:

1

1−G∗S (L)
(G∗S (b)−G∗S (L))

The relevant density is given by:

1

1−G∗S (L)
G∗′S (b)

Since:
G∗′S (b) =

(H − b∗)
(H − b)2

Substituting in for G∗S and G∗′S :

1

1− (H−b∗)
(H−L)

(H − b∗)
(H − b)2
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The expected revenue is:

RAD (2L,mix) =
1

1− (H−b∗)
(H−L)

∫ b∗

L

t
(H − b∗)
(H − t)2 dt

Exactly one weak bidder is L, one is H, strong bidder plays Atom. The probability of this
event is:

2µ (1− µ)
(H − b∗)
(H − L)

The cumulative density of the winning bid is then:(
1− µ

2µ

)(
b− L
v − b

)
giving a density of: (

1− µ
2µ

)(
(v − b) + (b− L)

(v − b)2

)
=

(
1− µ

2µ

)
v − L

(v − b)2

So the expected revenue is:

RAD (1L, atom) =

(
1− µ

2µ

)
(v − L)

∫ b∗

L

t
1

(v − t)2dt

Exactly one weak bidder is L, one is H, strong bidder mixes. The probability of this event
is:

2µ (1− µ)

(
1− (H − b∗)

(H − L)

)
The cumulative density of the winning bids will be:

G∗S (b)−G∗S (L)

1−G∗S (L)
G∗H (b)

The relevant density is then:

1

1−G∗S (L)
[G∗′S (b)G∗H (b) +G∗′H (b) (G∗S (b)−G∗S (L))]

G∗′H (b) =

(
1− µ

2µ

)
v − L

(v − b)2

G∗′S (b) =
(H − b∗)
(H − b)2
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Substituting in the above results gives:

1

1− (H−b∗)
(H−L)

(
1− µ

2µ

)[
(H − b∗)
(H − b)2

(
b− L
v − b

)
+

(
(H − b∗)
(H − b)

− (H − b∗)
(H − L)

)
v − L

(v − b)2

]
=

1

1− (H−b∗)
(H−L)

(
1− µ

2µ

)
(H − b∗)

[
b− L

(H − b)2 (v − b)
+

(
1

(H − b)
− 1

(H − L)

)
v − L

(v − b)2

]

The expected revenue is then:

RAD (1L,mix) =
1

1− (H−b∗)
(H−L)

(
1− µ

2µ

)
(H − b∗) ∗

∫ b∗

L

t

[
t− L

(H − t)2 (v − t)
+

(
1

(H − t)
− 1

(H − L)

)
v − L

(v − t)2

]
dt

Both weak bidders are H, and strong bidder plays min(v,H). The probability of this event
is µ2, and the revenue in this case is RAD (2H) = H.

Overall expected revenue. Aggregating across the above cases, after appropriate pre-multiplication
with probabilities, I obtain:

RAD = (1− µ)2 (H − b∗)
(H − L)

L

+ (1− µ)2

(
1− (H − b∗)

(H − L)

)
1

1− (H−b∗)
(H−L)

∫ b∗

L

t
(H − b∗)
(H − t)2 dt

+2µ (1− µ)
(H − b∗)
(H − L)

(
1− µ

2µ

)
(v − L)

∫ b∗

L

t
1

(v − t)2dt

+2µ (1− µ)

(
1− (H − b∗)

(H − L)

)
1

1− (H−b∗)
(H−L)

(
1− µ

2µ

)
(H − b∗) ∗

∗
∫ b∗

L

t

[
t− L

(H − t)2 (v − t)
+

(
1

(H − t)
− 1

(H − L)

)
v − L

(v − t)2

]
dt

+µ2H

This simplifies to:

RAD = (1− µ)2 (H − b∗) L

(H − L)
+ µ2H

+ (1− µ)2 (H − b∗) (v − L)

∫ b∗

L

t

[
1

(H − t)2 (v − t)
+

1

(H − t) (v − t)2

]
dt
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Integrating by parts:

RAD = (1− µ)2 (H − b∗) L

(H − L)
+ µ2H

+ (1− µ)2 (H − b∗) (v − L)

([
t

(H − t) (v − t)

]b∗
L

−
∫ b∗

L

1

(H − t) (v − t)
dt

)

Substituting for boundaries:

RAD = (1− µ)2 (H − b∗) L

(H − L)
+ µ2H

+ (1− µ)2 (H − b∗) (v − L)

([
b∗

(H − b∗) (v − b∗)

]
−
[

L

(H − L) (v − L)

])
− (1− µ)2 (H − b∗) (v − L)

∫ b∗

L

1

(H − t) (v − t)
dt

Simplifying and substituting for b∗ :

RAD = µ2H

+ (1− µ)2 (v − L)

v − (1−µ)2

1−µ2 (v − L)(
(1−µ)2

1−µ2 (v − L)
)


− (1− µ)2 (H − b∗) (v − L)

∫ b∗

L

1

(H − t) (v − t)
dt

Simplifying again, I finally get:

RAD = µ2H +
(
1− µ2

)
v − (1− µ)2 (v − L)

− (1− µ)2 (H − b∗) (v − L)

∫ b∗

L

1

(H − t) (v − t)
dt

15. Online Appendix E: Derivation of Efficiency, and the Revenue Comparison

15.1. Efficiency in the Ascending Auction

When v ∈ [L,H], if both weak bidders are low, the winning bidder is the strong bidder,
with valuation v. If at least one weak bidder is of H type, then an H-type will win the
auction. The efficiency in this case is thus:

EffASC = (1− µ)2 v +
(
1− (1− µ)2)H

However, when v > H, the strong bidder always wins the ascending auction, and so the
winning valuation will be v.

15.2. Efficiency in the First-price auction

In this section I use expressions derived in Online Appendix C, Section 13.5. Efficiency,
measured by the expected valuation of the winning bidder, can be calculated as follows.
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If b̄ > H (i.e., v > vβ) then efficiency is v. When v < vα, the efficiency is (1− µ)2 v +(
1− (1− µ)2)h - the same as in the ascending auction. If v ∈ [vα, vβ], the efficiency is
obtained by the following formula.

EffFPS = (1− µ)2 v

+2µ (1− µ)GS (L)H

+2µ (1− µ) (1−GS (L))

 (
v ∗
∫ b̄
L

G′S(t)

1−GS(L)
GH (t) dt

)
+H ∗

(
1−

∫ b̄
L

G′S(t)

1−GS(L)
GH (t) dt

) 
+µ2

GS (L)H + (1−GS (L))

 (
v ∗
∫ b̄
L

G′S(t)

1−GS(L)
(GH (t))2 dt

)
+H ∗

(
1−

∫ b̄
L

G′S(t)

1−GS(L)
(GH (t))2 dt

) 
The individual terms in the above expression contribute to the efficiency measure by in the
following way. In the case when both weak bidders are L (occurs with probability (1− µ)2)

the strong bidder always wins, and his valuation is v. With probability 2µ(1−µ), exactly one
weak bidder is H. If in this case the strong bidder plays the atom (occurs with probability
GS(L)), the H-type weak bidder wins for sure, with value H. However, in the case when
the strong bidder mixes (occurs with probability (1−GS (L))), the strong bidder wins with
probability

∫ b̄
L

G′S(t)

1−GS(L)
GH (t) dt, with valuation v, and the H-type weak bidder wins with the

residual probability, 1−
∫ b̄
L

G′S(t)

1−GS(L)
GH (t) dt, with value H. The reasoning for the case when

there are two H-type weak bidders is precisely analogous to the case with one H-type weak
bidder, with the probabilities adjusted accordingly.

15.3. Efficiency in the Anglo-Dutch auction

The reasoning used to derive the expressions for efficiency for the Anglo-Dutch auction
is analogous to the first-price case. Thus I just provide a summary of the results. When
v > vγ, the strong bidder always wins, and the efficiency will be v. For the case when
v ∈ (L, vγ) the efficiency is given by:

EffAD = (1− µ)2 v

+2µ (1− µ)G∗S (L)H +

+2µ (1− µ) (1−G∗S (L))


(
v ∗
∫ b̄
L

(G∗S(t))
′

1−G∗S(L)
G∗H (t) dt

)
+H ∗

(
1−

∫ b̄
L

(G∗S(t))
′

1−G∗S(L)
G∗H (t) dt

)


+µ2 max(v,H)

15.4. Showing the Analytical Revenue Ranking (Proposition 4)

Showing the first part of Proposition 4 proceeds as follows. In the case when v = H, we
have:

b = H − (1− µ)2 (H − L) < H
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b∗ = H − (1− µ)2

1− µ2
(H − L) < H

RASC = (1− µ)2L+
(
1− (1− µ)2

)
H = H − (1− µ)2 (H − L)

RFPS = H − (1− µ)2 (H − L)−

− (1− µ) (1− µ)2 (H − L) (H − L)
1
2

b∫
L

1

(H − t) (H − t)
1
2

dt

= H − (1− µ)2 (H − L)− 2 (1− µ)2 µ (H − L) < RASC

RAD = µ2H +
(
1− µ2

)
H − (1− µ)2 (H − L)−

− (1− µ)2 (H − b∗) (H − L)

b∗∫
L

1

(H − t) (H − t)
dt

= H − (1− µ)2 (H − L)− 2µ
(1− µ)3

1− µ2
(H − L) < RASC

And also:
RAD −RFPS = (1− µ)3 (H − L)

[
2µ2

1− µ2

]
> 0

The revenue ranking in this case is:

RFPS < RAD < RASC

This establishes the first statement in Proposition 4. For the second statement, when
H = b̄, w have:

(v −H) = (1− µ)2 (v − L)

Then the expression for RAD −RFPS becomes:

RAD −RFPS = −µ2 (1− µ)2 (v − L)− (1− µ)2 (H − b∗) (v − L) ·

·
∫ b∗

L

1

(H − t) (v − t)
dt < 0

which establishes that AD does worse than FPS. I can also show that:

RFPS = v − (1− µ)2 (v − L)

RASC = (1− µ)2L+
(
1− (1− µ)2

) (
v − (1− µ)2 (v − L)

)
= v − (1− µ)2 (v − L)− µ (2− µ) (v − L) < RFPS,
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whereby we know that in this case:

RAD < RFPS

RASC < RFPS

When b̄ > H, this means that the first-price auction does not sustain an equilibrium in
mixed strategies, and always returns revenue of H; both other auctions give lower revenues
than this. The ranking between RAD and RASC is ambiguous. This establishes the second
statement in Proposition 4. For the third part, when b∗ = H, we have:

b∗ = v − (1− µ)2

1− µ2
(v − L) = H

=⇒ b̄ = v − (1− µ)2 1− µ2

(1− µ)2v −H = µ2v +
(
1− µ2

)
H > H,

whereby an equilibrium in mixed strategies does not exist in a first-price auction. Hence:

RFPS = H

RASC = (1− µ)2L+
(
1− (1− µ)2

)
H < H

RAD = µ2H +
(
1− µ2

)
v − (1− µ)2 (v − L) = H

Therefore the revenue ranking is:

RASC < RAD = RFPS

When b∗ > H, neither the first-price or the Anglo-Dutch auction can sustain an equilib-
rium in mixed strategies, and so both auctions return revenues of H; the ascending auction
generates less revenue, so long as µ < 1. This concludes the proof of Proposition 4.
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