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Matrices with Use of Factor Models

Yuki Ikeda∗and Tatsuya Kubokawa†

University of Tokyo

Abstract

The problem of estimating large covariance matrices with use of factor models
is addressed when both the sample size and the dimension of covariance matrix
tend to infinity. In this paper, we consider a general class of weighted estimators
which includes (i) linear combinations of the sample covariance matrix and the
model-based estimator under the factor model and (ii) ridge-type estimators with-
out factors as special cases. The optimal weights in the class are derived, and the
plug-in weighted estimators are suggested since the optimal weights depend on un-
known parameters. Numerical results show our methods perform well. Finally, an
application to portfolio managements is given.

Key words and phrases: Covariance matrix, factor model, high dimension, large
sample, non-normal distribution, normal distribution, portfolio management, ridge-
type estimator, risk function.

1 Introduction

Estimation of a large covariance matrices is a fundamental issue in economics, financial
engineering, biologics, signal processing and other literatures and has been widely studied.
In the estimation of the p × p covariance matrix Σ11, the classical large sample theory
assumes that sample size N is allowed to grow, but dimension p is fixed. In this setting,
we can estimate the covariance matrix Σ11 by its sample covariance matrix, denoted here
by Σ̂11, which is a consistent estimator. However, in applications, we often encounter
very large data sets which contain variables in high dimension. In this case, using Σ̂11 is
inappropriate since Σ̂11 becomes singular when p is larger than N . Even if p < N , Σ̂11 is
instable as pointed out by Fan, Fan and Lv (2008).

∗Graduate School of Economics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033,
JAPAN, E-Mail: pt2y1003@gmail.com

†Faculty of Economics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, JAPAN,
E-Mail: tatsuya@e.u-tokyo.ac.jp

1



Various methods have been proposed to estimate Σ11 in high dimension. Ledoit and
Wolf (2004), Schafer and Strimmer (2005), Chen, Wiesel, Eldar and Hero (2010), Fisher

and Sun (2011) and others suggested well-conditioned estimators combining Σ̂11 and more
stable statistics, which are called weighted or ridge-type estimators. When covariates,
called factors, are available, Ledoit and Wolf (2003), Ren and Shimotsu (2009) and Fan,
et al . (2008) suggested more refined linear shrinkage estimators of Σ11 by incorporating
the common factor structure in the factor models. Ledoit and Wolf (2003), Ren and
Shimotsu (2009) suggested weighted estimators but not considered the high dimensional
settings. In this paper, we also propose factor-model-based weighted estimators but in
high dimension. Also many papers studied regularization and thresholding techniques
such as Bickel and Levina (2008a, b), Rothman, Levina and Zhu (2009), Lam and Fan
(2009), Cai and Zhou (2010), Cai and Liu (2011) and others. Recently, Fan, Liao and
Mincheva (2011) suggested estimators ofΣ11 by thresholding the sample covariance matrix
of estimated residuals in the factor model and derived the favorable convergence rates
under the sparcity of covariance of idiosyncratic components.

Factor models have been widely used to relate variables of interest, yi’s, to some fac-
tors, xi’s and has been used in many applications. Among others, Fama and French (1992)
found out that excess asset returns are well explained by the three factors of sensitivity to
the market excess return, the market capitalization and the book-to-price ratio. Factor
models often assumes the independence among the idiosyncratic components, so that the
error covariance matrix becomes diagonal. The cross-sectional independence, however, is
restrictive in many applications as pointed out in Chamberlain and Rothschild (1983).

Fan, et al . (2011) relaxed the assumption of the cross-sectional independence in the
factor models and suggest invertible estimators under cross-sectional correlations of id-
iosyncratic noises, when both p and N are allowed to diverge. In this paper, we also
permit the cross-sectional independence in the factor models and suggest new invertible
estimators based on all the data yi’s and xi’s for any (p,N).

To explain more specifically the problem addressed here, we describe the underlying
model and the factor model. Assume that observations (y1,x1), . . . , (yN ,xN) are available
where yi and xi are, respectively, p- and q-dimensional vectors. Consider estimation of
p×p covariance matrix Σ11 of yi where y1, . . . ,yN are mutually independently distributed
as E[yi] = µ1 and Cov (yi) = Σ11, namely

yi ∼ i.i.d.(µ1,Σ11). (1.1)

The sample covariance matrix ofΣ11 is Σ̂11 = n−1
∑N

i=1(yi−y)(yi−y)T for n = N−1 and

y = N−1
∑N

i=1 yi. It may be possible to improve on Σ̂11 by using additional observations
x1, . . . ,xN when the following factor model is suspected:

yi =α+ βxi + ϵi, i = 1, . . . , N,

ϵi ∼ i.i.d.(0,D), xi ∼ i.i.d.(µ2,Σ22),
(1.2)
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where ϵi’s are idiosyncratic error components which are not correlated with xi’s, α and
β are, respectively, p- and q-variate unknown vectors, and D and Σ22 are, respectively,
p× p and q × q unknown positive definite symmetric matrices.

It is convenient to treat two models (1.1) and (1.2) in a unified expression. Let
Σ12 = Cov (yi,xi). Then from (1.2), it is seen that µ1 = α + βµ2 and Σ12 = E[(yi −
α− βµ2)(xi − µ2)

T ] = βΣ22. This implies that

α =µ1 −Σ12Σ
−1
22 µ2,

β =Σ12Σ
−1
22 ,

and factor model (1.2) can be rewritten as

yi =(µ1 −Σ12Σ
−1
22 µ2) +Σ12Σ

−1
22 xi + ϵi, i = 1, . . . , N,

ϵi ∼ i.i.d.(0,D), xi ∼ i.i.d.(µ2,Σ22),
(1.3)

which yields that
Cov (yi) = D +Σ12Σ

−1
22 Σ21. (1.4)

Letting Σ11.2 = Σ11 −Σ12Σ
−1
22 Σ21, we can rewrite (1.4) as Cov (yi) = Σ11 +D −Σ11.2.

As setups of D, the following three cases are considered:

(C0) Fully unknown case: D = Σ11.2.

(C1) Sphericity case: D = p−1tr (Σ11.2)I.

(C2) Diagonality case: D = diag (Σ11.2).

In fully unknown case (C0), it follows from (1.4) that Cov (yi) = Σ11.2 +Σ12Σ
−1
22 Σ21 =

Σ11, which corresponds to model (1.1), and Σ11 is estimated based on the sample covari-

ance matrix Σ̂11 without any information on xi’s. In restricted cases (C1) and (C2), the
covariance matrix Σ11 can be estimated with more refined estimators since Σ12, Σ22 and
Σ11.2 are estimated based on all the data yi’s and xi’s. The restricted cases mean that
the idiosyncratic components in ϵi are uncorrelated, and model (1.2) or (1.3) is called
the strict factor model, while it is called the approximate factor model in the unrestricted
case. Thus, model (1.3) gives a unified expression of strict and approximate factor models.

Using the unified expression of factor models (1.3), we consider estimation of the
covariance matrix Σ11 in model (1.1) when the strict factor models with restrictions (C1)
and (C2) are suspected. Under the restrictions, Σ11 is estimated by

Σ̂f = D̂ + Σ̂12Σ̂
−1

22 Σ̂21,

with appropriate estimators D̂, Σ̂12 and Σ̂22, so that it is reasonable to estimate Σ11 with
the weighted estimators

Σ̂α = αΣ̂11 + (1− α)Σ̂f = Σ̂11 + α(Σ̂11 − Σ̂f )

since Σ̂α shrinks Σ̂11 towards Σ̂f which is the estimator when the strict factor model is
suspected. As the true error covariance matrix goes far away from the strict factor model,

3



however, the weighted estimator Σ̂α becomes ill-conditioned because it converges to the
sample covariance matrix. It is here noted that Σ̂α is rewritten as Σ̂α = αΣ̂11.2 + (1 −
α)D̂ + Σ̂12Σ̂

−1

22 Σ̂21. Thus, we consider to shrink further the term Σ̂12Σ̂
−1

22 Σ̂21 toward the
restricted estimators, which results in the doubly weighted estimators

Σ̂(γ, β) = γΣ̂11.2 + (1− γ)Λ(Σ̂11.2) + βΣ̂12Σ̂
−1

22 Σ̂21 + (1− β)Λ(Σ̂12Σ̂
−1

22 Σ̂21),

where Λ(·) is a function satisfying D̂ = Λ(Σ̂11.2), which corresponds to the restriction.
This doubly weighted estimators are well-conditioned when the true error covariance ma-
trix goes far away from the strict factor model.

The goal of this paper is to derive the optimal weights on γ and β in terms of minimiz-
ing the mean squared error Risk(Σ̂(γ, β)) = p−1E[tr [{Σ̂(γ, β) −Σ11}2]], and to suggest
the consistent estimators with the optimal weights. As we mentioned above, we permit
the cross-sectional correlations among the idiosyncratic components while restricting the
density of elements of Σ11.2 as tr (Σ2

11.2) = O(p). This corresponds to the sparcity con-
dition of Σ11.2 assumed in Fan, et al . al. (2011) where many entries of the off-diagonal
elements are zero, and the number of nonzero off-diagonal entries is restricted to grow
slowly. On the other hand, for our final interest Σ11, most weighted (linear shrinkage)
estimators in the literature assume that tr (Σ2

11) = O(p). However, this can be inappro-
priate in covariance estimation with use of factor model, since if each element of the factor
loadings Σ12 is of order O(1), tr (Σ2

11) = tr ((Σ12Σ
−1
22 Σ21 + Σ11.2)

2) = O(p2), though it
is true that if Σ12 is sparse or not dense, assuming tr (Σ2

11) = O(p) is reasonable. Thus,
we treat the two cases, (i) tr (Σ2

11) = O(p2) and (ii) tr (Σ2
11) = O(p) depending on the

density of the factor loadings Σ12. We mainly treat the former case but the results in the
latter is also shown.

The rest of this paper is organized as follows: In Section 2, we introduce the weighted
estimators and derive the optimal weights under appropriate assumptions on non-sparcity
and sparcity of factor loadings. The mean squared errors of the estimators with the opti-
mal weights are provided. In Section 3, we give several estimators of unknown parameters
included in the optimal estimators and suggest the plug-in estimators by substituing the
estimators into the optimal estimators. Section 4 conducts numerical studies, and Section
5 gives an application to portfolio management. Concluding remarks are given in Section
6.

2 Weighted Estimators and Mean Squared Errors

2.1 Weighted estimators

Let us assume that the observations (y1,x1), . . . , (yN ,xN) have model (1.3). Let y =
N−1

∑N
i=1 yi, x = N−1

∑N
i=1 xi, V 11 =

∑N
i=1(yi − y)(yi − y)T , V 12 = V T

21 =
∑N

i=1(yi −
y)(xi − x)T and V 22 =

∑N
i=1(xi − x)(xi − x)T . Let Σ̂ij = n−1V ij (i, j = 1, 2) for
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n = N − 1. Also, let

V =
( V 11 V 12

V 21 V 22

)
. (2.1)

We consider the estimation of the covariance matrix Cov (yi) = Σ11. An estimator δ
of Σ11 is evaluated in terms of the mean squared error (MSE) Risk(δ) = p−1E[tr [(δ −
Σ11)

2]]. A standard estimator of Σ11 is the sample covariance matrix Σ̂11 = n−1V 11.
This estimator may be used if no information on the model is available. In the financial
economics, the factor models are used for explaining stock returns. When factor model
(1.3) is suspected, from (1.4), we can suggest the estimator

Σ̂f = D̂ + Σ̂12Σ̂
−1

22 Σ̂21, (2.2)

where D̂ = Λ(Σ̂11.2) for Σ̂11.2 = Σ̂11− Σ̂12Σ̂
−1

22 Σ̂21. As examples of Λ(Σ̂11.2), we consider
the two cases;

(C1) Case of sphericity: Λ(Σ̂11.2) = p−1tr (Σ̂11.2)I.

(C2) Case of diagonality: Λ(Σ̂11.2) = diag(Σ̂11.2).

It is noted that this estimator is available in the case of n ≥ q due to existence of Σ̂
−1

22 .

Otherwise, the estimator Σ̂
−1

22 should be replaced with the generalized inverse Σ̂
−
22.

In this paper, we consider to combine the sample covariance matrix Σ̂11 and the
estimator Σ̂f in the factor model. For constant α satisfying 0 ≤ α ≤ 1, the weighted
estimator is

Σ̂α = αΣ̂11 + (1− α)Σ̂f ,

which is rewritten as

Σ̂α =α(Σ̂11 − Σ̂12Σ̂
−1

22 Σ̂21) + αΣ̂12Σ̂
−1

22 Σ̂21 + (1− α)D̂ + (1− α)Σ̂12Σ̂
−1

22 Σ̂21

=αΣ̂11.2 + (1− α)D̂ + Σ̂12Σ̂
−1

22 Σ̂21. (2.3)

Since αΣ̂11.2 + (1 − α)D̂ = Σ̂11.2 − (1 − α)(Σ̂11.2 − D̂), it shrinks Σ̂11.2 toward D̂. The

estimator Σ̂11 is decomposed as Σ̂11 = Σ̂11.2 + Σ̂12Σ̂
−1

22 Σ̂21. Thus, the weighted estimator

Σ̂α shrinks the part Σ̂11.2 in Σ̂11 toward D̂.

It is noted that if D in model (1.3) is less restrictive or if the true error covariance

matrix is far away from the strict factor model, then Σ̂α approches to the sample covari-
ance matrix which is ill-conditioned in the large dimensional case. To fix this problem,

we consider to shrink further the term Σ̂12Σ̂
−1

22 Σ̂21 toward the restricted statistics. As
examples of the restriced cases, we consider the two cases;

(C1) Case of sphericity: Λ(Σ̂12Σ̂
−1

22 Σ̂21) = p−1tr (Σ̂12Σ̂
−1

22 Σ̂21)I.

(C2) Case of diagonality: Λ(Σ̂12Σ̂
−1

22 Σ̂21) = diag(Σ̂12Σ̂
−1

22 Σ̂21).
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We use the notation Λ(Σ̂11) defined by Λ(Σ̂11) = Λ(Σ̂11.2) + Λ(Σ̂12Σ̂
−1

22 Σ̂21). Thus, we
suggest a class of the doubly weighted estimators

Σ̂(γ, β) = γΣ̂11.2 + (1− γ)Λ(Σ̂11.2) + βΣ̂12Σ̂
−1

22 Σ̂21 + (1− β)Λ(Σ̂12Σ̂
−1

22 Σ̂21). (2.4)

where Λ(Σ̂11.2) is given above.

The class of the weighted estimators includes not only Σ̂α but also other specific
estimators. For example, Σ̂(γ, β) reduces to Σ̂α when β = 1 and γ = α. Also, putting
β = γ = w in the case of (C1) reduces to

Σ̂
s

T = wΣ̂11 + (1− w)
1

p
tr (Σ̂11)I, (2.5)

which is a ridge-type estimator given for high dimensional covariance matrix with no
covariates. One can see that Σ̂

s

T is obtain by shrinking the sample covariance matrix to

the direction of the spherical matrix p−1tr (Σ̂11). Finally, the ridge-type estimator in the
case of (C2) is given by

Σ̂
d

T = wΣ̂11 + (1− w)diag (Σ̂11). (2.6)

Throughout the paper, we use the following notations for population matrices:
In the case of sphericity (C1), Λ(Σ11) = p−1tr (Σ11)I, Λ(Σ11.2) = p−1tr (Σ11.2)I and
Λ(Σ12Σ

−1
22 Σ21) = p−1tr (Σ12Σ

−1
22 Σ21)I.

In the case of diagonality (C2), Λ(Σ11) = diag (Σ11), Λ(Σ11.2) = diag (Σ11.2) and
Λ(Σ12Σ

−1
22 Σ21) = diag (Σ12Σ

−1
22 Σ21).

2.2 Approximations of the risk function under normality

We now approximate the risk function of the estimator Σ̂(γ, β) and derive the optimal
weights of γ and β, where the risk function of an estimator δ of Σ11 is given by

Risk(δ) = p−1E[tr [{δ −Σ11}2]].

To this end, we need to assume normality of the distribution. Thus, it is assumed that
(y1,x1), . . . , (yN ,xN) are mutually independently and identically distributed as( yi

xi

)
∼ Np+q

(( µ1

µ2

)
,
( Σ11 Σ12

Σ21 Σ22

))
. (2.7)

Then, the marginal distribution of yi and the conditional distribution of yi given xi are

yi ∼Np(µ1,Σ11), (2.8)

yi|xi ∼Np(µ1 +Σ12Σ
−1
22 (xi − µ2),Σ11.2). (2.9)
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Conditional distribution (2.9) is expressed as

yi = (µ1 −Σ12Σ
−1
22 µ2) +Σ12Σ

−1
22 xi + ϵi, ϵi ∼ Np(0,Σ11.2), (2.10)

which is identical to (1.3) if the covariance matrix Σ11.2 of ϵi is replaced with D = Σ11.2

or D = Λ(Σ11.2).

Under assumption of normality, (x,y) is distributed as( y
x

)
∼ Np+q

(( µ1

µ2

)
,
1

N

( Σ11 Σ12

Σ21 Σ22

))
,

which is independent of V 11, V 12 and V 22. When n ≥ p + q, V has the Wishart
distribution

V ∼ Wp+q

(
n,
( Σ11 Σ12

Σ21 Σ22

))
.

However, in the case of n < p+q, it is noted that V does not have a Wishart distribution,
and we cannot use distributional properties of the Wishart distribution.

To approximate the risk functions of the estimators, we assume the following condi-
tions:

(A1) n, p and q satisfy that (n, p) → ∞, n ≥ q and q is bounded.

(A2) a1 = p−1tr (Σ11) = O(1), a20 = p−1
∑p

j=1(Σ11.2)
2
jj = O(1), b1 = p−1tr (Σ11.2) =

O(1), b2 = p−1tr (Σ2
11.2) = O(1), b20 = p−1

∑p
j=1(Σ11.2)

2
jj = O(1), ϕ11 = p−1tr (Σ11Σ11.2) =

O(1) and ϕ110 = p−1
∑p

j=1(Σ11)jj(Σ11.2)jj = O(1), where (M )jj stands for the (j, j)-
element of M .

(A3) a2 = p−1tr [Σ2
11] = O(p).

(A4) a2 = O(1).

Assumption (A1) means that we consider the high dimensional case that both n
and p tend to infinity, but q is bounded. This restriction enables us to use standard
theories of the Wishart distributions for V 22. Assumption (A2) permits non-zero off-
diagonal elements of Σ11.2, i.e., the cross sectional correlations of idiosyncratic compo-
nents, while these elements are not so dense since b2 = p−1tr (Σ2

11.2) = O(1), ϕ110 =
p−1

∑p
j=1(Σ11)jj(Σ11.2)jj = O(1), etc. The corresponding assumption in Fan, et al . al.

(2011) is sparcity of Σ11.2, which restricts the maximal number of non-zero elements over
the rows of Σ11.2 to order of o(

√
N/ log p). Note that, however, these two assumptions

are not equivalent.
The condition (A3) a2 = O(p) implies that Σ12 is dense while (A4) a2 = O(1) im-

plies that factor loadings Σ12 in factor model (1.3) is sparce or not dense because of
tr (Σ12Σ

−1
22 Σ21)

2 = O(p). The former is supposed to be more natural since we consider
factors of bounded number q. As we mentioned in section 1, many literature of linear
shrinkage estimation of large covariance matrices consider the case of a2 = O(1) whether
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employing factor structure or not, however we mainly treat the case (A3) in which factor
loadings are dense whereas the case (A4) is argued in the end of this subsection.

We begin by handling the risk of the general type of estimators Σ̂(γ, β) given in (2.4).
The straightforward calculation leads to the following lemma.

Lemma 2.1. In the case of (C1) or (C2), the risk of the estimator Σ̂(γ, β) is written as

Risk(Σ̂(γ, β)) =
(
γ β

)(J11 J12
J12 J22

)(
γ
β

)
− 2

(
J10 J20

)(γ
β

)
+R0, (2.11)

so that the optimal weights γ∗ and β∗ are given by(
γ∗

β∗

)
=

(
J11 J12
J12 J22

)−1(
J10
J20

)
, (2.12)

and the risk of the estimator Σ̂(γ, β) with the optimal weights γ∗ and β∗ is

Risk(Σ̂(γ∗, β∗)) = R0 −
(
J10 J20

)(J11 J12
J12 J22

)−1(
J10
J20

)
,

where R0 = p−1Etr(Σ11 −Λ(Σ̂11))
2, J11 = p−1Etr(Σ̂11.2 −Λ(Σ̂11.2))

2,

J22 =
1

p
Etr(Σ̂12Σ̂

−1

22 Σ̂21 −Λ(Σ̂12Σ̂
−1

22 Σ̂21))
2,

J12 =
1

p
Etr(Σ̂11.2 −Λ(Σ̂11.2))(Σ̂12Σ̂

−1

22 Σ̂21 −Λ(Σ̂12Σ̂
−1

22 Σ̂21)),

J10 =
1

p
Etr(Σ̂11.2 −Λ(Σ̂11.2))(Σ11 −Λ(Σ11)),

J20 =
1

p
Etr(Σ̂12Σ̂

−1

22 Σ̂21 −Λ(Σ̂12Σ̂
−1

22 Σ̂21))(Σ11 −Λ(Σ11)).

The moments given in Lemma 2.1 can be evaluated under normality assumption (2.7).
We first assume non-sparcity condition (A3) to approximate the moments.

Theorem 2.1. Assume (A1), (A2) and non-sparcity condition (A3) and that (yi,xi)’s
are normally distributed as (2.7). Then, R0 = a2 − a21 + O(n−1) in the case of (C1) and
R0 = a2 − a20 +O(n−1) in the case of (C2). Also, in the case of (C1),

J11 =b2 − b21 +
p

n
b21 +O(n−1) +O(n−2p),

J22 =(1 + n−1)a2 − 2ϕ11 + b2 − (a1 − b1)
2 +

p

n
(a21 − b21) +O(n−1) +O(n−2p),

J12 =ϕ11 − a1b1 − b2 + b21 +O(n−1),

J10 =ϕ11 − a1b1 +O(n−1),

J20 =a2 − a21 − ϕ11 + a1b1 +O(n−1).

(2.13)
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On the other hand, in the case of (C2),

J11 =b2 − b20 +
p

n
b21 +O(n−1) +O(n−2p),

J22 =(1 + n−1)a2 − 2ϕ11 + b2 − a20 + 2ϕ110 − b20 +
p

n
(a21 − b21) +O(n−1) +O(n−2p),

J12 =ϕ11 − ϕ110 − b2 + b20 +O(n−1),

J10 =ϕ11 − ϕ110 +O(n−1),

J20 =a2 − a20 − ϕ11 + ϕ110 +O(n−1).

(2.14)

Here, we analyze two special cases and suggest an partially optimal estimator in the
latter.

[Risk of Σ̂11] We can easily see from (A.13) that

Risk(Σ̂11) =
a2
n

+
p

n
a21.

[Risk of Σ̂α] In the case of sphericity, putting γ = α, β = 1 and using (2.13) yields that

Risk(Σ̂α) = (b2 − b21 +
p

n
b21)α

2 − 2(b2 − b21)α +
a2
n

+
p

n
(a21 − b21) + b2 − b21 +O(n−1),

which is minimized at

α∗ =
b2 − b21

b2 − b21 + (p/n)b21
(2.15)

and the risk of Σ̂α∗ becomes

Risk(Σ̂α∗) =
a2
n

+
p

n
a21 − b21

(
p

n
− p(b2/b

2
1 − 1)

n(b2/b21 − 1) + p

)
+O(n−1),

which is smaller than the risk of Σ̂11 in the leading terms.

In the case of diagonality, putting γ = α, β = 1 and using (2.14) leads that

Risk(Σ̂α) = (b2 − b20 +
p

n
b21)α

2 − 2(b2 − b20)α+
a2
n

+
p

n
(a21 − b21) + b2 − b20 +O(n−1),

which is minimized at

α∗ =
b2 − b20

b2 − b20 + (p/n)b21
(2.16)

and the risk of Σ̂α∗ becomes

Risk(Σ̂α∗) =
a2
n

+
p

n
a21 − b21

(
p

n
− p(b2 − b20)/b

2
1

n(b2 − b20)/b21 + p

)
+O(n−1),

which is smaller than the risk of Σ̂11 in the leading terms.

We next provide approximations of the moments under sparcity condition (A3). The
proof is omitted.
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Theorem 2.2. Assume sparcity condition (A4) instead of (A3) together with (A1) and
(A2). Then, R0 and J22 in (2.13) should be replaced with R0 = a2 − a21 +O(n−1p−1) and

J22 =a2 − 2ϕ11 + b2 − (a1 − b1)
2 +

p

n
(a21 − b21) +O(n−1) +O(n−2p),

in the case of (C1). Similarly, R0 = a2 − a21 +O(n−1p−1) and

J22 =a2 − 2ϕ11 + b2 − a20 + 2ϕ110 − b20 +
p

n
(a21 − b21) +O(n−1) +O(n−2p),

in the case of (C2). For the other terms Jij’s, their evaluations under sparcity of factor
loadings are the same as in Theorem 2.1 in both of (C1) and (C2).

3 Construction of Plug-In Estimators

Since the estimator Σ̂γ,β with the optimal weights depends on the unknown parameters,
we need to estimate them. For a1, a2, b1 and b2, we use the estimators given in Srivastava
(2005) as

â1 =
1

p
tr (Σ̂11), â2 =

n2

p(n− 1)(n+ 2)

(
tr (Σ̂

2

11)− (tr Σ̂11)
2/n
)
,

b̂1 =
n

p(n− q)
tr (Σ̂11.2), b̂2 =

n2

p(n− q − 1)(n− q + 2)

(
tr (Σ̂

2

11.2)− (tr Σ̂11.2)
2/(n− q)

)
.

(3.1)

Also, for a20, b20, ϕ11 and ϕ110, we show that the followings are unbiased and consistent:

â20 =
n

p(n+ 2)
tr ((diagΣ̂11)

2), b̂20 =
n2

p(n− q)(n− q + 2)
tr ((diagΣ̂11.2)

2),

ϕ̂11 =
n

p(n− q)

(
tr (Σ̂11Σ̂11.2)−

n− q − 2

(n− q − 1)(n− q + 2)
tr (Σ̂

2

11.2)

− n− q

(n− q − 1)(n− q + 2)
(tr Σ̂11.2)

2
)
,

ϕ̂110 =
n

p(n− q)
tr
(
diag(Σ̂11)diag(Σ̂11.2)

)
− 2n

p(n− q)(n− q + 2)
tr
(
diag(Σ̂11.2)

2
)
.

(3.2)

To evaluate these estimators, we need to assume two more conditions:

(A5) a4 = p−1tr (Σ4
11) = O(p3), b3 = p−1tr (Σ3

11.2) = O(1), b4 = p−1tr (Σ4
11.2) = O(1),

tr (Σ11.2Σ12Σ
−1
22 Σ21)

2 = O(p2) and tr (Σ2
11.2Σ12Σ

−1
22 Σ21) = O(p).

(A6) a40 = p−1
∑p

j=1(Σ11)
4
jj = O(1), b40 = p−1

∑p
j=1(Σ11.2)

4
jj = O(1),

tr (Σ12Σ
−1
22 Σ21 ◦Σ11.2)

2 = O(p), tr (Σ11.2 ◦Σ11.2)
2 = O(p), tr (Σ11.2diag (Σ11.2))

2 = O(p),

tr (Σ12Σ
−1
22 Σ21diag (Σ11.2))

2 = O(p2), tr (diag (Σ12Σ
−1
22 Σ21)diag (Σ11.2))

2 = O(p)
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and tr (Σ11.2diag (Σ11.2)Σ12Σ
−1
22 Σ21diag (Σ11.2)) = O(p),

where (M )jj stands for the (j, j) element of M and M ◦L = (MijLij)ij is the Hadamard
product.

We first evaluate the above estimators under the non-sparcity condition (A3).

Theorem 3.1. Assume (A1), (A2), (A3) and (A5), then under normality, â1, â2, b̂1 and
b̂2 are all unbiased and

â1 = a1 +Op(n
−1/2), â2 = a2 +Op(n

−1/2p),

b̂1 = b1 +Op((np)
−1/2), b̂2 = b2 +Op((np)

−1/2) +Op(n
−1).

(3.3)

Also, (A1), (A2), (A3), (A5) and (A6) with normality implies that â20, â20, ϕ̂11 and ϕ̂110

are all unbiased and

â20 = a20 +Op(n
−1/2), b̂20 = b20 +Op((np)

−1/2),

ϕ̂11 = ϕ11 +Op(n
−1/2), ϕ̂110 = ϕ110 +Op(n

−1/2).
(3.4)

Thus, all of the aboves are reasonable estimators of the corresponding ones except â2.

A problem is the convergence rate of â2. If sparcity condition (A4) holds, namely,
a2 = O(1), then â2 = a2 +Op((np)

−1/2) +Op(n
−1), so that even p ≥ n, â2 is a consistent

estimator of a2. If a2 = O(p), however, we see that â2 = a2 + Op(n
−1/2p). Therefore, â2

is unbiased but unstable in the sense of â2 itself is not a consistent estimator of a2 unless
n > p and p = O(nδ) with δ < 1/2, which is a strong condition.

Substituting (3.3) and (3.4) into (2.13) or (2.14) and further substituting (2.13) or
(2.14) into (2.12), we get estimated optimal weights (γ̂∗, β̂∗) of estimator (2.4). We suggest

the plug-in estimator Σ̂γ̂∗,β̂∗ . Also, substituting (3.3) and (3.4) into (2.15) or (2.16), we get
estimated optimal weights α̂∗ of estimator (2.3), so that we suggest the plug-in estimator

Σ̂α̂∗ .

If sparcity condition (A4) holds instead of (A3), we can show the consistency of all
the estimators in the following theorem, where the proof is omitted.

Theorem 3.2. Assume sparcity condition (A4) together with (A1), (A2), (A5) and (A6),
where the conditions on a4, tr (Σ11.2Σ12Σ

−1
22 Σ21)

2 and tr (Σ12Σ
−1
22 Σ21diagΣ11.2)

2 in (A5)
and (A6) are replaced with a4 = p−1tr (Σ4

11) = O(1),

tr (Σ11.2Σ12Σ
−1
22 Σ21)

2 = O(p) and tr (Σ12Σ
−1
22 Σ21diagΣ11.2)

2 = O(p).

Then, under normality, one gets

â1 = a1 +Op((np)
−1/2), â2 = a2 +Op((np)

−1/2) +Op(n
−1),

b̂1 = b1 +Op((np)
−1/2), b̂2 = b2 +Op((np)

−1/2) +Op(n
−1),

â20 = a20 +Op((np)
−1/2), b̂20 = b20 +Op((np)

−1/2),

ϕ̂11 = ϕ11 +Op((np)
−1/2), ϕ̂110 = ϕ110 +Op((np)

−1/2).

(3.5)
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4 Simulation Studies

We now investigate numerical performance of MSEs or risks of the proposed estimators
through simulations.

As a structure of the covariance matrices, we follow model (1.3) where ϵi’s and xi’s
are given by

ϵi = Σ
1/2
11.2ui, xi = Σ

1/2
22 vi

with ui = (uij)1≤j≤p and vi = (vij)1≤j≤q mutually independent. Here, we set µ2 = 0,
Σ22 = Iq and (Σ12)ij ∼ i.i.d. N (0.5, 1) through the studies, and the following two cases
are treated for Σ11.2:

(M1) the strict factor model(sphericity) with Σ11.2 = 3I,

(M2) the approximate factor model with

Σ11.2 =


σ1

σ2

. . .

σp



ρ|1−1|/7 ρ|1−2|/7 · · · ρ|1−p|/7

ρ|2−1|/7 ρ|2−2|/7 · · · ρ|2−p|/7

...
...

. . .
...

ρ|p−1|/7 ρ|p−2|/7 · · · ρ|p−p|/7



σ1

σ2

. . .

σp

 ,

for σj = 3 + 0.2(−1)j−1(p− j + 1)/p and ρ = 0.1.

Note that the above settings are consistent with assumptions (A2), (A3), (A5) and (A6).
Concerning the distributions of ui = (uij)1≤j≤p and vi = (vij)1≤j≤q, we treat the two
cases:

(D1) uij, vij ∼ N (0, 1)

(D2) uij, vij = (wij − ν)/
√
2ν, wij ∼ χ2

ν for ν = 2.

Let Σ̂
s

T and Σ̂
d

T be given in (2.5) and (2.6), and let Σ̂
s

α, Σ̂
d

α, Σ̂
s

γ,β and Σ̂
d

γ,β be given in
Sections 2 and 3, where the corresponding optimal weights are estimated by the consistent
estimators. Then we compare the performances of the seven estimators: the sample

covariance matrix Σ̂11, Σ̂
s

T , Σ̂
d

T , Σ̂
s

α, Σ̂
d

α, Σ̂
s

γ,β and Σ̂
d

γ,β.

Some simulation experiments are carried out in the cases of N = 100, q = 3 and
p = 50, 100 and 200. Based on 1, 000 replications, we calculate averages of the risks given
by

Risk(δ) = E[tr (δ −Σ11)
2]/p,

where δ is an estimator of Σ11. We also investigate the performances of the risks when
we estimate the precision matrix Σ−1

11 with the inverse of the above estimators, where the
risk is evaluated in lights of

Risk(δ−1) = E[tr (δ−1Σ11 − I)2]/p,

where δ−1 is an estimator of Σ−1
11 .

12



Tables 1 and 2 report the simulation results in estimation of Σ11 ane Σ
−1
11 , respectively,

under strict factor model (M1) with underlying distribution (D1) or (D2), where the values
in the parenthesis denote the corresponding standard deviations. Under the assumption

of strict factor model (M1), the four estimators Σ̂
s

α, Σ̂
d

α, Σ̂
s

γ,β and Σ̂
d

γ,β perform well.

Especially, the estimator Σ̂
s

γ,β is the best of these. Tables 3 and 4 report the simulation
results under approximate factor model (M2). Since (M2) does not assume the strict factor

model, the estimators Σ̂
s

T and Σ̂
d

T are better than Σ̂
s

α and Σ̂
d

α in relatively small p, however

Σ̂
s

T and Σ̂
d

T are ill-conditioned in the estimation of precision Σ−1
11 in large p as indicated in

Table 4. The estimator Σ̂
s

γ,β is the best in most of these kinds of simulation experiments.
Though we do not show the results, we also compared with the estimators in Fan et al .
al. (2011) and found out that Σ̂γ,β’s perform better. Especially, in approximate factor
model (M2), the estimator of the inverse Σ−1

11 in Fan et al . al. (2011) is quite unstable
probably since Σ11.2 is not sparse. Moreover, Fan et al . al. (2011) is based on adaptive
thresholding proposed in Cai and Liu (2011) which suggests a computationally hard data-
driven choice of a tuning parameter that controls the threshold, while our estimators can
be implemented easily. We thus recommend the estimator Σ̂

s

γ,β in estimation of Σ11 and

Σ−1
11 .

Table 1: Comparison of Estimators of Σ11 under Strict Factor Model (M1)

N p q dist. Σ̂11 Σ̂
s

T Σ̂
d

T Σ̂
s

α Σ̂
d

α Σ̂
s
(γ, β) Σ̂

d
(γ, β)

100 50 3 (D1) 24.5 22.6 22.7 20.0 20.2 18.7 18.9
(7.1) (6.6) (6.6) (7.1) (7.1) (6.4) (6.4)

100 100 3 (D1) 47.3 42.9 43.0 38.4 38.6 35.4 35.7
(12.3) (9.9) (9.9) (12.3) (12.3) (9.8) (9.8)

100 200 3 (D1) 93.9 85.9 86.0 76.2 76.4 70.8 71.0
(23.1) (19.2) (19.2) (23.1) (23.1) (18.8) (18.8)

100 50 3 (D2) 38.2 34.7 34.9 33.2 33.9 30.5 31.2
(27.2) (21.7) (21.7) (27.3) (27.2) (22.0) (22.3)

100 100 3 (D2) 75.2 68.4 68.6 65.8 66.5 60.5 61.2
(49.6) (38.9) (38.9) (49.7) (49.7) (39.6) (39.9)

100 200 3 (D2) 158.3 142.7 142.9 140.1 140.8 127.5 128.3
(93.8) (71.7) (71.7) (94.0) (93.9) (73.4) (73.6)
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Table 2: Comparison of Estimators of Σ−1
11 under Strict Factor Model (M1)

N p q dist. Σ̂11 Σ̂
s

T Σ̂
d

T Σ̂
s

α Σ̂
d

α Σ̂
s
(γ, β) Σ̂

d
(γ, β)

100 50 3 (D1) 10.57 2.07 2.24 0.58 0.68 0.48 0.57
(2.50) (0.36) (0.39) (0.10) (0.12) (0.08) (0.10)

100 100 3 (D1) NA 8.29 9.90 1.16 1.34 0.96 1.11
(1.04) (1.29) (0.18) (0.15) (0.13) (0.15)

100 200 3 (D1) NA 33.06 44.47 2.37 2.71 1.97 2.24
(3.47) (5.11) (0.25) (0.28) (0.22) (0.24)

100 50 3 (D2) 12.16 2.26 2.63 0.61 0.82 0.51 0.67
(3.24) (0.44) (0.52) (0.14) (0.18) (0.12) (0.15)

100 100 3 (D2) NA 9.57 11.89 1.28 1.64 1.07 1.32
(1.65) (2.07) (0.24) (0.30) (0.22) (0.26)

100 200 3 (D2) NA 38.06 54.52 2.63 3.27 2.19 2.64
(6.46) (10.2) (0.45) (0.54) (0.40) (0.48)

Table 3: Comparison of Estimators of Σ11 under Approximate Factor Model (M2)

N p q dist. Σ̂11 Σ̂
s

T Σ̂
d

T Σ̂
s

α Σ̂
d

α Σ̂
s
(γ, β) Σ̂

d
(γ, β)

100 50 3 (D1) 102.1 88.6 90.0 92.6 94.0 88.1 89.6
(19.0) (15.6) (15.7) (17.1) (17.2) (15.6) (15.6)

100 100 3 (D1) 175.3 144.2 145.4 147.0 148.4 138.5 140.1
(26.7) (19.2) (19.2) (23.1) (23.0) (18.9) (18.9)

100 200 3 (D1) 338.5 262.6 263.7 257.1 258.6 235.2 236.9
(37.1) (28.2) (28.2) (34.0) (33.9) (25.6) (25.6)

100 50 3 (D2) 108.0 90.5 92.2 96.6 98.4 90.8 92.7
(29.8) (20.5) (20.6) (26.2) (26.2) (20.9) (21.2)

100 100 3 (D2) 212.6 171.3 173.1 181.3 183.5 166.2 168.8
(65.3) ( 40.3) ( 40.4) (62.2) (62.1) (43.0) (43.5)

100 200 3 (D2) 410.8 325.5 327.3 325.7 328.3 296.5 299.4
(125.7) (79.6) (79.6) (120.1) (120.2) (84.8) (85.3)

5 Applications to Portfolio Managements

In this section, we consider Markowitz’s problem (return maximization) under the con-
straint of the portfolio variance:

R = max cTµ s.t. cT1 ≤ 1 and cTΣc ≤ σ2
0,
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Table 4: Comparison of Estimators of Σ−1
11 under Approximate Factor Model (M2)

N p q dist. Σ̂11 Σ̂
s

T Σ̂
d

T Σ̂
s

α Σ̂
d

α Σ̂
s
(γ, β) Σ̂

d
(γ, β)

100 50 3 (D1) 21.92 1.29 1.42 1.51 1.71 1.15 1.30
(4.97) (0.17) (0.19) (0.19) (0.23) (0.14) (0.17)

100 100 3 (D1) NA 2.54 2.89 2.06 2.37 1.71 1.96
(0.32) (0.38) (0.18) (0.22) (0.15) (0.18)

100 200 3 (D1) NA 5.5 6.41 2.89 3.32 2.42 2.76
(0.58) (0.73) (0.21) (0.25) (0.18) (0.21)

100 50 3 (D2) 24.01 1.33 1.49 1.55 1.82 1.26 1.44
(5.42) (0.20) (0.23) (0.22) (0.28) (0.18) (0.22)

100 100 3 (D2) NA 2.67 3.05 2.22 2.65 1.78 2.07
(0.2) (0.39) (0.47) (0.32) (0.20) (0.24)

100 200 3 (D2) NA 6.87 8.37 3.07 3.66 2.62 3.08
(1.41) (1.92) (0.31) (0.38) (0.28) (0.33)

where µ is a vector of expected returns of assets in a portfolio, c is a vector of weights
of the corresponding assets, and R is the expected return of the portfolio. Also, Σ is a
covariance matrix of assets, and σ2

0 > 0 denotes an upper bound of the portfolio variance.
The analytic solution of the above quadratic design problem is known as:

(1) if σ2
01

TΣ−1µ/
√

µTΣ−1µ ≤ 1，

c =
σ0√

µTΣ−1µ
Σ−1µ,

R = σ0

√
µTΣ−1µ,

(2) if σ2
01

TΣ−1µ/
√

µTΣ−1µ ≥ 1，

c =
Σ−11

1TΣ−11
+∆

(
Σ−1µ− 1TΣ−1µ

1TΣ−11
Σ−11

)
,

R =
1TΣ−1µ

1TΣ−11
+∆

(
µTΣ−1µ− (1TΣ−1µ)2

1TΣ−11

)
,

where

∆ =

√
σ2
01

TΣ−11− 1

(µTΣ−1µ)(1TΣ−11)− (1TΣ−1µ)2
.

In practice, portfolio managers are usually willing to maximize expected returns sub-
ject to given risk upper bounds which are typically determined by financial circumstances
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of their firms or requirement of their customers. Since they do not know the true co-
variance matrix Σ and the true vector of the expected returns µ, they need to estimate
them somehow by Σ̂ and µ̂ respectively and estimate the optimal weights as ĉ based on
these estimators. Hence, the estimated variance of the portfolio would be ĉT Σ̂ĉ and the
estimated expected return of it would be ĉT µ̂. However, it is known that these estimators
are typically upper biased (e.g. Bai, Huixia, and Wing-Keung (2009)). Thus, if portfolio

managers compose portfolio satisfying that ĉT Σ̂ĉ is lower than the predetermined risk
(variance) upper bound σ2

0, the actual risk may exceed σ2
0.

Therefore it is of interest to find out the actual risk of the portfolio which is composed
based on estimators of Σ. We simulate the actual portfolio variances in the same settings
as in Section 4. Table 5 reports actual variances of portfolio based on covariance estimators

in Section 4, which indicates that the estimators Σ̂
s

γ,β and Σ̂
d

γ,β preserve the constraints
of the actual portfolio variance. Here, we set N = p = 100, q = 3 and calculate variances
based on 1000 times replications under model (M2) and underlying distribution (D1) in
Section 4. For other settings of distributions of xi’s and ϵi’s, we get similar performances
and omit the details here.

Table 5: Comparison of Actual Variances of Portfolio based on Covariance Estimators
under (M2) and (D1) ( ρ denotes the parameter associate with correlation in case (M2))

ρ σ2
0 Σ̂11 Σ̂

s

α Σ̂
d

α Σ̂
s

T Σ̂
d

T Σ̂
s
(γ, β) Σ̂

d
(γ, β)

0 0.098 NA 0.102 0.109 0.286 0.314 0.092 0.097

0.2 0.111 NA 0.140 0.148 0.142 0.159 0.113 0.116

0.4 0.366 NA 0.427 0.457 0.327 0.373 0.298 0.306

6 Concluding Remarks

In estimation of large covariance matrices, we have considered the general class of weighted
estimators which includes (i) linear combinations of the sample covariance matrix and the
specific estimators suggested under the strict factor models and (ii) the ridge-type esti-
mators suggested in high dimensional situations as special cases. Under the assumptions
of non-sparcity and sparcity of factor loadings, we have derived the optimal weights and
provided their consistent estimators. The resulting plug-in estimators are invertible and
well-conditioned. They are also useful not only when the strict factor models are sus-
pected, but also when the approximate factor models hold or the factor models do not
hold. Numerical results have shown that the suggested estimators perform well under
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both normal and non-normal distributions. In the application to the portfolio manage-
ments, we have shown that the procedures based on the suggested estimators preserve
the predetermined risk upper bounds robustly.

As pointed out below Theorem 3.1, the sparcity and non-sparcity of factor loadings
influences the consistency of â2, namely, in the case of sparcity a2 = O(1), â2 is consistent
when (np)−1/2 → 0, while in the case of non-sparcity, â2 is consistent when pn−1/2 → 0.
This condition in the non-sparcity case is restrictive, and an improved estimator of a2 will
be desired.
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A Proofs

A.1 Proof of Theorem 2.1

Denote V 11.2 := V 11 − V 12V
−1
22 V 21. If n ≥ p + q, then from the standard theory of the

Wishart distribution, V 11.2 is independent of (V 12,V 22), and V 11.2 ∼ Wp(n − q,Σ11.2),
V 12|V 22 ∼ Np,q(Σ12Σ

−1
22 V 22,Σ11.2,V 22) and V 22 ∼ Wq(n,Σ22). These properties will

be helpful for evaluating the risk in the case of n ≥ p + q. When p > n, however, we
could not use these properties. To evaluate the risk in this case, we prepare the following
lemmas which hold for any order of n and p.

Lemma A.1. Let W = XXT =
∑n

i=1X iX
T
i for X = (X1, . . . ,Xn), where X i’s are

mutually independently and identically distributed as X i ∼ Np(0,Σ). Then, E[W ] = nΣ
and E[W 2] = n(n + 1)Σ2 + n(tr [Σ])Σ. For p × p symmetric matrices A and B, it
holds that E[trAW 2] = n(n+1)(trAΣ2)+n(tr (Σ)(trAΣ) and E[(trAW )(trBW )] =
n2(trAΣ)(trBΣ) + 2ntr (AΣBΣ). Also,

E[(trW 2)2] =4n2(2n2 + 5n+ 5)trΣ4 + 16n(n+ 1)trΣ3trΣ

+ n(n3 + 2n2 + 5n+ 4)(trΣ2)2

+ 2n(n2 + n+ 4)(trΣ2)(trΣ)2 + n2(trΣ)4,

(A.1)

and

E[(trW )4] =48ntrΣ4 + 32n2trΣ3trΣ

+ 12n2(trΣ2)2 + 12n3(trΣ2)(trΣ)2 + n4(trΣ)4.
(A.2)

Watamori (1990) derived the equalities in (A.1) and (A.2) using the properties of the
Wishart distribution in the case of n ≥ p. Lemma A.1 comfirms that the same equalities
hold for any (n, p) without assuming the Wishart distribution.
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Proof. It is easy to see that E[W ] =
∑n

i=1E[X iX
T
i ] = nΣ. For evaluating the other

terms, we use the Stein-Haff or Konno identity and the Stein identity, respectively given
by

E[WG1] =E[nΣG1 +Σ(X∇T )TG1], (A.3)

E[XG2] =E[Σ∇G2], (A.4)

where G1 and G2 are, respectively, p × p and n × p matrices of functions of W , and
∇ = (∂/∂xij) is the p × n matrix of differential operators. See Konno (2009) and Stein
(1973, 1981) for (A.3) and (A.4), respectively. It follows from (A.3) that

E[tr (WG1)] = E[ntr (ΣG1) + tr (X∇T (ΣGT
1 ))]. (A.5)

To carry out the calculus ∇T (ΣGT
1 ), the following equalities due to Haff (1979, 82) are

useful:

∇(UV ) =(∇U)V + (UT∇T )TV ,

tr [∇(UV )] =tr [(∇U )V ] + tr [UT (∇TV T )],

∇T (A1X) =(trA1)In, ∇(A2X) = AT
2 .

(A.6)

where U and V are matrices of functions of W such that the product ∇UV is defined,
and A1 and A2 are p× p and n× p matrices, respectively, of constants.

For E[W 2], it is seen that E[W 2] = E[nΣW +Σ(X∇T )TW ]. It can be shown that
(X∇T )TW = W + (trW )I, so that

E[W 2] = E[nΣW +ΣW + (trW )Σ] = n(n+ 1)Σ2 + n(trΣ)Σ.

This implies that E[trAW 2] = n(n+ 1)(trAΣ2) + n(trΣ)(trAΣ).
Using (A.5), one gets

E[(trAW )(trBW )] = E[n(trAΣ)(trBW ) + tr (X∇T (ΣA(trBW )))].

Since ∇T tr (BXXT ) = 2XTB, we have

E[(trAW )(trBW )] =E[n(trAΣ)(trBW ) + 2tr (ΣAWB)]

=n2(trAΣ)(trBΣ) + 2ntr (AΣBΣ).

The calculation of E[tr (W 2)2] is not easy to show. The skech of the proof is given as
follows: It follows from (A.5) that

E[(trW 2)2] = E[n(trΣW )(trW 2) + trX∇T (ΣW (trW 2))].

It can be here demonstrated that

trX∇T (ΣW (trW 2)) =(trΣ)(trW )(trW 2) + tr (X(XTΣ∇)TXT (trW 2)),

tr (X(XTΣ∇)TXT (trW 2)) =(trΣW )(trW 2) + tr (XTΣ(XTX∇T )T (trW 2)),

tr (XTΣ(XTX∇T )T (trW 2)) =4tr (ΣW 3).
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Combining these terms gives the expression

E[(trW 2)2] = E[(n+ 1)(trΣW )(trW 2) + (trΣ)(trW )(trW 2) + 4(trΣW 3)]. (A.7)

Similarly, it can be seen that

E[(trW 2)(trΣW )] =E[(n+ 1)(trΣW )2 + (trΣ)(trW )(trΣW ) + 2trΣ2W 2],

E[(trW 2)(trW )] =E[(n+ 1)(trΣW )(trW ) + (trΣ)(trW )2 + 2trΣW 2],

E[trΣW 3] =E[(n+ 2)trΣ2W 2 + (trΣ2)(trW 2) + (trW )(trΣ2W )].

(A.8)

Combining (A.7) and (A.8), and using the second moments of W , we can show the
equality (A.1).

For E[(trW )4], the identity in (A.5) gives

E[(trW )4] = E[n(trΣ)(trW )3 + trΣX∇T (trW )3].

Since trΣX∇T (trW )3 = 6(trΣW )(trW )2, we have

E[(trW )4] = E[n(trΣ)(trW )3 + 6(trΣW )(trW )2]. (A.9)

Similarly, it can be demonstrated that

E[(trW )3] =E[n(trΣ)(trW )2 + 4(trW )(trΣW )],

E[(trΣW )(trW )2] =E[n(trΣ2)(trW )2 + 4(trΣ2W )(trW )].
(A.10)

Hence, combining (A.9) and (A.10), and using the second moments of W , we can show
the equality in (A.2).

Lemma A.2. For the random matrix V given in (2.1), the following properties hold for
any positive integers n, p and q with n ≥ q:

(1) V 11.2 = V 11−V 12V
−1
22 V 21 is expressed as V 11.2 = UUT for U = (U 1, . . . ,Un−q),

where U i’s are mutually independently and identicall distributed as U i ∼ Np(0,Σ11.2).

(2) V 11.2 is independent of (V 12,V 22).

(3) V 12|V 22 ∼ Np,q(Σ12Σ
−1
22 V 22,Σ11.2,V 22) and V 22 ∼ Wq(n,Σ22).

Proof. We first note that these exist Y = (Y 1, . . . ,Y n) and X = (X1, . . . ,Xn) such that
V 11 = Y Y T , V 12 = Y XT , V 22 = XXT , and (X i,Y i)’s are mutually independently
and identically distributed as( Y i

X i

)
∼ Np+q

(( 0
0

)
,
( Σ11 Σ12

Σ21 Σ22

))
.

Let Z = (Z1, . . . ,Zn) = Y −Σ12Σ
−1
22 X. It is seen that Z is independent of X and Zi’s

are mutually independently and identically distributed as Zi ∼ Np(0,Σ11.2). Then, V 11

and V 12 are rewritten as

V 11 =(Z +Σ12Σ
−1
22 X)(ZT +XTΣ−1

22 Σ21)

=ZZT +ZXTΣ−1
22 Σ21 +Σ12Σ

−1
22 XZT +Σ12Σ

−1
22 XXTΣ−1

22 Σ21,

V 12 =(Z +Σ12Σ
−1
22 X)XT = ZXT +Σ12Σ

−1
22 XXT . (A.11)
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Also, V 12V
−1
22 V 21 is expressed as

V 12V
−1
22 V 21 =(Z +Σ12Σ

−1
22 X)XT (XXT )−1X(ZT +XTΣ−1

22 Σ21)

=ZXT (XXT )−1XZT +ZXTΣ−1
22 Σ21 +Σ12Σ

−1
22 XZT

+Σ12Σ
−1
22 XXTΣ−1

22 Σ21.

Thus, one gets
V 11.2 = Z{I −XT (XXT )−1X}ZT . (A.12)

Since I−XT (XXT )−1X is idempotent and of rank n−q, it can be seen that there exists
a p× (n− q) random matrix U such that V 11.2 = UUT and U ∼ Np,n−q(0,Σ11.2, In−q).
This shows part (1) of Lemma A.2.

For part (2), note thatXXT is complete and sufficient forΣ22 and I−XT (XXT )−1X
is ancillary, sinceXXT ∼ Wq(n,Σ22). It follows from Basu’s theorem that I−XT (XXT )−1X
is independent of XXT . Recall expression (A.12). Then, it is easy to see that V 11.2 is
independent of V 22 = XXT .

To check the independence between V 11.2 and V 12, from (A.11) and (A.12), it is
sufficient to show that ZXT is independent of Z{I−XT (XXT )−1X}. Since the two are
conditionally mutually independent given X, it is seen that for measurable sets A ⊂ Rp×q

and B ⊂ Rp×n,

P (ZXT ∈ A,Z{I −XT (XXT )−1X} ∈ B)

=E[P (ZXT ∈ A,Z{I −XT (XXT )−1X} ∈ B|X)]

=E[P (ZXT ∈ A|X)P (Z{I −XT (XXT )−1X} ∈ B|X)].

Since Z ∼ Np,n(0,Σ11.2, In), one can see that ZXT |X ∼ Np,q(0,Σ11.2,XXT ) condition-
ally, namely, the conditional distribution of ZXT depends on X through XXT . Using
the fact that I −XT (XXT )−1X is independent of XXT again, one can see that

E[P (ZXT ∈ A|X)P (Z{I −XT (XXT )−1X} ∈ B|X)]

= E[P (ZXT ∈ A|X)]E[P (Z{I −XT (XXT )−1X} ∈ B|X)],

which equal to P (ZXT ∈ A)P (Z{I −XT (XXT )−1X} ∈ B).

For part (3), it follows that V 12|X ∼ Np,q(Σ12Σ
−1
22 XXT ,Σ11.2,XXT ), since V 12 =

ZXT +Σ12Σ
−1
22 XXT . Since this conditional distribution depends on X through V 22 =

XXT , the conditional distribution of V 12 given V 22 has the same distribution. Therefore,
the proof of Lemma A.2 is complete.

Proof of Theorem 2.1. In this proof, we use the notation m = n− q for simplicity.
We only consider the case of sphericity since the case of diagonalization is similar.

From Lemmas A.1 and A.2, it follows that E[Σ̂11] = Σ11, E[Σ̂
2

11] = n−1(n + 1)Σ2
11 +

n−1(tr [Σ11])Σ11, E[(tr Σ̂11)
2] = 2n−1trΣ2

11 + (trΣ11)
2, E[Σ̂11.2] = n−1mΣ11.2, E[Σ̂

2

11.2] =
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n−2m(m+1)Σ2
11.2+n−2m(tr [Σ11.2])Σ11.2 and E[(tr Σ̂11.2)

2] = 2n−2mtrΣ2
11.2+n−2m2(trΣ11.2)

2.
Thus, it is observed that

p−1E[tr [Σ̂11]] =a1,

p−1E[tr [Σ̂
2

11]] =(1 + 1/n)a2 + (p/n)a21,

E[(p−1tr [Σ̂11])
2] =a21 +O(n−1),

p−1E[tr [Σ̂11.2]] =b1 +O(n−1),

p−1E[tr [Σ̂
2

11.2]] =b2 + (p/n)b21 +O(n−1) +O(pn−2),

E[(p−1tr [Σ̂11.2])
2] =b21 +O(n−1).

(A.13)

These evaluations are used to approximate the terms R0, J11, J12, J22, J10 and J20
given in Lemma 2.1. For R0 and J11,

R0 =
1

p
Etr (Σ11 − Λ̂(Σ̂11))

2 = a2 − 2a21 + E[(p−1tr [Σ̂11])
2] = a2 − a21 +O(n−1).

J11 =
1

p
Etr (Σ̂11.2 −Λ(Σ̂11.2))

2 = p−1E[tr [Σ̂
2

11.2]]− E[(p−1tr [Σ̂11.2])
2]

=b2 − b21 + (p/n)b21 +O(n−1) +O(pn−2).

Since Σ̂11.2 and Σ̂12Σ̂
−1

22 Σ̂21 are independent,

J12 =
1

p
Etr (Σ̂11.2 −Λ(Σ̂11.2))(Σ̂12Σ̂

−1

22 Σ̂21 −Λ(Σ̂12Σ̂
−1

22 Σ̂21))

=
1

p
trE(Σ̂11.2 −Λ(Σ̂11.2))E(Σ̂12Σ̂

−1

22 Σ̂21 −Λ(Σ̂12Σ̂
−1

22 Σ̂21))

=
m

pn
tr
(
Σ11.2 −Λ(Σ11.2)

)(
(Σ11 −Λ(Σ11))−

n

m

(
Σ11.2 −Λ(Σ11.2)

))
=
m

n

(
ϕ11 − a1b1

)
−
(m
n

)2
(b2 − b21)

=ϕ11 − a1b1 − b2 + b21 +O(n−1).
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Similarly, it is seen that

J22 =
1

p
Etr ((Σ̂11 −Λ(Σ̂11))− (Σ̂11.2 −Λ(Σ̂11.2)))

2

=
1

p
Etr ((Σ̂11 −Λ(Σ̂11))

2 − 2

p
tr ((Σ̂11 −Λ(Σ̂11))(Σ̂11.2 −Λ(Σ̂11.2))) + J11

=
1

p
Etr ((Σ̂11 −Λ(Σ̂11))

2 − 2(J12 + J11) + J11

=
1

p
Etr ((Σ̂11 −Λ(Σ̂11))

2 − 2J12 − J11

=((1 + n−1)a2 + (p/n)a21 − a21 +O(n−1))− 2(ϕ11 − a1b1 − b2 + b21 +O(n−1))

− (b2 − b21 + (p/n)b21 +O(n−1) +O(pn−2))

=(1 + n−1)a2 − 2ϕ11 + b2 +
p

n
(a21 − b21)− (a1 − b1)

2 +O(n−1) +O(n−2p),

and

J10 =
1

p
Etr (Σ̂11.2 −Λ(Σ̂11.2))(Σ11 −Λ(Σ11)) =

1

p
tr (

m

n
(Σ11.2 −Λ(Σ11.2)))(Σ11 −Λ(Σ11))

=
m

n
(ϕ11 − a1b1) = ϕ11 − a1b1 +O(n−1).

Finally, it is observed that

J20 =
1

p
Etr (Σ̂12Σ̂

−1

22 Σ̂21 −Λ(Σ̂12Σ̂
−1

22 Σ̂21))(Σ11 −Λ(Σ11))

=
1

p
Etr (Σ̂11 −Λ(Σ̂11))(Σ11 −Λ(Σ11))−

1

p
Etr (Σ̂11.2 −Λ(Σ̂11.2))(Σ11 −Λ(Σ11))

=
1

p
tr (Σ11 −Λ(Σ11))

2 − m

pn
tr (Σ11.2 −Λ(Σ11.2))(Σ11 −Λ(Σ11))

=a2 − a21 −
m

n
(ϕ11 − a1b1) = a2 − a21 − ϕ11 + a1b1 +O(n−1),

which proves Theorem 2.1. �

A.2 Proof of Theorem 3.1

In this proof, we use the notation m = n− q for simplicity. Since the unbiasedness of the
estimators is easy to show, we only prove their consistency. For this purpose, we shall
evaluate the variances of the estimators.

For â1 and â2, Srivastava (2005) shows that Var(â1) = 2a2/(np) and

Var(â2) =
8(n+ 2)(n+ 3)(n− 1)2

pn5
a4 +

4(n+ 2)(n− 1)

n4

(
a22 −

a4
p

)
,
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so that â1 = a1 + Op(n
−1/2) and â2 = a2 + Op(n

−1/2p), since a1 = O(1) but a2 = O(p)
and a4 = O(p3). Similarly, Srivastava (2005) with Lemmas A.1 and A.2 imply that
Var(b̂1) = 2b2/(np) and

Var(b̂2) =
8(m+ 2)(m+ 3)(m− 1)2

pn5
b4 +

4(m+ 2)(m− 1)

n4

(
b22 −

b4
p

)
,

so that b̂1 = b1 + Op((np)
−1/2) and b̂2 = b2 + Op(n

−1) + Op((np)
−1/2), since b1 = O(1),

b2 = O(1) and b4 = O(1).
For â20,

â20 − a20 =
n

p(n+ 2)

(
tr (diag Σ̂11)

2 − n+ 2

n
tr (diagΣ11)

2

)
,

so that

Var(â20) =
n2

p2(n+ 2)2

(
(tr (diag Σ̂11)

2)2 − (n+ 2)2

n2
(tr (diagΣ11)

2)2
)
.

We denote vii = n(σ̂11)ii/(σ11)ii for Σ̂11 = ((σ̂11)ij) and Σ11 = ((σ11)ij). Then one gets

n4(tr (diag Σ̂11)
2)2 = (

p∑
i=1

(σ11)
2
iiv

2
ii)

2 =

p∑
i=1

(σ11)
4
iiv

4
ii +

∑
i ̸=j

(σ11)
2
ii(σ11)

2
jjv

2
iiv

2
jj.

Moments of the Wishart distribution imply that

E[(tr (diag Σ̂11)
2)2] = n−3(n+ 2)(n+ 4)(n+ 6)

p∑
i=1

(σ11)
4
ii + n−2(n+ 2)2

∑
i̸=j

(σ11)
2
ii(σ11)

2
jj.

From condition (A6) and the fact that tr (diagΣ11)
2 =

∑p
i=1(σ11)

4
ii +

∑
i̸=j(σ11)

2
ii(σ11)

2
jj,

it follows that

Var(â20) =
n2

p2(n+ 2)2

(
n−3(n+ 2)(n+ 4)(n+ 6)

p∑
i=1

(σ11)
4
ii −

p∑
i=1

(σ11)
4
ii

)
= O(n−1p−1).

Therefore, â20 = a20+Op(n
−1/2p−1/2). Similarly, one easily gets b̂20 = b20+Op(n

−1/2p−1/2).

For ϕ̂11, one writes it as

ϕ̂11 − ϕ11 =
1

pnm(m− 1)(m+ 2)

(
m2
(
trV 2

11.2 −m((m+ 1)trΣ2
11.2 + (trΣ11.2)

2)
)

−m
(
(trV 11.2)

2 −m(m(trΣ11.2)
2 + 2trΣ2

11.2)
)

+ (m− 1)(m+ 2)
(
trV 12V

−1
22 V 21V 11.2 − (nmtrΣ11Σ11.2 −m2trΣ2

11.2)
))

= :
1

pnm(m− 1)(m+ 2)

(
m2I1 −mI2 + (m− 1)(m+ 2)I3

)
),

(A.14)
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where E[I1] = E[I2] = E[I3] = 0. Hence, it is sufficient to evaluate variances of I1, I2 and
I3, since the cross product terms are bounded by Cauchy-Schwartz’s inequality. For I1,
one sees that

E(I21 ) = E[(trV 2
11.2)

2]−m2((m+ 1)trΣ2
11.2 + (trΣ11.2)

2)2.

Since from Lemma A.1,

E[(trV 2
11.2)

2] =4m2(2m2 + 5m+ 5)trΣ4
11.2 + 16m(m+ 1)trΣ3

11.2trΣ11.2

+m(m3 + 2m2 + 5m+ 4)(trΣ2
11.2)

2

+ 2m(m2 +m+ 4)(trΣ2
11.2)(trΣ11.2)

2 +m2(trΣ11.2)
4,

we have

E(I21 ) =4m(2m2 + 5m+ 5)trΣ4
11.2 + 16m(m+ 1)trΣ3

11.2trΣ11.2

+ 4m(m+ 1)(trΣ2
11.2)

2 + 8mtrΣ2
11.2(trΣ11.2)

2.

Hence, from conditions (A2), (A3) and (A5),

I1 = Op(n
3/2p1/2) +Op(np) +Op(n

1/2p3/2). (A.15)

Also, for I2, one sees that

E(I22 ) = E[(trV 11.2)
4]−m2(m(trΣ11.2)

2 + 2trΣ2
11.2)

2.

From Lemma A.1,

E[(trV 11.2)
4] =48mtrΣ4

11.2 + 32m2trΣ3
11.2trΣ11.2

+ 12m2(trΣ2
11.2)

2 + 12m3(trΣ2
11.2)(trΣ11.2)

2 +m4(trΣ11.2)
4,

so that

E(I22 ) =48mtrΣ4
11.2 + 32m2trΣ3

11.2trΣ11.2 + 8m2(trΣ2
11.2)

2 + 8m3(trΣ2
11.2)(trΣ11.2)

2.

Therefore,

I2 = Op(n
1/2p1/2) +OP (np) +Op(n

3/2p3/2). (A.16)

Finally, for I3 it is noted that

trV 12V
−1
22 V 21V 11.2 = trY Y TA

=tr (Y − θ + θ)(Y − θ + θ)TA

=tr (Y − θ)(Y − θ)TA+ trθθTA+ 2tr (Y − θ)θTA,
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where Y = Σ
−1/2
11.2 V 12V

−1/2
22 , θ = Σ

−1/2
11.2 Σ12Σ22V

1/2
22 and A = Σ

1/2
11.2V 11.2Σ

1/2
11.2. Then, I3

is decomposed as

I3 =(tr (Y − θ)(Y − θ)TA− qmtrΣ2
11.2)

+ (trθθTA− nmtrΣ12Σ
−1
22 Σ21Σ11.2) + 2tr (Y − θ)θTA

= : I3,1 + I3,2 + 2I3,3,

where E[I3,1] = E[I3,2] = E[I3,3] = 0. Noting that Y |V 22 ∼ Np,q(0, Ip, Iq), one sees that
from Stein’s lemma,

E[(tr (Y − θ)(Y − θ)TA)2]

=Etr [∇Y ((tr (Y − θ)(Y − θ)TA)(Y − θ)TA)]

=qE[trAtr (Y − θ)(Y − θ)TA] + E[(∇T
Y tr (Y − θ)(Y − θ)TA)trAT (Y − θ)]

=q2E(trA)2 + 2EtrAT (Y − θ)(Y − θ)TA

=q2E(trΣ11.2V 11.2)
2 + 2qEtr (Σ11.2V 11.2)

2

=q2(2mtrΣ4
11.2 +m2(trΣ2

11.2)
2) + 2q(m(m+ 1)trΣ4

11.2 +m(trΣ2
11.2)

2)

=qm(2 + qm)(trΣ2
11.2)

2 + 2qm(n+ 1)trΣ4
11.2,

so that by (A5),

E[I23,1] =E[(tr (Y − θ)(Y − θ)TA)2]− q2m2(trΣ2
11.2)

2

=2qm(trΣ2
11.2)

2 + 2qm(n+ 1)trΣ4
11.2

=O(np2) +O(n2p).

Hence, one gets

I3,1 = Op(n
1/2p) +Op(np

1/2) (A.17)

For I3,2, one sees that

E[I23,2] =E[(trθθTA)2]− n2m2(trΣ12Σ
−1
22 Σ21Σ11.2)

2

=2nm(trΣ12Σ
−1
22 Σ21Σ11.2)

2 + 2nm(2m+ 1)tr (Σ12Σ
−1
22 Σ21Σ11.2)

2

=O(n2p) +O(n3p2),

which implies that

I3,2 = Op(np
1/2) +Op(n

3/2p). (A.18)
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For I3,3, using Stein’s lemma again, one sees that

E[I23,3] =E[(tr (Y − θ)θTA)2]

=Etr [∇T
Y Aθ(tr (Y − θ)θTA)]

=Etr [θTA∇Y (tr (Y − θ)θTA)]

=Etr [θTA2θ]

=Etr [V 22Σ
−1
22 Σ21V

2
11.2Σ12Σ

−1
22 ]

=nm(m+ 1)tr (Σ12Σ
−1
22 Σ21Σ

2
11.2) + nmtr (Σ11.2)tr (Σ12Σ

−1
22 Σ21Σ11.2)

=O(n3p) +O(n2p2),

which yields

I3,3 = Op(n
3/2p1/2) +Op(np). (A.19)

Thus, (A.14), (A.15), (A.16), (A.17), (A.18) and (A.19) lead to

ϕ̂11 − ϕ11 = Op(n
−1/2).

Finally,

ϕ̂110 − ϕ110 =:
p

nm(m+ 2)
((m+ 2)I4 +mI5), (A.20)

where

I4 = trY Y TB − qmtr (diagΣ11.2)
2 − nmtr (diagΣ12Σ

−1
22 Σ21)(diagΣ11.2),

I5 = tr (diagV 11.2)
2 −m(m+ 2)tr (diagΣ11.2)

2,

for Y = Σ
−1/2
11.2 V 12V

−1/2
22 , θ = Σ

−1/2
11.2 Σ12Σ22V

1/2
22 and B = Σ

1/2
11.2diag (V 11.2)Σ

1/2
11.2. Note

that E(I4) = E(I5) = 0. One decomposes I4 into the three terms as

I4 =: I4,1 + I4,2 + 2I4,3, (A.21)

where

I4,1 =tr (Y − θ)(Y − θ)TB − qmtr (diagΣ11.2)
2,

I4,2 =trθθTB − nmtr (diagΣ12Σ
−1
22 Σ21)(diagΣ11.2),

I4,3 =tr (Y − θ)θTB.

Observe that I4,1, I4,2 and I4,3 are centered. Then, the following lemma is useful for
calculation:

Lemma A.3. Let G = (gij) and H = (hij) be p× p constant matrices. Then,

EtrG(diagV 11.2)H(diagV 11.2) = 2m

p∑
i,j=1

gijhji(Σ11.2)
2
ij +m2trG(diagΣ11.2)H(diagΣ11.2).
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Proof. Direct calculation shows that

EtrG(diagV 11.2)H(diagV 11.2) = E

p∑
i,j=1

gijhji(V 11.2)ii(V 11.2)jj

=m(m+ 2)

p∑
i=1

giihii(Σ11.2)
2
ii +

∑
i ̸=j

gijhji(2m(Σ11.2)
2
ij +m2(Σ11.2)ii(Σ11.2)jj)

=2m

p∑
i,j=1

gijhji(Σ11.2)
2
ij +m2

p∑
i,j=1

gijhji(Σ11.2)ii(Σ11.2)jj

=2m

p∑
i,j=1

gijhji(Σ11.2)
2
ij +m2trG(diagΣ11.2)H(diagΣ11.2),

which shows Lemma A.3.

Using Lemma A.3 and the Stein identity leads to

E(tr (Y − θ)(Y − θ)TB)2 = q2E(trB)2 + 2qtrB2

=q2E(tr (diagΣ11.2)Σ11.2)
2 + 2qEtr (Σ11.2diagV 11.2)

2

=q2(2mtr (diagΣ11.2)
4 +m2(tr (diagΣ11.2)

2)2)

+ 2q(2m

p∑
i,j=1

(Σ11.2)
4
ij +m2tr (Σ11.2(diagΣ11.2))

2),

so that, by condition (A5),

Var(I4,1) =E(tr (Y − θ)(Y − θ)TB)2 − q2m2(tr (diagΣ11.2)
2)2

=2q2mtr (diagΣ11.2)
4 + 2q(2m

p∑
i,j=1

(Σ11.2)
4
ij +m2tr (Σ11.2(diagΣ11.2))

2)

=O(n2p),

which implies that

I4,1 = Op(np
1/2). (A.22)

Also,

E(trθθTB)2 = E(trΣ12Σ
−1
22 V 22Σ

−1
22 Σ21(diagV 11.2))

2

=2ntr (Σ12Σ
−1
22 Σ21(diagV 11.2))

2 + n2(trΣ12Σ
−1
22 Σ21(diagV 11.2))

2

= : I4,2,1 + I4,2,2.
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By Lemmas A.1 and A.3,

I4,2,1 =2n(2m

p∑
i,j=1

(Σ12Σ
−1
22 Σ21)

2
ij(Σ11.2)

2
ij +m2tr (Σ12Σ

−1
22 Σ21(diagΣ11.2))

2),

I4,2,2 =n2(tr (diagΣ12Σ
−1
22 Σ21)V 11.2)

2

=n2(2mtr ((diagΣ12Σ
−1
22 Σ21)(diagΣ11.2))

2 +m2(tr (diagΣ12Σ
−1
22 Σ21)(diagΣ11.2))

2).

Hence,

Var(I4,2) =E(trθθTB)2 − n2m2(tr (diagΣ12Σ
−1
22 Σ21)(diagΣ11.2))

2

=2n(2m

p∑
i,j=1

(Σ12Σ
−1
22 Σ21)

2
ij(Σ11.2)

2
ij +m2tr (Σ12Σ

−1
22 Σ21(diagΣ11.2))

2)

+ 2n2mtr ((diagΣ12Σ
−1
22 Σ21)(diagΣ11.2))

2,

so that from conditions (A5) and (A6),

I4,2 = Op(n
3/2p). (A.23)

For I4,3, using the Stein identity, we can see that

Var(I4,3) =E(tr (Y − θ)θTB)2 = EtrθTB2θ

=nEtrΣ12Σ
−1
22 Σ21(diagV 11.2)Σ11.2(diagV 11.2)

=2nm

p∑
i,j=1

(Σ12Σ
−1
22 Σ21)ij(Σ11.2)

3
ij

+ nm2trΣ12Σ
−1
22 Σ21(diagΣ11.2)Σ11.2(diagΣ11.2)

=O(n2p),

so that

I4,3 = Op(np
1/2). (A.24)

Finally, since b̂20 − b20 = Op(n
−1/2p−1/2), one gets

I5 = Op(n
3/2p1/2). (A.25)

Thus, from (A.20), (A.21), (A.22), (A.23), (A.24), and (A.25),

ϕ̂110 = ϕ110 +Op(n
−1/2),

which completes the proof of Theorem 3.1. �

28



References

[1] Bai, Z., Huixia, L., and Wing-Keung, W. (2009). Enhancement of the applicabil-
ity of markowitz’s portfolio optimization by utilizing random matrix theory. Math.
Finance, 19, 639-667.

[2] Bickel, P., and Levina, E. (2008a). Covariance regularization by thresholding. Ann.
Statist., 36, 2577-2604.

[3] Bickel, P., and Levina, E. (2008b). Regularized estimation of large covariance ma-
trices. Ann. Statist., 36, 199-227.

[4] Cai, T., and Liu, W. (2011). Adaptive thresholding for sparse covariance matrix
estimation. J. Amer. Statist. Assoc., 106, 672-684.

[5] Cai, T., and Zhou, H. (2010). Optimal rates of convergence for sparse covariance
matrix estimation. Manuscript. University of Pennsylvania.

[6] Chamberlain, G., and Rothschild, M. (1983). Arbitrage, factor structure and mean-
variance analysis in large asset markets. Econometrica, 51, 1305-1324.

[7] Chen, Y., Wiesel, A., Eldar, C.Y., and Hero, O.A. (2010). Shrinkage Algorithms for
MMSE Covariance Estimation. IEEE Trans. on Sig. Process., 58, 5016-5029.

[8] Fama, E., and French, K. (1993). Common risk factors in the returns on stocks and
bonds. J. Financial Economics 33, 3-56.

[9] Fan, J., Fan, Y., and Lv, J. (2008). High dimensional covariance matrix estimation
using a factor model. J. Econometrics, 147, 186-197.

[10] Fan, J., Liao, Y., and Mincheva, M. (2011). High dimensional covariance matrix
estimation in approximate factor model. Ann. Statist., 39, 3320-3356.

[11] Fan, J., Liao, Y., and Mincheva, M. (2013). Large covariance estimation by thresh-
olding principal orthogonal complements. J. Royal Statist. Soc., 75, 603-680.

[12] Fisher, T.J., and Sun, X. (2011). Improved Stein-type shrinkage estimators for
the high-dimensional multivariate normal covariance matrix. Comp. Statist. Data
Analysis, 55, 1909-1918.

[13] Haff, L.R. (1979). An identity for the Wishart distribution with applications. J.
Multivariate Analysis, 9, 531-542.

[14] Haff, L.R. (1982). Solutions of the Euler-Lagrange equations for certain multivariate
normal estimation problems. Unpublished manuscript.

[15] Lam, C., and Fan, J. (2009). Sparsistency and rates of convergence in large covari-
ance matrix estimation. Ann. Statist., 37, 4254-4278.

29



[16] Ledoit, O., and Wolf, M. (2003). Improved estimation of the covariance matrix of
stock returns with an application to portfolio selection. J. Empirical Finance, 10,
603-621.

[17] Ledoit, O., and Wolf, M. (2004). A well-conditioned estimator for large-dimensional
covariance matrices. J. Multivariate Analysis, 88, 365-411.

[18] Ren, Y., and Shimotsu, K. (2009). Improvement in finite sample properties of the
Hansen-Jagannathan distance test. J. Empirical Finance, 16, 483-506.

[19] Rothman, A., Levina, E., and Zhu, J. (2009). Generalized thresholding of large
covariance matrices. J. Amer. Statist. Assoc., 104, 177-186.

[20] Schafer, J., and Strimmer, K. (2005). An empirical bayes approach to inferring
large-scale a gene association networks. Bioinformatics, 21, 754-764.

[21] Srivastava, M.S. (2005). Some tests concerning the covariance matrix in high di-
mensional data. J. Japan Statist. Soc., 35, 251-272.

[22] Stein, C. (1973). Estimation of the mean of a multivariate normal distribution, In
Proc. Prague Symp. Asymptotic Statist., 345–381.

[23] Stein, C. (1981). Estimation of the mean of a multivariate normal distribution. Ann.
Statist., 9, 1135–1151.

[24] Watamori, Y. (1990). On the moments of traces of Wishart and inverted Wishart
matrices. South African Statist. J., 24, 153-176.

30


