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Abstract

This paper investigates derivatives pricing under existence of liquidity costs and market impact for the underlying asset in
continuous time. Firstly, we formulate the charge for the liquidity costs and the market impact on the derivatives prices through
a stochastic control problem that aims to maximize the mark-to-market value of the portfolio less the quadratic variation
multiplied by a risk aversion parameter during the hedging period and the liquidation cost at maturity. Then, we obtain the
derivatives price by reduction of this charge from the premium in the Bachelier model. Secondly, we consider a second order
semilinear partial differential equation (PDE) of parabolic type associated with the control problem, which is analytically solved
or approximated by an asymptotic expansion around a solution to an explicitly solvable nonlinear PDE. Finally, we present
numerical examples of the pricing for a variance option and a European call option, and show comparative static analyses.

Key words: Stochastic control; Application in finance; Derivatives pricing.

1 Introduction

In this paper, we consider derivatives pricing under the
existence of the market impact and the liquidity costs
on the underlying asset price, which are caused by the
transactions of the hedger. After formulating the hedg-
ing cost through a stochastic control problem, which is
a generalized form of a linear-quadratic control prob-
lem, we provide a scheme to compute the cost which is
solved analytically or approximated by an asymptotic
expansion of a second order semilinear PDE of parabolic
type. This asymptotic expansion is novel in that the so-
lution is expanded around that of an explicitly solvable
semilinear PDE. This is different from previous works on
asymptotic expansions for derivatives pricing (see Taka-
hashi [16] and the references therein), which typically
make expansion around linear PDEs.

Estimation of the total liquidity cost during the hedging
period is the most essential factor in pricing in practice,
since banks may have losses by the price spreads which
they pay in every hedging transaction. Prediction of the
effect of market impact on the hedging cost is also im-
portant, especially when banks trade derivatives on illiq-
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uid underlying assets such as low liquidity stocks and
illiquid foreign exchange rates. Moreover, when banks
quote a derivatives price in biddings, the estimation of
these costs is occasionally the only differentiator among
the participants. Despite these facts, the estimation of
the entire hedging cost is usually done by traders’ rules
of thumb. This study provides a quantitative method to
estimate the cost. In addition, our model incorporates
the liquidation cost at maturity for the two settlement
types, physical and cash settlements, and slippages on
execution volume of the underlying asset, which are ob-
served in trading of illiquid assets in practice.

As for related literatures, Li and Almgren [11] deal with
hedging an option under the existence of liquidity costs
and market impact. Guéant and Pu [7] consider indif-
ference pricing of a hedger with an exponential utility
on the mark-to-market value of the hedging portfolio at
maturity. After deriving the HJB equation for the op-
timization problem, Guéant and Pu [7] solve the HJB
equation numerically by finding a maximum point at ev-
ery grid of the discretized equation.

On the other hand, we adopt a different objective func-
tion from the one in Guéant and Pu [7] for the maxi-
mization. By assuming the mark-to-market value of the
hedging portfolio at maturity less the terminal liquida-
tion cost and the quadratic hedging error as the objec-
tive function to be maximized, the problem becomes a
generalized form of the linear-quadratic control prob-
lem, where the related HJB equation reduces to a second
order semilinear PDE of parabolic type. Then, depend-
ing on the payoff of derivatives, we analytically solve the
semilinear PDE or asymptotically expand the solution
of the PDE up to the first order. In detail, we expand the
solution around that of a solvable semilinear PDE. The
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zeroth order part of the solution has a quadratic expres-
sion with respect to a state variable, whose coefficients
satisfy an ODE or a linear PDE, and the first order part
is a solution of a second order linear PDE. We solve the
system of the ODE and PDEs through stochastic repre-
sentations of the solutions by Feynman-Kac formula.

We note that Li and Almgren [11] only deal with intra-
day hedging on a specific date far away from the matu-
rity, and hence does not consider pricing options, which
is generalized in our study to hedging and pricing deriva-
tives for the entire trading period. In particular, we re-
move the crucial assumption in Li and Almgren [11] that
the derivatives gamma is constant. This assumption is
only applicable to intraday trading of a specific trading
date far from the maturity. Note that Li and Almgren
[11] deal with the general gamma only in a no market
impact case. When the underlying asset price is staying
in the at the money area and the trading date is near
the maturity, calculation of the optimal hedging strat-
egy is particularly important since the hedging is diffi-
cult due to large derivatives gamma for European call or
put options. Further, in contrast to Li and Almgren [11],
the liquidation cost at maturity for the two settlement
types, physical and cash settlements, and slippages on
execution volume of the underlying asset are also incor-
porated in our model.

We remark that the derivatives gamma is the second
order differential of the value of the derivatives with
respect to the underlying asset price. The delta, the
first order differential of the value of the derivatives
with respect to the underlying asset price, is the quan-
tity of the underlying asset to offset in order to keep
the mark-to-market value of the hedger’s portfolio unaf-
fected from underlying asset price movements in a short
period. Thus, when the gamma is high, the hedger has
to trade a large number of units for the underlying as-
sets every time the underlying asset price moves. The
gamma is particularly high when the trading date is near
the maturity or the underlying asset price is staying in
the area where the convexity of the derivatives payoff is
large, such as at the money area of the European call or
put option.

While Li and Almgren [11] do not show any numerical
experiment and Guéant and Pu [7] provide only one ex-
ample with market impact, our study presents various
cases of derivatives prices under the existence of market
impact. We provide derivatives prices for a variance op-
tion in physical settlement, which are analytically solv-
able, and those for a European call option in physical
settlement, which are obtained through the asymptotic
expansion. Note that the derivatives with a variance op-
tion is an important example corresponding to a vari-
ance contract that pays realized variance of the under-
lying asset price at maturity.

As for numerical methods for solving the HJB equations,
Aliyu [1] investigates a transformation approach for solv-
ing the equation by reducing the equation into a set of
coupled algebraic-differential inequalities. Huang et al.
[9] propose a semi-meshless discretization where the spa-
tial discretization is based on a collocation scheme using
the global radial basis functions. Beard et al. [3] apply
the Galerkin’s approximation method to a solution of
the generalized HJB equation in a deterministic control
problem. Crespo and Sun [4] present a method for find-

ing optimal controls by the generalized cell mapping and
the short-time Gaussian approximation scheme.

This paper is organized as follows: Section 2 explains
our model. Section 3 provides an asymptotic expansion
of an associated semilinear PDE with its coefficients’
computation in Section 4. Section 5 provides examples
with numerical experiments in Section 6. Section 7 com-
pares our derivatives price with that of Guéant and Pu
[7]. Section 8 concludes.

2 Model

In this section, we introduce an optimal hedging prob-
lem for a derivatives hedger, who is the sole rational large
investor in the market of the underlying asset, under the
existence of liquidity costs and market impact.

Since estimation of costs related to illiquidity is essential
in derivatives pricing in practice, we incorporate impor-
tant factors on illiquidity (a finite variation process for
the units of orders submitted by the hedger, temporary
and permanent impacts on prices, execution slippages
on the trade units, and the liquidation cost at maturity
which depends on the settlement types) in modeling.

Firstly, we assume a finite variation process for units
of orders submitted by the hedger in Section 2.1. This
is different from the delta hedging in the Black-Sholes
and the Bachelier model, since the delta hedging in these
models can be done at any instant to offset the fluctu-
ation of the derivatives price, and thus the underlying
asset position has an infinite total variation, which is
impossible in practice especially for illiquid markets.

Also, we take market frictions into consideration, i.e.
slippages on the trade units, temporary and permanent
impacts on the mid price, and the liquidity cost at ma-
turity in Section 2.2.

Specifically, the hedger enters a long/short derivatives
position and starts hedging the position with the un-
derlying asset. The hedger mark-to-markets the portfo-
lio with the Bachelier model for the derivatives position
and with the mid price for the underlying asset position.
At inception of the trading, the hedger exchanges the
initial delta units of the underlying asset based on the
Bachelier model at mid price with the counterparty of
the derivatives. We explain these points in detail in the
following subsections.

2.1 Order volume and asset price processes

The hedger aims to maximize his/her expected utility
which is risk neutral or risk averse. The hedger holds
the derivatives position at inception of the trading by
paying m0 as the premium.

Let [0, T ] be the trading period, where 0 is the initial
time of the trading and T is the maturity of deriva-
tives. Let (Ω,F , {Ft}0≤t≤T ,P) be the filtered probabil-
ity space satisfying the usual conditions. We consider an
economy that consists of a money market account and
an underlying asset. We assume that the risk-free inter-
est rate is zero, which implies that the price of the money
market account is always 1. Let θt be a {Ft}-adapted
process which satisfies E

[∫ T

0
θ2sds

]
< ∞, (Wt,W

⊥
t ) be

a two dimensional {Ft}-Brownian Motion, σ and δ be
positive constants, and ϵ be nonnegative. Let Xt be the
number of units of the submitted orders by the hedger
to market makers by time t, which is differentiable with
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derivative θt, that is, Xt =
∫ t

0
θsds. In other words, θt

is the number of units of orders for the underlying asset
that the hedger submits to the market makers per pe-
riod, or the speed of order placement for the underlying
asset for hedging. (buy orders (when the sign is positive)
or sell orders (when the sign is negative)).

The reason why we assume absolute continuity with
respect to time for the accumulated order volume from
the hedger is that in the real world, the order volume
has a finite total variation, which corresponds to the in-

tegrability of θ,
∫ T

0
|θs|ds < ∞. If X includes a term of

a stochastic integration with respect to a Brownian mo-
tion, the total variation of the hedger’s position can be
infinite in the finite interval. This corresponds to an infi-
nite order submission volume, which is impossible in the
real word. Hence, the absolute continuity of the under-
lying asset position is particularly important in trading
of an illiquid asset as in Longstaff [12], for example.

We define the mid price process of the underlying asset
Pt as

Pt = P0 + σWt + ϵXt, 0 ≤ t ≤ T. (1)
This indicates that the permanent market impact on the
mid price process ϵXt is proportional to Xt, the number
of units of the orders submitted by the hedger until time
t. This means that if the hedger, the sole large trader,
places a large number of buying (selling) orders, then
there is a positive (negative) value of the permanent im-
pact on the mid price. It is also known that the this for-
mulation of market impact does not admit an arbitrage
with round trip strategy (e.g. Gatharel [6] ). σWt is the
aggregate random effect on the price by the rest of mar-
ket participants’ trading, which is naturally modeled as
a martingale. More elaborate modeling of agents other
than a large investor will be one of our future research
topics.

Remark 1 Note that this expression of the mid price
process with the Gaussian random variable σWt and the
permanent market impact as in (1) is consistent with the
literature of optimal execution with market impact (e.g.
See Almgren and Chriss [2] and Gatheral [6]). More-
over, Proposition 2 in Schachermayer and Teichmann
[15] shows that Gaussian models well approximate log-
normal models with short maturities and at-the-money
strike, which are most important cases in our analysis,
since the market impact and the liquidity costs are par-
ticularly large due to the high derivatives gamma and the
changes in the delta. For example, with 0.2% and 0.5
years used in our examples in Section 6, it implies that
the errors are less than 0.17% in price and 0.03% in im-
plied volatility, which are small enough compared to the
size of the costs related to the illiquidity. In addition, we
can naturally consider interest rate options and spread
options, whose underlying asset prices may be negative.

Remark 2 However, our technique has a limitation in
that a standard (Black-Scholes-Merton type) lognormal-
based model itself does not satisfy mathematical condi-
tions necessary for the proposed expansion method. One
possible way to deal with derivatives under a lognormal
model is to approximate the underlying asset price by the
following quadratic function based on the Taylor expan-
sion up to the second order around a given x0:

PT = ex ∼ ex0

(
1 + (x− x0) +

1

2
(x− x0)

2

)
.

Then, for example, by taking x0 = logK, we have the
second order approximation of the call payoff as

(ex −K)+ ∼ K

(
1

2
(x− logK)2 + (x− logK)

)+

,

where x = logP0 + (− 1
2σ

2T ) + σWT + ϵXT . This ap-
proximated payoff satisfies the mathematical conditions
for our expansion scheme. Pricing derivatives under the
lognormal assumption will be a topic for our future re-
search.

2.2 Execution slippages on price and order volume

We consider the following execution slippages on the
price and the order volume of the hedger.

Firstly, as for the slippage on the price, let η be a non-
negative constant and P̃ (θt) be the execution price when
the hedger submits θtdt units of orders for the underly-
ing asset during the period from t to t+ dt.

We define P̃ (θt) as

P̃ (θt) = Pt + ηθt. (2)
(2) indicates that the temporary price impact (the exe-
cution slippage on price) ηθt, which is added on (for buy
orders) or reduced from (for sell orders) the mid price Pt,
is proportional to θt. This means that when the hedger
submits a larger number of units of buying (selling) or-
ders per period to the market makers, he/she receives a
higher (lower) price for the buying (selling) order execu-
tion.

This formulation of the temporary impact (the execu-
tion slippage on price) also corresponds to trading with
a limit order book in [t, t + dt] where 1

2ηdt units of the

limit orders are placed per price. If the market makers
fill an order to buy θtdt units of the underlying asset,
they buy at the prices from Pt to Pt+2ηθt(= Pt+

θtdt
1
2η dt

).

This implies that they buy θtdt units of the underlying
asset at the average price of Pt + ηθt, which is P̃t. Con-
versely, if the market makers fill an order to sell |θt|dt
units of the underlying asset, they sell at the price from
Pt to Pt − 2η|θt|, which means that the market makers
sell |θt|dt units of the underlying asset at the average

price of Pt − η|θt| = Pt + ηθt = P̃t.

(For a general relation between the limit order book den-
sity and the price spread, see Saito [14] for instance.)

This type of formulation of the temporary execution
slippage and the permanent market impact as in (1) and
(2) is also observed in the literature of optimal execution,
Almgren and Chriss [2] and Rogers and Singh [13] for
example.

Before we introduce the execution slippage on the order
volume for the hedger, we define the derivatives gamma
in the Bachelier model which corresponds to the model
substituting ϵ = 0 in (1) and η = 0 in (2). Let h : R → R
be the derivatives payoff function, which satisfies a poly-
nomial growth condition and represents the derivatives
payoff at T as a function of the mid price of the under-
lying asset x1. Let g : [0, T ] × R → R be the unique
solution of the PDE

gt +
1

2
σ2gx1x1

= 0, g(T, x1) = h(x1), (3)

satisfying a polynomial growth condition: there exist
positive constants C and k such that |g(t, x1)| ≤ C(1 +
|x1|k), 0 ≤ ∀t ≤ T , ∀x1 ∈ R.
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Here ∂
∂tg and ∂2

∂x2
1
g are denoted by gt and gx1,x1

, re-

spectively. Hereafter, we use these notations with sub-
scripts for partial derivatives. Note that g is given by

g(t, x1) =
∫
R

1√
2πσ2(T−t)

exp
(
− (x1−ξ)2

2σ2(T−t)

)
h(ξ)dξ,

0 ≤ ∀t < T, ∀x1 ∈ R. (For instance, see Remark 5.7.8
in Karatzas and Shreve [10]. Hereafter, the number be-
fore the dot in the reference of theorems indicates the
chapter of the book.)

We denote gx1x1(t, x1) by Γ(t, x1), which is the deriva-
tives gamma in the Bachelier model. We also note
that in the Bachelier model, when the absolute value
of the derivatives gamma is high, the delta position
of the derivatives gx1

(t, x1) changes frequently as the
underlying asset price moves. In such a case, the deriva-
tives hedger has to rebalance his/her underlying asset
position accordingly in order to avoid change in the
mark-to-market of the portfolio.

Then, we introduce the execution slippage on the order
volume for the hedger as follows. The underlying asset
position starts with X̃0, which can be the delta amount
exchanged with the counterparty of the derivatives for
example. The delta exchange with the counterparty is
done off-market at themid priceP0 (i.e. with value X̃0P0,
see (9)) between the two counterparties whose initial
hedging volumes are the same in absolute value but have
the opposite sign. Let X̃t be the position of the underly-
ing asset of the hedger, which is a {Ft}-adapted process
satisfying

X̃t = X̃0 +Xt + δ

∫ t

0

σΓ(t, Pt)dW
⊥
t . (4)

We interpret this as follows. δ
∫ t

0
σΓ(t, Pt)dW

⊥
t is the

execution slippage, the mismatch volume which arises
when the market markers clear the orders from the
hedger via the limit order book.

We remark that the setting is an incomplete market due
to the existence of dW⊥

t in the hedging position, which
is independent of dWt, a driver of the mid price pro-
cess.Moreover, themarket is not perfectly complete even
when δ = 0 since the hedging strategy is assumed to be
absolutely continuous with respect to time and does not
contain dWt, the Brownian motion term. In addition,
there is a market friction because of the execution slip-
pages on the price and volume. We further put the next
assumption that is necessary for asymptotic expansions
in the following sections.

Assumption 1 There exist positive constants c1 and c2
such that

c1 ≤ |Γ(t, x1)| ≤ c2, ∀t ∈ [0, T ], ∀x1 ∈ R. (5)

Moreover, Γ(t, x1) is of class C1,2([0, T ] × R) and
Γx1

(t, x1) is bounded on [0, T ]×R.

Then, let us introduce Case 1(variance option) and
Case 2(smooth modification of European call option),
which satisfy this assumption. Numerical examples for
the derivatives payoff corresponding to Case 1 and Case
2 will be presented in Example 1 and Example 2 in
Section 5, respectively.

Case 1 (Variance option). For K > 0 and γ ̸= 0,
h(x1) =

γ
2 (x1 −K)2 satisfies Assumption 1. In fact, by

Feynman-Kac Theorem (e.g. Theorem 4.4.2 in Karatzas
and Shreve [10]), g(t, x1) = E[h(x1 + σWT−t)] =
γ
2

(
(x1 −K)2 + σ2T

)
, gx1

(t, x1) = γ(x1−K), Γ(t, x1) =

γ, Γx1(t, x1) = 0.

Case 2 (Smooth modification of European call option).
For l, δ̄ > 0 and 0 < c1 <

1
2l , let h(x1) =

l
4 +

∫ x1

K
( 12 +∫ v

K
h′′(s)ds)dv where h′′(x1) = c1+( 1

2l−c1)gl,δ̄(x1−K).

Here, gl,δ̄(x1) is a function of class C∞(R) satisfying

gl,δ̄(x1) =

{
1, if − l < x1 < l,

0, if x1 < −l − δ̄, l + δ̄ < x1,

0 ≤ gl,δ̄(x1) ≤ 1 (if − l − δ̄ ≤ x1 ≤ −l, l ≤ x1 ≤ l + δ̄).

In detail, we can take such gl,δ̄(x1) that satisfies (2.2) as

gl,δ̄(x1) =

{
ϕ(x1−(−l−δ̄))

ϕ(x1−(−l−δ̄))+ϕ(−l−x1)
, if − l − δ̄ ≤ x1 ≤ −l

ϕ(l+δ̄−x1)

ϕ(l+δ̄−x1)+ϕ(x1−l)
, if l ≤ x1 ≤ l + δ̄,

where ϕ(x1) = exp(− 1
x1
) (if x1 ≥ 0), 0 (otherwise).

Then, h(x1) satisfies Assumption 1. Note that h(x1) is
interpreted as an approximation of the call option pay-
off (x1 −K)+, since if we take limit as l, δ̄, c1 ↓ 0, h(x1)
converges to (x1 −K)+.

2.3 Settlement types and liquidation cost at maturity

We consider two types of derivatives settlements at ma-
turity, the cash and the physical settlement. In cash set-
tlement, the seller pays the derivatives payoff in cash
to the buyer. For example, for a European call option
whose strike price isK, if the mid underlying asset price
at maturity is PT , (PT −K)+ is paid in cash.

On the other hand, in physical settlement, there is a
physical delivery of the underlying asset between the
two counterparties. The delta amount of the underlying
asset at maturity is delivered, that is, gx1

(T, PT ) units
of the underlying asset is delivered from the seller to the
buyer and gx1

(T, PT )PT − g(T, PT ) is paid in cash from
the buyer to the seller. In particular, if PT ≥ K for the
European call option, one unit of the underlying asset
is delivered from the seller to the buyer and the buyer
pays K in cash. If PT < K, nothing happens.

Let Yt be the difference between X̃t, the underlying asset
position, and (−gx1

(t, Pt)), the delta amount to hold
against the derivatives position in the Bachelier model:

Yt = X̃t − (−gx1
(t, Pt)). (6)

The hedger has to liquidate unnecessary volume of the
underlying asset at maturity depending on the settle-
ment type. In cash settlement, the hedger liquidates the
whole underlying asset position X̃T . In physical settle-
ment, the hedger liquidates YT = X̃T − (−gx1

(T, PT ))
of the underlying asset.

We suppose that there exists a third party who un-
dertakes the liquidation volume from the hedger imme-
diately with b2 > 0 as the cost of liquidation per unit
of the underlying asset. That is, the price spread (from
the mid price PT at T ) for the liquidation volume α
is b2α, and the liquidation cost is b2α

2(= (b2α) ∗ α).
For instance, α = X̃T for cash settlement, and α = YT
for physical settlement. By the same argument as in
the previous subsection, this price spread corresponds
to the limit order book with a uniform density 1

2b2
.

Namely, the following equations hold.
∫ PT+2b2α

PT

1
2b2
dz =

α, 1
α

∫ PT+2b2α

PT
z 1
2b2
dz = PT + b2α.

Let ψ : R2 → R be a penalty function that represents
the liquidation cost of the underlying asset at maturity
as a function of PT and YT . For example, in the case
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of cash settlement, since the liquidation cost for X̃T of
the underlying asset is b2X̃

2
T = b2(YT − gx1

(T, PT ))
2 =

b2(Y
2
T − 2gx1

(T, PT )YT + gx1
(T, PT )

2), ψ is specified as

ψ(x1, x2) = b2(x
2
2 − 2gx1

(T, x1)x2 + gx1
(T, x1)

2), b2 > 0.
(7)

Similarly, in the case of physical settlement, since the
liquidation cost for YT of the underlying asset is b2Y

2
T ,

ψ becomes
ψ(x1, x2) = b2x

2
2, b2 > 0. (8)

2.4 Optimal trading problem for the hedger

Next, we introduce the optimal hedging problem for
the hedger. Let Rt be the mark-to-market value of the
hedger’s portfolio at t. Rt is defined as the sum of the
Bachelier price of the derivatives, the mid value of the
underlying asset position, and the cash position, that is,

Rt = g(t, Pt) + X̃tPt −
(
m0 + X̃0P0 +

∫ t

0

P̃ (θs)θsds

)
= g(t, Pt) + X̃tPt −m0 − X̃0P0 −

∫ t

0

Psθsds− η

∫ t

0

θ2sds.

(9)

Here,m0 and X̃0P0 represent the payment of the deriva-
tives premium and the initial exchange value of the un-

derlying asset, respectively.
∫ t

0
P̃ (θs)θsds in the first line

stands for the accumulated loss/gain from the trading
of the underlying asset until time t.

First note that by (1),
dPt = ϵθtdt+ σdWt. (10)

Applying Ito’s formula to (6) and (9) with (3), we have

dYt = θt(1 + ϵΓ(t, Pt))dt+ σ̃Γ(t, Pt)dW̃t, (11)

dRt = YtdPt + δPtσΓ(t, Pt)dW
⊥
t − ηθ2t dt, (12)

where σ̃ =
√
1 + δ2σ, W̃t =

1√
1+δ2

(Wt + δW⊥
t ).

Then, we formulate the optimal hedging problem for
the hedger. Let λ ≥ 0 be a risk aversion parameter of the
hedger. We suppose that the hedger aims to maximize

E [RT − ψ(PT , YT )− λ⟨R⟩T ] , (13)
which is the expectation of the mark-to-market value
RT less the liquidation cost at maturity ψ(PT , YT )
and the quadratic variation multiplied by the risk
aversion parameter, λ⟨R⟩T , by choosing an opti-
mal speed of order placement θt (0 ≤ t ≤ T ).
Here, ⟨R⟩T is the quadratic variation of RT : ⟨R⟩T =∫ T

0

(
σ2Y 2

s + δ2σ2P 2
s Γ

2(s, Ps)
)
ds. When λ = 0, the ob-

jective function (13) is the expectation of the cash re-
maining after the maturity, and the hedger is considered
to be risk-neutral. When λ > 0, the additional term
−λ⟨R⟩T in the expectation indicates that the hedger is
risk averse and he/she does not like the fluctuation of
the mark-to-market value of the portfolio.

Remark 3 By definition (e.g. Chapter 1.5. in Karatzas
and Shreve [10]), d⟨R⟩t is intuitively interpreted as

(dRt)
2 and E[⟨R⟩T ] =

∫ T

0
E[(dRt)

2] is considered to be
an accumulation of the expected instantaneous second
order variation (i.e. instantaneous variance) of Rt. In
our objective function E[RT − ψ(PT , YT ) − λ⟨R⟩T ], the
hedger tries to keep E[(dRt)

2] low, which measures a
fluctuation of the mark-to-market value of his/her port-
folio, at the same time maximizing the expected mark-
to-market value of the portfolio less the liquidation cost
at maturity.

Note that by (12), we have
E [RT − ψ(PT , YT )− λ⟨R⟩T ] (14)

= −m0 + g(0, P0)−E

[∫ T

0

L(s, Ps, Ys, θs)ds+ ψ(PT , YT )

]
,

where
L(t, x1, x2, θ) = ηθ2 − ϵx2θ + λ

(
σ2x22 + δ2σ2x21Γ(t, x1)

2
)
.

Note that the highest premium m0 such that the objec-
tive function is nonnegative becomes

g(0, P0)−E

[∫ T

0

L(s, Ps, Ys, θs)ds+ ψ(PT , YT )

]
,

where g(0, P0) is the Bachelier price of the derivatives.

Hence, E
[∫ T

0
L(s, Ps, Ys, θs)ds+ ψ(PT , YT )

]
can be in-

terpreted as the hedging cost of the derivatives under
the existence of the market impact.

Let f(t, x1, θ) =

(
ϵ

(1 + ϵΓ(t, x1))

)
θ ,

σ(t, x1) =

(
σ 0

σΓ(t, x1) δσΓ(t, x1)

)
.

Then, the optimal hedging problem is rewritten as the
following minimization problem, where the hedger aims
to minimize the expectation of the slippage cost together
with the small market impact, the liquidation cost of the
underlying asset at maturity, and the rescaled quadratic
variation.

inf
θ∈V

E

[∫ T

0

L(s, Ps, Ys, θs)ds+ ψ(PT , YT )

]
, (15)

subject to(
dPs

dYs

)
= f(s, Ps, θs)ds+ σ(s, Ps)

(
dWs

dW⊥
s

)
,

where V is the set of all admissible controls. Note that
this is a generalized form of a linear-quadratic control
problem. As a special case, when Γ is a constant and ψ
is (7) or (8) with a quadratic form of x1 and x2 (e.g. the
variance option in Case 1 where gx1

(t, x1) = γ(x1−K)),
it becomes a linear-quadratic control, and it is reduced
to solving a system of ODEs (see Theorem 6.6 in Hanson
[8], for instance).

Here, for given (t, x1, x2), we define an admissible feed-
back control as a map θ : [0, T ] × R2 → U , U ⊂ R
satisfying the following.

(1) There exists a two dimensional Brownian Motion
(W,W⊥) such that a solution (Ys, Ps), t ≤ s ≤ T of
the following SDE exists uniquely in law. Namely,
a unique weak solution exists for(
dPs

dYs

)
= f (s, Ps, θ(s, Ps, Ys)) ds+ σ(s, Ps)

(
dWs

dW⊥
s

)
,

(Pt, Yt) = (x1, x2). (16)

(2) For any k > 0,E(t,x1,x2)
[
|(Ps, Ys)|k

]
is bounded for

t ≤ s ≤ T , and E(t,x1,x2)
[∫ T

t
|θ(s, Ps, Ys)|kds

]
<

∞.

Next, let us introduce the following HJB equation cor-
responding to the minimization problem (15): For u :
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[0, T ]×R2 → R,

0 = ut +
1

2
σ2ux1x1

+ σ2Γ(t, x1)ux1x2

+
1

2
σ̃2Γ(t, x1)

2ux2x2 + λσ2(x22 + δ2x21Γ(t, x1)
2)

+ inf
θ∈U

[
{(1 + ϵΓ(t, x1))ux2

+ ϵux1
− ϵx2} θ + ηθ2

]
,

u(T, x1, x2) = ψ(x1, x2). (17)

Then, let θ∗(t, x1, x2) = − 1
2η ((1+ϵΓ(t, x1))ux2(t, x1, x2)

+ϵux1(t, x1, x2) − ϵx2). When U = R, ”inf” is attained
at θ∗ and then, (17) is rewritten as the semilinear PDE
below with explicit dependence on ϵ:

0 = u
(ϵ)
t +

1

2
σ2u(ϵ)x1,x1

+ σ2Γ(t, x1)u
(ϵ)
x1,x2

+
1

2
σ̃2Γ(t1, x1)

2u(ϵ)x2,x2
+ λσ2(x22 + δ2x21Γ(t, x1)

2)

− 1

4η
[(1 + ϵΓ(t, x1))u

(ϵ)
x2

+ ϵu(ϵ)x1
− ϵx2]

2,

u(ϵ)(T, x1, x2) = ψ(x1, x2). (18)

Particularly, as for variance options with physical and
cash settlements, the PDEs become the ones correspond-
ing to linear-quadratic cases. For instance, as seen in
Example 1 in Section 5, this is solved explicitly for a
variance option in physical settlement.

In other cases such as Example 2 in Section 5, let us as-
sume the existence of a classical solution u(ϵ)(t, x1, x2)
of (18) with admissibility of θ∗. Then, θ∗ becomes the
solution of the optimal trading problem (15), since a ver-
ification theorem holds. (For a verification theorem and
sufficient conditions of the existence of a classical solu-
tion, see Theorem VI.4.1 and Theorem VI.6.2 in Flem-
ing and Rishel [5], respectively for instance.)

3 Asymptotic expansion of the semilinear PDE

In this section, we consider the first order expansion
of the classical solution of (18), the Cauchy problem of
the second order semilinear PDE of parabolic type, by
asymptotic expansion. Let b0 and b1 be functions of class
C2(R) satisfying a polynomial growth and the Lipschitz
condition, respectively. We assume that b′0, b

′
1, and b′′1

satisfy a polynomial growth condition.

In particular, we set the penalty function ψ in (18) as

ψ(x1, x2) = b2x
2
2 + b1(x1)x2 + b0(x1), b2 > 0. (19)

We consider the following asymptotic expansion of u(ϵ)

with respect to ϵ around ϵ = 0 up to the first order

u(0) + ϵu(1,0), (20)

where u(0) and u(1,0) are defined by the following PDEs.

• zeroth order:

0 = u
(0)
t +

1

2
σ2u(0)x1,x1

+ σ2Γ(t, x1)u
(0)
x1,x2

+
1

2
σ̃2Γ(t1, x1)

2u(0)x2,x2
+ λσ2(x22 + δ2x21Γ(t, x1)

2)

− 1

4η
u(0)2x2

, u(0)(T, x1, x2) = b2x
2
2 + b1(x1)x2 + b0(x1).

(21)
• first order:

0 = u
(1,0)
t +

1

2
σ2u(1,0)x1,x1

+ σ2Γ(t, x1)u
(1,0)
x1,x2

+
1

2
σ̃2Γ(t, x1)

2u(1,0)x2,x2
− 1

2η
u(0)x2

u(1,0)x2
(22)

− 1

2η
u(0)x2

[Γ(t, x1)u
(0)
x2

+ u(0)x1
− x2], u

(1,0)(T, x1, x2) = 0.

Here, the solution of the semilinear PDE (21) has an
explicit form (29) as we will observe in Section 4.1. Ex-
istence of a unique solution of the PDE (22) with poly-
nomial growth follows from Remark 5.7.8 in Karatzas

and Shreve [10] if u
(0)
x2 is 0 or bounded, which is satis-

fied in the case of any option in physical settlement or
the call option with smooth modification in Case 2 in
cash settlement. We will also observe the Feynman-Kac
representation of u(1,0) (37) in Section 4.2.

For ϵ′ ∈ (0, ϵ], the first and second order remainders of

the expansion w(ϵ′), v(ϵ
′) are defined as follows: w(ϵ′) ≡

1
ϵ′ (u

(ϵ′) −u(0)) , and v(ϵ
′) ≡ 1

ϵ′2 (u
(ϵ′) −u(0) − ϵ′u(1,0)). It

follows that v(ϵ
′) satisfies the following PDE,

0 = v
(ϵ′)
t +

1

2
σ2v(ϵ

′)
x1,x1

+ σ2Γ(t, x1)v
(ϵ′)
x1,x2

+
1

2
σ̃2Γ(t, x1)

2v(ϵ
′)

x2,x2

− 1

2η
{(1 + ϵ′Γ(t, x1))(u

(0)
x2

+ ϵ′u(1,0)x2
) + ϵ′(u(0)x1

+ ϵ′u(1,0)x1
)− ϵ′x2}

· ((1 + ϵ′Γ(t, x1))v
(ϵ′)
x2

+ ϵ′v(ϵ
′)

x1
) + h(ϵ

′)(t, x1, x2),

v(ϵ
′)(T, x1, x2) = 0, (23)

where
h(ϵ

′)(t, x1, x2)

= − 1

4η
(Γ(t, x1)u

(0)
x2

+ u(1,0)x2
+ u(0)x1

− x2)
2

− ϵ′2
1

4η
(Γ(t, x1)u

(1,0)
x2

+ u(1,0)x1
)2

− ϵ′
1

2η
(Γ(t, x1)u

(1,0)
x2

+ u(1,0)x1
)

· (Γ(t, x1)u(0)x2
+ u(1,0)x2

+ u(0)x1
− x2)

− 1

2η
u(0)x2

(Γ(t, x1)u
(1,0)
x2

+ u(1,0)x1
)

− 1

4η
{(w(ϵ′)

x2
− u(1,0)x2

) + Γ(t, x1)(u
(ϵ′)
x2

− u(0)x2
− ϵ′u(1,0)x2

)

+ (u(ϵ
′)

x1
− u(0)x1

− ϵ′u(1,0)x1
)}2. (24)

In order to obtain an error estimate of (20), we consider

the Feynman-Kac representation of v(ϵ
′).

For ϵ′ ∈ (0, ϵ], let α(ϵ′)(t, x1, x2) = − 1
2η{(1 +

ϵ′Γ(t, x1))(u
(0)
x2 + ϵ′u

(1,0)
x2 )

+ ϵ′(u
(0)
x1 + ϵ′u

(1,0)
x1 )− ϵ′x2} ·

(
ϵ′

1 + ϵ′Γ(t, x1)

)
.

We assume the following.

Assumption 2 There exists a constant LT > 0 such
that for all ϵ′ ∈ (0, ϵ], t ∈ [0, T ], and x ∈ R2,

∥α(ϵ′)(t,x)− α(ϵ′)(t,x′)∥ ≤ LT ∥x− x′∥, (25)

∥α(ϵ′)(t,x)∥2 ≤ LT (∥x∥2 + 1), (26)
where x = (x1, x2) and x′ = (x′1, x

′
2).

Assumption 3 The following term satisfies a polyno-
mial growth condition uniformly on ϵ′ ∈ (0, ϵ]. That is,
there exists D > 0 and k ∈ N such that for all ϵ′ ∈ (0, ϵ],
t ∈ [0, T ], and x ∈ R2,

|h(ϵ
′)(t,x)| ≤ D(1 + |x|k). (27)

Note that σ(t, x1) satisfies the Lipschitz and linear
growth condition and Assumption 1. From Assumptions
2 and 3, and Theorem 5.7.6 in Karatzas and Shreve [10],
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v(ϵ
′) has a Feynman-Kac representation,

v(ϵ
′)(t,x) = E(t,x)

[∫ T

t

h(ϵ
′)(s,Xs)ds

]
, (28)

where Xt = (X1,t, X2,t),(
dX1,t

dX2,t

)
= α(ϵ′)(t,X1,t, X2,t)dt+ σ(t,X1,t)

(
dW1,t

dW2,t

)
,

and the following estimation holds.

Theorem 1 Under Assumption 2 and 3, there exists

C > 0 and k ∈ N such that
∣∣∣v(ϵ′)(t,x)∣∣∣ < C(1 + |x|2k),

for all ϵ′ ∈ (0, ϵ], t ∈ [0, T ], and x ∈ R2

Proof.
∣∣∣v(ϵ′)(t,x)∣∣∣ =

∣∣∣E(t,x)
[∫ T

t
h(ϵ

′)(s,Xs)ds
]∣∣∣ ≤

E(t,x)
[∫ T

t
D(1 + |Xs|2k)ds

]
≤ DC2k,T (1+|x|2k)(T−t).

In the last inequality, we have used the moment estima-
tion result on a solution of SDEs. (e.g. Theorem V.4.2
in Fleming and Rishel [5].) 2

Remark 4 Theorem 1 shows that for ϵ′ ∈ (0, ϵ], the
remainder of the first order expansion (n = 1) is O(ϵ′2),
that is,

lim sup
ϵ′↓0

|u(ϵ′) − u(0) − u(1,0)|
ϵ′2

<∞.

4 Computation of coefficients in the expansion

This section calculates the zeroth and the first order
coefficient of the expansion in (21) and (22).

4.1 u(0)(t, x1, x2)

We assume that u(0), a solution of the semilinear PDE
(21), has the following expression, that is, in fact the
unique solution:

u(0)(t, x1, x2) = B2(t)x
2
2 +B1(t, x1)x2 +B0(t, x1),

u(0)(T, x1, x2) = b2x
2
2 + b1(x1)x2 + b0(x1), b2 > 0,

(29)
where B2, B1 and B0 are unique solutions of the follow-
ing system of ODE and PDEs

0 = B′
2(t)−

1

η
B2

2(t) + λσ2, B2(T ) = b2, (30)

−B1,t(t, x1) +
1

η
B2(t)B1(t, x1) = +

1

2
σ2B1,x1x1

(t, x1),

B1(T, x1) = b1(x1), (31)

−B0,t(t, x1) = +
1

2
σ2B0,x1x1(t, x1) + f(t, x1),

B0(T, x1) = b0(x1), (32)

where f(t, x1) = σ2Γ(t, x1)B1,x1
(t, x1)+σ̃

2Γ(t, x1)
2B2(t)−

1
4ηB1(t, x1)

2 + δ2λσ2x21Γ(t, x1)
2. Note that the ODE

(30) is a Riccati type and has the unique solution
B2(t) = (33)

√
λησ2 tanh

(
− 1

2 log
1−h0

1+h0
+
√

λσ2

η (T − t)
)
,

if 0 < b2 <
√
λησ2,√

λησ2, if b2 =
√
λησ2,√

λησ2 coth
(
− 1

2 log
h0−1
h0+1 +

√
λσ2

η (T − t)
)
,

if
√
λησ2 < b2,

where h0 = b2√
λησ2

.

Note that the PDEs (31) and (32) have a unique solution

with Feynman-Kac representation as follows.

Since B2(t) is bounded from above and below and b1
satisfies a polynomial growth condition, by Remark 5.7.8
in Karatzas and Shreve [10], the PDE (31) has a solution
of class C1,2 with polynomial growth. Then by Theorem
4.4.2 in Karatzas and Shreve [10], B1 has a Feynman-
Kac representation.

For the PDE (32), the nonhomogeneous term f(t, x1) is
locally Hölder continuous uniformly in t, which follows
from the fact that the first order derivative with respect
to x1 is bounded uniformly in t on any compact subset of
R. This point as well as the polynomial growth condition
on f(t, x1) can be checked by (34) below, Assumption 1
and the linear/polynomial growth condition on b1, b

′
1 and

b′′1 . Then by Remark 5.7.8 in Karatzas and Shreve [10],
the PDE (32) has a solution of classC1,2 with polynomial
growth and B0 also has a Feynman-Kac representation.

First, for B1, B1,x1
and B1,x1x1

,

B1(t, x1) = e
−
∫ T

t

1
ηB2(s)dsE [b1(x1 + σWT−t)] , (34)

B1,x1
(t, x1) = e

−
∫ T

t

1
ηB2(s)dsE

[
b
′

1(x1 + σWT−t)
]
,

B1,x1x1(t, x1) = e
−
∫ T

t

1
ηB2(s)dsE

[
b
′′

1 (x1 + σWT−t)
]
.

By (33), it follows that

e
−
∫ T

t

1
ηB2(s)ds

=



cosh
(
− 1

2 log
1−h0
1+h0

)
cosh

(
− 1

2 log
1−h0
1+h0

+
√

λσ2

η (T−t)

) , if 0 < b2 <
√
λησ2,

exp(−
√

λσ2

η (T − t)), if b2 =
√
λησ2,

sinh
(
− 1

2 log
h0−1

h0+1

)
sinh

(
− 1

2 log
h0−1

h0+1+
√

λσ2

η (T−t)

) , if√λησ2 < b2.

Next, as for B0,

B0(t, x1) = E

[
b0(x1 + σWT−t) (35)

+

∫ T

t

(
σ2Γ(s, x1 + σWs−t)B1,x1

(s, x1 + σWs−t)

+ σ̃2Γ(s, x1 + σWs−t)
2B2(s)−

1

4η
B1(s, x1 + σWs−t)

2

+ δ2λσ2(x1 + σWs−t)
2Γ(s, x1 + σWs−t)

2

)
ds

]
.

Then B0,x1
is given by

B0,x1(t, x1) = E

[
b
′

0(x1 + σWT−t)

+

∫ T

t

(
σ2
{
Γx1(s, x1 + σWs−t)B1,x1(s, x1 + σWs−t)

+ Γ(s, x1 + σWs−t)B1,x1x1
(s, x1 + σWs−t)

}
+ 2σ̃2Γ(s, x1 + σWs−t)Γx1

(s, x1 + σWs−t)B2(s)

− 1

2η
B1(s, x1 + σWs−t)B1,x1(s, x1 + σWs−t)

+ 2δ2λσ2(x1 + σWs−t)Γ
2(s, x1 + σWs−t)

+ 2δ2λσ2(x1 + σWs−t)
2

· Γ(s, x1 + σWs−t)Γx1(s, x1 + σWs−t)

)
ds

]
. (36)
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4.2 u(1,0)(t, x1, x2)

Finally, since the Lipschitz & linear growth condition

hold for u
(0)
x2 because of (29),(34) and the Lipschitz con-

dition on b1, by Theorem 5.7.6 in Karatzas and Shreve
[10], u(1,0) has the following Feynman-Kac representa-
tion.

u(1,0)(t, x1, x2) = E(t,x1,x2)

[∫ T

t

− 1

2η
u(0)x2

(s,X1,s, X2,s)

·
{
Γ(s,X1,s)u

(0)
x2

(s,X1,s, X2,s) + u(0)x1
(s,X1,s, X2,s)

−X2,s

}
ds

]
, (37)

where dX1,s = σdW1,s, dX2,s = σΓ(s,X1,s)(dW1,s +

δdW2,s)− 1
2ηu

(0)
x2 (s,X1,s, X2,s)ds.

Note that by (29), u(0)(t, x1, x2) = B2(t)x
2
2+B1(t, x1)x2+

B0(t, x1), u
(0)
x2 (t, x1, x2) = 2B2(t)x2 + B1(t, x1), and

u
(0)
x1 (t, x1, x2) = B1,x1

(t, x1)x2 + B0,x1
(t, x1), where

B2, B1, B1,x1
, B0 andB0,x1

are calculated in Section 4.1.

4.3 Derivatives pricing and optimal hedging strategy

Taking the objective function for maximization (14) into
consideration, we define a derivatives price as the largest
m satisfying the following inequality for some threshold
K̃ ≥ 0, g(0, P0)−m−u(0, P0, Y0) ≥ K̃, that is, g(0, P0)−
u(0, P0, Y0) − K̃. In other words, the derivatives price
for the buyer is the highest premium which the trader
is willing to pay in order to make profit K̃. Conversely,
the derivatives price for the seller is the lowest premium
which the trader is willing to receive to gain K̃. Note
that by (6), Y0 = 0 (i.e. X̃0 = −gx1

(t, P0)) when there
is an initial delta exchange with the counter party, and
Y0 = gx1

(t, P0) (i.e. X̃0 = 0) when there is no initial
exchange.

We also note that the hedging cost we mentioned in Sec-
tion 2.4 corresponds to u(0, P0, Y0) when K̃ = 0. Here-
after, we consider the derivatives price and the hedging
cost when K̃ = 0.

5 Examples

This section presents examples of the hedging cost u(ϵ)

in (18) with δ = 0 for the variance option in Case 1, and
the asymptotic expansion in (20) for the European call
option corresponding to Case 2 in physical settlement
with allowing δ ̸= 0. The asymptotic expansion for the
European call option in cash settlement and the variance
option in physical settlement are given in Appendices A
and B, respectively.

Example 1. As for the payoff h(x1) =
1
2γx

2
1 + c1x1 +

c0 in Case 1 for the physical settlement where b2 > 0,
b1 = b0 = 0 with δ = 0, u(t, x1, x2) in (18) is solved
explicitly as follows. We assume that ϵγ ̸= −1. Let h0 =
(2+2γϵ)b2−ϵ

2
√

λησ2
.

u(ϵ)(t, x1, x2) = A
(ϵ)
2 (T − t)x22 +A

(ϵ)
0 (T − t), (38)

A
(ϵ)
2 (t′) =

1
2+2γϵ

{
2
√
λησ2 tanh

(
− 1

2 log
1−h0

1+h0
+
√

(2+2γϵ)2λσ2

4η t′
)

+ϵ

}
, if − 1 < h0 < 1,

1
2+2γϵ (2

√
λησ2 + ϵ), if h0 = 1,

1
2+2γϵ

{
2
√
λησ2 coth

(
− 1

2 log
h0−1
h0+1 +

√
(2+2γϵ)2λσ2

4η t′
)

+ϵ

}
, if h0 > 1,

A
(ϵ)
0 (t′) =

4γ2σ2η
(2+2γϵ)2 log

cosh

(
− 1

2 log
1−h0
1+h0

+

√
(2+2γϵ)2λσ2

4η t′

)
cosh
(
− 1

2 log
1−h0
1+h0

) + γ2σ2ϵ
(2+2γϵ) t

′,

if − 1 < h0 < 1,
γ2σ2

2+2γϵ (2
√
λησ2 + ϵ)t′, if h0 = 1,

4γ2σ2η
(2+2γϵ)2 log

sinh

(
− 1

2 log
h0−1

h0+1+

√
(2+2γϵ)2λσ2

4η t′

)
sinh
(
− 1

2 log
h0−1

h0+1

) + γ2σ2ϵ
(2+2γϵ) t

′,

if h0 > 1.

Example 2. In physical settlement of a call option,
where b2 > 0, b1 = b0 = 0 and h(x1) = (x1 −K)+, for
fixed 0 ≤ t ≤ T , we have B1 = B1,x1 = B1,x1x1 = 0,

g(0, x1) = σ
√
T−t√
2π

e
− (x1−K)2

2σ2(T−t) + (x1 − K)N
(

x1−K
σ
√
T−t

)
,

Γ(s, x1) =
1√

2πσ2(T−s)
e
− (x1−K)2

2σ2(T−s) , t ≤ ∀s < T .

It follows thatE
[
Γ2(s, x1 + σWs−t)

]
= 1

2πσ2
√
T−s

√
T+s−2t

exp
(
− (x1−K)2

σ2(T+s−2t)

)
,E
[
(x1 + σWs−t)

2Γ2(s, x1 + σWs−t)
]

= 1
2πσ2

√
T−s

√
T+s−2t

exp
(
− (x1−K)2

σ2(T+s−2t)

) {
σ2(s−t)(T−s)

T+s−2t

+
(
x1 − 2(x1−K)(s−t)

T+s−2t

)2}
. By (35), we have

B0(t, x1)

=

∫ T

t

1

2πσ2
√
T − s

√
T + s− 2t

exp

(
− (x1 −K)2

σ2(T + s− 2t)

)
×

[
σ̃2B2(s) + δ2λσ2

{
σ2(s− t)(T − s)

T + s− 2t

+

(
x1 −

2(x1 −K)(s− t)

T + s− 2t

)2}]
ds, (39)

where B2(t) is given as (33) in Section 4.1.
B0,x1(t, x1)

=

∫ T

t

− (x1 −K)

πσ4
√
T − s(

√
T + s− 2t)3

exp

(
− (x1 −K)2

σ2(T + s− 2t)

)
×

[
σ̃2B2(s) + δ2λσ2

{
σ2(s− t)(T − s)

T + s− 2t

+

(
x1 −

2(x1 −K)(s− t)

T + s− 2t

)2}]
ds

+

∫ T

t

δ2λ
√
T − s

π(
√
T + s− 2t)3

(
x1 −

2(x1 −K)(s− t)

T + s− 2t

)
· exp

(
− (x1 −K)2

σ2(T + s− 2t)

)
ds. (40)
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Note that u(0)(t, x1, x2) = B2(t)x
2
2 + B0(t, x1),

u
(0)
x2 (t, x1, x2) = 2B2(t)x2, u

(0)
x1 (t, x1, x2) = B0,x1

(t, x1).
Then, we have

u(1,0)(t, x1, x2) (41)

= E(t,x1,x2)

[∫ T

t

−1

η
B2(s)X2,s

· {Γ(s,X1,s)2B2(s)X2,s +B0,x1(s,X1,s)−X2,s}ds

]
,

where X1,s = x1 + σ
∫ s

t
dW1,v,

X2,s = x2 +
∫ s

t
σΓ(v,X1,v)(dW1,v + δdW2,v) −∫ s

t
1
ηB2(v)X2,vdv.

6 Numerical experiments

In this section, we show numerical examples of the
derivatives prices in Section 5, namely, the prices for the
variance option and the European call option in physical
settlement.

Firstly, after Section 6.1 explains the set up of the pa-
rameters in the numerical examples, Section 6.2 presents
the first and the second order error of the asymptotic ex-
pansion for the variance option in physical settlement by
comparing with the exact solution derived in Example 1
of Section 5. Then, Section 6.3 estimates the first order
error for the European call option from that for the vari-
ance option which replicates the European call option.
We take this approach since it is hard to numerically
solve the semilinear PDE (18) directly and properly. 1

Finally, Section 6.4 presents comparative statics in
terms of η, λ, T, σ, and δ for the variance option and the
European call option in physical settlement. Hereafter,
we denote u(0) by u0 and u(1,0) by u1.

6.1 Parameters in the numerical experiments

In the numerical examples, we use the following param-
eters as default. P0 = 1.00, σ = 0.20, δ = 0, t = 0,
T = 0.50, x1 = 1.00, K = 1.00, x2 = 0, ϵ = 0.10,
λ = 10, η = 1.60 ∗ 10−5, and b2 = 0.05. We also set
one year as the unit of time. Then, we consider the fol-
lowing two types of derivatives payoffs: Variance option
(PT − K)2 and European call option (PT − K)+. For
example, suppose that one unit of the notional for the
underlying asset is 100 million and all the prices are ex-
pressed in USD. Then, the payouts are USD 4 million
for the variance option and USD 20 million for the Euro-
pean call option when PT = 1.20. Also, they are USD 4
million for the variance option and nil for the European
call option when PT = 0.80. We determine the levels of
the default parameters as follows.

• Volatility: We set σ = 0.20 so that the instantaneous
standard deviation of the price process at t = 0 cor-
responds to 20% of the volatility of the log-normal
model (since P0 = 1.00 in our case).

• Market impact parameter: First note that the perma-

nent market impact is ϵ
∫ t

0
θsds in Pt as in (1). Suppose

that the hedger trades one unit of the underlying asset

1 For instance, to the best of our knowledge, Monte Carlo
methods for solving a corresponding quadratic backward
stochastic differential equations (BSDEs) with unbounded
terminals has not yet been sufficiently developed for our pur-
pose.

by t and its permanent market impact is 0.10, which
is 10% of P0. Then ϵ = 0.10, since 0.10 = ϵ ∗ 1.00.

• Slippage on the price: The slippage on the price at t is
ηθt as in (2), where θt is the speed of order placement,
the number of units of orders the hedger submits in
a unit of time. For example, suppose that the hedger
submits 0.1 units of buying orders for the underlying
asset in one hour, which is 1.6∗10−4 years and the price
slippage is 0.01. Then 0.01 = η ∗ 0.10/(1.60 ∗ 10−4),
and η = 1.60 ∗ 10−5.

• Liquidation cost at maturity: When the hedger liqui-
dates α units of the underlying asset at maturity im-
mediately, the price spread for the liquidation is b2α
as in (8). Suppose that the third party charges 0.05 of
the price spread when undertaking one unit of the un-
derlying asset from the hedger. In this case, since b2
is the liquidation cost per unit of notional, b2 = 0.05.

• Slippage on the execution volume: The execution slip-
page at time t is δσΓ(t, Pt)dW

⊥
t as in (4). δσΓ(t, Pt),

the coefficient of dW⊥
t , is δ times of σΓ(t, Pt), which

corresponds to the coefficient of dWt for the delta
rebalancing amount σΓ(t, Pt)dWt in the Bachelier
model. When considering the slippage in the numeri-
cal example, we set δ = 0.01, for example.

6.2 Asymptotic expansion error for variance option

In relation to the error estimate of the first order asymp-
totic expansion in Section 3, we present the first order
error of the asymptotic expansion numerically in the
case of the variance option. Table 1 shows the values
of u(ϵ) and u0 + ϵu1 for the variance option when ϵ =
0.01, 0.05, 0.10, and 0.20. We observe that the first order
errors are 1%, 9%, and 19% of u(ϵ) for ϵ = 0.01, 0.05,
and 0.10, when the proportions of u(ϵ) to the Bache-
lier price are 3%, 10% and 18%, respectively. In other
words, the first order expansion accounts for 99%, 91%
and 81% of the exact hedging cost when it is 3%, 10%,
and 18% of the Bachelier price. We also note that the
first order error and the proportion of the hedging cost
to the Bachelier price become higher as ϵ increases. This
asymptotic method provides sufficient accuracy for prac-
tical use even when ϵ = 0.10, which is 7.5 times as high
as the one used in the example in Guéant and Pu [7] (i.e.
7.5 = 0.10/0.01333, see Section 7.1). Note that we set
b2 = 0.08 only for ϵ = 0.20 so that h0 > −1. This condi-

tion is necessary for A
(ϵ)
2 and A

(ϵ)
0 in (38) in Example 1

to be calculated.

Moreover, we have calculated the second order expan-
sion for the variance option based on the method in Ap-
pendix D. We observe that the second order expansion
presents better approximation results than the first or-
der expansion as expected.

ϵ Bachelier u(ϵ) u0 u1 u2 1st approx 2nd approx Error Error u(ϵ)/Bachelier

0.01 2.00E-02 5.96E-04 2.08E-04 3.96E-02 -1.58E-01 6.04E-04 5.96E-04 1% 0% 3%

0.05 2.00E-02 2.01E-03 2.08E-04 3.96E-02 -1.58E-01 2.19E-03 1.99E-03 9% -1% 10%

0.1 2.00E-02 3.50E-03 2.08E-04 3.96E-02 -1.58E-01 4.16E-03 3.38E-03 19% -4% 18%

0.2 2.00E-02 5.86E-03 2.10E-04 3.96E-02 -1.58E-01 8.12E-03 4.96E-03 39% -15% 29%

Table 1
Exact and approximation values of u(ϵ) for variance option,
1st approx = u0 + ϵu1, 2nd approx = u0 + ϵu1 +

1
2
ϵ2u2

6.3 Asymptotic Expansion error for Call option

Next, we estimate the first order error of the asymp-
totic expansion of u(ϵ) for the European call option by
approximating the payoff by a variance option h(x1) =
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1
2γx

2
1 + c1x1 + c0 in Example 1 in Section 5. We first

choose γ in the variance option in Example 1 so that u1
matches. Since u1 and u0 only include γ (do not either c1
or c0), u0 of the variance option does not coincide with
that of the European call option. We select c1 and c0 so
that the Bachelier price g(0, P0) (i.e. g(t, x1) in Section
2.2 with t = 0 and x1 = P0) and the Bachelier delta
gx1

(0, P0) of the variance option agree with those of the
European call option.

Tables 2, 3 and 4 show u0 + ϵu1 for the European call
option, and u(ϵ) and u0+ ϵu1 for its replicating variance
option for ϵ = 0.01, 0.05, and 0.10, respectively.

We estimate the first order errors of the European
call option as 2.85E-05, 6.36E-04, and 2.24E-03 for
ϵ = 0.01, 0.05 and 0.10, which are the correspond-
ing first order error u(ϵ) − (u0 + ϵu1) of the replicat-
ing variance option. Hence, the exact values of the
hedging cost for the European call option are also
estimated as 1.89E-03, 5.07E-03, and 8.20E-03 for
ϵ = 0.01, 0.05 and 0.10, which are the values of u0 + ϵu1
for the European call option plus the estimated errors
u(ϵ) − (u0 + ϵu1) from the replicating variance option.
Note that γ = 3.105, c1 = −2.605, and c0 = 1.078 in
these examples, and due to the large coefficient γ of the
variance option, the first order error in Table 4 is larger
than that in Table 1 when ϵ = 0.10.

Bachelier u(ϵ) u0 u1 u0 + ϵu1 Error u(ϵ)/Bachelier

European call 5.64E-02 9.67E-04 9.47E-02 1.91E-03

Variance 5.64E-02 1.42E-03 5.02E-04 9.47E-02 1.45E-03 2% 3%

Table 2
Error estimate of call by the variance option, ϵ = 0.01

Bachelier u(ϵ) u0 u1 u0 + ϵu1 Error u(ϵ)/Bachelier

European call 5.64E-02 9.67E-04 9.47E-02 5.70E-03

Variance 5.64E-02 4.60E-03 5.02E-04 9.47E-02 5.24E-03 14% 8%

Table 3
Error estimate of call by the variance option, ϵ = 0.05

Bachelier u(ϵ) u0 u1 u0 + ϵu1 Error u(ϵ)/Bachelier

European call 5.64E-02 9.67E-04 9.47E-02 1.04E-02

Variance 5.64E-02 7.73E-03 5.02E-04 9.47E-02 9.98E-03 29% 14%

Table 4
Error estimate of call by variance option, ϵ = 0.10

In these examples, as well as the numerical experiments
in Section 6.4, for the European call option, the numbers
of time steps and paths forMonte Carlo simulation for u1
in (41) are 10,000 and 1,000, respectively. The computa-
tion time is 10 seconds, and the 95% confidence interval
for u0 + ϵu1 is [1.82E-03, 2.01E-03], [5.21E-03, 6.19E-
03], and [9.46E-03, 1.14E-02] for ϵ = 0.01, 0.05 and 0.10.
Here, we used the following formula for the calculation
of the 95% confidence interval for Monte Carlo simula-

tion of u1.
[
a− 1.96b√

M
, a+ 1.96b√

M

]
, where a and b are the

mean and the standard deviation of the samples of the
random variable in the Monte Carlo simulation, respec-
tively, and M is the number of the samples in the sim-
ulation. The CPU used for this calculation is Intel Core
i7-3517U, 1.90GHz. Table 5 illustrates the convergence
of u1 as the number of time steps increases and the er-
rors from the case in which the number is 1,000,000. We
observe that the error is small enough when the number
of time steps is 10,000. Even with 1,000 time steps, the
approximation is useful when quick pricing is necessary
while very accurate prices are not required (e.g. when

we need to indicate prices for many customers in a short
time).

Number of time steps 1,000 10,000 100,000 1,000,000

u1 0.1102 0.0947 0.0904 0.0931

Error 18.33% 1.73% -2.93% 0.00%

Table 5
Convergence of u1 as # of time steps increases, ϵ = 0.10

The number of time steps for the calculation of B0 in
(39) is 15 with the double exponential formula for nu-
merical integration (see Takahashi and Mori [17] for in-
stance) , and we setB0,x1

≡ 0 in computation of integra-
tion in (41). Table 6 shows the values of u1 when we set
B0,x1

≡ 0 (without B0,x1
) or the number of time steps

in the integration in (40) increases. Here, we assume the
value when the number of time steps for B0,x1 is 100 as
the true value. We observe that the impact of B0,x1 on
u1 is negligible.

Number of time steps for B0,x1 Without B0,x1 10 100

u1 0.0947 0.0943 0.0942

Error 0.55% 0.08% 0.00%

Table 6
Convergence of u1 as # of time steps for B0,x1 increases

When higher accuracy with a narrower confidence in-
terval for the first order approximation is needed, we
can set greater numbers of the time steps and the paths
for Monte Carlo simulation (e.g. see Section 7.2 where
we observe 0.2448 (=2.1448 - 1.9000) for u0 + ϵu1 and
[0.2443, 0.2453] (= [2.1443 - 1.9000, 2.1453 - 1.9000]) for
its 95% confidence interval with 10,000 for the number
of time steps and 100,000 for the number of paths for
Monte Carlo simulation).

6.4 Comparative statics

Finally, we observe changes in the hedging cost for the
variance option and the European call option in physical
settlement when the level of the parameters varies.

Table 7 presents the values of u0+ϵu1 for the European
call options with K = 0.90, 1.00 and 1.10. We observe
that u0+ϵu1 takes the largest value for the at the money
strike option. This is because the hedging frequency of
the at the money strike option is high, which is caused
by the largest derivatives gamma due to the convexity
of the payoff.

K Bachelier u0 u1 u0 + ϵu1 (u0 + ϵu1)/Bachelier Confidence interval

0.90 1.20E-01 7.22E-04 6.88E-02 7.60E-03 6% [6.78E-03 , 8.42E-03]

1.00 5.64E-02 9.67E-04 9.47E-02 1.04E-02 19% [9.46E-03 , 1.14E-02]

1.10 2.00E-02 7.22E-04 6.50E-02 7.22E-03 36% [6.20E-03 , 8.25E-03]

Table 7
u0 + ϵu1 for call option with different strike levels, ϵ = 0.10

In the following, we consider the ATM case K = 1.00,
which is the at the money strike for both options, since it
has the largest hedging cost for the European call option.
(The results for the ITM and OTM cases are given in
Appendix C.) Tables 8-11 present the levels of u(ϵ) for
the variance options when η, λ, T , or σ varies, and Tables
12-16 show those of u0+ϵu1 for the European call option
when η, λ, T, σ or δ changes.

Tables 8 and 9 indicate that the hedging cost increases
when the parameter η or λ increases for the variance
option. Tables 12, 13, and 16 also show that the hedging

10



cost increases when the parameter η, λ, or δ increases
for the European call option. This implies that when
the price slippage of the underlying asset, degree of the
risk aversion, or uncertainty on the execution volume
increases, the hedging cost becomes large, which agrees
with the intuition.

Tables 14 and 15 describe that the ratio of the hedging
cost to the Bachelier price decreases in the case of the
European call option if T or σ increases, while it is un-
changed in the case of the variance option as in Tables
10 and 11. Since the underlying asset price near the ma-
turity is likely to be away from the strike level when T or
σ is high, which leads to less frequent rehedging in the
case of the European call option. Note that the ratio is
unchanged in the case of the variance option, since the
frequency of rehedging does not depend on the time to
maturity or the price level of the underlying asset due
to the constant gamma.

• Variance option

η Bachelier u(ϵ) u(ϵ)/Bachelier

1.60E-05 2.00E-02 3.50E-03 18%

1.60E-04 2.00E-02 3.87E-03 19%

1.60E-03 2.00E-02 4.96E-03 25%

Table 8
Comparative statics for vari-
ance option for a buyer, η

η Bachelier u(ϵ) u(ϵ)/Bachelier

1.60E-05 2.00E-02 3.50E-03 18%

1.60E-04 2.00E-02 3.87E-03 19%

1.60E-03 2.00E-02 4.96E-03 25%

Table 9
Comparative statics for vari-
ance option for a buyer, λ

T Bachelier u(ϵ) u(ϵ)/Bachelier

0.125 5.00E-03 8.77E-04 18%

0.25 1.00E-02 1.75E-03 18%

0.5 2.00E-02 3.50E-03 18%

Table 10
Comparative statics for vari-
ance option for a buyer, T

σ Bachelier u(ϵ) u(ϵ)/Bachelier

0.20 2.00E-02 3.50E-03 18%

0.30 4.50E-02 8.07E-03 18%

0.40 8.00E-02 1.47E-02 18%

Table 11
Comparative statics for vari-
ance option for a buyer, σ

• European call option

η Bachelier u0 u1 u0 + ϵu1 (u0 + ϵu1)/Bachelier Confidence interval

1.60E-05 5.64E-02 9.67E-04 9.47E-02 1.04E-02 19% [9.46E-03, 1.14E-02]

1.60E-04 5.64E-02 2.78E-03 8.11E-02 1.09E-02 19% [1.03E-02, 1.14E-02]

1.60E-03 5.64E-02 7.43E-03 5.86E-02 1.33E-02 24% [1.30E-02, 1.36E-02]

Table 12
Comparative statics for call option for a buyer, η

λ Bachelier u0 u1 u0 + ϵu1 (u0 + ϵu1)/Bachelier Confidence interval

10 5.64E-02 9.67E-04 9.47E-02 1.04E-02 19% [9.46E-03 , 1.14E-02]

100 5.64E-02 2.25E-03 8.91E-02 1.12E-02 20% [1.02E-02 , 1.21E-02]

1,000 5.64E-02 6.44E-03 5.89E-02 1.23E-02 22% [1.12E-02 , 1.34E-02]

Table 13
Comparative statics for call option for a buyer, λ

T Bachelier u0 u1 u0 + ϵu1 (u0 + ϵu1)/Bachelier Confidence interval

0.125 2.82E-02 1.30E-03 5.83E-02 7.13E-03 25% [5.77E-03 , 8.49E-03]

0.25 3.99E-02 1.11E-03 7.99E-02 9.09E-03 23% [7.97E-03 , 1.02E-02]

0.5 5.64E-02 9.67E-04 9.47E-02 1.04E-02 19% [9.46E-03 , 1.14E-02]

Table 14
Comparative statics for call option for a buyer, T

σ Bachelier u0 u1 u0 + ϵu1 (u0 + ϵu1)/Bachelier Confidence interval

0.20 5.64E-02 9.67E-04 9.47E-02 1.04E-02 19% [9.46E-03 , 1.14E-02]

0.30 8.46E-02 1.26E-03 1.03E-01 1.16E-02 14% [1.09E-02 , 1.23E-02]

0.40 1.13E-01 1.55E-03 1.07E-01 1.23E-02 11% [1.17E-02 , 1.29E-02]

Table 15
Comparative statics for call option for a buyer, σ

δ Bachelier u0 u1 u0 + ϵu1 (u0 + ϵu1)/Bachelier Confidence interval

0.00 5.64E-02 9.67E-04 9.47E-02 1.04E-02 19% [9.46E-03 , 1.14E-02]

0.01 5.64E-02 1.22E-03 9.49E-02 1.07E-02 19% [9.73E-03 , 1.17E-02]

0.10 5.64E-02 2.60E-02 9.68E-02 3.57E-02 63% [3.48E-02 , 3.66E-02]

Table 16
Comparative statics for call option for a buyer, δ

7 Comparison with Guéant and Pu [7]

Guéant and Pu [7] deal with indifference pricing for
a hedger with an exponential utility on the mark-to-
market value of the hedging portfolio at maturity. The
model also assumes that the mid price is a Gaussian pro-
cess with the permanent impact, which is the same as our
(1), and the price slippage which is a power function of
the speed of order placement. Guéant and Pu [7] show a
single example of a European call option price for a seller
when market impact exists by solving a HJB equation
numerically by a finite difference method. An advantage
of our model over the one in Guéant and Pu [7] is that the
risk neutral price is also obtained by letting λ to 0, since
our objective function is separable into the risk neutral
part and the risk aversion part which is the expectation
of the quadratic variation of the mark-to-market for the
portfolio. Moreover, the derivatives prices in our model
are computed more easily by the asymptotic expansion.

In the following, we calculate a European option price
for a seller using comparable parameters with the nu-
merical example in Guéant and Pu [7].

7.1 Parameters

First, we set the parameters in our model to compare
with the numerical example in Guéant and Pu [7] as
follows. σ = 0.2150, δ = 0, t = 0, T = 0.2423, P0 = 1.00,
K = 1.00, Y0 = 0, ϵ = 0.01333, λ = 90, η = 4.20 ∗ 10−5,
and b2 = 0.02284. In detail, we determine the parameters
in the following way.

• T and σ: The maturity of 63 days in Guéant and Pu
[7] is converted to 0.2423 years by dividing the number
of days by 260 weekdays. σ is set so that the standard
deviations of both models without the permanent im-
pact match, that is, 0.6

45 ∗
√
63 = σ ∗

√
0.2423. In the

left hand side, we have normalized the standard devi-
ation of 0.6 by 45, the initial price of the underlying
asset, in Guéant and Pu [7].

• η: In the example of Guéant and Pu [7], the price
slippage when the hedger buys 4 million notional of
the underlying asset in one day is 0.10 against 45 of
the underlying asset price. Since the speed of order
placement θt when the hedger buys 4 million notional
(0.2 (= 4

20 ) units) against 20 million of the option

notional in one day ( 1
260 years) is θt =

0.2
1

260

= 52, we

have ηθt = η ∗ 52 = 0.1
45 , and hence, η = 4.2 ∗ 10−5.

• ϵ: In Guéant and Pu [7], the market impact when the
hedger buys 20million notional of the underlying asset
(1 unit) is 0.6 against 45 of the underlying asset price.
Hence, we have ϵ = 0.6/45 = 0.0133.

• b2: The liquidation cost of one unit of the underlying
asset at maturity is 1.028 in Guéant and Pu [7], which
is equivalent to 2.28% of the mid price of the under-
lying asset. Thus, we set b2 = 0.028.

• λ: Expanding the exponential utility used in indiffer-
ence pricing in Guéant and Pu [7] up to the second

order, we have − exp(−α(R̃T − ψ(PT , YT ))) ∼ −1 +

α
(
(R̃T − ψ(PT , YT ))− 1

2α(R̃T − ψ(PT , YT ))
2
)
,

where R̃T = RT −R0 and α = 180. Considering that
1
2α corresponds to the risk aversion parameter λ in

our model, we set λ as λ = 1
2α = 90.
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7.2 Result

With the parameters above, the Bachelier price and
the prices without and with market impact in our
model, which are rescaled by the underlying asset price
in Guéant and Pu [7], are 1.900, 2.055, and 2.1448 ,
while those in Guéant and Pu [7] are 1.900, 2.067, and
2.689, respectively. Here, the 95% confidence interval
for the price with market impact in our model is [2.1443,
2.1453]. The number of the paths for Monte Carlo simu-
lation for u1 in (41) is 100,000, and the other conditions
for the calculation are the same as those in Section
6.3. The computation time is 20 minutes. Although the
two models show close prices in the case of the models
without market impact, the difference is relatively large
in the case of the models with market impact, which is
due to the different features of the models.

Since the exponential utility rapidly decreases in the
negative area, the difference between the two utility
functions is large when R̃T − ψ takes a negative value.
When the market impact exists, ψ is large due to the
mismatch of the underlying asset position caused by
the market impact, and pushes the value of R̃T − ψ
further down, which makes a large difference in values
for the two utility functions. Here, we note that R̃T

takes a value close to zero. Note also that if we take
λ = 1716 or ϵ = 0.0941 meaning that the hedger is more
risk averse or degree of the market impact is higher, the
prices match between the two models when there exists
market impact.

8 Conclusion

This paper has presented a stochastic model in con-
tinuous time under the existence of market impact and
liquidity costs for the underlying asset. This study also
provides derivatives pricing with this model through a
stochastic control problem, which is a generalized form
of the linear-quadratic control and is solved analytically
or approximately by an asymptotic expansion.

This method is useful since traders in financial insti-
tutions are able to estimate the charge for the liquidity
costs and the market impact when they quote deriva-
tives prices. This is particularly important when finan-
cial institutions trade derivatives on an underlying asset
with low liquidity and there exists market impact on the
underlying asset price which is caused by the hedging
transactions.

Furthermore, we have provided concrete examples of the
charges on the liquidity costs and the market impact for
both a variance option in physical settlement, where the
charge is solved analytically, and a European call option
in physical settlement, where the charge is obtained by
the asymptotic expansion. We have also presented com-
parative static analyses for the parameters’ changes in
the variance option and the call option in physical set-
tlement.
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A Asymptotic expansion for European call pay-
off in cash settlement

In the case of cash settlement of European call option,
where b2 = k1, b1 = −2k1gx1

(T, x1), b0 = k1g
2
x1
(T, x1)

as in (7) and h(x1) = (x1 −K)+, the first order approx-
imation is calculated as follows. Noting that

b2 = k1, (A.1)

b1 = −2k1gx1(T, x1) = −2k11{x1>K}, (A.2)

b0 = k1g
2
x1
(T, x1) = k11{x1>K}, (A.3)

by (34), we have

B1(t, x1) = e
−
∫ T

t

1
ηB2(s)ds

(
−2k1N( x1−K

σ
√
T−t

)
)
,

B1,x1
(t, x1) = e

−
∫ T

t

1
ηB2(s)ds

(
−2k1

1
σ
√
T−t

n( x1−K
σ
√
T−t

)
)
,

B1,x1x1(t, x1) = e
−
∫ T

t

1
ηB2(s)ds

(
2k1

x1−K
σ3(

√
T−t)3

n( x1−K
σ
√
T−t

)
)
,

where e
−
∫ T

t

1
ηB2(s)ds is the one obtained in Section 4.1.

Next, we note that

E [b0(x1 + σWT−t)] = −k1N
(
x1 −K

σ
√
T − t

)
, (A.4)
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E
[
σ2Γ(s, x1 + σWs−t)B1,x1(s, x1 + σWs−t)

]
= −2k1σ

2e
−
∫ T

s

1
ηB2(v)dvE

[
Γ2(s, x1 + σWs−t)

]
,

= −2k1σ
2e

−
∫ T

s

1
ηB2(v)dv

· 1

2πσ2
√
T − s

√
T + s− 2t

e
− (x1−K)2

σ2(T+s−2t) . (A.5)

E

[
− 1

4η
B2

1(s, x1 + σWs−t)

]
= −1

η
k21e

−2
∫ T

s

1
ηB2(v)dvE

[
N2

(
x1 + σWs−t −K

σ
√
T − s

)]
= −1

η
k21e

−2
∫ T

s

1
ηB2(v)dv[

1−

√
2(s− t)

π(T − t)
e

1
2 (x1−K)2

{
s−t
T−t−

1
σ2(T−s)

}
·N

(√
T − t

T + s− 2t

{
1

σ
√
T − s

− s− t

T − t

}
(x1 −K)

)]
.

(A.6)
Then, in a similar manner as in Example 2, we have

B0(t, x1)

= −k1N
(
x1 −K

σ
√
T − t

)
+

∫ T

t

1

2πσ2
√
T − s

√
T + s− 2t

e
− (x1−K)2

σ2(T+s−2t)

·

[
σ̃2B2(s) + δ2λσ2

{
σ2(s− t)(T − s)

T + s− 2t

+

(
x1 −

2(x1 −K)(s− t)

T + s− 2t

)2}]
ds

+

∫ T

t

−2k1σ
2e

−
∫ T

s

1
ηB2(v)dv

· 1

2πσ2
√
T − s

√
T + s− 2t

e
− (x1−K)2

σ2(T+s−2t) ds

+

∫ T

t

−1

η
k21e

−2
∫ T

s

1
ηB2(v)dv

·

[
1−

√
2(s− t)

π(T − t)
e

1
2 (x1−K)2

{
s−t
T−t−

1
σ2(T−s)

}
·N
(√

T − t

T + s− 2t

{
1

σ
√
T − s

− s− t

T − t

}
(x1 −K)

)]
ds. (A.7)

B0,x1
is obtained by taking partial derivative of this with

respect to x1; u
(0) and u(1,0) are calculated by (29) and

(37).

B Asymptotic expansion for variance payoff in
physical settlement

In this appendix, we provide the expression of u(0) in
Section 4.1 and u(1,0) in Section 4.2 for the variance
payoff h(x1) = 1

2γx
2
1 + c1x1 + c0 in Case 1 in the case

of physical settlement, where b1 = b0 = 0. Here, δ is not
necessarily 0 as in Example 1 in Section 5.

First, we note that B1 = 0, since b1 = 0 in (34).

Since Γ(t, x1) = γ, we have by (35),
B0(t, x1)

= γ2σ̃2

∫ T

t

B2(s)ds+ γ2δ2λσ2

∫ T

t

E[(x1 + σWs−t)
2]ds

= γ2σ̃2

∫ T

t

B2(s)ds+ γ2δ2λσ2{x21(T − t) +
1

2
σ2(T − t)2},

(B.1)

where B2(t) is given as (33) in Section 4.1.

Note also that

∫ T

t

B2(s)ds =



η log
cosh

(
− 1

2 log
1−h0
1+h0

+
√

λσ2

η (T−t)

)
cosh
(
− 1

2 log
1−h0
1+h0

) ,

if 0 < b2 <
√
λησ2,√

λησ2(T − t), if b2 =
√
λησ2,

η log
sinh

(
− 1

2 log
h0−1

h0+1+
√

λσ2

η (T−t)

)
sinh
(
− 1

2 log
h0−1

h0+1

) ,

if
√
λησ2 < b2,

where h0 = b2√
λησ2

.

Hence
B0,x1

(t, x1) = 2γ2δ2λσ2x1(T − t), (B.2)
and by (37), we have

u(1,0)(t, x1, x2)

= E(t,x1,x2)

[∫ T

t

−1

η
B2(s)X2,s

· {2γB2(s)X2,s + 2γ2δ2λσ2X1,s(T − s)−X2,s}ds

]
,

(B.3)
where

dX1,s = σdW1,s, (B.4)

dX2,s = σγ(dW1,s + δdW2,s)−
1

η
B2(s)X2(s)ds. (B.5)

C Comparative statics for the European call op-
tion with K = 0.90 and 1.10

C.1 In the money payoff, K = 0.90

This section provides results of the comparative statics
for the European call option in Section 6 with K = 0.90
and 1.10, which are the in the money and the out of the
money case, respectively. We keep the other parameters
the same as the ones in Section 6.

η Bachelier u0 u1 u0 + ϵu1 (u0 + ϵu1)/Bachelier Confidence interval

1.60E-05 1.20E-01 7.22E-04 6.88E-02 7.60E-03 6% [6.78E-03 , 8.42E-03]

1.60E-04 1.20E-01 2.06E-03 6.23E-02 8.29E-03 7% [7.80E-03 , 8.78E-03]

1.60E-03 1.20E-01 5.47E-03 4.93E-02 1.04E-02 9% [1.01E-02 , 1.07E-02]

Table C.1
Comparative statics for European call option for a buyer,
when η changes, K = 0.90

λ Bachelier u0 u1 u0 + ϵu1 (u0 + ϵu1)/Bachelier Confidence interval

10 1.20E-01 7.22E-04 6.88E-02 7.60E-03 6% [6.78E-03 , 8.42E-03]

100 1.20E-01 1.65E-03 6.41E-02 8.07E-03 7% [7.27E-03 , 8.86E-03]

1,000 1.20E-01 4.70E-03 4.46E-02 9.16E-03 8% [8.31E-03 , 1.00E-02]

Table C.2
Comparative statics for European call option for a buyer,
when λ changes, K = 0.90
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T Bachelier u0 u1 u0 + ϵu1 (u0 + ϵu1)/Bachelier Confidence interval

0.125 1.03E-01 4.27E-04 1.79E-02 2.22E-03 2% [1.22E-03 , 3.22E-03]

0.25 1.08E-01 6.24E-04 4.21E-02 4.84E-03 4% [3.83E-03 , 5.84E-03]

0.5 1.20E-01 7.22E-04 6.88E-02 7.60E-03 6% [6.78E-03 , 8.42E-03]

Table C.3
Comparative statics for European call option for a buyer,
when T changes, K = 0.90

σ Bachelier u0 u1 u0 + ϵu1 (u0 + ϵu1)/Bachelier Confidence interval

0.20 1.20E-01 7.22E-04 6.88E-02 7.60E-03 6% [6.78E-03 , 8.42E-03]

0.30 1.44E-01 1.10E-03 9.02E-02 1.01E-02 7% [9.60E-03 , 1.06E-02]

0.40 1.70E-01 1.44E-03 9.83E-02 1.13E-02 7% [1.07E-02 , 1.18E-02]

Table C.4
Comparative statics for European call option for a buyer,
when σ changes, K = 0.90

δ Bachelier u0 u1 u0 + ϵu1 (u0 + ϵu1)/Bachelier Confidence interval

0.00 1.20E-01 7.22E-04 6.88E-02 7.60E-03 6% [6.78E-03 , 8.42E-03]

0.01 1.20E-01 8.78E-04 6.87E-02 7.75E-03 6% [6.93E-03 , 8.58E-03]

0.10 1.20E-01 1.64E-02 6.90E-02 2.33E-02 19% [2.24E-02 , 2.42E-02]

Table C.5
Comparative statics for European call option for a buyer,
when δ changes, K = 0.90

C.2 Out of the money payoff, K = 1.10

η Bachelier u0 u1 u0 + ϵu1 (u0 + ϵu1)/Bachelier Confidence interval

1.60E-05 2.00E-02 7.22E-04 6.50E-02 7.22E-03 36% [6.20E-03 , 8.25E-03]

1.60E-04 2.00E-02 2.06E-03 6.23E-02 8.29E-03 42% [7.77E-03 , 8.81E-03]

1.60E-03 2.00E-02 5.47E-03 4.86E-02 1.03E-02 52% [1.00E-02 , 1.06E-02]

Table C.6
Comparative statics for European call option for a buyer,
when η changes, K = 1.10

λ Bachelier u0 u1 u0 + ϵu1 (u0 + ϵu1)/Bachelier Confidence interval

10 2.00E-02 7.22E-04 6.50E-02 7.22E-03 36% [6.20E-03 , 8.25E-03]

100 2.00E-02 1.65E-03 6.01E-02 7.66E-03 38% [6.65E-03 , 8.67E-03]

1,000 2.00E-02 4.70E-03 4.01E-02 8.71E-03 44% [7.64E-03 , 9.78E-03]

Table C.7
Comparative statics for European call option for a buyer,
when λ changes, K = 1.10

T Bachelier u0 u1 u0 + ϵu1 (u0 + ϵu1)/Bachelier Confidence interval

0.125 2.51E-03 4.27E-04 1.88E-02 2.31E-03 92% [1.44E-03 , 3.17E-03]

0.25 8.33E-03 6.24E-04 3.95E-02 4.57E-03 55% [3.54E-03 , 5.60E-03]

0.5 2.00E-02 7.22E-04 6.50E-02 7.22E-03 36% [6.20E-03 , 8.25E-03]

Table C.8
Comparative statics for European call option for a buyer,
when T changes, K = 1.10

σ Bachelier u0 u1 u0 + ϵu1 (u0 + ϵu1)/Bachelier Confidence interval

0.20 2.00E-02 7.22E-04 6.50E-02 7.22E-03 36% [6.20E-03 , 8.25E-03]

0.30 4.39E-02 1.10E-03 8.66E-02 9.76E-03 22% [8.99E-03 , 1.05E-02]

0.40 6.98E-02 1.44E-03 9.79E-02 1.12E-02 16% [1.07E-02 , 1.18E-02]

Table C.9
Comparative statics for European call option for a buyer,
when σ changes, K = 1.10

δ Bachelier u0 u1 u0 + ϵu1 (u0 + ϵu1)/Bachelier Confidence interval

0.00 2.00E-02 7.22E-04 6.50E-02 7.22E-03 36% [6.20E-03 , 8.25E-03]

0.01 2.00E-02 9.33E-04 6.51E-02 7.44E-03 37% [6.42E-03 , 8.47E-03]

0.10 2.00E-02 2.18E-02 6.64E-02 2.85E-02 143% [2.74E-02 , 2.95E-02]

Table C.10
Comparative statics for European call option for a buyer,
when δ changes, K = 1.10

D Calculation of the second order expansion

The second order approximation (expansion) ϵ′2 1
2u

(2,0)

is calculated through taking the second order derivatives

with respect to ϵ′ for the original PDE in (18) and sub-
stituting ϵ′ = 0, which is given by substituting ϵ′ = 0
into v(ϵ) in (23). In this way, we obtain the PDE for the
second order term as

0 = u
(2,0)
t +

1

2
σ2u(2,0)x1,x1

+ σ2Γ(t, x1)u
(2,0)
x1,x2

+
1

2
σ̃2Γ(t, x1)

2u(2,0)x2,x2
− 1

2η
u(0)x2

u(2,0)x2
+ h(0)(t, x1, x2),

u(2,0)(T, x1, x2) = 0,
where

h(0)(t, x1, x2) = − 1

4η
(Γ(t, x1)u

(0)
x2

+ u(1,0)x2
+ u(0)x1

− x2)
2

− 1

2η
u(0)x2

(Γ(t, x1)u
(1,0)
x2

+ u(1,0)x1
). (D.1)

The Feynman-Kac representation of u(2,0) is

u(2,0)(t,x) = E(t,x)

[∫ T

t

h(0)(s,Xs)ds

]
,

whereXt = (X1,t, X2,t),

(
dX1,t

dX2,t

)
= α(0)(t,X1,t, X2,t)dt+

σ(t,X1,t)

(
dW1,t

dW2,t

)
, α(0)(t, x1, x2) =

(
0

− 1
2η

)
,

and σ(t, x1) =

(
σ 0

σΓ(t, x1) δσΓ(t, x1)

)
. As in the cal-

culation of the first order term, the second order term
can be computed by Monte Carlo simulation via this
Feynman-Kac representation. Since the representation
of the second order term includes the zeroth order term
as well as the first order terms differentiated by x1 and
x2, the the Monte Carlo simulation is nested, which is
possible in principle but requires high computational

burden. In detail, u
(1,0)
x1 and u

(1,0)
x2 in (D.1) are obtained

as follows: By using (discretized) processes X1,s, X2,s,
∂X1,s

∂x1
,

∂X1,s

∂x2
,
∂X2,s

∂x1
, and

∂X2,s

∂x2
defined as X1,s =

x1 +
∫ s

t
σdW1,v, X2,s = x2 +

∫ s

t
σΓ(s,X1,v)(dW1,v +

δdW2,v) −
∫ s

t
1
2ηu

(0)
x2 (s,X1,v, X2,v)dv,

∂X1,s

∂x1
= 1,

∂X1,s

∂x2
= 0,

∂X2,s

∂x1
=
∫ s

t
σΓx1

(v,X1,v)(dW1,v + δdW2,v)−∫ s

t
1
2η (B1,x1

(v,X1,v)) + 2B2(v)
∂X2,v

∂x1
dv ,

∂X2,s

∂x2
=

1 −
∫ s

t
1
ηB2(v)

∂X2,v

∂x2
dv, we evaluate u

(1,0)
xi (t, x1, x2),

i = 1, 2 by the right hand sides of the following equa-
tions through Monte Carlo simulations:

u(1,0)x1
(t, x1, x2) = E

[∫ T

t

− 1

2η

{
B1,x1

(x,X1,s) + 2B2(s)
∂X2,s

∂x1

}
×{Γ(x,X1,s)(2B2(s)X2,s +B1(s,X1,s)) +B1,x1

(s,X1,s)X2,s

+B0,x1(s,X1,s)−X2,s}ds+
∫ T

t

− 1

2η
(2B2(s)X2,s +B1(s,X1,s))

×
{
Γx1(s,X1,s) (2B2(s)X2,s +B1(s,X1,s))

+Γ(s,X1,s)

(
B1,x1

(s,X1,s) + 2B2(s)
∂X2,s

∂x1

)
+(B1,x1x1(s,X1,s)X2,s +B0,x1x1(s,X1,s))

+B1,x1
(s,X1,s)

∂X2,s

∂x1
− ∂X2,s

∂x1

}
ds

]
, (D.2)
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u(1,0)x2
(t, x1, x2) = E

[∫ T

t

−1

η
B2(s)

∂X2,s

∂x2

×
{
Γ(x,X1,s)(2B2(s)X2,s +B1(s,X1,s)) +B1,x1

(s,X1,s)X2,s

+B0,x1
(s,X1,s)−X2,s

}
ds+

∫ T

t

− 1

2η
(2B2(s)X2,s +B1(s,X1,s))

×
{
Γ(s,X1,s)(2B2(s)

∂X2,s

∂x2
) +B1,x1

(s,X1,s)
∂X2,s

∂x2
− ∂X2,s

∂x2

}
ds

]
.

(D.3)
More specifically, for the variance option with δ not nec-
essarily being 0 in Appendix B in the on-line version
which includes the case in Example 1, and the European
call option in Example 2, we have the following expres-
sions.

• Variance option:
∂X1,s

∂x1
= 1,

∂X1,s

∂x2
= 0,

∂X2,s

∂x1
= 0

,
∂X2,s

∂x2
= 1 −

∫ s

t
1
ηB2(v)

∂X2,v

∂x2
dv, u

(1,0)
x1 (t, x1, x2) =

E

[∫ T

t
− 1

ηB2(s)X2,s

(
2γ2δ2λσ2(T − s)

)
ds

]
, u

(1,0)
x2 (t, x1, x2) =

E

[∫ T

t
− 1

ηB2(s)
∂X2,s

∂x2
{2γB2(s)X2,s+2γ2δ2λσ2X1,s(T−

s)−X2,s}ds+
∫ T

t
− 1

ηB2(s)X2,s

{
2γB2(s)

∂X2,s

∂x2
− ∂X2,s

∂x2

}
ds

]
.

• European Call: X1,s = x1 + σ
∫ T

t
dW1,v, X2,s = x2 +∫ s

t
σΓ(v,X1,v)(dW1,v + δdW2,v) −

∫ t

s
1
ηB2(v)X2,vdv,

∂X1,s

∂x1
= 1,

∂X1,s

∂x2
= 0,

∂X2,s

∂x1
=
∫ s

t
σΓx1(v,X1,v)(dW1,v+

δdW2,v)−
∫ t

s
1
ηB2(v)

∂X2,v

∂x1
dv,

∂X2,s

∂x2
= 1−

∫ t

s
1
ηB2(v)

∂X2,v

∂x2
dv,

u
(1,0)
x1 = E(t,x1,x2)

[∫ T

t
− 1

ηB2(s)
∂X2,s

∂x1
{Γ(s,X1,s)2B2(s)X2,s+

B0,x1
(s,X1,s)−X2,s}ds+

∫ T

t
− 1

ηB2(s)X2,s

×{Γx1
(s,X1,s)2B2(s)X2,s + Γ(s,X1,s)2B2(s)

∂X2,s

∂x1

+B0,x1x1
(s,X1,s)− ∂X2,s

∂x1
}ds

]
,

u
(1,0)
x2 = E(t,x1,x2)

[∫ T

t
− 1

ηB2(s)
∂X2,s

∂x2

{
Γ(s,X1,s)2B2(s)X2,s+

B0,x1
(s,X1,s)−X2,s

}
ds

+
∫ T

t
− 1

ηB2(s)X2,s

{
Γ(s,X1,s)2B2(s)

∂X2,s

∂x2
−∂X2,s

∂x2

}
ds

]
.
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