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Abstract

In this paper, we consider the problem of selecting explanatory variables of fixed
effects in linear mixed models under covariate shift, which is the situation that the
values of covariates in the predictive model are different from those in the observed
model. We construct a variable selection criterion based on the conditional Akaike
information introduced by Vaida and Blanchard (2005) and the proposed criterion
is generalization of the conditional Akaike information criterion (conditional aic)
in terms of covariate shift. We especially focus on covariate shift in small area
prediction and show usefulness of the proposed criterion through simulation studies.

Key words and phrases: Akaike information criterion, conditional aic, covariate
shift, linear mixed model, small area estimation, variable selection.

1 Introduction

Linear mixed models have been studied for a long time theoretically, and also have many
applications, for example longitudinal data analysis in biostatistics, panel data analysis
in econometrics, small area estimation in official statistics, and others. The problem of
selecting explanatory variables in linear mixed models is important and many literatures
have investigated this problem. Müller et al. (2013) is a good survey about the model
selection in linear mixed models.

When the purpose of the variable selection is to find a set of significant variables for a
good prediction, Akaike-type information criteria (Akaike; 1973, 74) are well-known meth-
ods. However, the Akaike information criterion (aic) based on the marginal likelihood,
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which integrates out the likelihood with respect to random effects, is not appropriate
when the prediction is focused on random effects. Then, Vaida and Blanchard (2005)
proposed to consider the Akaike-type information based on the conditional density given
the random effects and proposed the conditional aic. To give a brief explanation about
the concept of the conditional aic, we introduce some notations as follows. Let y be
an observable random vector of the response variables, θ be a vector of the unknown
parameters, b be a random vector of the random effects. The conditional density function
of y given b is denoted by f(y|b,θ), and the density function of b is denoted by π(b|θ).
Then, Vaida and Blanchard (2005) proposed to measure the prediction risk of the plug-in

predictive density f(ỹ|b̂, θ̂) relative to the Kullback–Leibler divergence given as follows:∫∫ [∫
log

{
f(ỹ|b,θ)
f(ỹ|b̂, θ̂)

}
f(ỹ|b,θ)dỹ

]
f(y|b,θ)π(b|θ)dydb, (1)

where ỹ is an independent replication of y given b, and b̂ and θ̂ is some predictor or
estimator of b and θ, respectively. The conditional aic is an (asymptotically) unbiased
estimator of a part of the risk in (1), which is called the conditional Akaike information
(cAI) given as follows:

cAI = −2

∫∫∫
log

{
f(ỹ|b̂, θ̂)

}
f(ỹ|b,θ)f(y|b,θ)π(b|θ)dỹdydb.

The conditional aic as the variable selection criterion in linear mixed models has been
studied by Liang et al. (2008), Greven and Kneib (2010), Srivastava and Kubokawa
(2010), Kubokawa (2011), Kubokawa and Nagashima (2012), Kawakubo and Kubokawa
(2014) and others. Furthermore, the conditional aic has been constructed as a variable
selection criterion in generalized linear mixed models by Donohue et al. (2011), Yu and
Yau (2012), Yu et al. (2013), Saefken et al. (2014) and others.

Considering the prediction problem, it is often the case that the values of covariates
in the predictive model are different from those in the observed model, which we call
covariate shift. We here call the model in which y is the vector of the response variables
the ‘observed model’, and call the model in which ỹ is the vector of the response variables
the ‘predictive model’. It is noted that the terminology ‘covariate shift’ was first used by
Shimodaira (2000), who defined it as the situation that the distribution of the covariates
in the predictive model is different from that in the observed model. In this paper, though
we treat the covariates as non-random, we use the same terminology ‘covariate shift’ as
Shimodaira (2000). Even when the information about the covariates in the predictive
model can be used, most variable selection criteria do not use it. This is because most
criteria put the assumption that the predictive model is the same as the observed model.
As for the conditional aic explained above, the conditional density of y given b and that
of ỹ given b are the same, and both of them are denoted by f(·|b,θ). On the other hand,
under the covariate shift, the conditional density of ỹ given b is different from that of y
given b and is denoted by g(ỹ|b,θ). When the aim of the variable selection is to choose
the best predictive model, it is not appropriate to use the covariates only in the observed
model. Then we redefine the cAI under covariate shift as follows:

cAI = −2

∫∫∫
log

{
g(ỹ|b̂, θ̂)

}
g(ỹ|b,θ)f(y|b,θ)π(b|θ)dỹdydb,
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and construct an information criterion as an unbiased estimator of the cAI. The proposed
criterion includes the original conditional aic by Vaida and Blanchard (2005).

The term ‘prediction’ in this context includes not only future forecast but also inter-
polation. We especially focus on covariate shift in the context of small area prediction
which is based on finite-super population model. We consider the situation that we are
interested in finite population mean of some characteristic and that some values in the
population are observed through some sampling procedure. When the sample size is
small, the problem is called small area estimation. For the detail about small area esti-
mation, see Rao (2003), Datta and Ghosh (2012), Pfeffermann (2013) and others. The
model based approach in small area estimation often assumes that the finite population
which has the super-population with random effects and borrow the strength from other
areas to estimate (predict) the small area (finite population) mean. The well-known unit
level model is the nested error regression model, which is a kind of linear mixed models
and discussed in Battese et al. (1988). The nested error regression model can be used
when the values of the auxiliary variables for the units whose values of characteristic of
interest (response variable in the model) are observed through survey sampling. This is
the observed model in the framework of our variable selection procedure. On the other
hand, we consider an area level model as the predictive model, which can be used under
the situation that each mean of the auxiliary variables are known for each small area.
This situation is often the case in official statistics and the model introduced by Fay and
Herriot (1979) is often used in this case.

The rest of this paper is organized as follows. In Section 2, the setup of the problem
is explained and the variable selection criterion for the problem is proposed. In Section
3, we give an example of covariate shift, which is focused on small are prediction, and
investigate the numerical performance of the problem. In Section 4, concluding remarks
are given. All the proofs are given in the Appendix.

2 Problem of selecting variables

2.1 Model focus

The observed model we treat is the linear mixed model

y = Xβ +Zb+ ε, (2)

where y is an n-variate observation vector of response variables, X and Z are n× p and
n× r matrices of covariates, respectively, β is a p-variate vector of regression coefficients,
b is an r-variate vector of random effects, and ε is an n-variate vector of random errors.
Let b and ε be mutually independent and b ∼ Nr(0, σ

2G), ε ∼ Nn(0, σ
2R), where G and

R are r × r and n × n positive definite matrices and σ2 is a scalar. We assume that G
and R are known and handle the two cases that σ2 is known and unknown. The marginal
distribution of y is y ∼ Nn(Xβ, σ2Σ), where Σ = ZGZt +R. The conditional density
function of y given b is denoted by f(y|b,β, σ2), and the density of b is π(b|σ2).

The predictive model is the linear mixed model which has the same regression coeffi-
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cients β and random effects b as in the observed model, but different covariates, namely

ỹ = X̃β + Z̃b+ ε̃, (3)

where ỹ is an m-variate random vector of the target of prediction, X̃ and Z̃ are m×p and
m× r matrices of covariates, and ε̃ is an m-variate vector of random errors, independent
of b and ε, and distributed as ε̃ ∼ Nm(0, σ

2R̃), where R̃ is a known m × m positive

definite matrix. We assume that we know the values of X̃ and Z̃ in the predictive model
and that they are not necessarily the same as those of X and Z in the observed model.
We call this situation covariate shift. The marginal distribution of ỹ is ỹ ∼ Nm(X̃β, Σ̃),

where Σ̃ = Z̃GZ̃
t
+ R̃. The conditional density function of ỹ given b is denoted by

g(ỹ|b,β, σ2).
The regression coefficient β and the random effect b are estimated by the maximum

likelihood estimator and the empirical Bayes estimator, respectively, given as follows:

β̂ =(X tΣ−1X)−1X tΣ−1y,

b̂ =GZtΣ−1(y −Xβ̂).

When the variance parameter σ2 is unknown, we consider to estimate it by the maximum
likelihood estimator given by

σ̂2 = (y −Xβ̂)tΣ−1(y −Xβ̂)/n. (4)

2.2 Proposed Criterion

We now derive the conditional Akaike information criterion under the covariate shift in
the two cases of known and unknown σ2.

[σ2 is known] Firstly we consider the simple case that σ2 is known. Because −2 times
logarithm of the plug-in predictive density is

−2 log{g(ỹ|b̂, β̂)} = m log(2πσ2) + (ỹ − X̃β̂ − Z̃b̂)tR̃
−1
(ỹ − X̃β̂ − Z̃b̂)/σ2,

the cAI is expressed as

cAI = m log(2πσ2) + Ey,bEỹ|b
[
(ỹ − X̃β̂ − Z̃b̂)tR̃

−1
(ỹ − X̃β̂ − Z̃b̂)

]
/σ2,

where Ey,b and Eỹ|b denote the expectation with respect to the joint distribution of (y, b)
and the conditional distribution of ỹ given b. Then the conditional AIC under covariate
shift (CScAIC) is defined by a bias corrected unbiased estimator of the cAI as follows:

CScAIC = m log(2πσ2) + (y −Xβ̂ −Zb̂)tR−1(y −Xβ̂ −Zb̂)/σ2 +Bc, (5)

where Bc is bias correction given by

Bc =cAI− E
[
m log(2πσ2) + (y −Xβ̂ −Zb̂)tR−1(y −Xβ̂ −Zb̂)/σ2

]
=E

[
(ỹ − X̃β̂ − Z̃b̂)tR̃

−1
(ỹ − X̃β̂ − Z̃b̂)− (y −Xβ̂ −Zb̂)tR−1(y −Xβ̂ −Zb̂)

]
/σ2,

(6)

which can be exactly evaluated in the following theorem.
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Theorem 1 When the variance parameter σ2 is known, the bias correction Bc of CScAIC
in (6) is

Bc =tr [R̃
−1
Λ] + tr [R̃

−1
(X̃ − Z̃GZtΣ−1X)(X tΣ−1X)−1(X̃ − Z̃GZtΣ−1X)t]

− tr [RΣ−1] + tr [RΣ−1X(X tΣ−1X)−1X tΣ−1], (7)

where Λ = Σ̃− Z̃GZtΣ−1ZGZ̃
t
.

[σ2 is unknown] Next we handle the case that σ2 is unknown and estimated by the
maximum likelihood estimator (4). In this case, the cAI is expressed as

cAI = Ey,bEỹ|b
[
m log(2πσ̂2) + (ỹ − X̃β̂ − Z̃b̂)tR̃

−1
(ỹ − X̃β̂ − Z̃b̂)/σ̂2

]
.

Then the covariate shift conditional aic is defined by a bias corrected unbiased estimator
of the cAI as follows:

CScAIC = m log(2πσ̂2) + (y −Xβ̂ −Zb̂)tR−1(y −Xβ̂ −Zb̂)/σ̂2 +B∗
c , (8)

where B∗
c is bias correction given by

B∗
c =cAI − E

[
m log(2πσ̂2) + (y −Xβ̂ −Zb̂)tR−1(y −Xβ̂ −Zb̂)/σ̂2

]
=E

[
(ỹ − X̃β̂ − Z̃b̂)tR̃

−1
(ỹ − X̃β̂ − Z̃b̂)/σ̂2 − (y −Xβ̂ −Zb̂)tR−1(y −Xβ̂ −Zb̂)/σ̂2

]
,

(9)

which can be exactly evaluated in the following theorem.

Theorem 2 When the variance parameter σ2 is unknown, the bias correction B∗
c of

CScAIC in (9) is

B∗
c =

n

n− p− 2

{
tr [R̃

−1
Λ] + tr [R̃

−1
(X̃ − Z̃GZtΣ−1X)(X tΣ−1X)−1(X̃ − Z̃GZtΣ−1X)t]

}
+

n

n− p

{
−tr [RΣ−1] + tr [RΣ−1X(X tΣ−1X)−1X tΣ−1]

}
, (10)

Next corollary shows that our covariate shift conditional aic includes the conditional
aic by Vaida and Blanchard (2005) as special case.

Corollary 1 Suppose that covariate shift does not occur, namely X̃ = X, Z̃ = Z and
n = m. In addition, let the covariance matrix of ε and ε̃ be both σ2In, namely R = R̃ =
In. Then the bias corrections of the covariate shift conditional aic in (7) and (10) are
reduced to

Bc =2n− 2tr [Σ−1] + 2tr [Σ−1X(X tΣ−1X)−1X tΣ−1], (11)

B∗
c =

2n2

n− p− 2
+

2n(n− p− 1)

(n− p)(n− p− 2)

{
−tr [Σ−1] + tr [Σ−1X(X tΣ−1X)−1X tΣ−1]

}
,

(12)

which are identical to the bias corrections of the conditional aic by Theorem 1 and 2 in
Vaida and Blanchard (2005).
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3 Examples

3.1 Covariate shift in small area prediction

A typical example of the covariate shift situation appears in small area prediction problem.
The model for small area prediction supposes that the observed small area data have the
finite population which has the super-population model with random effects, one of which
is the well-known nested error regression model (Battese et al., 1988). Let Yij and xij

denote the value of a characteristic of interest and its p-dimensional auxiliary variable for
the j-th unit of the i-th finite population where i = 1, . . . , k, j = 1, . . . , Ni. Then, the
nested error regression model is

Yij = xt
ijβ + bi + εij, i = 1, . . . , k, j = 1, . . . , Ni,

where β is a p-variate vector of regression coefficients, bi is a random effect for the i-th
finite population and bi’s and εij’s are mutually independently distributed as bi ∼ N (0, τ 2)
and εij ∼ N (0, σ2). We consider the situation that only ni value of the Yij’s are observed
through some sampling procedure. We define the number of the unobserved variables in
the i-th population by Ni−ni = mi and let n = n1+· · ·+nk,m = m1+· · ·+mk. Suppose,
without loss of generality, the first ni elements of {Yi1, . . . , Yi,Ni

} are observed, which are
denoted by y1, . . . , yi,ni

, and Yi,ni+1, . . . , Yi,Ni
are unobserved. Then the observed model is

defined as
yij = xt

ijβ + bi + εij, i = 1, . . . , k, j = 1, . . . , ni, (13)

which corresponds to (2) with y = (yt
1, . . . ,y

t
k)

t for yi = (yi1, . . . , yi,ni
)t,X = (X t

1, . . . ,X
t
k)

t

for X i = (xi1, . . . ,xi,ni
)t, Z = diag (Z1, . . . ,Zk) for Zi = jni

, G = ψIk and R = In,
where jni

denotes an ni-vector of ones and ψ = τ 2/σ2. Note that r = k. In the derivation
of our proposed criterion, we have assumed that the covariance matrix of b is σ2G for a
known matrix G. However in the nested error regression model, G includes the parameter
ψ, which is usually unknown and has to be estimated. In this case, we propose that G
in the bias correction should be replaced with its plug-in estimator G(ψ̂). The influence
caused by the replacement may be limited because ψ is the nuisance parameter when one
is interested in selecting only explanatory variables. Kawakubo and Kubokawa (2014)
discussed the problem in their remark 3.1.

In the problem of small area prediction, we often encounter the situation where all xij’s

are not observed but the area mean x̄i = N−1
i

∑Ni

j=1 xij is known and we are interested in

predicting Y i, which is the mean of finite population {Yi1, . . . , Yi,Ni
}, by using the value

of x̄i. Then the predictive model can be defined as

Y i(u) = x̄t
i(u)β + bi + ε̄i(u), i = 1, . . . , k, (14)

where Y i(u) = m−1
i

∑Ni

j=ni+1 yij, the mean of unobserved variables, x̄i(u) = m−1
i

∑Ni

j=ni+1 xij,

calculated from x̄i and (xi1, . . . ,xini
), and ε̄i(u) = m−1

i

∑Ni

j=ni+1 εij distributed asN (0, σ2/mi).

The model (14) corresponds to (3) with ỹ = (Y 1(u), . . . , Y k(u))
t, X̃ = (x̄1(u), . . . , x̄k(u))

t,

Z̃ = Ik and R̃ = diag (R̃1, . . . , R̃k) for R̃i = 1/mi. After selecting explanatory variables
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with our proposed criterion, we predict Y i(u) by the empirical best linear unbiased pre-

dictor Ŷ i(u) = x̄t
i(u)β̂ + b̂i and obtain a predictor of the mean of finite polulation, Y i,

as

Ŷ i =
1

Ni

ni∑
i=1

yij +
mi

Ni

Ŷ i(u). (15)

Thus, covariate shift appears in standard models for small area prediction and the pro-
posed criterion is important and useful in such a situation.

3.2 Simulation Study

In this subsection, we investigate numerical performances of the small area prediction
problem explained in the previous subsection. We consider the nested error regression
model and we use the same notation in the previous subsection. The observed vector y
is generated by the observed model (13) with p = 5, ni = 3, k = 30 (so that n = 90),
for i = 1, . . . , k and τ 2 = σ2. Let X be generated as vec (X t) ∼ N (4jpn, In ⊗ Σx)
for Σx = 0.9Ip + 0.1Jp where Jp = jpj

t
p, and fixed through the simulation. The true

coefficient vector β is given by β = (β1, β2, β3, 0, 0)
t where βl, l = 1, 2, 3 is generated as

βl = U(1, 2) for a uniform random variable U(1, 2) on the interval (1, 2), and true variance
is σ2 = 1.

We consider the predictive model (14) with mi = 10. We generated samples xij, j =
ni + 1, . . . , Ni independently from N (ajp,Σx) for a = 2, 4, 6 and calculate xi(u), fixed
through simulation. Moreover, using generated xij’s, we generate yij, j = ni, . . . , Ni and
calculate Y from generated samples, which is simulated mean of finite population. Under
this settings, we investigate selection rates of the true model and calculate simulated
prediction error of the best model chosen by our CScAIC defined as (9) and (10), and
the original conditional aic (cAIC), whose bias correction is (12). The prediction error is
measured by

∥Ŷ − Y ∥2, Y = (Y 1, . . . , Y k)
t,

where Ŷ = (Ŷ 1, . . . , Ŷ k)
t and Ŷ i for i = 1, . . . , k is calculated from (15). The prediction

errors are given as averages based on 1000 replications.

Table 1 reports the selecting rates and prediction errors for the best model selected by
two criteria. The values in parentheses are the improvement over the prediction error
by the cAIC procedure expressed in percentage. As a candidate model, we consider the
all 25 − 1 combination of explanatory variables, but the only four models were selected
in our simulation, so that we report the result regarding four models. M1,M2,M3 and
M4 denotes the models with explanatory variables {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 5} and
{1, 2, 3, 4, 5}, respectively, and M1 is the true model. From the table, it can be seen that
the CScAIC is better than the cAIC in both cases. It is valuable to point out that the
prediction error of the mean of finite population can be improved by using our proposed
criterion, which motivate us to use it for variable selection in small area prediction of the
finite population.
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Table 1: Selecting rates and prediction errors based on cAIC and CScAIC, and improve-
ment over cAIC procedure. M1 is the true model.

selecting rates
M1 M2 M3 M4 prediction error

a=2 cAIC 0.727 0.129 0.125 0.019 0.2216
CScAIC 0.961 0.028 0.010 0.001 0.2190 (1.17)

a=4 cAIC 0.748 0.116 0.116 0.020 0.2195
CScAIC 0.982 0.012 0.006 0.000 0.2163 (1.42)

a=6 cAIC 0.724 0.111 0.143 0.022 0.2199
CScAIC 0.963 0.016 0.020 0.001 0.2163 (1.66)

4 Concluding Remarks

In this paper, we have proposed a variable selection criterion under covariate shift based
on the conditional Akaike information proposed by Vaida and Blanchard (2005) and
the proposed criterion includes the original conditional aic as a special case where the
covariate shift does not occur. We have pointed out that covariate shift is essential issue
in small area prediction of the mean of finite population and proposed to use our criterion
for variable selection. We have confirmed through a simulation study that the proposed
criterion performs better than the original conditional aic in small area prediction.
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Appendix

A.1 Proof of Theorem 1. We decompose Bc in (6) as follows:

Bc =E
[
(ỹ − X̃β̂ − Z̃b̂)tR̃

−1
(ỹ − X̃β̂ − Z̃b̂)

]
/σ2 − E

[
(y −Xβ̂ −Zb̂)tR−1(y −Xβ̂ −Zb̂)

]
/σ2

=Bc1 −Bc2. (say)

For the evaluation of Bc1, we first take the expectation with respect to the conditional distribu-
tion of ỹ given b. Since ỹ − X̃β̂ − Z̃b̂ = ỹ − X̃β − Z̃b− X̃(β̂ − β)− Z̃(b̂− b),

Bc1 =m+ E

[{
X̃(β̂ − β) + Z̃(b̂− b)

}t
R̃

−1
{
X̃(β̂ − β) + Z̃(b̂− b)

}]
/σ2.

It can be easily seen that

X̃(β̂ − β) + Z̃(b̂− b) = (X̃ − Z̃GZtΣ−1X)(β̂ − β)− Z̃(b− E(b|y)),
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where E(b|y) = GZtΣ−1(y−Xβ). Noting that V ar(b|y) = σ2(G−GZtΣ−1ZG) and E[(β̂−
β)(β̂ − β)t] = σ2(XtΣ−1X)−1, we have

E

[{
X̃(β̂ − β) + Z̃(b̂− b)

}t
R̃

−1
{
X̃(β̂ − β) + Z̃(b̂− b)

}]
/σ2

=tr
[
R̃

−1
(X̃ − Z̃GZtΣ−1X)(XtΣ−1X)−1(X̃ − Z̃GZtΣ−1X)t

]
+ tr

[
R̃

−1
Z̃(G−GZtΣ−1ZG)Z̃

t
]
.

The second term of the right hand side of the above equation is rewritten as

tr
[
R̃

−1
(Σ̃− R̃)− R̃

−1
Z̃GZtΣ−1ZGZ̃

t
]

=−m+ tr
[
R̃

−1
(Σ̃− Z̃GZtΣ−1ZGZ̃

t
)
]

=−m+ tr [R̃
−1

Λ].

Thus we can obtain

Bc1 = tr [R̃
−1

Λ] + tr
[
R̃

−1
(X̃ − Z̃GZtΣ−1X)(XtΣ−1X)−1(X̃ − Z̃GZtΣ−1X)t

]
. (16)

Next we evaluate Bc2 as follows:

Bc2 =E

[{
RΣ−1(y −Xβ)−RΣ−1X(β̂ − β)

}t
R−1

{
RΣ−1(y −Xβ)−RΣ−1X(β̂ − β)

}]
/σ2

=tr [RΣ−1]− tr [RΣ−1X(XtΣ−1X)−1XtΣ−1]. (17)

From (16) and (17), we can obtain (7). □

A.1 Proof of Theorem 2. In the same way as the proof of Theorem 1, we decompose B∗
c

in (9) as follows:

B∗
c =E

[
(ỹ − X̃β̂ − Z̃b̂)tR̃

−1
(ỹ − X̃β̂ − Z̃b̂)/σ̂2

]
− E

[
(y −Xβ̂ −Zb̂)tR−1(y −Xβ̂ −Zb̂)/σ̂2

]
=B∗

c1 −B∗
c2. (say)

Firstly, we evaluate B∗
c1. From the proof of Theorem 1, it can be easily seen that

B∗
c1 =σ2tr [R̃

−1
Λ]E[1/σ̂2] + E

[
(β̂ − β)t(X̃ − Z̃GZtΣ−1X)tR̃

−1
(X̃ − Z̃GZtΣ−1X)(β̂ − β)/σ̂2

]
.

Since nσ̂2 ∼ σ2χ2
n−p and β̂ is independent of σ̂2, we can obtain

B∗
c1 =

n

n− p− 2

{
tr [R̃

−1
Λ] + tr

[
R̃

−1
(X̃ − Z̃GZtΣ−1X)(XtΣ−1X)−1(X̃ − Z̃GZtΣ−1X)t

]}
.

(18)

Next we calculate B∗
c2. It is easily seen that

B∗
c2 =E

[
(y −Xβ)tΣ−1RΣ−1(y −Xβ)/σ̂2

]
+ E

[
(β̂ − β)tXtΣ−1RΣ−1X(β̂ − β)/σ̂2

]
− 2E

[
(y −Xβ)tΣ−1RΣ−1X(β̂ − β)/σ̂2

]
.
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We define v = Σ−1/2(y−Xβ)/σ and M = Σ−1/2X(XtΣ−1X)−1XtΣ−1/2, then v ∼ Nn(0, In)
and M is idempotent. Using this notation, we rewrite Bc2 as

B∗
c2 =nE

[
vtΣ−1/2RΣ−1/2v

vt(In −M)v

]
+ nE

[
vtMΣ−1/2RΣ−1/2Mv

vt(In −M)v

]
− 2nE

[
vtΣ−1/2RΣ−1/2Mv

vt(In −M)v

]
=B∗

c21 +B∗
c22 − 2B∗

c23. (say)

By Lemma A.1. in Srivastava and Kubokawa (2010),

B∗
c21 = n×

{
tr [RΣ−1]

n− p− 2
− 2tr [Σ−1/2RΣ−1/2(In −M)]

(n− p)(n− p− 2)

}

Since vtMΣ−1/2RΣ−1/2Mv is independent of vt(In −M)v, we can get

B∗
c22 =

n

n− p− 2
tr [RΣ−1X(XtΣ−1X)−1XtΣ−1].

To evaluate B∗
c23, we rewrite

B∗
c23 = nE

[
vtMΣ−1/2RΣ−1/2Mv

vt(In −M)v

]
+ nE

[
vt(In −M)Σ−1/2RΣ−1/2Mv

vt(In −M)v

]
.

Since Mv is independent of (In − M)v and E[Mv] = 0, the second term of the right hand
side of the above equation is 0. Then we get B∗

c23 = B∗
c22. Combining B∗

c21, B
∗
c22 and B∗

c23, we
can obtain

B∗
c2 =

n

n− p

{
tr [RΣ−1]− tr [RΣ−1X(XtΣ−1X)−1XtΣ−1]

}
. (19)

From (18) and (19), (10) follows. □
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