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Abstract

The predictive performance of the realized stochastic volatility model of Takahashi,

Omori, and Watanabe (2009), which incorporates the asymmetric stochastic volatility

model with the realized volatility, is investigated. Considering well known character-

istics of financial returns, heavy tail and negative skewness, the model is extended

by employing a wider class distribution, the generalized hyperbolic skew Student’s t-

distribution, for financial returns. With the Bayesian estimation scheme via Markov

chain Monte Carlo method, the model enables us to estimate the parameters in the re-

turn distribution and in the model jointly. It also makes it possible to forecast volatility

and return quantiles by sampling from their posterior distributions jointly. The model

is applied to quantile forecasts of financial returns such as value-at-risk and expected

shortfall as well as volatility forecasts and those forecasts are evaluated by various tests

and performance measures. Empirical results with the US and Japanese stock indices,

Dow Jones Industrial Average and Nikkei 225, show that the extended model improves

the volatility and quantile forecasts especially in some volatile periods.
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1 Introduction

This paper proposes a general volatility model designed for predictions of volatility and

quantiles of financial returns. The volatility and quantile forecasts are important to assess

the financial risk. For example, the value-at-risk (VaR) and expected shortfall (ES), com-

puted from the quantile forecasts, have been widely known as measures of the financial tail

risk.

The proposed model incorporates two important aspects for the volatility and quantile

forecasts: the distribution of financial returns and the estimation of the volatility. First, the

unconditional distribution of financial returns is known to be leptokurtic. This leptokurtosis

can fully or partly be captured by time-varying volatility, but the distribution conditional

on volatility may still be leptokurtic. Moreover, the return distribution may also be skewed.

To incorporate the important properties in the return distribution, we employ the general

distribution class, called generalized hyperbolic (GH) distribution, introduced by Aas and

Haff (2006). The GH distribution takes a flexible form to fit the return characteristics such

as skewness and leptokurtosis.

Second, the volatility is unobservable and thus needed to be estimated from the avail-

able data. In the early literature, autoregressive conditional heteroskedasticity (ARCH)

type models and stochastic volatility (SV) type models have been developed to capture the

stylized volatility properties such as volatility clustering and volatility asymmetry.1 Re-

cently, thanks to the availability of high frequency data containing the price and other

asset characteristics sampled at a time horizon shorter than one day, it becomes possible to

measure the latent volatility quite accurately. Andersen and Bollerslev (1998) propose the

so-called realized volatility (RV) as an accurate volatility measure computed from 5-minute

returns. Under some assumptions, the RV is a consistent estimator of the true volatil-

ity.2 The proposed model incorporates the RV measure via the so-called realized stochastic

volatility (RSV) model.

The RSV model is a contemporaneous modeling of financial returns and the RV estima-

tors. Takahashi, Omori, and Watanabe (2009) propose to model daily returns and the RV

1ARCH type models include the ARCH and GARCH models proposed by Engle (1982) and Bollerslev

(1986), respectively, and their extensions. See, for example, Andersen, Bollerslev, Christoffersen, and Diebold

(2013) for other ARCH type models. The SV type models, developed by Taylor (1986), are reviewed in

Shephard (1996).
2More detail properties of the RV can be found in Andersen, Bollerslev, and Diebold (2010) and references

therein.
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estimator simultaneously under the framework of the SV model. Additionally, Dobrev and

Szerszen (2010) and Koopman and Scharth (2013) propose the models in a similar manner.

These models are referred to as the RSV models. On the other hand, Hansen, Huang, and

Shek (2011) propose to extend GARCH models incorporating them with the RV, which is

called the realized GARCH model. The contemporaneous models can adjust a possible bias

in the RV estimator within the models.3

In this paper, we investigate the predictive performance of the RSV model which has not

been fully applied to quantile forecasts.4 Considering the skewness and leptokurtosis in the

return distribution, we extend the RSV model of Takahashi, Omori, and Watanabe (2009)

by employing the GH skew Student’s t-distribution which includes normal and Student’s

t-distributions as special cases. Bayesian estimation scheme via Markov chain Monte Carlo

(MCMC) technique enables us to estimate the parameters in the return distribution and

in the model jointly, which also makes it possible to adjust the bias in the RV estimator

simultaneously. The MCMC technique samples the future volatility and return jointly from

their posterior distributions. Using the samples of the future volatility and return, we can

easily compute the volatility and quantile forecasts such as the VaR and ES.

We apply the model to daily returns and RKs of the US and Japanese stock indices, Dow

Jones Industrial Average (DJIA) and Nikkei 225, respectively. The prediction results show

that the extended model improves both volatility and quantile forecasts especially in some

volatile periods such as late 2008. Therefore, the extended model is suited for conservative

risk management necessary for commercial banks and pension funds.

The rest of this paper is organized as follows. In Section 2, we present the basic and

extended RSV models with a brief description of the SV model and RV estimators. Then,

we explain the estimation and prediction scheme to estimate the parameters, volatility and

quantile forecasts jointly via the MCMC technique in Section 3. Further, we introduce

3The RV has two practical problems in the real market, non-trading hours and market microstructure

noise, which results in a bias in the RV estimator. O’Hara (1995) and Hasbrouck (2007) provide a com-

prehensive review of the market microstructure theory and its applications. We defer the details to Section

2.2
4Other RV models have been applied to quantile forecasts. For example, Giot and Laurent (2004) and

Clements, Galvão, and Kim (2008) investigate the quantile forecast performance of GARCH models with

the RV estimator although they are not fully contemporaneous models. Recently, Watanabe (2012) applies

the realized GARCH model to quantile forecasts and show that the RV estimator improves the forecast

performance and that the realized GARCH model can adjust the bias in the RV estimator. Dobrev and

Szerszen (2010) apply their model to the VaR forecasts but do not examine its performance formally.
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several methods to evaluate the volatility and quantile forecasts in Section 4. We present

the empirical results using the DJIA and Nikkei 225 data in Section 5. Finally, we conclude

the paper in Section 6.

2 Realized Stochastic Volatility Model

In this section, we describe the RSV model, which incorporates the asymmetric SV model

with the RV estimator. In Section 2.1, we introduce the SV model and then briefly describe

the RV estimator in Section 2.2. We introduce the basic RSV model proposed by Takahashi,

Omori, and Watanabe (2009) and present its extension in Section 2.3.

2.1 Stochastic Volatility Model

The asymmetric SV model is written as

rt = exp(ht/2)ϵt, t = 1, . . . , n, (1)

ht+1 = µ+ ϕ(ht − µ) + ηt, t = 0, . . . , n− 1, (2)

where rt is a daily asset return and ht is an unobserved log-volatility. It is common to

assume that |ϕ| < 1 for a stationarity of the log-volatility process. For the moment, we

assume the normality for the return and volatility innovations as follows, ϵt

ηt

 ∼ N(0,Σ), Σ =

 1 ρση

ρση σ2η

 . (3)

The parameter ρ in (3) represents the correlation between ϵt and ηt, which captures the

correlation between rt and ht+1. A negative value of ρ implies a negative correlation be-

tween today’s return and tomorrow’s volatility, which is a well known phenomenon in stock

markets and referred to as a volatility asymmetry.5 Additionally, we assume the following

initial conditions,

h0 = µ, η0 ∼ N

(
0,

σ2η
1− ϕ2

)
. (4)

2.2 Realized Volatility

We first consider a simple continuous time process,

dp(s) = σ(s)dw(s), (5)

5See, for example, Black (1976) and Christie (1982).

4



where p(s) denotes the log price of a financial asset at time s, and σ2(s) is the instantaneous

or spot volatility, which is assumed to be stochastically independent of the Wiener process

w(s). Then, the true volatility for a day t is defined as

σ2t =

∫ t+1

t
σ2(s)ds, (6)

which is called an integrated volatility.

Andersen and Bollerslev (1998) propose a model-free estimator of the true volatility σ2t ,

which is called a RV estimator. Suppose that we have m intraday returns during the day t,

{rt,i}mi=1, then a simple RV estimator is defined as a sum of squared returns,

RVt =
m∑
i=1

r2t,i, (7)

which converges to the true volatility σ2t as m→ ∞. That is, RVt is a consistent estimator

of σ2t and thus may provide a precise estimate of the true volatility when there are sufficient

number of intraday returns.

There are, however, some problems in computing the RV estimator using the high

frequency data. First, the high frequency asset price contains the market microstructure

noise (MMN) such as a bid-ask bounce and non-synchronous trading.6 With the presence of

the MMN, the RV estimator is biased and is not a consistent estimator of the true volatility.

Hansen and Lunde (2006) and Ubukata and Oya (2008) study the MMN effects on the RV

estimator. In general, the MMN effect becomes larger at the higher sampling frequency

while the information loss becomes larger at the lower frequency.

There are several methods available for mitigating the MMN effects on the RV estima-

tors.7 Among them, Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) propose a

realized kernel (RK) estimator,

RKt =

Q∑
q=−Q

k

(
q

Q+ 1

)
γq, γq =

m∑
i=|q|+1

rt,irt,i−|q|, (8)

where k(·) ∈ [0, 1] is a non-stochastic weight function. As for the choice of k(·), Barndorff-

6See, for example, Campbell, Lo, and MacKinlay (1997) for details.
7For example, Aı̈t-Sahalia, Mykland, and Zhang (2005) and Bandi and Russell (2006, 2008) derive an

optimal sampling frequency to balance the trade off between the MMN effect and the information loss.

Additionally, Zhang, Mykland, and Aı̈t-Sahalia (2005) propose a two (multi) scale estimator, which combines

two (multiple) RV estimators calculated from returns with different sampling frequencies.
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Nielsen, Hansen, Lunde, and Shephard (2009) suggests the Parzen kernel given by

k(x) =


1− 6x2 + 6x3 0 ≤ x ≤ 1/2

2(1− x)3 1/2 ≤ x ≤ 1

0 x > 1,

(9)

which satisfies the smoothness conditions, k′(0) = k′(1) = 0, and is guaranteed to produce

a non-negative estimate.

The second problem in computing the RV estimator is the presence of the non-trading

hours. For example, New York Stock Exchange is open only for six and a half hours from

9:30 a.m. to 4 p.m. (in Eastern Time). If we calculate the RV estimator using the intraday

returns only in the market open period, it may underestimate the true volatility σ2t . To

avoid this underestimation, Hansen and Lunde (2005) propose to scale the RV calculated

from returns for the market open period as

RV scale
t = cRVt, c =

∑n
t=1(rt − r̄)2∑n

t=1RVt
, (10)

where rt is the daily return and r̄ =
∑n

t=1 rt/n. This ensures that the mean of the scaled

RV (RV scale
t ) is equal to the variance of daily returns.8

2.3 Realized Stochastic Volatility Model

Takahashi, Omori, and Watanabe (2009) propose modeling daily returns and the RV esti-

mator simultaneously as follows,

rt = exp(ht/2)ϵt, t = 1, . . . , n, (11)

xt = ξ + ht + ut, t = 1, . . . , n, (12)

ht+1 = µ+ ϕ(ht − µ) + ηt, t = 0, . . . , n− 1, (13)

where xt is a logarithm of the RV estimator. The parameter ξ in (12) is designed to correct

the bias due to the MMN and non-trading hours. If ξ is positive, the RV estimator has

an upward bias, which implies that the effect of the MMN dominates that of non-trading

hours, and vice versa as long as the MMN causes a positive bias in the RV estimator. We

8One may consider including returns for the non-trading hours (overnight interval) but this can make the

RV estimator less precise since such returns contain much discretization noise.
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assume that the disturbance ut and other disturbances (ϵt, ηt) are not correlated, that is,
ϵt

ut

ηt

 ∼ N(0,Σ), Σ =


1 0 ρση

0 σ2u 0

ρση 0 σ2η

 . (14)

Dobrev and Szerszen (2010) and Koopman and Scharth (2013) also propose the joint model-

ing of daily returns and the realized volatility based on the SV model. Following Koopman

and Scharth (2013), we refer the model consisting of (11)-(14) as a realized stochastic

volatility (RSV) model.

We extend the RSV model in (11)-(14) with more generalized distribution for daily

returns. Following Nakajima and Omori (2012), we employ the general hyperbolic (GH)

skew Student’s t-distribution for the return distribution.9 Specifically, the return equation

(11) is extended as follows,

rt =
β(zt − µz) +

√
ztϵt√

β2σ2z + µz
exp(ht/2), t = 1, . . . , n, (15)

where

zt ∼ IG
(ν
2
,
ν

2

)
, µz = E[zt] =

ν

ν − 2
, σ2z = Var[zt] =

2ν2

(ν − 2)2(ν − 4)
, (16)

and IG(·, ·) denotes the inverse gamma distribution. We assume that ν > 4 for the existence

of the variance of zt. The term
√
β2σ2z + µz standardizes the return so that the variance

of the return remains exp(ht). This specification includes the Student’s t-distribution as a

special case when β = 0 as well as the normal distribution when β = 0 and ν → ∞ (that

is, zt = 1 for all t). Following Nakajima and Omori (2012), we refer to the RSV model

with the GH skew Student’s t-distribution as the RSVskt model, hereafter. Similarly, the

RSV models with the Student’s t and normal distributions are referred to as the RSVt and

RSVn models, respectively.10

9The GH skew Student’s t-distribution is a subclass of the GH distribution. The GH distribution has a

wider class of distribution but the parameters of the GH distribution are difficult to estimate as pointed out

by Prause (1999) and Aas and Haff (2006). Nakajima and Omori (2012) also show that a wider class of the

GH distribution could lead to either the inefficient MCMC sampling or the over-parametrization. Thus, we

focus on the GH skew Student’s t-distribution throughout the paper.
10We can extend the RV equation (12) as follows,

xt = ξ + ψht + ut, t = 1, . . . , n.

Hansen, Huang, and Shek (2011) first consider this type of specification in their realized GARCH framework

which is the joint modeling of daily returns and the RV estimator based on the GARCH type models. We
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3 Estimation and Prediction Scheme

In this section, we describe the estimation and prediction scheme for the RSVskt model.

In Section 3.1, we present a Bayesian estimation procedure via Markov chain Monte Carlo

method. Then, we explain how to obtain the volatility and quantile forecasts within the

Bayesian estimation procedure in Section 3.2.

3.1 Bayesian Estimation Procedure

The RSVskt model is written as

rt =
β(zt − µz) +

√
ztϵt√

β2σ2z + µz
exp(ht/2), t = 1, . . . , n, (17)

xt = ξ + ht + ut, t = 1, . . . , n, (18)

ht+1 = µ+ ϕ(ht − µ) + ηt, t = 0, . . . , n− 1, (19)

where

zt ∼ IG
(ν
2
,
ν

2

)
, µz = E[zt] =

ν

ν − 2
, σ2z = Var[zt] =

2ν2

(ν − 2)2(ν − 4)
, (20)

and 
ϵt

ut

ηt

 ∼ N(0,Σ), Σ =


1 0 ρση

0 σ2u 0

ρση 0 σ2η

 . (21)

To estimate the RSVskt model, we combine the MCMC algorithms for Bayesian estimation

scheme of the SVskt model proposed by Nakajima and Omori (2012) and the RSV model by

Takahashi, Omori, and Watanabe (2009). Let θ = (ϕ, ση, ρ, µ, β, ν, ξ, σu), y = {rt, xt}nt=1,

h = {ht}nt=1, and z = {zt}nt=1. Then, we draw random samples from the posterior distribu-

tions of (θ, h, z) given y for the RSVskt model using the MCMC method as follows:

0. Initialize θ, h, and z.

1. Generate ϕ|ση, ρ, µ, β, ν, ξ, σu, h, z, y.

2. Generate (ση, ρ)|ϕ, µ, β, ν, ξ, σu, h, z, y.

3. Generate µ|ϕ, ση, ρ, β, ν, ξ, σu, h, z, y.
estimate the RSV models with this specification but it turns out that this extension does not improve the

volatility forecasts nor quantile forecasts. Therefore, we focus on the RSV models with ψ = 1 in this paper.
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4. Generate β|ϕ, ση, ρ, µ, ν, ξ, σu, h, z, y.

5. Generate ν|ϕ, ση, ρ, µ, β, ξ, σu, h, z, y.

6. Generate ξ|ϕ, ση, ρ, µ, β, ν, σu, h, z, y.

7. Generate σu|ϕ, ση, ρ, µ, β, ν, ξ, h, z, y.

8. Generate z|θ, h, y.

9. Generate h|θ, z, y.

10. Go to 1.

Since ut is independently and identically distributed, we can implement the same sampling

scheme proposed by Nakajima and Omori (2012) for steps 1-5 and 8. We can also easily

modify the sampling scheme by Takahashi, Omori, and Watanabe (2009) for steps 6, 7, and

9. The detail procedures are given in Appendix A.

3.2 Volatility and Quantile Forecasts

To obtain the one-day-ahead log-volatility and daily return, we implement the following

sampling scheme for each sample of (θ, h, z) generated from the MCMC algorithm described

above.

i. Generate hn+1|θ, h, z, y ∼ N(µn+1, σ
2
n+1), where

µn+1 = µ+ ϕ(hn − µ) + ρση

√
β2σ2z + µzrn − β(zn − µz) exp(hn/2)√

zn exp(hn/2)
, (22)

σ2n+1 = (1− ρ2)σ2η. (23)

ii. Generate zn+1 ∼ IG(ν/2, ν/2).

iii. Generate rn+1|θ, hn+1, zn+1 ∼ N(µ̂n+1, σ̂
2
n+1), where

µ̂n+1 =
β(zn+1 − µz) exp(hn+1/2)√

β2σ2z + µz
, (24)

σ̂2n+1 =
zn+1 exp(hn+1)

β2σ2z + µz
. (25)

The quantile forecasts, VaR and ES, can easily be computed from the predictive distri-

bution of financial returns obtained above. Let VaRt(α) be the one-day-ahead forecast for

9



the VaR of the daily return rt with probability α. Then, assuming the long position, the

VaR forecast satisfies

Pr[rt < VaRt(α)|It−1] = α, (26)

where It−1 is the available information up to t− 1.

Although the VaR has been widely used to evaluate the quantile forecast of financial re-

turns, it only measures a quantile of the distribution and ignores the important information

of the tail beyond the quantile. To evaluate the quantile forecast with the tail information,

we compute the ES, which is defined as the conditional expectation of the return given

that it violates the VaR. The one-day-ahead forecast of the ES with probability α, ESt(α),

satisfies

ESt(α) = E[rt|rt < VaRt(α), It−1]. (27)

Let n and T be the number of samples for the estimation and prediction, respectively.

Then, the one-day-ahead forecasts of the VaR (VaRn+1(α), . . . ,VaRn+T (α)) and the ES

(ESn+1(α), . . . ,ESn+T (α)) are computed repeatedly in the following way.

1. Set i = 1.

2. Generate the MCMC sample of the model parameters and one-day-ahead return rn+i

using the sample of (yi, . . . , yn+i−1).

3. Compute VaRn+i(α) as the α-percentile of the MCMC sample of rn+i.

4. Compute ESn+i(α) as a sample average of rn+i conditional on rn+i < VaRn+i(α).

5. Set i = i+ 1 and return to 1 while i < T .

4 Evaluation of Volatility and Quantile Forecasts

In this section, we describe how to evaluate the predictive ability of the RSV models with

different specifications. Since there is no single measure which ranks the models thoroughly,

we compare the model performance from various perspectives. In Section 4.1, we introduce

two loss functions for the volatility forecasts and a predictive ability test. In Section 4.2,

we describe various evaluation methods for the VaR forecasts. In Section 4.3, we present a

backtesting measure of the ES forecasts.
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4.1 Evaluating Volatility Forecasts

To evaluate the volatility forecasts of different models, we use two loss functions, mean

squared error (MSE) and quasi-likelihood (QLIKE) up to additive and multiplicative con-

stants. Let σ̂2t and ht be a volatility proxy and volatility forecast, respectively and consider

the two loss functions,11

LMSE
t =

(σ̂2t − ht)
2

2
, LQLIKE

t =
σ̂2t
ht

− log
σ̂2t
ht

− 1. (28)

Recall that n and T are the number of samples for the estimation and prediction, respec-

tively. Then, MSE and QLIKE are defined as the means of the corresponding loss functions,

that is,

MSE = L̄MSE =
1

T

T∑
t=1

LMSE
t , QLIKE = L̄QLIKE =

1

T

T∑
t=1

LQLIKE
t . (29)

Since the true volatility is unobservable, the loss functions are computed using an im-

perfect volatility proxy, σ̂2t . However, Patton (2011) shows that some class of loss functions

including the above two provides a ranking consistent with the one using the true volatility

as long as the volatility proxy is a conditionally unbiased estimator of the volatility, that

is, E[σ̂2t |It−1] = σ2t .

Although the above loss functions provide a consistent ranking of the competing models,

it is necessary to check whether the loss difference is statistically significant. To this end,

we employ a predictive ability test based on Giacomini and White (2006). Let Lt(m1) and

Lt(m2) be loss functions of models m1 and m2, respectively. Further, denote a q × 1 It-

measurable vector by gt, which we refer to as the test function. Then, in the case of one-step

ahead forecasts, the null hypothesis of equal conditional predictive ability of models m1 and

m2 is

E[gn+t−1{Ln+t(m1)− Ln+t(m2)}|In+t−1] = E[gn+t−1∆Ln+t(m1,m2)|In+t−1] = 0, (30)

for t = 1, 2, . . . , T . To test the null hypothesis, we use a Wald-type test statistic of the form

WT = T Z̄T Ω̂
−1
T Z̄T , (31)

where Z̄T = T−1
∑T

t=1 Zn+t, Zn+t = gn+t−1∆Ln+t(m1,m2) and Ω̂T = T−1
∑T

t=1 Zn+tZ
′
n+t.

By standard asymptotic normality arguments, the statisticWT is asymptotically distributed

11Both loss functions are normalized to be the robust and homogeneous loss functions proposed by Patton

(2011). For instance, LQLIKE
t is normalized to yield a distance of zero when σ̂2

t = ht.
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as a chi-square distribution with q degrees of freedom, denoted by χ2(q). Thus, we reject

the null of equal conditional predictive ability when WT > χ2
1−p(q), where p is a probability

level of the test and χ2
1−p(q) is the (1− p) quantile of the χ2(q) distribution.12

4.2 Evaluating Value-at-Risk

4.2.1 Likelihood ratio tests

To describe various likelihood ratio tests for the VaR forecasts, recall that T is the number

of VaR forecasts and let T1 be the number of times when the VaR is violated, that is,

rt < VaRt(α). Then the empirical failure rate is defined as π̂1 = T1/T . Kupiec (1995)

proposes the likelihood ratio (LR) test for the null hypothesis of π1 = α, where π1 is the

true failure rate. Since this is a test that on average the coverage is correct, Christoffersen

(1998) refers to this as the correct unconditional coverage test. Let L(p) be the likelihood

function for an i.i.d. Bernoulli with probability p, that is,

L(p) = pT1(1− p)T−T1 . (32)

The LR statistic of the unconditional coverage test is then

LRuc = 2{lnL(π̂1)− lnL(α)}, (33)

which is asymptotically distributed as a χ2(1) under the null hypothesis of π1 = α. Note

that this test implicitly assumes that the violations are independent, which is not guaranteed

in practice.

To test the independence hypothesis explicitly, Christoffersen (1998) considers the al-

ternative of the first-order Markov process with the switching probability matrix

Π =

 1− π01 π01

1− π11 π11

 , (34)

where πij is the probability of an i ∈ {0, 1} on day t − 1 being followed by a j ∈ {0, 1} on

day t (1 represents a violation and 0 not). The likelihood under the alternative hypothesis

is

L(π01, π11) = (1− π01)
T0−T01πT01

01 (1− π11)
T1−T11πT11

11 , (35)

12See Theorem 1 of Giacomini and White (2006) for the asymptotic justification of the test.
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where T0 = T −T1 and Tij denotes the number of observations with a j following an i. The

maximum likelihood estimates of πi1 are f̂i1 = Ti1/Ti for all i. The LR statistic for the null

hypothesis of independence, π01 = π11, is then

LRind = 2{lnL(π̂01, π̂11)− lnL(π̂1)}, (36)

which is again asymptotically distributed as a χ2(1) under the null hypothesis.13

The two tests for the unconditional coverage and independence can be combined in one

test with the null hypothesis of π01 = π11 = α. Christoffersen (1998) refers to this test as

the test of conditional coverage. The LR statistic of the conditional coverage is

LRcc = LRuc + LRind = 2{lnL(π̂01, π̂11)− lnL(α)}, (37)

which is asymptotically distributed as a χ2(2) under the null hypothesis of π01 = π11 = α.

Although the above test considers the clustered violations, which is an important signal of

risk model misspecification, the first-order Markov alternative represents a limited form of

clustering.

The implicit assumption of the independent VaR violations in Kupiec (1995)’s LR test

and the restrictive first order Markov alternative in the independence and conditional cover-

age tests are not usually satisfied in practice.14 Consequently, these tests may not be suited

for the model evaluation and we need more general tests to evaluate the VaR forecasts.

Christoffersen and Pelletier (2004) propose more general tests for the clustering based

on the duration of days between the violations of the VaR. Define the duration of time (the

number of days) between two VaR violations as

Di = ti − ti−1, (38)

where ti denotes the day of the i-th violation. Under the null hypothesis of independent

VaR violations, the duration has no memory and its mean of 1/α days. The exponen-

tial distribution is the only continuous distribution with these properties. Under the null

hypothesis, the likelihood of the durations is then

fexp(D;α) = α exp(−αD). (39)

13If the sample has T11 = 0, which may happen in small samples with small α, the likelihood is computed

as L(π01, π11) = (1− π01)
T0−T01πT01

01 .
14We thank the editor, Esther Ruiz, and the anonymous associate editor, for pointing out this concern.
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As a simple alternative of dependent durations, we consider the Weibull distribution

which includes the null of exponential distribution as a special case. Under the Weibull

alternative, the distribution of the duration is

fW (D; a, b) = abbDb−1 exp{−(aD)b}, (40)

which becomes the exponential one with probability parameter a when b = 1. The null

hypothesis is then b = 1 in this case. This test can capture the higher-order dependence in

the VaR violations by testing the unconditional distribution of the durations.

To test the conditional dependence of the VaR violations, we consider the exponential

autoregressive conditional duration (EACD) framework of Engle and Russell (1998). The

simple EACD(1,0) model characterizes the conditional expected duration, ψi, as

ψi = E[Di] = c+ dDi−1, (41)

where d ∈ [0, 1). Assuming the exponential distribution with mean one for the error term,

Di − ψi, the conditional distribution of the duration is

fEACD(Di|ψi) =
1

ψi
exp

(
−Di

ψi

)
. (42)

The null hypothesis of the independent durations is then d = 0 against the alternative of

the conditional durations.

To implement the (un)conditional duration tests, we need to compute the likelihood of

the durations with a different treatment for the first and last durations. Let Ci indicate if

a duration is censored (Ci = 1) or not (Ci = 0). For the first observation, if the violation

does not occur, then D1 is the number of days until the first violation occurs and C1 = 1

because the observed duration is left-censored. If instead the violation occurs at the first

day, then D1 is the number of days until the second violation and C1 = 0. The similar

procedure is applied to the last duration, DN(T ). If the violation does not occur for the

last observation, then DN(T ) is the number of days after the last violation and CN(T ) = 1

because the observed duration is right-censored. If instead the violation occurs at the last

day, then DN(T ) = tN(T ) − tN(T )−1 and CN(t) = 0. For the rest of observations, Di is the

number of days between each violation and Ci = 0.

The log-likelihood under the distribution, f , is then

lnL(D; Θ) = C1 lnS(D1) + (1− C1) ln f(D1) +

N(T )−1∑
i=2

ln f(Di)

+ CN(T ) lnS(DN(T )) + (1− CN(T )) ln f(DN(T )), (43)
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where we use the survival function S(Di) = 1 − F (Di) for a censored observation since it

is unknown whether the process lasts at least Di days. The parameters of the likelihood

under the alternative specifications (a and b of the Weibull distribution and c and d of

the EACD(1,0) model) need to be estimated numerically since the maximum likelihood

estimates has no closed form solutions.

Because the sample size is not large and EACD(1,0) model has a potential difficulty

to obtain the asymptotic distribution, we take the Monte Carlo testing technique of Du-

four (2006) and follow the specific testing procedure of the LR tests by Christoffersen and

Pelletier (2004).

4.2.2 Predictive ability test

As pointed out by the anonymous associate editor, the likelihood ratio tests described above

are designed to see how a model performs for specific nominal theoretical values of duration

and VaR. This means that these tests are not useful to state that one model is more accurate

than the others. Therefore, we also evaluate the VaR forecasts using the predictive ability

test described in Section 4.1.

Following Clements, Galvão, and Kim (2008), we define a loss function of model m as

Lα
t (m) = [α− 1{rt < VaRt(α)}][rt −VaRt(α)], (44)

where 1{·} denotes an indicator function. Then, the loss difference between models m1 and

m2 is given by

∆Lα
t (m1,m2) = Lα

t (m1)− Lα
t (m2). (45)

Using the loss difference, we can compute the Wald-type statistic in (31) and test the null

of equal coditional predictive ability of models m1 and m2.

4.3 Evaluating Expected Shortfall

To evaluate the ES forecasts with probability α, we use the measure proposed by Embrechts,

Kaufmann, and Patie (2005). Define δt(α) = rt − ESt(α) and κ(α) as a set of time points

for which a violation of the VaR occurs. Further, define τ(α) as a set of time points for

which δt(α) < q(α) occurs, where q(α) is the empirical α-quantile of δt(α). The measure is

then defined as

V (α) =
|V1(α)|+ |V2(α)|

2
, (46)
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where

V1(α) =
1

T1

∑
t∈κ(α)

δt(α), V2(α) =
1

T2

∑
t∈τ(α)

δt(α), (47)

and T1 and T2 are the numbers of time points in κ(α) and τ(α), respectively.

V1(α) provides the standard backtesting measure using the VaR estimates. Since only

the values with the violations are considered, this measure strongly depends on the VaR

estimates without adequately reflecting the correctness of these values. To correct this

weakness, a penalty term V2(α), which evaluates the values which should happen once

every 1/α days, is combined with V1(α). Finally, note that better ES estimates provide

lower values of both |V1(α)| and |V2(α)| and so for V (α).

5 Empirical Studies

We apply the RSV model to daily (close-to-close) returns and RKs of the U.S. and Japanese

stock indices, DJIA and Nikkei 225, respectively. The DJIA data is obtained from Oxford-

Man Institute and the Nikkei 225 data is constructed from Nikkei NEEDS-TICK data.15

The DJIA sample contains 2,884 trading days from January 4, 2000 through July 29, 2011

whereas the Nikkei 225 sample contains 3,336 trading days from June 5, 1997 to December

30, 2010. Figure 1 shows the time-series plot of the daily returns and logarithms of the RKs

for both series.

Table 1 shows the descriptive statistics of the daily returns (r) and logarithms of RKs

(lnRK). For both DJIA and Nikkei 225, the mean of r is not statistically significant from

zero and its Ljung-Box (LB) statistic does not reject the null hypothesis of no autocorre-

lation up to 10 lags, which allows us to estimate the RSV models using the daily returns

without adjustment of mean and autocorrelation. The kurtosis of r shows that its distri-

bution is leptokurtic as commonly observed in the financial returns and the Jacque-Bera

(JB) statistic rejects its normality. The skewness of r is not statistically significant from

zero for DJIA whereas it is significantly negative for Nikkei 225. In the RSVskt model,

the leptokurtosis of rt may be explained by stochastic volatility but the distribution of

β(zt − µz) +
√
ztϵt may also be leptokurtic and skewed.

For both DJIA and Nikkei 225, the LB statistic of lnRK rejects the null of no autocor-

relation, which is consistent with the high persistence of volatility known as the volatility

15The RKs for Nikkei 225 are calculated from 1-minute returns with the Parzen kernel in (9). See, for

example, Ubukata and Watanabe (2014) for details.
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clustering. The skewness of lnRK is significantly positive and its kurtosis shows that the

distribution of lnRK is leptokurtic. Consequently, the JB statistic rejects the normality of

lnRK. This contradicts the normality assumption for ut and ηt in (21) but we stick to the

normality assumption in this paper and leave alternative specifications for future research.

In the following sections, we present the estimation and prediction results. In Section

5.1, we show the estimation results of the RSV models using all samples and compare the

models by the marginal likelihood. In Section 5.2, we show the results of the volatility and

quantile forecasts obtained by the rolling window estimation.

5.1 Estimation Results

Using the full sample of daily returns and RKs of DJIA and Nikkei 225, respectively, we

estimate the RSV models with the priors for the parameters as follows,

µ ∼ N(0, 10), β ∼ N(0, 1), ν ∼ Gamma(5, 0.5)I(ν > 4), (48)

ξ ∼ N(0, 1), σ−2
u ∼ Gamma(2.5, 0.1), (49)

ϕ+ 1

2
∼ Beta(20, 1.5), σ−2

η ∼ Gamma(2.5, 0.025),
ρ+ 1

2
∼ Beta(1, 2). (50)

Table 2 summarizes the MCMC estimation results of the RSV models with normal, Stu-

dent’s t, and skew t distributions obtained by 20,000 samples recorded after discarding 5,000

samples from MCMC iterations.16 CD is the p-value of the convergence diagnostic test by

Geweke (1992). All values indicate that the convergence of the posterior samples is not

rejected at 5% level. The inefficiency factor measures how well the MCMC chain mixes.17

Its values show that the chain is reasonably efficient and the 20,000 posterior samples are

large enough to give a statistical inference.

For both DJIA and Nikkei 225, the parameters in the latent volatility equation (19) are

consistent with the stylized features in the volatility literature. The posterior mean of ϕ is

close to one for all models, which indicates the high persistence of volatility. Additionally,

the posterior mean of ρ is negative and the 95% credible interval does not contain zero for

16All calculations in this paper are done by using Ox of Doornik (2009).
17The inefficiency factor is defined as 1 + 2

∑∞
s=1 ρs, where ρs is the sample autocorrelation at lag s. It is

the ratio of the numerical variance of the posterior sample mean to the variance of the posterior sample mean

from uncorrelated draws. The inverse of the inefficiency factor is also known as relative numerical efficiency

(See, for example, Chib (2001)). When the inefficiency factor is equal to x, we need to draw MCMC samples

x times as many as uncorrelated samples to obtain the same accuracy.
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all models, which confirms the volatility asymmetry. The posterior mean of µ is similar

among models using the same data.

For DJIA, the posterior mean of β is negative and the 95% credible interval does not

contain zero, which appears to contradict the insignificant skewness of the daily returns for

DJIA shown in Table 1. We attribute this seemingly contradictory result to the difference

between unconditional and conditional distribution of the daily returns. In Figure 1, large

negative returns followed by large positive returns are observed in some periods such as the

Lehman crisis in 2008, which results in the (almost) symmetric unconditional distribution

of the returns, that is, the insignificant skewness. On the other hand, the initial negative

return (rt) may not be fully explained by the stochastic volatility component (ht) and the

remaining part may be explained by the return shock component (β(zt−µz)+
√
ztϵt). The

negative return increases the subsequent volatilities (ht+1, ht+2, . . .), which may explain the

most part of the subsequent large positive returns. As a result, the large positive returns

are mostly explained by the stochastic volatility component whereas the large negative

returns are largely explained by the return shock component. Consequently, the conditional

distribution of returns becomes negatively skewed, which is captured by the negative value

of β.

For Nikkei 225, the posterior mean of β is negative but the 95% credible interval contains

zero. Again, this result seemingly contradicts the significant negative skewness of the daily

returns for Nikkei 225 shown in Table 1. From the argument above, this result implies that

the stochastic volatility component explains the most part of the return variation irrespec-

tive of its sign. We argue that such an opposite result is due to the data characteristics. For

DJIA and Nikkei 225, the means of lnRK are -0.361 and -0.076, respectively, whereas the

standard deviations are 0.982 and 0.840. That is, Nikkei 225 shows larger volatility with

less variation than DJIA, which is also clear from the posterior mean of µ in Table 2. Thus,

for Nikkei 225, the stochastic volatility component takes larger value and explains the most

of return variation even in the volatile period. Consequently, the conditional distribution

of returns becomes less skewed and β becomes closer to zero.

The posterior mean of ν is around 23 for DJIA and it is around 30 for Nikkei 225, which

implies that the fat tail is mostly explained by the stochastic volatility component. The

large value of ν is not consistent with the previous studies. For example, Nakajima and

Omori (2012) estimate the SV model with the GH skew Student’s t-distribution and report

that the posterior mean of ν is around 13 for the S&P500 returns from January 1970 to

December 2003. We attribute such a difference to the persistence of the return shock in
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the data. The data in Nakajima and Omori (2012) contains a quite large but temporal

shock, Black Monday shock in 1987, whereas our dataset contains the Lehman crisis, which

persists for relatively longer period as shown in Figure 1. As a result, the temporal shock

in the former data is explained by the small value of ν while the persistent shock in the

latter is explained by the stochastic volatility component.

The parameters in the RV equation (18), ξ and ση, are almost same among models

using the same data. The posterior means of ξ are negative and the credible intervals do

not contain zero for all models, showing the downward bias of the RK mainly due to the

non-trading hours.

For model comparisons, we compute the marginal likelihoods of the RSV models by the

method of Chib (2001).18 Table 3 shows the marginal likelihood estimates. For DJIA, the

RSVskt model provides the highest marginal likelihood whereas the RSVt model does not

improve the model fit compared to the RSVn model. This is consistent with the negative

estimate of β for the RSVskt model and larger values of ν for the RSVt and RSVskt

models. On the other hand, for Nikkei 225, neither the RSVskt model nor the RSVt model

improves the model fit, which is again consistent with the credible interval of β containing

zero and larger values of ν for the models. Overall, incorporating the negative skewness

and leptokurtosis in the return distribution improves the model fit depending on the data

characteristics.

5.2 Prediction Results

We estimate the volatility and quantile forecasts using a rolling window estimation scheme

with the window size fixed. For DJIA, the fixed window size is 1,989 and the last observation

dates vary from December 31, 2007 to July 28, 2011. For Nikkei 225, the window size is

1,985 and the last observation dates vary from June 30, 2005 to December 29, 2011. For

each estimation, we compute one-day-ahead forecasts of volatility, VaR, and ES from 15,000

posterior samples.19 Eventually, we obtain 895 prediction samples from January 2, 2008 to

July 29, 2011 for DJIA and 1,350 samples from July 1, 2005 to December 30 for Nikkei 225.

18See Appendix B for a brief description of the procedure to calculate the marginal likelihood.
19From the second estimation, we use the posterior means obtained from the previous period as the initial

values and generate 15,000 posterior samples after discarding 1,500 burn-in samples.
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5.2.1 Volatility forecasts

Table 4 shows the MSE and QLIKE of the volatility forecasts with the RK as a proxy

of the latent volatility. Following Hansen and Lunde (2005), we adjust the effect of the

non-trading hours on the RK as in (10). The volatility forecasts and the adjusted RKs are

shown in Figure 2. The RSVskt and RSVt models provide the least MSE and QLIKE for

DJIA and Nikkei 225, respectively.

To test if the difference is statistically significant, we implement the predictive ability

test, described in Section 4.1, using constant and lagged loss difference as test functions.

The Wald-type statistics WT in (31), which tests the null of equal predictive ability of the

RSVn model against the RSVt and RSVskt models, are given in Table 4. For DJIA, the

test reveals that predictive abilities, measured by QLIKE, of the RSVt and RSVskt models

significantly outperform the RSVn model at significance level 10% and 1%, respectively.

However, we cannot see the significant difference between other pairs of models in QLIKE

and between all pairs of models in MSE.

On the other hand, for Nikkei 225, the RSVt model significantly outperform the RSVn

model at significance level 5% for both MSE and QLIKE. Although the statistic is not

shown in Table 4, we confirm that the RSVt model also outperform the RSVskt model

at significance level 10 %. Overall, either the RSVt or RSVskt model improves volatility

forecasts for both DJIA and Nikkei 225.

5.2.2 Quantile forecasts

Table 5 shows the empirical failure rates of VaR forecasts for target probabilities α ∈

{0.01, 0.05}. π̂1 is an empirical probability of VaR violations. π̂01 is the empirical probability

of VaR violations conditional on no VaR violation on previous day while π̂11 is the one

conditional on VaR violation on previous day. For both DJIA and Nikkei 225, the empirical

failure rates are higher than the target probabilities (α) due to the VaR violations in a

volatile period from 2008 through 2009 as depicted in Figure 3. However, the failure rates

of the RSVskt model are closer to the target probabilities than those of the RSVn and RSVt

models.

Table 5 also shows the finite sample p-values of the likelihood ratio tests described in

Section 4.2.20 Column UC shows the p-values of the LR statistic for the unconditional

coverage test, LRuc in (33), with the null of π1 = α. Reflecting that the failure rates (π̂1)

20We compute the finite sample p-values based on the Monte Carlo testing technique of Dufour (2006).
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of the RSVskt model are closer to α, the p-values of the model are slightly higher than

those of the RSVn and RSVt models for DJIA. Column IND shows the p-values of the LR

statistic for the independence test, LRind in (36), with the null of π01 = π11. The null of

independence is not rejected at 5% except the RSVn model for Nikkei 225. Column CC

shows the p-values of the LR statistic of the conditional coverage test, LRcc in (37). The

null hypothesis, π01 = π11 = α, is rejected for all cases except the RSVskt model with

α = 0.01 for DJIA.

The results of the duration-based tests are in Columns W and EACD, which shows

the p-values of the LR statistic of the duration-based tests with the null of independent

VaR violations under which the likelihood of the durations is given by (39). W denotes

the alternative of the Weibull distribution for the unconditional durations, which results in

the likelihood in (40), whereas EACD denotes the alternative of the EACD(1,0) model for

the conditional expected duration in (41), which results in the conditional distribution of

the duration in (42). The p-values of the Weibull and EACD tests exceed 5% for all cases

except the RSVn and RSVt models at α = 0.05 for Nikkei 225.

To test if the predictive performance is significantly different, we implement the predic-

tive ability test, described in Section 4.2, using constant and lagged loss difference as test

functions. The p-values of the Wald-type statistic WT in (31), which tests the null of equal

predictive ability of the RSVn model against the RSVt and RSVskt models, are given in

Column WT of Table 5. For DJIA, the test reveals that predictive ability of the RSVskt

model significantly outperforms the RSVn model at significance level 5% for α = 0.01

whereas the RSVt model significantly outperforms the RSVn model at level at 10% for

α = 0.05. However, we cannot see the significant difference between other paris of models

for all α ∈ {0.01, 0.05}.

On the other hand, for Nikkei 225, the RSVskt model outperforms the RSVn model at

significance level 1% for all α ∈ {0.01, 0.05} and the RSVt model does the RSVn model at

1% for α = 0.01. Moreover, although the statistic is not shown in Table 5, we confirm that

the RSVskt model outperform the RSVt model at significance level 1% for α = 0.05 and at

5% for α = 0.01.

Table 6 shows the backtesting measures of the ES forecasts proposed by Embrechts,

Kaufmann, and Patie (2005). The RSVskt model shows the best performance, followed by

the RSVt model, for all null probabilities α ∈ {1%, 5%}. This indicates the importance

of the fat tail and skewness in the return distribution. That is, the extended model also

improves the ES forecasts.
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These results show that the RSVskt model provides better VaR and ES forecasts. This

implies that the skewed and heavy-tailed error distribution is important when estimating

the return quantiles. Overall, the extended model, either the RSVt or RSVskt model,

improves the quantile forecasts for both DJIA and Nikkei 225.

5.2.3 Cumulative loss difference

As pointed out by the anonymous associate editor, it is worthwhile to see when the assump-

tion of normality of the returns makes the volatility and quantile predictions worse. To this

end, we compute the cumulative loss difference,

CLDs =

s∑
t=1

∆Ln+t, s = 1, . . . , T, (51)

where n and T denote the last observation of the estimation and prediction samples, re-

spectively. We calculate CLD for the volatility forecasts using MSE and QLIKE in (28) as

well as for the VaR forecasts using the loss difference in (45).

Figure 5 shows the CLD for the volatility forecasts of the RSVn model against the RSVt

model (red line) and RSVskt model (blue line). The top panels show the CLD for MSE as

well as RKs with the adjustment of Hansen and Lunde (2005) whereas the bottom panels

show the CLD for QLIKE as well as logarithms of the RKs. For DJIA, the CLD of MSE

shows a notable leap in late 2008, which indicates that the volatility forecasts of the RSVn

model are worse than those of the RSVt and RSVskt models. The leaps clearly coincide

with a rise of RK.

Additionally, the CLD of MSE and QLIKE show a jump in mid 2010, associated with

a jump of RK due to the flash crash on May 6. At this point, the blue line rises but the

red line drops, which indicates that the RSVskt model provides better volatility forecast

whereas the RSVt model does worse. In contrast to the rise of RK in late 2008, the rise

of RK in mid 2010 is quite temporal, which implies that the RSVskt model may be less

sensitive to such a temporal volatility jump. Moreover, the differences are relatively flat

in the less volatile period such as mid 2008 and late 2010. Therefore, we argue that the

extended model provides better volatility forecasts especially in the volatile period.

For Nikkei 225, the CLD of MSE also shows a notable jump in late 2008. The rise of the

red line indicates that the RSVt model significantly outperforms the RSVn model whereas

the drop of the blue line indicates that the RSVskt model underperforms the RSVn model.

Although the blue line leaps right after the drop, the one time poor prediction associated
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with the drop deteriorates the overall volatility forecasting ability as shown in Table 4. the

CLD is relatively flat or slightly decreasing in the less volatile period from mid 2005 to

2007. The qualitatively similar result applies to the CLD of QLIKE. These results confirm

that the extended model provides better volatility forecasts especially in the volatile period.

Figure 6 shows the CLD for the VaR forecasts of the RSVn models against the RSVt

and RSVskt models. The top and bottom panels show the CLD for VaR(1%) and VaR(5%),

respectively. For DJIA, both panels show notable leaps during late 2008 to early 2009 as

well as mid 2010, which indicates that the normality assumption on returns makes the VaR

forecasts worse. The leaps again occur in the highly volatile period. On the other hand, the

differences are sometimes decreasing, which indicates that the RSVn model provides better

VaR forecasts, in the less volatile period such as late 2009. Thus, we also argue that the

extended model is useful for the VaR forecasts especially in the volatile period.

For Nikkei 225, the CLD of VaR(1%) shows a notable leap in late 2008, which indicates

the poor VaR forecasts of the RSVn model compared to the RSVt and RSVskt models. On

the other hand, the CLD for VaR(5%) against the RSVskt model (blue line) is increasing

from late 2008 whereas the CLD against the RSVt model (red line) does not show such a

monotonic increase over the prediction period. This result indicates that the RSVskt model

provides better VaR forecasts especially in the volatile period.

Overall, the normality assumption on the returns makes both volatility and quantile

predictions worse in the volatile period. In other words, the extended model, either the

RSVt or RSVskt, or both, is useful for both volatility and quantile forecasts especially in

the volatile period. That is, the extended model is suited for conservative risk management

which is important for large financial institutions such as commercial banks and pension

funds.

6 Conclusion

The RSV model of Takahashi, Omori, and Watanabe (2009), which incorporates the asym-

metric SV model with the RV estimator, is extended with the GH skew Student’s t-

distribution for financial returns. The extension makes it possible to consider the heavy tail

and skewness in financial returns. With the Bayesian estimation scheme via Markov chain

Monte Carlo method, the model enables us to estimate the parameters in the return distri-

bution and in the model simultaneously. It also makes it possible to forecast the volatility

and return quantiles by sampling from their posterior distributions jointly.
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We apply the model to daily returns and RKs of the U.S. and Japanese stock indices,

DJIA and Nikkei 225, and investigate its performance in volatility and quantile forecasts.

The estimation results show that the extended model improves the model fit evaluated by

the marginal likelihood for DJIA but not for Nikkei 225. Moreover, the prediction results

show that the extended model improves both volatility and quantile forecasts especially

in some volatile periods such as late 2008. Therefore, the extended model is suited for

conservative risk management necessary for commercial banks and pension funds.

The RSV model can be extended further in several directions. Recently, Trojan (2013)

proposes a regime switching RSVskt model and confirms several regimes in the S&P 500

index data. We can also consider different types of skew Student’s t-distribution such as

Fernández and Steel (1998) and Azzalini and Capitanio (2003). Additionally, extending

the univariate RSV model to the multivariate model enables the portfolio risk management

and optimal portfolio selection. Moreover, modeling multiple RV estimators with different

frequencies and/or different computational methods may improve the volatility and quantile

prediction as well as the model fit. In fact, Hansen and Huang (2012) introduce the realized

exponential GARCH model, which can utilize multiple RV estimators, and show that the

model with multiple RV estimators dominates the one with a single RV estimator. We leave

these extensions for future research.

Appendices

A MCMC Sampling Procedure

Consider the RSVskt model in (17)-(21). Let θ = (ϕ, ση, ρ, µ, β, ν, ξ, σu), y = {rt, xt}nt=1,

h = {ht}nt=1, z = {zt}nt=1, and Θ = (θ, h, z). We denote a prior distribution of an arbitrary

variable w as f(w) and its (conditional) posterior as f(w|·). Given y, the full posterior
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density is

f(Θ|y) ∝ f(r|Θ)× f(x|θ, h)× f(h|z, θ)× f(z|θ)× f(θ) (52)

=

n−1∏
t=1

f(rt|θ, ht, ht+1, zt)f(rn|θ, hn)×
n∏

t=1

f(xt|θ, ht) (53)

× f(h1|θ)
n−1∏
t=1

f(ht+1|θ, ht)×
n∏

t=1

f(zt|θ)× f(θ) (54)

=

n−1∏
t=1

f(ht+1|θ, ht, zt, rt)× f(h1|θ)×
n∏

t=1

f(rt|θ, ht, zt)×
n∏

t=1

f(xt|θ, ht) (55)

×
n∏

t=1

f(zt|θ)× f(θ) (56)

∝ (1− ρ2)−(n−1)/2σ−(n−1)
η

n−1∏
t=1

exp

{
−(h̄t+1 − ϕh̄t − r̄t)

2

2(1− ρ2)σ2η

}
(57)

× (1− ϕ2)1/2σ−1
η exp

{
−(1− ϕ2)h̄21

2σ2η

}
(58)

× (β2σ2z + µz)
n/2

n∏
t=1

z
−1/2
t exp

(
−ht

2
− r̃2t

2

)
(59)

× σ−n
u

n∏
t=1

exp

{
−(xt − ξ − ht)

2

2σ2u

}
(60)

×
(ν
2

)nν/2
Γ
(ν
2

)−n
n∏

t=1

z
−ν/2+1
t exp

(
− ν

2zt

)
× f(θ), (61)

where

r̃t =

√
β2σ2z + µzrt exp(−ht/2)− βz̄t√

zt
, h̄t = ht − µ, r̄t = ρση r̃t, z̄t = zt − µz (62)

We can sample w ∈ Θ from the posterior density given other parameters and variables Θ−w.

Let θ1 = (ϕ, ση, ρ, µ), θ2 = (β, ν), and θ3 = (ξ, σu). We describe how to sample θ1, θ2, θ3,

z, and h in the following subsections.

A.1 Generation of θ1

Given θ2, h, and z, the full conditional density of θ1 is

f(θ1|θ2, h, z, y) ∝ (1− ρ2)−(n−1)/2σ−(n−1)
η

n−1∏
t=1

exp

{
−(h̄t+1 − ϕh̄t − r̄t)

2

2(1− ρ2)σ2η

}
(63)

× (1− ϕ2)1/2σ−1
η exp

{
−(1− ϕ2)h̄21

2σ2η

}
× f(θ1), (64)
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which is similar to the one for the SVskt model of Nakajima and Omori (2012). Thus, we

follow the same sampling procedure described in Nakajima and Omori (2012) with different

specifications of r̄t defined in (62).

A.2 Generation of θ2

Given θ1, h, and z, the full conditional density of θ2 is

f(θ2|θ1, h, z, y) ∝
n−1∏
t=1

exp

{
−(h̄t+1 − ϕh̄t − r̄t)

2

2(1− ρ2)σ2η

}
× (β2σ2z + µz)

n/2
n∏

t=1

exp

(
− r̃

2
t

2

)
(65)

×
(ν
2

)nν/2
Γ
(ν
2

)−n
n∏

t+1

z
−ν/2+1
t exp

(
− ν

2zt

)
× f(θ2). (66)

Since it is not easy to sample from this density, we apply the Metropolis-Hastings (MH)

algorithm based on a normal approximation of the density around the mode. We implement

the MH sampling for β and ν separately.

A.3 Generation of θ3

Given θ1, θ2, h, and z, the full conditional density of θ3 is

f(θ3|θ1, θ2, h, z, y) ∝ σ−n
u

n∏
t=1

exp

{
−(xt − ξ − ht)

2

2σ2u

}
× f(θ3). (67)

Let the prior distributions of parameters in θ3 be

ξ ∼ N(mξ, s
2
ξ), σ−2

u ∼ Gamma(nu, Su). (68)

Then, we can sample the parameters in θ3 from the following posterior distributions,

ξ|σu, h, y ∼ N(m̃ξ, s̃
2
ξ), (69)

σ2u|ξ, h, y ∼ Gamma(ñu, S̃u), (70)

where

m̃ξ =
s2ξ
∑n

t=1(xt − ht) + σ2umξ

ns2ξ + σ2u
, s̃2ξ =

σ2us
2
ξ

ns2ξ + σ2u
, (71)

ñu =
n

2
+ nu, S̃u =

1

2

n∑
t=1

(xt − ξ − ht)
2 + Su. (72)
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A.4 Generation of z

Given θ1, θ2, θ3, and h, the full conditional density of zt is

f(zt|θ1, θ2, θ3, h, y) ∝ g(zt)× z
− ν+1

2
+1

t exp

(
− ν

2zt

)
, (73)

where

g(zt) = exp

{
− r̃

2
t

2
− (h̄t+1 − ϕh̄t − r̄t)

2

2(1− ρ2)σ2η
I(t < n)

}
, (74)

and I(·) is an indicator function. Following Nakajima and Omori (2012), we use the MH

algorithm. Specifically, we generate a candidate z∗t ∼ IG((ν+1)/2, ν/2) and accept it with

probability min{g(z∗t )/g(zt), 1}.

A.5 Generation of h

We first rewrite the RSVskt model in (17)-(19) as

rt = {β(zt − µz) +
√
ztϵt} exp(αt/2)γ, t = 1, . . . , n (75)

xt = c+ αt + ut, t = 1, . . . , n (76)

αt+1 = ϕαt + ηt, t = 0, . . . , n− 1 (77)

where αt = ht − µ, γ = exp(µ/2)/
√
β2σ2z + µz, and c = ξ + µ.

To sample the latent variable (α1, . . . , αn) efficiently, we use the block sampler by Shep-

hard and Pitt (1997) and Omori and Watanabe (2008). First, we divide (α1, . . . , αn)

into K + 1 blocks (αkj−1+1, . . . , αkj ) for j = 1, . . . ,K + 1 with k0 = 0 and kK+1 = n,

where kj − kj−1 ≥ 2. We select K knots (k1, . . . , kK) randomly and sample the error term

(ηkj−1
, . . . , ηkj−1

), instead of (αkj−1+1, . . . , αkj ), simultaneously from their full conditional

distribution.

Suppose that kj−1 = s and kj = s + m for the jth block and let yt = (rt, xt). Then

(ηs, . . . , ηs+m−1) are sampled simultaneously from the following full conditional distribution,

f(ηs, . . . , ηs+m−1|αs, αs+m+1, ys, . . . , ys+m) ∝
s+m∏
t=s

f(yt|αt, αt+1)

s+m−1∏
t=s

f(ηt), (78)

for s+m < n, and

f(ηs, . . . , ηs+m−1|αs, ys, . . . , ys+m) ∝
s+m−1∏
t=s

f(yt|αt, αt+1)f(yn|αn)

s+m−1∏
t=s

f(ηt), (79)
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for s + m = n. The logarithm of f(yt|αt, αt+1) or f(yn|αn) in (78) and (79) (excluding

constant term) is given by

lt = −αt

2
− (rt − µt)

2

2σ2t
− (xt − c− αt)

2

2σ2u
, (80)

where

µt =

 {βz̄t +
√
ztρσ

−1
η (αt+1 − ϕαt)} exp(αt/2)γ, t < n,

βz̄n exp(αn/2)γ, t = n,
(81)

and

σ2t =

 (1− ρ2)zt exp(αt)γ
2, t < n,

zn exp(αn)γ
2, t = n.

(82)

Then the logarithm of the conditional density in (78) and (79) is given by (excluding a

constant term)

s+m−1∑
t=s

log f(ηt) + L, (83)

where

L =


∑s+m

t=s lt −
(αs+m+1 − ϕαs+m)2

2σ2η
, s+m < n,∑s+m

t=s lt, s+m = n.

(84)

Further, for s ≥ 0, we define

α = (αs+1, . . . , αs+m)′, (85)

d = (ds+1, . . . , ds+m)′, dt =
∂L

∂αt
, t = s+ 1, . . . , s+m, (86)

Q = −E
[
∂2L

∂α∂α′

]
=



As+1 Bs+2 0 · · · 0

Bs+2 As+2 Bs+3 · · · 0

0 Bs+3 As+3
. . .

...
...

. . .
. . .

. . . Bs+m

0 · · · 0 Bs+m As+m


, (87)

At = −E
[
∂2L

∂α2
t

]
, t = s+ 1, . . . , s+m, (88)

Bt = −E
[

∂2L

∂αt∂αt−1

]
, t = s+ 2, . . . , s+m, Bs+1 = 0. (89)
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The first derivative of L with respect to αt is given by

dt = −1

2
+

(rt − µt)
2

2σ2t
+
rt − µt
σ2t

∂µt
∂αt

+
rt−1 − µt−1

σ2t−1

∂µt−1

∂αt
+

(xt − c− αt)

σ2u
+ κ(αt), (90)

where

∂µt
∂αt

=


{
βz̄t
2

+
√
ztρσ

−1
η

(
−ϕ+

αt+1 − ϕαt

2

)}
exp(αt/2)γ, t < n,

βz̄n exp(αn/2)γ

2
, t = n,

(91)

∂µt−1

∂αt
=

 0, t = 1,
√
zt−1ρσ

−1
η exp(αt−1/2)γ, t = 2, . . . , T.

(92)

κ(αt) =


ϕ(αt+1 − ϕαt)

σ2η
, t = s+m < n,

0, otherwise.

(93)

Taking expectations of second derivatives multiplied by −1 with respect to yt’s, we obtain

the At’s and Bt’s as follows,

At =
1

2
+ σ−2

t

(
∂µt
∂αt

)2

+ σ−2
t−1

(
∂µt−1

∂αt

)2

+
1

σ2u
+ κ′(αt), (94)

Bt = σ−2
t−1

∂µt−1

∂αt−1

∂µt−1

∂αt
, (95)

where

κ′(αt) =


ϕ2

σ2η
, t = s+m < n,

0, otherwise.

(96)

Applying the second order Taylor expansion to the conditional density (78) will produce

the approximating normal density f∗(ηs, . . . , ηs+m−1|αs, αs+m+1, ys, . . . , ys+m) as follows

(see Omori and Watanabe (2008) for details),

log f(ηs, . . . , ηs+m−1|αs, αs+m+1, ys, . . . , ys+m) (97)

≈ const− 1

2

s+m−1∑
t=s

η2t + L̂+
∂L

∂η

∣∣∣∣
η=η̂

(η − η̂) +
1

2
(η − η̂)′ E

[
∂2L

∂η∂η′

]∣∣∣∣
η=η̂

(η − η̂) (98)

= const− 1

2

s+m−1∑
t=s

η2t + L̂+ d̂′(α− α̂)− 1

2
(α− α̂)′Q̂(α− α̂) (99)

= const + log f∗(ηs, . . . , ηs+m−1|αs, αs+m+1, ys, . . . , ys+m), (100)

where η = (ηs, . . . , ηs+m−1)
′, and d̂, L̂, and Q̂ denote d, L, and Q evaluated at α = α̂

(or, equivalently, at η = η̂), respectively. The expectations are taken with respect to yt’s
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conditional on αt’s. Similarly, we can obtain the normal density which approximates the

conditional density (79).

To make the linear Gaussian state-space model corresponding to the approximating

density, we first compute the following Dt, Kt, Jt, and bt for t = s+2, . . . , s+m recursively,

Dt = Ât −D−1
t−1B̂

2
t , Ds+1 = Âs+1, (101)

Kt =
√
Dt, (102)

Jt = B̂tK
−1
t−1, Js+1 = 0, Js+m+1 = 0, (103)

bt = d̂t − JtK
−1
t−1bt−1, bs+1 = d̂s+1. (104)

Second, we define auxiliary variables ŷt = γ̂t +D−1
t bt where

γ̂t = α̂t +K−1
t Jt+1α̂t+1, t = s+ 1, . . . , s+m. (105)

Then the approximating density corresponds to the density of the linear Gaussian state-

space model given by

ŷt = Ztαt +Gtζt, t = s+ 1, . . . , s+m, (106)

αt+1 = ϕαt +Htζt, t = s, s+ 1, . . . , s+m, ζt ∼ N(0, I), (107)

where

Zt = 1 +K−1
t Jt+1ϕ, Gt = K−1

t (1, Jt+1ση), Ht = (0, ση). (108)

We can sample (ηs, . . . , ηs+m−1) from the full posterior distribution in (78) and (79)

by applying the simulation smoother21 to this state-space model and using Acceptance-

Rejection (AR) MH algorithm proposed by Tierney (1994). See Omori and Watanabe

(2008) and Takahashi, Omori, and Watanabe (2009) for the details of the ARMH algorithm.

B Marginal Likelihood

The marginal likelihood m(y) is defined as the integral of the likelihood with respect to the

prior density of the parameter,

m(y) =

∫
Θ
f(y|Θ)f(Θ)dΘ =

f(y|Θ)f(Θ)

f(Θ|y)
, (109)

21See, for example, de Jong and Shephard (1995) and Durbin and Koopman (2002).
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where Θ is a parameter, f(y|Θ) is a likelihood, f(Θ) is a prior probability density, and f(Θ|y)

is a posterior probability density.22 Following Chib (1995), we estimate the logarithm of

the marginal likelihood as

logm(y) = log f(y|Θ) + log f(Θ)− log f(Θ|y). (110)

Although the equality holds for any values of Θ, we use the posterior mean of Θ to obtain

a stable estimate of m(y).

Given the posterior sample of Θ, the prior density f(Θ) is easily calculated. However,

the likelihood and posterior components must be evaluated by simulation. The likelihood

is estimated using the auxiliary particle filter with 10,000 particles, which provides an

unbiassed estimator at a particular ordinate Θ for f(y|Θ).23 The likelihood estimate and

its standard error are obtained as the sample mean and standard deviation of the likelihoods

from 10 iterations. The posterior probability density and its numerical standard error are

evaluated by the method of Chib and Greenberg (1995) and Chib and Jeliazkov (2001) with

50,000 reduced MCMC samples.
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Tables

Table 1: Descriptive statistics of the daily return (r) and logarithm of the realized kernel

(lnRK) for DJIA from January 4, 2000 to July 29, 2011 (2,884 samples) and for Nikkei 225

from June 5, 1997 to December 30, 2010 (3,336 samples). The DJIA data is obtained from

Oxford-Man Institute and Nikkei 225 data is constructed from Nikkei NEEDS-TICK data.

Standard errors of skewness and kurtosis for DJIA are 0.0456 and 0.0911, respectively,

whereas those for Nikkei 225 are 0.0424 and 0.08476, respectively. JB is the p-value of

the Jaque-Bera statistic to test the null hypothesis of normality. LB is the p-value of the

Ljung-Box statistic adjusted for heteroskedasticity following Diebold (1988) to test the null

hypothesis of no autocorrelation up to 10 lags.

DJIA

Variable Mean SE SD Skew Kurt Min Max JB LB

r 0.002 0.024 1.264 0.008 10.414 -8.615 10.532 0.00 0.14

lnRK -0.361 0.018 0.982 0.640 3.860 -2.958 4.514 0.00 0.00

Nikkei 225

Variable Mean SE SD Skew Kurt Min Max JB LB

r -0.021 0.028 1.610 -0.217 8.319 -12.111 13.235 0.00 0.57

lnRK -0.076 0.015 0.840 0.158 3.655 -2.700 3.560 0.00 0.00
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Table 2: MCMC estimation results of RSV models with normal, student’s t, and skewed t

distributions, using the full sample of daily returns and RKs for DJIA and Nikkei 225. The

results are obtained by 20,000 samples recorded after discarding 5,000 samples from MCMC

iterations (all calculations in this paper are done by using Ox of Doornik (2009)). 95%L

and 95%U are the lower and upper quantiles of 95% credible interval, respectively. The last

two columns are the p-value of the convergence diagnostic test by Geweke (1992) and the

inefficiency factor by Chib (2001). Priors are set as µ ∼ N(0, 10), (ϕ+1)/2 ∼ Beta(20, 1.5),

σ−2
η ∼ Gamma(2.5, 0.025), (ρ + 1)/2 ∼ Beta(1, 2), β ∼ N(0, 1), ν ∼ Gamma(5, 0.5)I(ν >

4), ξ ∼ N(0, 1), σ−2
u ∼ Gamma(2.5, 0.1).

DJIA (2,884 samples from January 4, 2000 to July 29, 2011)

Model Mean SD 95%L Median 95%U CD Inef.

RSVn ϕ 0.9650 0.0044 0.9560 0.9652 0.9736 0.480 4.84

ση 0.2186 0.0079 0.2036 0.2183 0.2345 0.331 16.50

ρ -0.4825 0.0300 -0.5401 -0.4832 -0.4218 0.731 10.45

µ -0.0764 0.1100 -0.2908 -0.0778 0.1441 0.826 4.46

ξ -0.2032 0.0327 -0.2688 -0.2028 -0.1404 0.489 46.68

σu 0.3964 0.0077 0.3817 0.3962 0.4120 0.812 5.20

RSVt ϕ 0.9655 0.0045 0.9565 0.9656 0.9740 0.725 3.43

ση 0.2165 0.0082 0.2010 0.2163 0.2330 0.242 15.42

ρ -0.5010 0.0314 -0.5617 -0.5015 -0.4376 0.761 12.19

µ -0.0579 0.1087 -0.2668 -0.0589 0.1563 0.348 6.27

ν 22.5909 4.5608 14.7718 22.2752 32.1559 0.705 173.51

ξ -0.2139 0.0329 -0.2798 -0.2140 -0.1500 0.066 48.66

σu 0.3980 0.0076 0.3832 0.3979 0.4132 0.950 5.57

RSVskt ϕ 0.9660 0.0043 0.9573 0.9660 0.9742 0.145 6.62

ση 0.2181 0.0078 0.2031 0.2179 0.2339 0.370 25.92

ρ -0.5248 0.0306 -0.5831 -0.5253 -0.4637 0.057 20.33

µ -0.0668 0.1080 -0.2761 -0.0684 0.1474 0.480 3.32

β -0.6292 0.2101 -1.0870 -0.6147 -0.2691 0.429 87.91

ν 23.0995 4.2464 15.8961 22.7920 32.4364 0.142 221.19

ξ -0.2160 0.0346 -0.2847 -0.2155 -0.1501 0.826 42.33

σu 0.3980 0.0075 0.3838 0.3979 0.4131 0.057 6.63
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Table 2: MCMC estimation results of RSV models – Continued

Nikkei 225 (3,336 samples from June 5, 1997 to December 30, 2010)

Model Mean SD 95%L Median 95%U CD Inef.

RSVn ϕ 0.9540 0.0049 0.9441 0.9540 0.9634 0.472 15.13

ση 0.2158 0.0079 0.2004 0.2158 0.2316 0.670 34.79

ρ -0.3391 0.0282 -0.3943 -0.3392 -0.2840 0.758 17.99

µ 0.5326 0.0703 0.3955 0.5319 0.6735 0.439 5.08

ξ -0.7236 0.0262 -0.7755 -0.7230 -0.6724 0.363 37.15

σu 0.4062 0.0066 0.3933 0.4062 0.4192 0.418 14.71

RSVt ϕ 0.9554 0.0047 0.9459 0.9555 0.9646 0.254 14.53

ση 0.2120 0.0077 0.1968 0.2118 0.2273 0.197 41.72

ρ -0.3648 0.0288 -0.4216 -0.3648 -0.3083 0.649 24.01

µ 0.5414 0.0707 0.4041 0.5406 0.6819 0.177 5.20

ν 29.5778 5.7965 19.3176 29.2167 41.8819 0.163 244.39

ξ -0.7313 0.0259 -0.7829 -0.7312 -0.6815 0.343 31.24

σu 0.4088 0.0065 0.3960 0.4087 0.4216 0.423 18.03

RSVskt ϕ 0.9558 0.0048 0.9461 0.9558 0.9649 0.798 13.57

ση 0.2110 0.0077 0.1964 0.2109 0.2264 0.553 37.09

ρ -0.3757 0.0292 -0.4323 -0.3760 -0.3174 0.429 15.24

µ 0.5412 0.0707 0.4023 0.5405 0.6823 0.700 3.62

β -0.3146 0.2148 -0.7708 -0.3070 0.0773 0.236 50.71

ν 31.4847 6.3439 21.3406 30.6827 46.3899 0.504 238.13

ξ -0.7334 0.0261 -0.7857 -0.7330 -0.6836 0.384 23.41

σu 0.4096 0.0065 0.3970 0.4096 0.4227 0.694 13.60
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Table 3: Marginal likelihood and its components, likelihood, prior, and posterior (in loga-

rithm), for the RSV models estimated by using the full sample of daily returns and RKs

of DJIA index (2,884 samples from January 4, 2000 through July 29, 2011) and Nikkei 225

index (3,336 samples from June 5, 1997 to December 30, 2010). The likelihood is estimated

using the auxiliary particle filter of Pitt and Shephard (1999) with 10,000 particles. The

likelihood estimate and its standard error are computed as the sample mean and standard

deviation of the likelihoods from 10 iterations. The posterior probability density and its nu-

merical standard error are evaluated by the method of Chib and Greenberg (1995) and Chib

and Jeliazkov (2001) with 50,000 reduced MCMC samples. The numbers in the parentheses

show the standard errors.

DJIA

Model Likelihood Prior Posterior Marginal

RSVn -5911.83 (0.69) -1.18 20.30 (0.01) -5933.30 (0.69)

RSVt -5914.83 (0.64) -6.69 15.99 (0.05) -5937.50 (0.64)

RSVskt -5906.16 (0.82) -8.10 15.25 (0.05) -5929.51 (0.82)

Nikkei 225

Model Likelihood Prior Posterior Marginal

RSVn -11030.86 (2.74) -1.71 21.18 (0.04) -11053.75 (2.74)

RSVt -11037.17 (2.41) -9.46 16.45 (0.25) -11063.07 (2.43)

RSVskt -11035.21 (2.26) -11.11 15.92 (0.19) -11062.24 (2.27)
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Table 4: Mean squared error (MSE) and quasi-likelihood (QLIKE) of volatility forecasts

for DJIA (895 prediction samples from January 2, 2008 to July 29, 2011) and NIkkei 225

(1,350 prediction samples from July 1, 2005 to December 30, 2010). Realized kernel with the

adjustment of Hansen and Lunde (2005) are used as a proxy of latent volatility. Numbers in

square brackets denote the Wald-type statistics WT in (31) with the null of equal predictive

ability of the RSVn model and a model specified in the first column. * and *** indicate

that the predictive ability test rejects the null hypothesis at the significance level 10% and

1%, respectively. We implement the predictive ability test based on Giacomini and White

(2006) using constant and lagged loss difference as test functions.

DJIA

Model MSE QLIKE

RSVn 9.050 0.212

RSVt 8.949 [3.035] 0.210 [4.960]∗

RSVskt 8.911 [1.506] 0.208 [11.328]∗∗∗

Nikke 225

Model MSE QLIKE

RSVn 4.839 0.156

RSVt 4.783 [7.697]∗∗ 0.155 [6.582]∗∗

RSVskt 4.812 [1.198] 0.156 [3.819]
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Table 5: Evaluation results of the VaR forecasts for DJIA and Nikkei225. α and π̂1 de-

note target and empirical probabilities of VaR violations, respectively. π̂01 is the empirical

probability of VaR violations conditional on no VaR violation on previous day while π̂11

is the one conditional on VaR violation on previous day. UC denotes the unconditional

coverage test with the null hypothesis of π1 = α. IND denotes the independence test which

tests the null of π01 = π11 against the alternative of the first-order Markov process. CC

denotes the conditional coverage test which combines the UC and IND tests with the null

of π01 = π11 = α. W denotes the unconditional duration test which tests the null of inde-

pendent violations against the alternative of the Weibull distribution for the distribution

of the duration. EACD denotes the conditional duration test which tests the null of the

independent durations against the alternative of the EACD(1,0) model for the conditional

durations. We compute the finite sample p-values of the likelihood ratios of these tests

based on the Monte Carlo testing technique of Dufour (2006). Numbers in the column

WT denote p-values of the Wald-type statistic WT in (31) with the null of equal predictive

ability of the RSVn model and a model specified in the first column.

DJIA (895 prediction samples from January 2, 2008 to July 29, 2011)

Model α π̂1 π̂01 π̂11 UC IND CC W EACD WT

RSVn 0.01 0.027 0.028 0.000 0.000 0.095 0.001 0.441 0.983

RSVt 0.01 0.022 0.023 0.000 0.002 0.084 0.005 0.156 0.911 0.168

RSVskt 0.01 0.019 0.019 0.000 0.015 0.097 0.030 0.192 0.575 0.031

RSVn 0.05 0.077 0.077 0.058 0.001 0.069 0.000 0.064 0.066

RSVt 0.05 0.078 0.079 0.057 0.000 0.074 0.000 0.075 0.084 0.060

RSVskt 0.05 0.074 0.074 0.061 0.003 0.075 0.001 0.057 0.101 0.113

Nikkei 225 (1,350 prediction samples from July 1, 2005 to December 30, 2010)

Model α π̂1 π̂01 π̂11 UC IND CC W EACD WT

RSVn 0.01 0.031 0.032 0.000 0.000 0.048 0.000 0.454 0.383

RSVt 0.01 0.028 0.029 0.000 0.000 0.069 0.000 0.326 0.325 0.007

RSVskt 0.01 0.026 0.027 0.000 0.000 0.081 0.000 0.522 0.054 0.001

RSVn 0.05 0.101 0.105 0.073 0.000 0.276 0.000 0.179 0.041

RSVt 0.05 0.102 0.105 0.080 0.000 0.390 0.000 0.204 0.040 0.663

RSVskt 0.05 0.098 0.100 0.076 0.000 0.385 0.000 0.258 0.051 0.001
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Table 6: Backtesting measure of Embrechts, Kaufmann, and Patie (2005) for the expected

shortfall forecasts of DJIA (895 prediction samples from January 2, 2008 to July 29, 2011)

and NIkkei 225 (1,350 prediction samples from July 1, 2005 to December 30, 2010).

DJIA Nikkei 225

Model 1% 5% 1% 5%

RSVn 0.2621 0.2721 0.4364 0.4806

RSVt 0.1743 0.2010 0.3285 0.4180

RSVskt 0.1437 0.1712 0.3072 0.3812
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Figures

Figure 1: Time series plot of daily returns (r) and logarithms of realized kernels (lnRK)

for DJIA from January 4, 2000 though July 29, 2011 (2,884 samples) and Nikkei 225 from

June 5, 1997 to December 30, 2010 (3,336 samples).
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Figure 2: Volatility forecasts (blue line) and realized kernel with the adjustment of Hansen

and Lunde (2005) (red line) for DJIA (895 prediction samples from January 2, 2008 to

July 29, 2011) and NIkkei 225 (1,350 prediction samples from July 1, 2005 to December 30,

2010).
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Figure 3: VaR forecasts (blue line) and daily returns (red line) for DJIA (895 prediction

samples from January 2, 2008 to July 29, 2011).
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Figure 4: VaR forecasts (blue line) and daily returns (red line) for Nikkei 225 (1350 predic-

tion samples from July 1, 2005 to December 30, 2010).
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Figure 5: Cumulative loss differences for volatility forecasts of the RSVn models against

the RSVt (red line) and RSVskt (blue line) models. The prediction period for DJIA is from

January 2, 2008 to July 29, 2011 (895 samples) and for NIkkei 225 is from July 1, 2005

to December 30, 2010 (1350 samples). The top panels show the cumulative differences for

MSE as well as realized kernels with the adjustment of Hansen and Lunde (2005) (gray line)

whereas the bottom panels show the cumulative differences for QLIKE as well as logarithms

of the realized kernels (gray line).
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Figure 6: Cumulative loss differences for VaR forecasts of the RSVn models against the

RSVt (red line) and RSVskt (blue line) models. Top and bottom panels show the cumulative

differences for VaR(1%) and VaR(5%), respectively. The prediction period for DJIA is from

January 2, 2008 to July 29, 2011 (895 samples) and for Nikkei 225 is from July 1, 2005 to

December 30, 2010 (1350 samples).
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