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Linear Shrinkage Estimation of Large Covariance
Matrices with Use of Factor Models

Yuki Ikeda*and Tatsuya Kubokawa!
Unwversity of Tokyo

Abstract

The problem of estimating large covariance matrices with use of factor models
is addressed when both the sample size and the dimension of covariance matrix
tend to infinity. In this paper, we consider a general class of weighted estimators
which includes (i) linear combinations of the sample covariance matrix and the
model-based estimator under the factor model and (ii) ridge-type estimators with-
out factors as special cases. The optimal weights in the class are derived, and the
plug-in weighted estimators are suggested since the optimal weights depend on un-
known parameters. Numerical results show our methods perform well. Finally, an
application to portfolio managements is given.

Key words and phrases: Covariance matrix, factor model, high dimension, large
sample, non-normal distribution, normal distribution, portfolio management, ridge-
type estimator, risk function.

1 Introduction

Estimation of a large covariance matrices is a fundamental issue in economics, financial
engineering, biologics, signal processing and other literatures and has been widely studied.
In the estimation of the p X p covariance matrix 3;, the classical large sample theory
assumes that sample size N is allowed to grow, but dimension p is fixed. In this setting,
we can estimate the covariance matrix 3y by its sample covariance matrix, denoted here
by 311, which is a consistent estimator. However, in applications, we often encounter
very large data sets which contain variables in high dimension. In this case, using 3 is
inappropriate since ¥;; becomes singular when p is larger than N. Even if p < N, 3y, is
instable as pointed out by Fan, Fan and Lv (2008).
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Various methods have been proposed to estimate 3J;; in high dimension. Ledoit and
Wolf (2004), Schafer and Strimmer (2005), Chen, Wiesel, Eldar and Hero (2010), Fisher
and Sun (2011) and others suggested well-conditioned estimators combining f]u and more
stable statistics, which are called weighted or ridge-type estimators. When covariates,
called factors, are available, Ledoit and Wolf (2003), Ren and Shimotsu (2009) and Fan,
et al. (2008) suggested more refined linear shrinkage estimators of 37 by incorporating
the common factor structure in the factor models. Ledoit and Wolf (2003), Ren and
Shimotsu (2009) suggested weighted estimators but not considered the high dimensional
settings. In this paper, we also propose factor-model-based weighted estimators but in
high dimension. Also many papers studied regularization and thresholding techniques
such as Bickel and Levina (2008a, b), Rothman, Levina and Zhu (2009), Lam and Fan
(2009), Cai and Zhou (2010), Cai and Liu (2011) and others. Recently, Fan, Liao and
Mincheva (2011) suggested estimators of 1 by thresholding the sample covariance matrix
of estimated residuals in the factor model and derived the favorable convergence rates
under the sparcity of covariance of idiosyncratic components.

Factor models have been widely used to relate variables of interest, y,’s, to some fac-
tors, x;’s and has been used in many applications. Among others, Fama and French (1992)
found out that excess asset returns are well explained by the three factors of sensitivity to
the market excess return, the market capitalization and the book-to-price ratio. Factor
models often assumes the independence among the idiosyncratic components, so that the
error covariance matrix becomes diagonal. The cross-sectional independence, however, is
restrictive in many applications as pointed out in Chamberlain and Rothschild (1983).

Fan, et al. (2011) relaxed the assumption of the cross-sectional independence in the
factor models and suggest invertible estimators under cross-sectional correlations of id-
iosyncratic noises, when both p and N are allowed to diverge. In this paper, we also
permit the cross-sectional independence in the factor models and suggest new invertible
estimators based on all the data y,’s and «;’s for any (p, N).

To explain more specifically the problem addressed here, we describe the underlying

model and the factor model. Assume that observations (y, 1), ..., (yy, Zy) are available
where y, and x; are, respectively, p- and g-dimensional vectors. Consider estimation of
p X p covariance matrix 3, of y, where y,, ...,y are mutually independently distributed
as Ely,;] = py and Cov (y;) = Xy;, namely

yl [ad i-i-d-(ul, Ell). (]..1)

The sample covariance matrix of £y; is $q; = n~! SN (y;—9)(y;—7)T forn = N—1and
y=N"! Zf\il y,. It may be possible to improve on ¥; by using additional observations
xq,...,xy when the following factor model is suspected:

y,=a+pPBx,+e€, 1=1,...,N,

1.2
€ ~ 1.i.d.(0,D), x; ~ iid.(ps, X20), 42



where €;’s are idiosyncratic error components which are not correlated with x;’s, o and
B are, respectively, p- and ¢-variate unknown vectors, and D and 3o are, respectively,
p X p and ¢ X ¢ unknown positive definite symmetric matrices.

It is convenient to treat two models (1.1) and (1.2) in a unified expression. Let
35 = Cov (y,;, x;). Then from (1.2), it is seen that pu; = a4+ Bp, and X1 = E[(y; —
a — Bus)(x; — py)T] = B4y, This implies that

a =y — 21222_21;1,2,
B =135,

and factor model (1.2) can be rewritten as

Y, =(py — Z1eXoy py) + T @i+ €, i=1,...,N,

1.3
€; ~ lld(O, D), Z; ~ lld([,l,Q, 222), ( )

which yields that
Cov (y;,) = D + 21535 3. (1.4)

Lettlng 211.2 = 211 — 21222_212217 we can rewrite (14) as Cov (yz) = 211 + D — 211.2.
As setups of D, the following three cases are considered:

(CO0) Fully unknown case: D = X 5.

(C1) Sphericity case: D = p~ttr (X112)1.

(C2) Diagonality case: D = diag (X11.2).
In fully unknown case (C0), it follows from (1.4) that Cov (y,) = 1190 + 21235, Do) =
3311, which corresponds to model (1.1), and 3y is estimated based on the sample covari-
ance matrix 3, without any information on @;’s. In restricted cases (C1) and (C2), the
covariance matrix X7 can be estimated with more refined estimators since 15, 399 and
3112 are estimated based on all the data y,;’s and x;’s. The restricted cases mean that
the idiosyncratic components in €; are uncorrelated, and model (1.2) or (1.3) is called
the strict factor model, while it is called the approximate factor model in the unrestricted
case. Thus, model (1.3) gives a unified expression of strict and approximate factor models.

Using the unified expression of factor models (1.3), we consider estimation of the
covariance matrix ¥;; in model (1.1) when the strict factor models with restrictions (C1)
and (C2) are suspected. Under the restrictions, ¥, is estimated by

~ ~ ~ A~A—1~
Ef = D + 212222 221,

with appropriate estimators ﬁ, 212 and 222, so that it is reasonable to estimate 3;; with
the weighted estimators

A~

Ea = Oéill + (1 — Oé)gf = 211 + 04(211 — if)

since fla shrinks f)u towards 3 ¢ which is the estimator when the strict factor model is
suspected. As the true error covariance matrix goes far away from the strict factor model,



however, the weighted estimator 3., becomes ill- conditioned because it converges to the
sample covarlance matrix. It is here noted that Ea is rewritten as Z] = ozEHQ +(1-

a)D + 212222 221. Thus, we consider to shrink further the term 212222 f)gl toward the
restricted estimators, which results in the doubly weighted estimators

~—1~

~ ~ ~ ~ a1~
(v, 0) =712+ (1 —9)A(X112) + X123, X0 + (1 — 5)/\(212222 301),

where A(-) is a function satisfying D = A(f]ll.g), which corresponds to the restriction.
This doubly weighted estimators are well-conditioned when the true error covariance ma-
trix goes far away from the strict factor model.

The goal of this paper is to derive the optimal weights on v and § in terms of minimiz-
ing the mean squared error Risk(2(v, 8)) = p~ E[tr [{(v, 8) — £11}2]], and to suggest
the consistent estimators with the optimal weights. As we mentioned above, we permit
the cross-sectional correlations among the idiosyncratic components while restricting the
density of elements of X1, as tr (X3, ,) = O(p). This corresponds to the sparcity con-
dition of 375 assumed in Fan, et al. al. (2011) where many entries of the off-diagonal
elements are zero, and the number of nonzero off-diagonal entries is restricted to grow
slowly. On the other hand, for our final interest Xy, most weighted (linear shrinkage)
estimators in the literature assume that tr (£2,) = O(p). However, this can be inappro-
priate in covariance estimation with use of factor model since if each element of the factor
loadings 3, is of order O(1), tr(X?)) = tr (21225 o1 + X112)%) = O(p?), though it
is true that if 3,5 is sparse or not dense, assuming tr (32,) = O(p) is reasonable. Thus,
we treat the two cases, (i) tr (X3,) = O(p?) and (i) tr (£7,) = O(p) depending on the
density of the factor loadings 315. We mainly treat the former case but the results in the
latter is also shown.

The rest of this paper is organized as follows: In Section 2, we introduce the weighted
estimators and derive the optimal weights under appropriate assumptions on non-sparcity
and sparcity of factor loadings. The mean squared errors of the estimators with the opti-
mal weights are provided. In Section 3, we give several estimators of unknown parameters
included in the optimal estimators and suggest the plug-in estimators by substituing the
estimators into the optimal estimators. Section 4 conducts numerical studies, and Section

5 gives an application to portfolio management. Concluding remarks are given in Section
6.

2 Weighted Estimators and Mean Squared Errors

2.1 Weighted estimators

Let us assume that the observations (y,,1),..., (yy,Zy) have model (1.3). Let y =
_1 N — _1 N N _ Z N

N 1Zi:1 Yy, T=N""'3" e, Vin =30 (v, —9)(y, - y)", Vig= Vgl = (Y —

) (@ — )T and Vo = SN (z; — &)(x; — ®)T. Let 3y = n'Vy; (i,5 = 1,2) for



n=N —1. Also, let

v- (Vi V) =

We consider the estimation of the covariance matrix Cov (y,;) = ¥;;. An estimator &
of Xy is evaluated in terms of the mean squared error (MSE) Risk(d) = p~'E[tr [(§ —
¥11)%]. A standard estimator of Xi; is the sample covariance matrix f]n = n" V.
This estimator may be used if no information on the model is available. In the financial
economics, the factor models are used for explaining stock returns. When factor model
(1.3) is suspected, from (1.4), we can suggest the estimator

~ ~ ~ Al ~

where D = A(ilm) for $q19 = 211 — 2122;21221. As examples of A(in,g), we consider
the two cases;

(C1) Case of sphericity: A(f]ll_g) =p Hr (211.2)[

(C2) Case of diagonality: A(§11‘2> = diag(in‘g).
It is noted that this estimator is available in the case of n > ¢ due to existence of 22_21.
Otherwise, the estimator f];; should be replaced with the generalized inverse 512_2

In this paper, we consider to combine the sample covariance matrix 5\311 and the

estimator ¥, in the factor model. For constant « satisfying 0 < a < 1, the weighted
estimator is

ia = Oéf)n + (1 - Oé)f)f,

which is rewritten as

~—1~

S, =a(S — 212222 1) + 04212222 So 4+ (1—a)D+ (1 — )25, 5o
:OZZILQ + (1 — OZ)D + 212222 221. (23)

Since Oéiu 9 + (]. - Oé).ﬁ 211 92 — (]_ — Oé)(in 2 — .ﬁ), it shrinks 211 2 toward .ﬁ The
estimator 211 is decomposed as 211 = 211 9+ 212222 221 Thus, the weighted estimator
E shrinks the part 211 9 in 211 toward D.

It is noted that if D in model (1.3) is less restrictive or if the true error covariance
matrix is far away from the strict factor model, then 3, approches to the sample covari-
ance matrix which is ill-conditioned in the large dimensional case. To fix this problem,

~ o~—1 -~
we consider to shrink further the term 3153, 39 toward the restricted statistics. As
examples of the restriced cases, we consider the two cases;

~—1 A~

(C1) Case of sphericity: A(f]mf];;flgl) p~ltr (212222 Yo1)I.
(C2) Case of diagonality: A(f)mf);;im) = diag(212222 221).
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We use the notation A(in) defined by A(fln) = A(in,g) + A@ui;igl). Thus, we
suggest a class of the doubly weighted estimators

~ ~ ~ ~ ~—1~ ~ ~—1~
2(’775) = 7211.2 + (1 - W)A(Z)ll?) + 5212222 221 + (1 - B)A<212222 221). (24)

where A(in,g) is given above.

The class of the weighted estimators includes not only i‘a but also other specific
estimators. For example, (v, #) reduces to 3, when § = 1 and v = «a. Also, putting
f =~ = w in the case of (C1) reduces to

~5 ~ 1 ~
ET = wZH + (1 — w);tr (211)1, (25)

which is a ridge-type est1mator given for high dimensional covariance matrix with no
covariates. One can see that ET is obtain by shrinking the sample covariance matrix to
the direction of the spherical matrix p~ttr (211). Finally, the ridge-type estimator in the
case of (C2) is given by

~d ) ~
ET = wEH + (1 - )dlag (211). (26)

Throughout the paper, we use the following notations for population matrices:
In the case of sphericity (C1), A(EH) p e (1), A(X112) = ptr (B112)T and
A<21222_21221) p tI‘ (2122 221)[
In the case of diagonality (C2), A(X;;) = diag (X11), A(X112) = diag (X11.2) and
A(21535, B91) = diag (21255, Za).
2.2 Approximations of the risk function under normality

We now approximate the risk function of the estimator f)(% B) and derive the optimal
weights of v and /3, where the risk function of an estimator § of 3;; is given by

Risk(8) = p 'Eftr[{6 — X1 }Y)).

To this end, we need to assume normality of the distribution. Thus, it is assumed that
(yy, 1), .., (Yy, xyn) are mutually independently and identically distributed as

(%)~ Mo )- (s 52) @7

Then, the marginal distribution of y, and the conditional distribution of y, given x; are

Y; ~Np(py, Ena), (2.8)
Yiles ~Np (g + 1230, (@ — p1y), Bi12).



Conditional distribution (2.9) is expressed as
Y = (1 — T2 o) + ZieEp i + €, €~ N (0,301,), (2.10)

which is identical to (1.3) if the covariance matrix ;5 of €; is replaced with D = 35 5
or D= A(Ell_Q).

Under assumption of normality, (,y) is distributed as
(Z) ~ma((8) (50 52))
T PPNy )N\ Bo1 3o /)
which is independent of Vi1, V5 and V. When n > p 4+ ¢, V has the Wishart
distribution
Y X
Vo Wora(n (s s )):

However, in the case of n < p+g¢, it is noted that V' does not have a Wishart distribution,
and we cannot use distributional properties of the Wishart distribution.

To approximate the risk functions of the estimators, we assume the following condi-
tions:

(A1) n, p and ¢ satisfy that (n,p) — oo, n > ¢ and ¢ is bounded.

(A2) ay = p~tr (Bn) = O(1), ag = p~' 30 (B112)5; = O(1), by = p~'tr (B110) =
O(1), by = p~'tr (2%1.2) =O0(1),by =p~! 5:1(211.2)% =0(1), o1 = pitr (X)) =
0(1) and ¢110 = p_l 25?:1(211)]']'(211.2)]‘]‘ = 0(1), where (M)jj stands for the (],j)—
element of M.

(A3) ay = p~'tr [33,] = O(p).
(A4) ay = O(1).

Assumption (Al) means that we consider the high dimensional case that both n
and p tend to infinity, but ¢ is bounded. This restriction enables us to use standard
theories of the Wishart distributions for V. Assumption (A2) permits non-zero off-
diagonal elements of 3175, i.e., the cross sectional correlations of idiosyncratic compo-
nents, while these elements are not so dense since by = p~'tr (X3,,) = O(1), ¢110 =
Pt (Bn)ji(Ene)j; = O(1), ete. The corresponding assumption in Fan, et al. al.
(2011) is sparcity of 31 o, which restricts the maximal number of non-zero elements over
the rows of X115 to order of o(1/N/logp). Note that, however, these two assumptions
are not equivalent.

The condition (A3) as = O(p) implies that X5 is dense while (A4) ay = O(1) im-
plies that factor loadings 32 in factor model (1.3) is sparce or not dense because of
tr (X1285 Xo1)? = O(p). The former is supposed to be more natural since we consider
factors of bounded number ¢g. As we mentioned in section 1, many literature of linear
shrinkage estimation of large covariance matrices consider the case of as = O(1) whether



employing factor structure or not, however we mainly treat the case (A3) in which factor
loadings are dense whereas the case (A4) is argued in the end of this subsection.

We begin by handling the risk of the general type of estimators f)(% f) given in (2.4).
The straightforward calculation leads to the following lemma.

Lemma 2.1. In the case of (C1) or (C2), the risk of the estimator f](% B) is written as

Risk(Z(y,8)) = (v f) (ﬁ; :22) (g) —2(Ji Jan) (g) + Ry, (2.11)

so that the optimal weights v* and B* are given by
~1
”y* J11 J12 JIO
= 2.12
(ﬁ*> (J12 J22> (Jzo) ’ (212)
and the risk of the estimator i(v,ﬁ) with the optimal weights v* and 5* is
-1
U Jii Jiz J10
Risk(X® , = Ry — (.J J. )
isk(3(7", 7)) = Ro = (1o Ja0) <J12 J22) (J20)
where Ry = p~' Etr(Xq; — A(i\:ll))2f Ju = p_lEtr(ilw - A<§11-2))27
1 a o-la S o1y
J22 :Z_)Etr(ZIQEQZ o1 — A(X1939, 3a1))?,
1 - S S ala ST >
J12 :EEtr(le.Q - A(211.2>>(212222 221 - A<212222 221))7
1 ~ ~
J10 :2—?Etr(211_2 - A(EHQ))(EH - A(Ell))a

1 -~ ~—1~ -~ ~ -1~
J20 :5Etr<212222 221 — A(212222 221))(211 — A(Ell))

The moments given in Lemma 2.1 can be evaluated under normality assumption (2.7).
We first assume non-sparcity condition (A3) to approximate the moments.

Theorem 2.1. Assume (Al), (A2) and non-sparcity condition (A3) and that (y;, x;)’s
are normally distributed as (2.7). Then, Ry = ag — a3 + O(n™') in the case of (C1) and
Ry = as — asy + O(n™') in the case of (C2). Also, in the case of (C1),

Ji =by — B + gbf +O0(n™Y) + O(n~2p),

Jaz =(1+n " )az — 2611 + by — (a1 — b1)* + =(a] — b3) + O(n™") + O(n"?p),

Jis =¢11 — a1by — by + b? + O(n‘l),
Jio =11 — arby +O(n1),
Joo =ay — ai — é11 + arby + O(n™1).

3 I3

(2.13)



On the other hand, in the case of (C2),
Ji1 =by — bao + gbf +0(n™")+0(n ?p),
o =(1+n"Nas — 211 + by — @z + 2110 — bao + S(af )+ 0™ + O(n~2p),
Ji2 =¢11 — d110 — ba + bag + O(n 1),

Jio =¢11 — d110 + O(n™ ),
Jao =az — azo — ¢11 + d110 + O(n ).

(2.14)
Here, we analyze two special cases and suggest an partially optimal estimator in the

latter.
[Risk of 3,,] We can easily see from (A.13) that

RiSk(in) = % + %a%

[Risk of ia] In the case of sphericity, putting v = a, 8 =1 and using (2.13) yields that

A~

Risk(Sa) = (b = 07 + 203)a” = 2(by — B)a+ = + 2 (af = 57) 4 by — b + O(n ™),
which is minimized at
B by — b3
by — b + (p/n)b;

@*

(2.15)

and the risk of ia* becomes

S az P o 2 (P p(b2/b% —1) —1
Risk(S,.) =24 P2 _p2 (P _ omn ),
k(o) n T (n n(by/b? — 1) +p +0m™)

which is smaller than the risk of f]n in the leading terms.
In the case of diagonality, putting v = «, =1 and using (2.14) leads that

p

Risk(ia) = (bg - bzo + %b?)Oﬂ - 2(1)2 — bgo)Oé + % + ﬁ(af — b%) + bQ — b20 + O(nil),

which is minimized at
b
by — by + (p/n)b3

*

(07

(2.16)

and the risk of ﬁa* becomes

) 3 az P o 2 [P p(bQ - b20)/b% -1
k‘ Za* - - - b - )
Risk(3a:) n + T (n n(by — bag) /b3 + p +0n™)

which is smaller than the risk of 211 in the leading terms.

We next provide approximations of the moments under sparcity condition (A3). The
proof is omitted.



Theorem 2.2. Assume sparcity condition (A4) instead of (A3) together with (A1) and
(A2). Then, Ry and Jay in (2.13) should be replaced with Ry = ay — a3 + O(n~'p~') and

JQQ =a9 — 2(;511 + b2 - (a1 - b1)2 + %(a% — b%) + O(n_l) + O(n_Qp),
in the case of (C1). Similarly, Ry = as — a2 + O(n~'p~™!) and
Jag =a9 — 2¢11 + by — agp + 20110 — bao + %(a% —b}) +O0(n™ ") + O(n?p),

in the case of (C2). For the other terms J;j’s, their evaluations under sparcity of factor
loadings are the same as in Theorem 2.1 in both of (C1) and (C2).

3 Construction of Plug-In Estimators

Since the estimator 2%5 with the optimal weights depends on the unknown parameters,

we need to estimate them. For ay, as, by and by, we use the estimators given in Srivastava
(2005) as

1 - X n? o2 S 2
a; = Z—)tf (X1), ax= ptn—1)(n + 2) (tr(En) — (tr Xq) /”)v
by = mtr (211.2)7 by = p(n - 1)(n g+ 2) (tr (211.2) - (tr 211.2)2/(71 B q))

(3.1)

Also, for asg, by, ¢11 and @119, we show that the followings are unbiased and consistent:

2

n S 2 n ~
19 =————-tr ((diag¥)%),  bao = tr ((diagS,, )2
a2 P+ 2) r ((diagXi1)?), bao P —g+2) r ((diagXi12)”),
& n SIS n—q—2 ~2
on p(n — ) ( r(311211.2) h—g—D(n—q+2) r(X,)

. (3.2)

S (n—g-Dn—q+2)
O = st (ding(S1r)diag(S11)) -

(tl" 211.2)2>,
2n
p(n—q)(n—q+2

)tr (diag(f]ll,gy).
To evaluate these estimators, we need to assume two more conditions:

(A5) ag = p~'tr (B1;) = O(p*), by = p~ Mt (Bf15) = O(1), by = p~'tr (27 ,) = O(),
tr (B11.2812%55 To1)? = O(p?) and tr (X7, ,31285, Za1) = O(p).

(A6) asgo=p ' 30 (Bn)j; = O(1), bao = p~' 37F_ (Bui2)}; = O(1),
tr (B12855 To1 0 B112)* = O(p), 11 (B2 0 Bin)® = O(p), tr (Znrodiag (E112))* = O(p),
tr (B1225 Bordiag (2112))* = O(p%), tr (diag (T1233; Bor)diag (E112))* = O(p)

10



and tr (211.2diag (211'2)21222_21221di&g (2112)) = O(p),

where (M);; stands for the (7, j) element of M and M o L = (M;;L;;);; is the Hadamard
product.

We first evaluate the above estimators under the non-sparcity condition (A3).

Theorem 3.1. Assume (A1), (A2), (A3) and (A5), then under normality, G, as, by and
by are all unbiased and

a1 = ar + Op(n™Y?), ay = as + O,(n""/p),

) ~ R - ~ (3.3)
b1 = b1 + Op((np)™'?), by = by + Op((np) %) + Op(n™").

Also, (A1), (A2), (A3), (A5) and (AG) with normality implies that s, Gso, d11 and prig

are all unbiased and
Qg0 = Qg0 + Op(n_1/2)7 620 = by + Op((”p)_lﬂ);
o1 = ou + Op<n71/2)7 G110 = 110 + Op(n71/2)-

Thus, all of the aboves are reasonable estimators of the corresponding ones except as.

(3.4)

A problem is the convergence rate of ay. If sparcity condition (A4) holds, namely,
ag = O(1), then ay = ay + O,((np)~Y2) 4+ O,(n™1), so that even p > n, a, is a consistent
estimator of ay. If a; = O(p), however, we see that Gy = as + O,(n~2p). Therefore, ay
is unbiased but unstable in the sense of a, itself is not a consistent estimator of a, unless
n > pand p = O(n°) with § < 1/2, which is a strong condition.

Substituting (3.3) and (3.4) into (2.13) or (2.14) and further substituting (2.13) or
(2.14) into (2.12), we get estimated optimal weights (7", %) of estimator (2.4). We suggest
the plug-in estimator 3. 3o o Also, substituting (3.3) and (3.4) into (2.15) or (2.16), we get
estlmated optimal Welghts a* of estimator (2.3), so that we suggest the plug-in estimator
S

If sparcity condition (A4) holds instead of (A3), we can show the consistency of all
the estimators in the following theorem, where the proof is omitted.

Theorem 3.2. Assume sparcity condition (A4) together with (A1), (A2), (A5) and (A6),
where the conditions on ay, tr (B112X19855 291)? and tr (X135, Bordiag 3115)? in (A5)
and (A6) are replaced with ay, = p~'tr (£7,) = O(1),

tr <211.22122521221>2 = O(p) and tr (2122521221diag 211.2>2 = O(p)
Then, under normality, one gets

i1 = a1 + Op((np) %), s = as + Op((np)~"/?) + Op(n "),
bi = b1+ Op((np)~1/%), by = by + O, ((np) /%) + Op(n™"),
20 = azo + Op((np)™7?), bao = bag + O((np) /),

ou = o + O,((np)~/%), $110 = P110 + O,((np)~/?).
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4 Simulation Studies

We now investigate numerical performance of MSEs or risks of the proposed estimators
through simulations.
As a structure of the covariance matrices, we follow model (1.3) where €;’s and x;’s
are given by
e =Sihu, @ =T,
with w; = (u;;)1<j<p and v; = (v55)1<j<, mutually independent. Here, we set p, = 0,

Yoo = I, and (X15);; ~ i.i.d. N(0.5,1) through the studies, and the following two cases
are treated for 3 o:

(M1) the strict factor model(sphericity) with ¥, 5 = 31,
(M2) the approximate factor model with

p\1—1|/7 p|1—2\/7 p\l—Pl/7

01 01

0'2 p‘2_1|/7 p|2_2‘/7 oo p‘2_p|/7 0'2
e = - : : - : " '

op p\P—1|/7 plp—QW p\P—P|/7 op

for 0, =3+ 0.2(=1)*(p—j+1)/pand p=0.1.
Note that the above settings are consistent with assumptions (A2), (A3), (A5) and (A6).

Concerning the distributions of u; = (u;;)1<j<p, and v; = (v)1<j<q, We treat the two
cases:

(Dl) Uij, Vij ~ N(O, 1)
(D2) wij, vij = (wij — v) /20, wy ~ X2 for v=2.

-~ ~d ~s ad o ~d

Let E; and X be given in (2.5) and (2.6), and let EZ, DI Eiﬂ and X_ ; be given in
Sections 2 and 3, where the corresponding optimal weights are estimated by the consistent
estimators. Then we compare the performances of the seven estimators: the sample

. N ~5 ~d ~s5 ~d ~s ~d
covariance matrix Xy, My, ¥, N 3 B 4 and DN

Some simulation experiments are carried out in the cases of N = 100, ¢ = 3 and
p = 50, 100 and 200. Based on 1, 000 replications, we calculate averages of the risks given
by
Risk(6) = Eltr (6 — 311)%]/p,
where § is an estimator of 31;. We also investigate the performances of the risks when
we estimate the precision matrix X' with the inverse of the above estimators, where the
risk is evaluated in lights of

Risk(87") = Eltr (67", — I)?]/p,

where 6! is an estimator of X}

12



Tables 1 and 2 report the simulation results in estimation of X, ane X1, respectively,
under strict factor model (M1) with underlying distribution (D1) or (D2), where the values
in the parenthesis denote the corresponding standard dev1at10ns Under the assumption

of strict factor model (Ml) the four estimators E E 5% ,p and 2 5 perform well.

Especially, the estimator N 5 1s the best of these. Tables 3 and 4 report the simulation
results under approxmlate factor model (M2). Since (M2) does not assume the strict factor

model, the estimators ET and ET are better than ii and ia in relatively small p, however

ﬁsT and idT are ill—eonditioned in the estimation of precision ¥7}' in large p as indicated in
Table 4. The estimator E 5 1s the best in most of these kinds of simulation experiments.
Though we do not show the results, we also compared with the estimators in Fan et al.
al. (2011) and found out that ) ~,5's perform better. Especially, in approximate factor
model (M2), the estimator of the inverse X;' in Fan et al. al. (2011) is quite unstable
probably since ¥i; 5 is not sparse. Moreover, Fan et al. al. (2011) is based on adaptive
thresholding proposed in Cai and Liu (2011) which suggests a computationally hard data-
driven choice of a tuning parameter that controls the threshold while our estimators can
be implemented easily. We thus recommend the estimator N .5 In estimation of ¥, and
S

Table 1: Comparison of Estimators of 3;; under Strict Factor Model (M1)

S

. = =5 od d =5 d
N p ¢ dist. =, ¥, ¥, % X, X (1.8) X (.58

100 50 3 (D1) 245 226 227 200 202 187 18.9
(7.1)  (6.6) (6.6) (7.1) (7.1)  (6.4) (6.4)
100 100 3 (D1) 47.3 429 430 384 386 354 35.7
(12.3)  (9.9)  (9.9) (12.3) (12.3)  (9.8) (9.8)
100 200 3 (D1) 939 859 860 762 764 703 71.0
(23.1) (19.2) (19.2) (23.1) (23.1) (18.8)  (18.8)
100 50 3 (D2) 382 347 349 332 339 305 31.2
(27.2) (21.7) (2L.7) (27.3) (27.2)  (22.0)  (22.3)
100 100 3 (D2) 752 684 686 658 665  60.5 61.2

(49.6) (38.9) (38.9) (49.7) (49.7) (39.6)  (39.9)
100 200 3 (D2) 158.3 1427 1429 140.1 1408 1275  128.3
(93.8) (7TL7) (TL7) (94.0) (93.9) (73.4)  (73.6)
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Table 2: Comparison of Estimators of 37" under Strict Factor Model (M1)

N o p g dist. Sy 5, S S S 54,8 $'0.8)
100 50 3 (Dl) 10.57 2.07 2.24 0.58 0.68 0.48 0.57
(2.50) (0.36) (0.39) (0.10) (0.12) (0.08)  (0.10)

100 100 3 (D1) NA 829 990 1.16 134 096 1.11
(1.04) (1.29) (0.18) (0.15) (0.13)  (0.15)

100 200 3 (Dl) NA 33.06 44.47 2.37 2.71 1.97 2.24
(347) (5.11) (0.25) (0.28)  (0.22)  (0.24)

100 50 3 (D2) 12.16 2.26 2.63 0.61 0.82 0.51 0.67
(3.24) (0.44) (0.52) (0.14) (0.18) (0.12)  (0.15)

100 100 3 (D2) NA 9.57 11.89 1.28 1.64 1.07 1.32
(1.65) (2.07) (0.24) (0.30) (0.22)  (0.26)

100 200 3 (D2) NA 38.06 54.52 2.63 3.27 2.19 2.64

(6.46) (10.2) (0.45) (0.54) (0.40)  (0.48)

Table 3: Comparison of Estimators of 3; under Approximate Factor Model (M2)

K ~ ~38 ~d Y] ~d =5 ~d
N p q dlSt- 2311 ET ET Ea Ea 3 (’77 6) by (776)
100 50 3 (D1) 102.1 88.6 90.0 92.6 94.0 88.1 89.6

(19.0) (15.6) (157) (17.1) (17.2)  (156)  (15.6)

100 100 3 (D1) 1753 1442 1454 147.0 1484 1385  140.1
(26.7)  (19.2) (19.2) (23.1) (23.0) (18.9)  (18.9)

100 200 3 (D1) 3385 2626 2637 257.1 2586 2352  236.9
(37.1)  (282) (282) (34.0) (33.9) (25.6)  (25.6)

100 50 3 (D2) 1080 905 922 966 984 90.8 92.7
(20.8)  (20.5) (20.6) (26.2) (26.2)  (20.9)  (21.2)

100 100 3 (D2) 2126 1713 1731 181.3 1835 1662  163.8
(65.3) (40.3) (40.4) (622) (62.1)  (43.0)  (43.5)

100 200 3 (D2) 4108 3255 327.3 3257 3283 2965  299.4
(125.7)  (79.6) (79.6) (120.1) (120.2) (84.8)  (85.3)

5 Applications to Portfolio Managements

In this section, we consider Markowitz’s problem (return maximization) under the con-
straint of the portfolio variance:

R = machu st. ¢'1 <1 and 'Se < 03,
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Table 4: Comparison of Estimators of 37 under Approximate Factor Model (M2)

N o p g dist. Sy 5, S S S 54,8 $'0.8)
100 50 3 (Dl) 21.92 1.29 1.42 1.51 1.71 1.15 1.30
(4.97) (0.17) (0.19) (0.19) (0.23)  (0.14)  (0.17)

100 100 3 (Dl) NA 2.54 2.89 2.06 2.37 1.71 1.96
(0.32) (0.38) (0.18) (0.22) (0.15)  (0.18)

100 200 3 (Dl) NA 5.b 6.41 2.89 3.32 2.42 2.76
(0.58) (0.73) (0.21) (0.25) (0.18)  (0.21)

100 50 3 (D2) 24.01 1.33 1.49 1.55 1.82 1.26 1.44
(5.42) (0.20) (0.23) (0.22) (0.28) (0.18)  (0.22)

100 100 3 (D2) NA 2.67 3.05 2.22 2.65 1.78 2.07
(0.2)  (0.39) (0.47) (0.32) (0.20)  (0.24)

100 200 3 (D2) NA 6.87 8.37 3.07 3.66 2.62 3.08

(1.41) (1.92) (0.31) (0.38) (0.28)  (0.33)

where p is a vector of expected returns of assets in a portfolio, ¢ is a vector of weights
of the corresponding assets, and R is the expected return of the portfolio. Also, X is a
covariance matrix of assets, and o2 > 0 denotes an upper bound of the portfolio variance.
The analytic solution of the above quadratic design problem is known as:

(1) if o218 /T2 n < 1,

C =
nw

Ve
R =0y \/ /’LTE_lu'a

> 11 17y
= Al - > 11
R ( 172711 ) ’
1T2_1IJ' (1TE_1N>2
— —|—A TE—I ’
17y 1 (“ By )

where

A og1T¥ 11— 1
N WTE T ) (ATET) - (1ITR )2

In practice, portfolio managers are usually willing to maximize expected returns sub-
ject to given risk upper bounds which are typically determined by financial circumstances
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of their firms or requirement of their customers. Since they do not know the true co-
variance matrix 3 and the true vector of the expected returns u, they need to estimate
them somehow by 3 and f respectively and estimate the optimal weights as ¢ based on
these estimators. Hence, the estimated variance of the portfolio would be &' £¢é and the
estimated expected return of it would be &’ fr. However, it is known that these estimators
are typically upper biased (e.g. Bai, Huixia, and Wing-Keung (2009)). Thus, if portfolio
managers compose portfolio satisfying that é’'Se is lower than the predetermined risk
(variance) upper bound o2, the actual risk may exceed o3.

Therefore it is of interest to find out the actual risk of the portfolio which is composed
based on estimators of 3. We simulate the actual portfolio variances in the same settings
as in Section 4. Table 5 reports actual variances of portfolio based on covariance estimators

in Section 4, which indicates that the estimators iiﬁ and f)jﬂ preserve the constraints
of the actual portfolio variance. Here, we set N = p = 100, ¢ = 3 and calculate variances
based on 1000 times replications under model (M2) and underlying distribution (D1) in
Section 4. For other settings of distributions of x;’s and €;’s, we get similar performances
and omit the details here.

Table 5: Comparison of Actual Variances of Portfolio based on Covariance Estimators
under (M2) and (D1) ( p denotes the parameter associate with correlation in case (M2))

= N =~d ~s ~d

=~ i
P 0-8 211 Ea Ea ET ET 3 (’775) 3 (’%B)

0 0.098 NA 0.102 0.109 0.286 0.314  0.092 0.097

0.2 0.111 NA 0.140 0.148 0.142 0.159  0.113 0.116

04 0366 NA 0427 0457 0.327 0.373  0.298 0.306

6 Concluding Remarks

In estimation of large covariance matrices, we have considered the general class of weighted
estimators which includes (i) linear combinations of the sample covariance matrix and the
specific estimators suggested under the strict factor models and (ii) the ridge-type esti-
mators suggested in high dimensional situations as special cases. Under the assumptions
of non-sparcity and sparcity of factor loadings, we have derived the optimal weights and
provided their consistent estimators. The resulting plug-in estimators are invertible and
well-conditioned. They are also useful not only when the strict factor models are sus-
pected, but also when the approximate factor models hold or the factor models do not
hold. Numerical results have shown that the suggested estimators perform well under
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both normal and non-normal distributions. In the application to the portfolio manage-
ments, we have shown that the procedures based on the suggested estimators preserve
the predetermined risk upper bounds robustly.

As pointed out below Theorem 3.1, the sparcity and non-sparcity of factor loadings
influences the consistency of ao, namely, in the case of sparcity as = O(1), as is consistent
when (np)~'/2 — 0, while in the case of non-sparcity, d, is consistent when pn=/2 — 0.
This condition in the non-sparcity case is restrictive, and an improved estimator of a, will

be desired.
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A  Proofs

A.1 Proof of Theorem 2.1

Denote V119 :=V; — V12V2_21V21. If n > p+ g, then from the standard theory of the
Wishart distribution, V115 is independent of (V'12, Via2), and Vi1 ~ W,(n — ¢, ¥11.2),
Via|[Viay ~ M7q(2122§21V22, 3112, V) and Vgy ~ W, (n,Xa). These properties will
be helpful for evaluating the risk in the case of n > p 4+ ¢. When p > n, however, we
could not use these properties. To evaluate the risk in this case, we prepare the following
lemmas which hold for any order of n and p.

Lemma A.l. Let W = XX =" X, X! for X = (X4,...,X,), where X;’s are
mutually independently and identically distributed as X; ~ N,(0,X). Then, E]W] =nX
and E[W?| = n(n + 1)Z? + n(tr [E])X. For p x p symmetric matrices A and B, it
holds that E[tr AW?] = n(n+1)(tr AX?) +n(tr (Z)(tr AX) and E[(tr AW)(tr BW)] =
n%(tr AX)(tr BX) + 2ntr (AXBY). Also,

E[(tr W?)?] =4n2(2n? + 5n + 5)tr * + 16n(n + Dtr Z3r X

+n(n® + 2n® + 5n + 4) (tr X*)? (A.1)
+ 2n(n® 4+ n + 4)(tr ) (tr ) + n?(tr 2)*,

and

E[(tr W)*] =48ntr B + 32n°tr Z3tr X

A2
+ 1202 (tr )2 + 120 (tr 22) (tr 2)% + n*(tr )% (A.2)

Watamori (1990) derived the equalities in (A.1) and (A.2) using the properties of the
Wishart distribution in the case of n > p. Lemma A.1 comfirms that the same equalities
hold for any (n,p) without assuming the Wishart distribution.
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Proof. Tt is easy to see that E[W] = Y. | E[X,X]]| = nX. For evaluating the other
terms, we use the Stein-Haff or Konno identity and the Stein identity, respectively given
by
EWG, =E[nEG, +2(XVHTaqy), (A.3)
E[X G,y =E[XV Gy, (A.4)
where G and G5 are, respectively, p X p and n x p matrices of functions of W, and

V = (0/0x;;) is the p x n matrix of differential operators. See Konno (2009) and Stein
(1973, 1981) for (A.3) and (A.4), respectively. It follows from (A.3) that

E[tr (WG))] = E[ntr (2G,) + tr (XVT(ZGT))]. (A.5)

To carry out the calculus V7 (£GY), the following equalities due to Haff (1979, 82) are
useful:

VUV)=(VU)V +U"VH'V,
tr [V(UV)] =tr (VU)V] +tr [UT(VIVT))], (A.6)
V(A X) =(tr A)I,, V(A,X)= AL

where U and V' are matrices of functions of W such that the product VUV is defined,
and A; and A, are p X p and n X p matrices, respectively, of constants.

For E[W?, it is seen that E[W?] = E[nZW + Z(XVT)"W]. It can be shown that
(XVHTW = W + (tr W)I, so that

E[W? = EnEW +XW + (tt W)X] = n(n+ 1)2* + n(tr ).

This implies that E[tr AW?] = n(n + 1)(tr AX?) + n(tr 2)(tr AD).
Using (A.5), one gets

E[(tr AW)(tr BW)| = E[n(tr AX)(tr BW) + tr (X VT (ZA(tr BW)))].
Since V'tr (BXX") = 2X” B, we have

E[(tr AW)(tr BW)| =FEn(tr AX)(tr BW) + 2tr (X AW B)]
=n’(tr AX)(tr BX) + 2ntr (AXBY).

The calculation of E[tr (W?)?] is not easy to show. The skech of the proof is given as
follows: It follows from (A.5) that

E[(tr W?)%] = E[n(tr TW)(tr W?2) + tr X VI (SW (tr W?))].
It can be here demonstrated that

tr X VI(SW (tr W?)) =(tr ) (tr W)(tr W?) + tr (X (XTEV)T X (tr W?)),
tr (X (XTEV)T X (tr W?)) =(tr TW) (tr W?) + tr (XTS(XTX VT (tr W?)),
tr (XTE(XTXVHT (tr W?2)) =4tr (SW?).

18



Combining these terms gives the expression
E[(tt W?)?] = E[(n+ 1)(tr ZW) (tr W?) + (tr Z) (tr W) (tr W?) + 4(tr ZW?)].  (A.7)
Similarly, it can be seen that
El(tr W) (tr ZW)] =E[(n + 1) (tr TW)? + (tr Z) (tr W) (tr SW) + 2tr 2*W?],
E[tr W?)(tr W) =E[(n + 1)(tr SW)(tr W) + (tr X)(tr W) + 2tr ZTW?],  (A.8)
Eltr W3] =E[(n + 2)tr Z*W? + (tr %) (tr W?) + (tr W) (tr Z*W))].
d

Combining (A.7) an
equality (A.1).
For E[(tr W)1], the identity in (A.5) gives

E[tr W)Y = En(tr 2)(tr W) + tr SX V7 (tr W)?].
Since tr EX VT (tr W)3 = 6(tr TW)(tr W)?, we have
E[(tr W)*] = E[n(tr ) (tr W)? + 6(tr TW) (tr W)?]. (A.9)

(A.8), and using the second moments of W, we can show the

Similarly, it can be demonstrated that
E[(tr W)?] =E[n(tr Z)(tr W)? + 4(tr W) (tr TW)], (A.10)
E[(tr TW)(tr W)?] =E[n(tr %) (tr W)? 4 4(tr Z*W) (tr W)]. '

Hence, combining (A.9) and (A.10), and using the second moments of W, we can show
the equality in (A.2). O
Lemma A.2. For the random matriz V' given in (2.1), the following properties hold for
any positive integers n, p and q with n > q:

(1) V11_2 = V11 —V12V2_21V21 18 €.Z'pT’€$S€d as V11,2 = UUT fOT’ U = (Ul, ey Un7q>7
where U;’s are mutually independently and identicall distributed as U; ~ N,(0, %11 2).

(2) V12 is independent of (V 12, Va2).

(3) V12|V22 ~ A/;o,q(2122521V22, i1, VQQ) and Vg ~ Wq(n, E22)-
Proof. We first note that these exist Y = (Yy,...,Y,) and X = (X,..., X,,) such that
Vu=YY?! Vi, =YX" Vs = XX, and (X;,Y;)’s are mutually independently
and identically distributed as

(x.)~2((0) (5 52))
X, PPN 0 )\ By B /)7
Let Z =(Z4,...,2Z,)=Y — 21222_21X. It is seen that Z is independent of X and Z;’s

are mutually independently and identically distributed as Z; ~ /\/'p(O, 319). Then, Vi
and V15 are rewritten as

Vi =(Z+ 23, X)(Z" + XT3, 20)
=ZZ" + ZXTE )N + T X ZT + 203 X XTE) 5y,
Vi =(Z+ 3235 X)XT = ZXT + 2,50 X X7 (A.11)
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Also, V12V2_21V21 is expressed as

ViVea Vo =(Z + 235 X)X XXX (ZT + XT2,)%)
=ZXT( XX 'XZT + ZXTS,} %y + 285, X ZT
+ LY S X XTE) .
Thus, one gets
Vie=2Z{I - X" (XX")'x1Z". (A.12)

Since I — X7 (X X")~' X is idempotent and of rank n — g, it can be seen that there exists
a p X (n — q) random matrix U such that Vi, = UUT and U ~ Npi—q(0, 3119, 1,,—).
This shows part (1) of Lemma A.2.

For part (2), note that X X is complete and sufficient for 3oy and I- X7 (X XT)"1 X
is ancillary, since X X ~ W, (n, Zq,). It follows from Basu’s theorem that I- X" (X X7)~' X
is independent of X X”. Recall expression (A.12). Then, it is easy to see that Vi; is
independent of Vgy = X X7

To check the independence between Vi and Vs, from (A.11) and (A.12), it is
sufficient to show that Z X7 is independent of Z{I — X7 (X X™)~'X}. Since the two are

conditionally mutually independent given X, it is seen that for measurable sets A C RP*¢
and B C RP*™

P(ZXT ¢ A, Z{I - XT"(XX")"'X} e B)

=E[P(ZX" € A, Z{I - X"(XX")"'X} € B|X)]

=E[P(ZXT c AIX)P(Z{I - XT(XX")"' X} € B|X)].
Since Z ~ N,,,,(0,%112,I,,), one can see that ZXT|X ~ Npg(0,31 9, XXT) condition-
ally, namely, the conditional distribution of ZX7” depends on X through X X”. Using
the fact that I — X7 (XX ")~ X is independent of X X” again, one can see that

E[P(ZXT € AIX)P(Z{I - X"(XX")"'X} € B|X)]
= E[P(ZX" ¢ AIX)|E[P(Z{I - X"(XX")'X} € B|X)],

which equal to P(ZX" € A)P(Z{I — X"(XX")"'X} € B).

For part (3), it follows that V15| X ~ /\/'M(EHEQQIXXT, Ell_g,XXT), since Vi =
ZX" + 3,3, XX Since this conditional distribution depends on X through Vg, =
XX T, the conditional distribution of V', given V95 has the same distribution. Therefore,
the proof of Lemma A.2 is complete. O]

Proof of Theorem 2.1. In this proof, we use the notation m = n — ¢ for simplicity.
We only consider the case of sphericity since the case of diagonalization is similar.

From Lemmas A.1 and A.2, it follows that B[] = 311, E[ifl] =n"ln+ 12} +
~ - =2
7171(131‘ [211])211, E[(tr 211>2] = 2n " ltr 2%1 + (tI‘ 211)2, E[Ell.g] = nflmEn.z, E[EH.Q] =
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n_Qm(m—t—l)Efl'Q—l—n_?m(tr [X112])3112 and E[(tr 211 9)?] = 2n"2mtr 211 o+ 2m2(tr Xyp )2
Thus, it is observed that

p  Eltr [Sn]] =a
1E[u;[§fl ] :(1 +1/n)as + (p/n)d?,
El(p [5111])2] =ai+0(n™), (A13)
p E[tr [X112]] :b1 + O( D
P Efer [S)5]) =by + (/)b + O(n™) + O(pn ),
]

2
El(p~ " [Z112))%) =63 + O(n™).

These evaluations are used to approximate the terms Ry, Ji1, Ji2, Joo, Jig and Jy
given in Lemma 2.1. For Ry and Jiq,

1 n - A~

Ry :]—QEtl” (B —AEN)? =as— 22+ E[(p 1t [B1])?] = az — a2 + O(n7Y).
1 ~ N . R

Ju =];Etr (X112 — A(211.2))2 = p_lE[tr [(X1.]] — E[(p_ltr [211_2])2]

=by — b3 + (p/n)b] + O(n™ ") + O(pn~?).
Since 211,2 and 2122521221 are independent,
Jia :%Etr (Bi12 = A1) (150 So1 — A(E155, 51))
=]13trE<§u.2 — A1) E(E 1S, B — A5, 51))

:]%tr (211.2 —A(Z0 )) ((Ell —A(Xn)) - %(2112 - A<211~2))>
(

1.2
m m 2

o) - (2)' -8

=¢11 — a1by — by + bf + O(n’l).
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Similarly, it is seen that
1 N N N N
Jao :EEH (11— AZ10)) — (B2 — A(Z112)))?

:lEtr (E11 — A(Z4))? = %tr (E11 = AE1) (112 — A(Z112)) + Jun

p
1 . .

:5Etr (11— AZ1))* = 2(Jiz + Ju) + Jia
1 N .

:]—QEJCI' ((211 — A(En))Z - 2J12 - Jll

(1 +n YHag+ (p/n)a® — a® + O(n™)) — 2(¢1, — arby — by + b7+ O(n™1))
— (by = b7 + (p/n)bi + O(n™1) + O(pn™?))
=(1+n"Yag — 2011 + by + %(ai —b7) — (a1 — b1)> +O(n™") + O(n"?p),

and

Tio =Bt (B2 = AE02) (B~ AB) = e (2(Eaz — AB02)(En - AZu)

m

:5@511 —arby) = ¢11 — arby + O(n™1).

Finally, it is observed that
1 o a-la o a-la
J20 :Z_QEtr (212222 221 — A(EuEQQ 221))(211 — A(ZH))

:éEtr (S0~ ASW) (S0 - AS))) - %Etr (12— A1) (S0 - AS)))

1 2_ M. _ _
:5“ (X1 — A(Z11)) pnt (X112 — A(Z112)) (B — A(Z10))

m _
=ay — Cl% — g(ﬁbu —arby) = ay — @% — ¢11 +a1by + O(n 1)7

which proves Theorem 2.1. O

A.2 Proof of Theorem 3.1

In this proof, we use the notation m = n — ¢ for simplicity. Since the unbiasedness of the
estimators is easy to show, we only prove their consistency. For this purpose, we shall
evaluate the variances of the estimators.

For a; and as, Srivastava (2005) shows that Var(a;) = 2ay/(np) and

Var(i) — 8nt+2)(n+3)(n-1)°  4n+2){n-1) ( ) a4>’

aq
pnd n4
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so that a; = a; + O,(n™Y?) and ay = ay + O,(n~Y/?p), since a; = O(1) but ay = O(p)
and ay = O(p®). Similarly, Srivastava (2005) with Lemmas A.1 and A.2 imply that
Var(by) = 2by/(np) and

Var(h) = 8(m +2)(m + 3)(m — 1)21) 4(m + 2)(

m — 1) b4
bQ
pnd 4+t n4 ( P > ’

)712) and by = by + O,(n~") + O,((np)~"/2), since by = O(1),

so that by = by + O,((np
bg = 0(1) and b4 = O(l)

For &20,
= 2
oo — G0 = Zﬁ (U" (diag 311)* — nr tr (diag 211)2> ;
so that
- n’ R (22 (n+2)2 . 2\2
Var(ag) = m <(tr (diag 311)°)° — e (tr (diag X11)°) ) )

We denote Vis — n(&ll)ii/(all)ii fOI‘ 211 = ((5’11)@') and 211 = ((0’11)@'). Then one gets

p
n'(tr (diag ¥11)*)* = (Z (011)507) Z (011) 505 +Z (o11)5 v
i=1

(o11) JJ ViiVjj-
i=1 1#]

Moments of the Wishart distribution imply that

P
E[(tr (diag211)*)?] = n?(n + 2)(n + 4)(n + 6) Z o)y +n 3 (n+2)?
i=1

Z(all)?i(all)?j'

i#]
From condition (A6) and the fact that tr (diag 311)* = 7, (011)i; + Y,z (01)5 (0113,
it follows that
N n’ -3 - 4 - 4 -1, -1
Var(ag) = e \" (n+2)(n+4)(n+6)> (1) — > (on)i | =0m"p™).
i—1 i—1

Therefore, az) = a0 +0,(n~2p~

1/2). Similarly, one easily gets by = bag+Op(n~"/2p1/2).
For ¢11, one writes it as

~ 1
B o0 g (Vi B (r57)

— m((tr V11.2)2 — m(m(tr 211 2) + 2tr 211 2))

+ (m—1)(m+ 2) (tr ViV, Vo Vi — (nmtr 11315 — mPtr 2%1.2)))
1

“pnm(m — 1)(m + 2) <m211 —mly - (m=1)(m+ 2)13>)’

(A.14)
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where E[I,] = E[ly] = E[I3] = 0. Hence, it is sufficient to evaluate variances of 1, I and
I3, since the cross product terms are bounded by Cauchy-Schwartz’s inequality. For I,
one sees that

E(If) = B(tr V%1.2)2} - m2((m + D)tr E%1.2 + (tr 211.2)2)2‘
Since from Lemma A.1,

E[(tr VI, ,)?] =4m2(2m?* 4+ 5m + 5)tr 21, 5 + 16m(m + 1)tr 33, ,tr Sy
+m(m® 4+ 2m?* + 5m + 4)(tr 33, ,)?
+2m(m? +m +4)(tr B3, ,) (tr B11.2)* + mA(tr 110)*,

we have

E(I?) =4m(2m?* + 5m + 5)tr 2], 5 + 16m(m + Dtr X3, tr X1 5
+ 4m(m + 1)(tr B 5)* + 8mitr B7, ,(tr B112).

Hence, from conditions (A2), (A3) and (A5),
Iy = O,(n*2p2) + O, (np) + O, (n"*p"'2). (A.15)
Also, for I, one sees that
E(I3) = E[(tr V112)"] — m*(m(tr 112)* + 2tr 53, ,)°.
From Lemma A.1,

E[(tr V12)%] =48mtr 37, , + 32m*tr 3, ,tr 3115
+ 12m2(tr 32, ,)2 + 12m3 (tr B2, ) (tr 211.0)% + m* (tr B110)%,

so that
E(12) =48mtr $7, 5 + 32m2tr 2%, ,tr X115 + Sm?(tr 27, ,)% 4+ 8m? (tr T3, ,) (tr B110)%
Therefore,
I = O,(n'*p'?) + Op(np) + O, (n**p*?). (A.16)
Finally, for I3 it is noted that

trVisVoy VaVilao=trYYT A
=tr(Y -0+0) (Y -0+6)"A
=tr (Y —0)(Y —0)"A+tr00" A +2tr (Y —0)0" A,
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where Y = 702V 1,V 0 = 7515,V and A = )15V 11,510%. Then, I
is decomposed as
Iy =(tr (Y —0)(Y —0)"A — gmtr 32, ,)
+ (tr 00" A — nmtr Y13 0 1) +2tr (Y — B)OTA
=131+ 130+ 2153,
where E[I31] = E[I32] = E[l33] = 0. Noting that Y|V ~ N, ,(0,1,,1,), one sees that
from Stein’s lemma,
El(tr (Y —0)(Y —0)"A)?]

=Ftr [Vy((tr (Y — 0)(Y —0)"A)(Y — )" A)]

=qE[tr Atr (Y —0)(Y —0)"A] + E[(Vytr (Y — 0)(Y — 0)T A)tr AT(Y — 6)]

=¢E(tr A)? + 2Etr AT(Y — 0)(Y —0)" A

=’ E(tr £112V112)” + 2¢Etr (£112V11.2)°

=¢*(2mtr B}, 5 +m®(tr 27, ,)%) + 2q(m(m + 1)tr o+ m(tr 37, ,)%)

=qm(2 + gm)(tr Z%1.2)2 +2gm(n + 1)tr 2%1.%

so that by (A5),

E[I3,] =E[(tr (Y — 0)(Y — )" A)’] — ¢*m?*(tr X7, ,)?
=2qm(tr 2%1.2)2 + 2gm(n + 1)tr EZ111.2
=O(np®) + O(np).

Hence, one gets
Is1 = O,(n'?p) + O,(np'/?) (A.17)
For I3, one sees that

E[I:iz] :E[(tr OOTA)2] — n2m2 (tl” 21222721221211'2)2
=2nm(tr B985 D01 8119)% 4+ 2nm(2m + Dtr (219257 201 X112)?
=0(n?p) + O(n*p?),

which implies that

I35 = Opy(np'’?) + O, (n**p). (A.18)
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For I35, using Stein’s lemma again, one sees that
BlI3,] =E[(tr (Y — 0)8" A)?]

—FEtr [VL AO(tr (Y — 0)0T A)]
=Etr [T AVy (tr (Y — 6)07 A)]
=Etr[07 A%6]
=Etr [VuXyn 201 Vi, X135, |
:nm(m + 1)tr (21222_212212%1'2) + nmtr (Ell_g)tr (21222_21221211'2)
=0(n’p) + O(n’p?),

which yields

Is3 = O,(n**p'?) + O,(np). (A.19)
Thus, (A.14), (A.15), (A.16), (A.17), (A.18) and (A.19) lead to

511 — 11 = Op(”_l/Q)-
Finally,

p

&5110 — Q110 =: m((m + 2)1, + mli), (A.20)

where

I, =tr YYT B — gmtr (diag $112)? — nmtr (diag 1535, 291 ) (diag 119),
I5 = tr (diag V'119)* — m(m + 2)tr (diag $11.)%,

for Y = S1/)VuV5, "% 0 = S0 85, V5, and B = )%diag (V112) 5115, Note
that E(l;) = E(I5) = 0. One decomposes I, into the three terms as

[4 —. 1471 + [472 -+ 2]473, (AQl)
where
I, =tr (Y — 0)(Y — 0)" B — gmtr (diag 31,5)?,
1,5 =tr 00" B — nmtr (diag 1535, 391 ) (diag 11.2),
I3 =tr (Y —0)8"B.

Observe that I, I4o and I,3 are centered. Then, the following lemma is useful for
calculation:

Lemma A.3. Let G = (g;;) and H = (h;;) be p X p constant matrices. Then,

p
FEtr G(dlag V11_2)H(diag V11.2) =2m Z gijhji(Zu_g)?j + mQtr G(dlag Ell_g)H(diag 211_2).

ij=1
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Proof. Direct calculation shows that

P
Etr G(diag V11.2)H(diag V11‘2) =k Z gz’jhji(vll.2>ii(vll.2)jj

ij=1

P
=m(m + 2) Z gz‘z‘hii(zna)?i + Z gijhji(2m(211.2)?j + m2<211.2)ii(211.2>jj)

i=1 i#]
P P
=2m Z gijhji(211.2)?j +m? Z gijhji<211.2)ii(211.2)jj
ij=1 i,j=1

p
=2m Z gijh‘ji<211.2)?j + m2tr G(dlag 211.2)H<diag 211.2),

ij=1
which shows Lemma A.3. O]

Using Lemma A.3 and the Stein identity leads to

E(tr (Y —0)(Y — 0)"B)? = ¢*E(tr B)? 4 2qtr B?
ZQZE(tI' (dlag 211.2)211‘2)2 =+ 2thr (211,2diag V11.2)2
:q2(2mtr (diag 211,2)4 + m2(tr (diag 211,2)2)2)

P
+2¢(2m Z (211.2)% + m’tr (311.2(diag X11.))?),

ij=1
so that, by condition (A5),
Var(Iy,) =E(tr (Y — 0)(Y — 6)"B)? — ¢>m?(tr (diag $1,)?)?
=2¢*mtr (diag X112)" + 2¢(2m zp: (Z11.2)j; + mPtr (B o(diag By 2))?)
ij=1

=0(n"p), ]

which implies that
Iy = Oy(np/?). (A.22)

Also,

E(tr 00" B)? = E(tr £1535, V9335, Xy (diag V11.9))?
=2ntr (2122521221(diag V11_2))2 + TL2 (tI‘ 2122521221 (dlag V11.2))2
=:1491+ 1420.
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By Lemmas A.1 and A.3,

p
I472’1 :271(2771 Z (21222_21221)%(211,2)% + m2tr (21222_21221(diag 211.2))2%
i,7=1
1472,2 :’I'L2(t1' (dlag 21222_21221)‘/11‘2)2
:n2(2mtr ((d1ag 2122521221)(diag 211_2))2 + m2 (tI‘ (dlag 2122521221)(diag 211_2))2).

Hence,
Var(Iy,) =FE(tr 80" B)? — n?m?(tr (diag X192 55 391 ) (diag X11.2))?
p
:2n(2m Z (2122521221)?j(211-2)?j + mztr (2122521221 (dlag 211.2))2)
ij=1
+ 2n*mtr ((diag 21225, 391 ) (diag 3112))?,
so that from conditions (A5) and (A6),
Iis = O,(n*p). (A.23)

For 1,3, using the Stein identity, we can see that

Var(I,3) =E(tr (Y — 6)0" B)? = Etr 6" B*0
=nltr 21222_21221 (diag V'11.2)311 2(diag V11.0)

p
=2nm Z (21222_21221)@(211.2)%

i,j=1
+ nmztr 21222_21221(diag Eng)gu.g(diag 211‘2>
=0(n’p),
so that
I3 = Op(np1/2). (A.24)

Finally, since by — by = O,(n~"/2p~1/2), one gets
I = O, (n*?p'/?). (A.25)
Thus, from (A.20), (A.21), (A.22), (A.23), (A.24), and (A.25),

5110 = ¢r10 + Op(n_1/2)7

which completes the proof of Theorem 3.1. 0
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