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Abstract

A multivariate stochastic volatility model with the dynamic correlation and the
cross leverage effect is described and its efficient estimation method using Markov chain
Monte Carlo is proposed. The time-varying covariance matrices are guaranteed to be
positive definite by using a matrix exponential transformation. Of particular inter-
est is our approach for sampling a set of latent matrix logarithm variables from their
conditional posterior distribution, where we construct the proposal density based on
an approximating linear Gaussian state space model. The proposed model and its ex-
tended models with fat-tailed error distribution are applied to trivariate returns data
(daily stocks, bonds, and exchange rates) of Japan. Further, a model comparison is
conducted including constant correlation multivariate stochastic volatility models with
leverage and diagonal multivariate GARCH models.
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1 Introduction

Over the last several decades, there has been a great deal of interest in modeling volatilities of
multivariate stock market returns. The examples are multivariate generalized autoregressive
conditional heteroskedasticity (GARCH) models (see the review of Bauwens, Laurent, and
Rombouts (2006)), multivariate stochastic volatility (SV) models (see the review of Asali,
McAleer, and Yu (2006), Chib, Omori, and Asai (2009) ) and realized covariance models
(see e.g. Golosnoy, Gribisch, and Liesenfeld (2012)). The realized covariance model uses the
high-frequency data to estimate covariance matrices and regard them as observed covariance
matrices, while they are latent variables in GARCH and SV models.

Various multivariate volatility models have been proposed in the literature to describe
the dynamic properties of the covariance matrices such as the volatility clustering, the
dynamic correlations, and the leverage effects. The DCC models, (Engle (2002)) and BEKK
model (Engle and Kroner (1995)) are such multivariate GARCH models, and autoregressive
Wishart models (Philipov and Glickman (2006), Gourieroux, Jasiak, and Sufana (2009),
Golosnoy, Gribisch, and Liesenfeld (2012)) are examples in multivariate SV models. The
common difficulty in these models is to keep the covariance matrices positive definite. To
overcome this difficulty, reparameterization methods are considered in Yu and Meyer (2006),
Tsay (2005), and Jungbacker and Koopman (2006). The Choleski decomposition of the
covariance matrix is also considered in Lopes, McCulloch, and Tsay (2012) and Loddo, Ni,
and Sun (2011).

However, there have been still few previous works on the multivariate volatility models
with both dynamic correlations and cross leverage effects. Cross leverage refers to the
correlation between the i-th asset return at time ¢ and the function of j-th asset volatility
at time t+1 (when 7 = j, we simply call it a leverage effect). Thus, to model these properties
of covariance matrices, this paper considers the matrix logarithm transformation which is
known useful to model positive definite matrices in a flexible way. Since the seminal work
of Chiu, Leonard, and Tsui (1996), the matrix exponential model for the covariance matrix
has been applied to the spatial model to simplify the calculation of log-likelihood functions
(LeSage and Pace (2007)), and is extended to the GARCH model (Kawakatsu (2006)), the
SV model (Asai, McAleer, and Yu (2006)) and the realized covariation model (Bauer and
Vorkink (2010) and Sheppard (2007)) for multivariate financial time series.

We consider the general multivariate volatility model using the matrix exponential SV

model with cross leverage effects and propose an efficient computational algorithm. This



is a generalization of Ishihara and Omori (2012) who propose the following multivariate

stochastic volatility (MSV) model with cross-asset leverage effect of the form

y, = diag(exp(a1t/2),... exp(apt/2)) e, (1)
[0 T (}at + M, (2)
(5;7772), ~ NQp(Oa 2)7 (3)

where y. = (yit, ..., Ypt)', @t = (g, ..., o), ® = diag(¢,. .., ¢p) and Np(p, X) denotes
the p-dimensional normal distribution with mean g and variance ¥. This is fairly general
in the sense that there is no restriction imposed on the covariance matrix 3, while, in
the previous literature, various parameter restrictions are imposed (e.g. Asai and McAleer
(2006), Asai and McAleer (2009), Chan, Kohn, and Kirby (2006), and Danielsson (1998))
to estimate parameters based on the Monte Carlo likelihood. We, further, model the dy-
namic covariance matrices (dynamic variances and correlations) using a matrix logarithm
transformation. Since it is difficult to implement a maximum likelihood estimation for our
proposed model without imposing restrictions on parameters, we take Bayesian approach
and estimate posterior distributions of model parameters using Markov chain Monte Carlo
(MCMC) method. The simple sampling algorithm for the latent covariance matrices is
known to be inefficient as discussed in Ishihara and Omori (2012). They showed that the
single-move sampler which samples one volatility variable given others is highly inefficient
and proposed the efficient multi-move sampler (block sampler) which divides the vector of
all latent variables into blocks and samples one block given other blocks based on Omori
and Watanabe (2008). Thus we construct the multi-move sampler for our matrix exponen-
tial model and show that it is efficient in comparison with the alternative simple sampling
algorithm.

The rest of the paper is organized as follows. In Section 2, we introduce a matrix
exponential stochastic volatility model with cross leverage effects. Bayesian estimation
method and the associated particle filter for calculating likelihood functions are described
in Section 3. Section 4 shows the efficiency of our proposed algorithm using the simulated
data, and, in Section 5, the empirical studies are given using the trivariate asset returns
data (stock indices, bond indices and foreign exchange rates). We conduct a model selection
among the proposed model, extended models with fat-tailed error distribution and some

constant correlation multivariate SV models. Section 6 concludes the paper.



2 Matrix exponential stochastic volatility

This section proposes the matrix exponential stochastic volatility (MESV) model with cross
leverage effects. The MESV model is based on the matrix exponential transformation as
below. A matrix exponential is widely studied in the context of multidimensional differ-
ential equations and Lie algebra. The statistical applications of the matrix exponential
transformation are given, for example, in Chiu, Leonard, and Tsui (1996), and Kawakatsu
(2006). For any p x p matrix A, the matrix exponential is defined by the following power

series expansion
o0 1
J— S
eXp(A) = E ‘ —S'A s
s=

where the series converges absolutely if all eigenvalues of A are finite. ( see e.g. Abadir and
Magnus (2005) for various properties of the matrix exponential transformation). For any
real symmetric positive definite matrix C, there exists a real symmetric p X p matrix A such
that C = exp(A), and the matrix A is obtained by the matrix logarithm transformation.
Conversely, for any real symmetric matrix A, C = exp(A) is a symmetric positive definite
matrix (Chiu, Leonard, and Tsui (1996)). If A is a p X p real symmetric matrix, there exists

a p x p orthogonal matrix U and a diagonal matrix A such that A = UAU’ and

o0

1
exp(A)=U < ;As> U =Uexp(A)U".

s=0
Now let y: = (yit,-..,ypt) denote the p-dimensional asset return vector at time ¢, and let
H, denote the matrix logarithm of the variance-covariance matrix of ;. The MESV model

with leverage effects is given by

yr = exp(H;/2)ey, e ~iid Ny(0,I,), t=1,...,n. (4)
H, = M+®06(H -M)+E, (5)
€ I b

"] o~ iid N, ,(02), == 7 T, t=1,...,n—1, (6)
m e Xy
hi ~  Ny(p, %), (7)

where 1y = vech(E¢), ¢ = p(p +1)/2, M = {p;;}, and & = {¢ij} are p x p symmetric

matrices of parameters, and ® denotes the Hadamard product. For the identifiability, we



set the covariance matrix of ; equal to I,.
If we let hy = vech(Hy;) = (hi1,¢,ho14, .- hp1 g, hoot ... hypp )’ denote the stacked col-
umn vector of the lower triangle elements of the H;, then the “vech form” of (5) is given

by
hiv1 = p+ ®(hy — p) + 0y, (8)

with g = vech(M) = (p11, p21, - - - fip1s 122, - - - fipp)’, ® = diag(¢) (a diagonal matrix whose
diagonal elements are equal to ¢) and ¢ = vech(<i>) = (11,921, - - - Pp1, P22, .- -, bpp)’. The
number of parameters in the MESV model is ¢(q + 2p + 5)/2. The covariance matrix of the

initial latent variable, 3¢, is assumed to satisfy a stationary condition such that
vec(Bg) = (I,z — 2 @ ) 'vec(Zy,),
where ® denotes the Kronecker product.

We let 3, = {pijmTinmnTim}, and By = {pijen0jmm}t where o; y is the standard deviation
of ;s and p;j 4y is the correlation coefficient between x;; and y;;. Further, for convenience, we
use the notation E(7,j) = k based on the relationship n; = vech(E;) such that the (i, 7)-th
element of E;, E. (4, 7), is equal to the k-th element of 0y, ng (i.e., E(1,1) =1, E(2,1) = 2,
o, B(p,1) =p, E(2,2) =p+1,.., E(p,p) = p(p+1)/2). Thus, Cov(es, Mkt) = pik.enTk,m

is equal to CO’U(&lt, Et(Z,])) = plE(i,j),EnUE(i,j),nn'

Remark 1. Due to the nonlinearity of the matrix exponential transformation, the interpre-
tation of the (untransformed) parameters will depend on the dimension of y;. Thus, we
consider estimates of transformed parameters to investigate the properties of interest, such

as volatilities and correlations.

Remark 2. We can also interpret it terms of the principal component analysis. Using
the diagonalization, H; = U;A, U}, the element of Uy, is the principal component of the
returns at time ¢, and the row vector of the loading matrix U} is a weight vector for the
portfolio which represents the stock market principal component. We note that it is also
possible to model U; and A; as in Plataniotis (2011) using Givens rotation matrix for the

eigenvectors matrix.



3 Bayesian estimation and associated particle filter

In this section, we describe an efficient Bayesian estimation method and an associated
particle filter to compute the likelihood for the MESV model. Let 8 = (¢, pu,X) and
h = (h,...,h}) and Y,, = (y1,...,yn). Then the joint probability density function of Y,
and h given 0 for (4) and (8) is given by

n—1

f(Yo,h|0) = f(1]6) [ f (i, hesilhi, 0) f (yn|hn, 6) 9)
t=1

1 n—1 1 " ]. _
o [Bo| 2 BT [Bee| 2 exp { Y ohi- 5(h1 = 'S5 (hy = )
t=1

X exp

n—1
1 _
-3 > {hir — = ®(hy — )} B, (b1 — p— B(hy - M)}] :
t=1

where [; = —% {tr(Ht) + (yr — Nt)lzt_l(yt - “t)} and

pe = exp(H;/2)m,, (10)
¥, = exp(H:/2)S;exp(H;/2), (11)
my = 2%, (h — p— @(hy — p)I(t <n), (12)
S = I,—3,5 8, I(t<n), (13)
where I(t < n) is an indication function which is equal to 1 if £ < n and 0 otherwise.
3.1 Prior distributions
For prior distributions of (¢, u), we assume
i+ 1 . . .
@]T ~ B(a'tjabl])7 ’L=1,...,p, jzl,...,’L, (14)

where B(a,b) denotes a beta distribution with parameters a and b. To define a prior

distribution of X, we first denote



where 3!, 12 and £?? are p x p, p X ¢ and ¢ X ¢ matrices. Noting that 3! = I, +

»12%2-1521 we assume the prior distributions such that
vec(Z21) |22~ Nyy(vec(Z2Ag), Qo @ %), 22 ~ W(ng, Ry), (16)

where W(n,R) denotes Wishart distribution with parameters n and R. We construct the
natural conjugate prior of (£2!, 322) for the likelihood function of the multivariate normal
distribution with ¥.. = I, (in our case, excluding some modification). In our empirical
study, we assumed a fairly at prior by setting Ay = 0 and Q¢ = 5], to reflect that we do
not have sufficient information. For ¢;;, we assume |¢;;| < 1 (0 < (¢;; +1)/2 < 1). Thus
assuming Beta prior distribution for such a parameter is quite popular in empirical studies.

Also, it is stated that vec(Xy) is based on a stationary condition.

3.2 MCMC algorithm

Using Equations (9), (14), (15) and (16), we obtain the joint posterior density function of
(6, h) given by

(6, h|Yn)

p i
o f(Yo,h|0) x TTTT + i)™ (1 = )" " x f(ulmg, Vi)

i=1j=1

nq— 1
x fn (vec(Z2)|vec(S2Ay), Ry ® £2) x |22 " exp {—Etr (R51222)} J(17)

where fy(-|p,X) denotes a normal density with mean p and covariance matrix X. To
obtain the posterior quantities of the parameters @ and volatility variables {h;}} ; from

the posterior distribution, we implement the MCMC algorithm in six blocks:

1. Initialize h, ¢, u, 3.

2. Generate h|¢, u,2,Y,.
3. Generate p|¢, X, h,Y,.
4. Generate X|¢, u, h,Y,.
5. Generate ¢|u, X, h,Y,.

6. Go to Step 2.



3.2.1 Generation of h

As is often pointed out in the literature, it is important to sample the latent volatility
variables {h;}_, in an efficient way. The simple sample method, which samples one h; at a
time given the other h,’s and parameters, is known to be inefficient, often producing highly
autocorrelated MCMC samples. This is because the estimates of autoregressive parameters
¢; are often found to be very close to one in empirical studies. Thus, we propose the sampling
method based on a multi-move sampler which samples a set of h;’s as one block at a time
(see e.g. Shephard and Pitt (1997), Watanabe and Omori (2004), Omori and Watanabe
(2008), Ishihara and Omori (2012)). We first describe a simple algorithm which we call a
single-move sampler as we use it as a benchmark to evaluate the estimation efficiencies of

the multi-move algorithm.

Single-move sampler. Let Xp, = 3., —3,. 3., and pp 11 = p+®(hi—p)+ 2, exp(—H;/2)y;.
Then, the conditional posterior density of h; given {h,}2;, ® and X is

1 _
(), .2, %5) o oxp {5 (e = 30T e =) + al) |

where
1 1 / -1
glhe) = —5tr(Hy) — syl exp(—H,/2)S;  exp(—H,/2)y,
+(hip1 — p— B(hy — ) S, 2y exp(—Hy /2)y, I(t < n),
and
((@z;'e+ 377, t=1,
Iy = S (B, +@e5,'®)7!, 1<t<n,
[ X, t=mn,
[ T,0%; ! (hy — (I, — ®)p), t=1,
" = L0, (hipr — (T, — @)p) + 2y ), 1<t <m,
\ l‘l'h,t7 t =n.

We generate a candidate hz from hz ~ Ny(7¢,T't) and accept it with probability

min {exp{g(hz) —g(hy)}, 1} , t=1,...,n.



Multi-move sampler. In this algorithm, we first divide h into several blocks, and sample
one block at a time from its conditional posterior distribution given other blocks. Using the
Taylor expansion of the logarithm of the conditional posterior density around the conditional
posterior mode, we derive a candidate distribution as a posterior distribution for some linear
Gaussian state space model to exploit various smoothing and simulation algorithms as in

Omori and Watanabe (2008). Details are given in Appendix A.

Mizxture of the single-move and multi-move samplers. Although the single-move sampler
is easier to implement, it is inefficient in the sense that it produces highly autocorrelated
MCMC samples as shown in Section 4. On the other hand, the multi-move sampler is
efficient, but it is more complicated than the single-move sampler, which may need more
computational cost and time. Thus, we could propose a mixture of the single-move sam-
pler and the multi-move sampler. That is, we implement the single-move sampler with

probability p (say 0.9) and the multi-move sampler with probability 1 — p (0.1).

3.2.2 Generation of X

Since the p x p leading principal submatrix of ¥ is an identity matrix, we first generate 322
and then sample vec(2?!) conditional on £?2, to conduct MH algorithm using the property
of Wishart distribution (see, e.g., Theorem 3.3.9 of Gupta and Nagar (2000)).

Let

R! — R" R _ Zt 15t5t Et 15t77t

R?' R* Et | M} Zt:l mm
where R'', R!'2 = R?Y R?2 are p x p, p X ¢, ¢ X q matrices, ; = exp(—H;/2)y; and n; =
hit1 —p— ®(hy — p). Using tr(AB) = vec(A')'vec(B) and vec(AXB) = (B’ ® A)vec(X),
for X(n x n), A(m x n) and B(n x m), the joint conditional posterior probability density



of £'2 and 22 is obtained as follows.

(B2, 2%|®, h,Y,) = n(T%|®, h, Yy,)m(vec(T*)| 8%, @, h,Y;)
1

n— 1 no—q— 1
x h(X) x |Z)|_T1 exp{—ﬁtr (R_lﬁ_l)} x | B2 = exp{—itr (ROIEQQ)}

x fr (vec(Z?) [vec(Z?2Ap), ) @ %)

ng+n—1—-qg—1

x WE)x|[Z2|7 2z exp [—%tr {R*? -R*R"'R" + R51)222}]

1
X exp {—gvec(Em +E2RIRI)Y (R @ B2 vee(2? + 222R21R11_1)}
X fr (vec(Z2) |vec(Z?2 Ag), Ry @ %)

ny—q—1

1
x h(Z) x|B2|7 =2 exp{ —=tr (R7'E??) } x fy(vec(Z?H)|vec(T22A,), Q; @ B2
9 1

where ny =ng +n—1, Ri' = R? - A1Q7'A] + Ry + A5 'A) and

Q = RUY+;) ",
A = (-R"+A0,") 2
—1 1 _
h(E) = |Zo| 2zexp {—§(h1 — )35 Yhy — u)} )

Thus, we generate a candidate Xt in three steps.
1. Draw 22t ~ W(n{,Ry).
2. Draw vec(Z21) |21 ~ N, (vec(E2TAL), @ @ 22).
3. Compute X, = —212i%22-1 4nq 5f, = 5211 L »nf wf
and accept it with probability
min {%, 1} .
3.2.3 Generation of (u, ¢)

Generation of w. The conditional posterior distribution of p is

N|27 ®,h, Y, ~ Nq(mLVT)a



where
n—1 -1
Vi o= <20—1 +) (L, - @)'s, (I, - @) + V5, —1> ,
t=1

n—1

m: = Vi [Z(Ip — ®)'S by — ®hy — Sepexp(—Hy/2)y} + 25 he + V5 Tim
t=1

Generation of ¢. Let A = 317 (hy — ) (R — p)', B = 77 {(hy — p)yj exp(—H, /2) 212 +

(hy — ) (hyy1 — p)' 2?2} and b denote a vector whose i-th element is equal to the (i,7)-th

element of B. Then the conditional posterior probability density function of ¢ is

(P, a,Y,) o exp {—%tr(@EmQA) — 2tr(<I>B)} x k()
o< fn(Dlpe, Tp) X k(P),

p i
K@) = |Dol 2exp {—%aizolal} ) [TTT + i) (1 = gg)® 7,
i=1j=1
where pg = X b, 2;1 =222 © A. To sample ¢ from its conditional posterior distribution
using MH algorithm, we generate a candidate from a truncated normal distribution over
the region R, ¢' ~ TN r(ugp,Te), R = {¢ : |¢;| < 1,j = 1,...,p} and accept it with
probability min{k(¢")/k(¢),1}.

Remark 3. The MH acceptance ratio may become low, for example, when the elements
of @ are nearly one. To improve the MH algorithm by reducing the number of rejected
proposals, Mira (2001) proposes the delaying rejection algorithm. We note that we can
apply the delaying rejection algorithm to our independent MH algorithm for ®,X, and h.
The performance of the delaying rejection algorithm is discussed in Section 4. See Appendix

B for the details of the algorithm.

3.3 Associated particle filter

We describe the associated auxiliary particle filter introduced by Pitt and Shephard (1999)
for the MESV model to compute the log likelihood function. In Section 5, we use this

algorithm to calculate DIC (deviance information criterion proposed by Spiegelhalter, Best,

11



Carlin, and van der Linde (2002)). Let

Flulh) = (@n) exp () | exp {~Jutexn(-Huy |

1 _
(htt1 — 1)y (Rt — Nh,t+1)} ;

—4q _1
Fbalyte) = @0H2 e {3

and f(h¢|Y;,0) denote a conditional density of h; given (Y;,8). Then the conditional joint

density function of ki1, hy, given (Y;y1,0) is

F(hey1, he]Yig1,0) o< fyrsi|hisr) f(hegi|ye, he, 0) f(Re|Y:, 0).

We first construct an importance function to sample from the conditional joint distribution.

Let f (h¢|Y%,0) denote a discrete probability mass function approximating f(h|Y;,8) and

9(hes1, BiYi1,0) o< f(yerilph 1) f(hesilye, bi, 8) f (Ri[Y:,0)
X f(h't+1|yt7hiaa)g(hﬂm«Flaa)a

where
. i F(hi]Y,;, 0
g(hi[Vis1,0) If(yt+1|uh,tJ;1)f( f|§ ) ’
> i1 f (e lpy, 1) f (R{]Y2, 0)
. p . 1 1 .
Flursilihern) = (20) 5 exp(M, ) oxp { = Guier exp(-M i |

Phivn = p+®(hi—p)+ S exp(—H}/2)y,,

and Mz,t+1 is a symmetric matrix such that “2,t+1 = vech(M}'L’t_i_l).

Using this importance function, we implement the auxiliary particle filter as follows.
1. Set t = 1.

(a) Generate Y ~ N (u, =) (i = 1,...,1).
(b) Compute w; = f(y1|h%,0) and save w; = %Zi[:l wj.

(c) Let f(hi|Y1,0) =mi =w;/ S| _jw; (i=1,....]).
2. Generate (hi,,,h}) ~ g(hyy1,hi|Yi1,0) (i=1,...,1):

(a) Compute “2,t+1 = p+ ®(hi— p) + T, exp (—H/2) y,.
(b) Generate hi ~ g(h}|Y;11,0).

12



(c) Generate h} ; ~ f(hi11|ys, hi, 0).

Then compute

F(yer1|hi ) f (R |y, BE, 0) f(RE]Y,, 6)

g (i, hily'*1,0) ’
f(yrahi 1) f (hi]Yi,0)

g(hi|Yi41,0) ’

i=1,...,1,

and save
s
we = Ji : wi.
=1
Further let f(h},[Vi41,0) =i = wi/ Y1 w; (i=1,...,1).
3. Set t + t+ 1. Go to Step 2.

Then, as I — oo, we obtain Y7, log@, = Y21, log f(y:|Y: 1,8).

Remark 4. We may implement MH algorithm based on the sequential Monte Carlo approach
using the likelihood computed by the particle filter. However, since the dimension of the
parameter vector is very high in our multivariate model, we do not pursue this alternative

approach in this paper.

4 TIllustrative example with simulated data

This section shows the efficiency of our proposed method using a simulated data. Two ex-
amples are given where we generate n = 4,000 observations with p = 3. Prior distributions

are assumed to be as follows.

po~ Ng(0,51,),
M B(20,3/2), i=j,
2 B(1,1),  i#J,
»22 W(s, (6222*)*1),

vec(S2)[B2 ~ N0, (51,) ® B2),

where £22* is a true covariance matrix satisfying E(2??) = £22*. The mean and the stan-

dard deviation of the prior distribution of ¢;;, 7 = 1,2, 3 are set 0.86 and 0.11 respectively.

13



Using the multi-move (single-move) sampler, we draw 110,000 (550,000) posterior samples

and discard the first 10,000 (50,000) samples as burn-in periods.

Ezample 1. First, we consider the following MESV model to replicate the dynamics of the

stock return series:

0.5, 7=y, 0.97, =y,
Hij = ] ) ij = ) )
0.2, i#j, 0.85, i #7,

—-03, 1=35=k%,

pir(i).en = Corr (e, Ba(j k) = ~0.1, otherwise

. 03, i—j k=1
PEGH)E(k) g = Corr(By(i, j), By (k, 1)) = 01 otherwise

— 02, i=j
TB(i.f)m = Var(Buli, 1)) = 0.15, otherwise,
which are based on typical values in our empirical studies where F(1,1) =1, E(2,1) = 2,
E(3,1) =3, E(2,2) =4, E(3,2) =5 and F(3,3) =6.

Tables 1, 2 and 3 show the estimation summaries for all parameters via the multi-move
sampler. The posterior means and 95% credible intervals suggest that the estimates are
sufficiently close to true values, which indicates that our proposed estimation algorithm
works well!. The inefficiency factors for the single-move sampler are about three times
larger than those for the multi-move sampler. Further, Table 7 shows inefficiency factors
for Hyggp. For these latent variables, inefficiency factors forthe single-move sampler are
about seventeen times larger than those for the multi-move sampler. This implies that
our proposed multi-move sampler is highly efficient than the single-move sampler as we
expected.

Tables 4, 5, 6 and 7 compare the inefficiency factors of single-move and multi-move sam-
pler with and without delaying rejection algorithm (DR). For the mixture of the single-move
and the multi-move samplers, we use multi-move (single-move) sampler with probability 0.1

(0.9) and generate 120,000 samples and use 100,000 samples. The inefficiency factors of the

!The inefficiency factors are also shown for the multi-move sampler and the single-move sampler. The
inefficiency factor is the ratio of the numerical variance of the estimate from the MCMC samples relative
to that from hypothetical uncorrelated samples, and is defined as 14+ 22, p; where ps is the sample
autocorrelation at lag s. It suggests the relative number of correlated draws necessary to attain the same
variance of the posterior sample mean from the uncorrelated draws (Chib (2001)).

14



single-move sampler are much larger than those of the multi-move sample with and without
DR especially for latent variables?’. We note that the DR algorithm reduces the ineffi-
ciency factors but that it requires additional computational time. The single-move sampler
with DR is less efficient than the multi-move sampler without DR, while the mixture of
the single-move and the multi-move samplers with DR, shows similar inefficiency factors to
those of the multi-move sampler without DR. Taking account of the computational time,

the mixture sampler may be preferred.

Table 1: Posterior means, 95% credible intervals, and inefficiency factors.

Inefficiency
multi  [single]
11 0.967 [0.955, 0.978] 149 [334]
0.97 22 0.964 [0.951, 0.975] 119 [115]
33 0.975 [0.965, 0.984] 105 [437]

Param. True ij  Mean 95% interval

Pi 21 0.802 [0.701,0.877] 288  [795]
085 31 0.841 [0.734,0.910] 511  [1622]
32 0837 [0.751,0.900] 332  [435]
11 0.572 [0.390, 0.755] 6 38]
0.5 22 0.456 [0.266, 0.649] 6 [75]
) 33 0.485 [0.225, 0.744] 3 42]
His 21 0.201 [0.159, 0.243] 20 [465]
0.2 31 0.203 [0.158, 0.247] 17 [355]
32 0.204 [0.156, 0.252] 18 [304]
11 0.189 [0.158, 0.223] 285  [572]
0.2 22 0.216 [0.185,0.251] 219  [306]
33 0.211 [0.181,0.242] 180  [657]
O E(i,5),mm

21 0.158 [0.118,0.204] 460  [1182]
015 31 0.145 [0.106,0.194] 646  [1648]
32 0.175 [0.129,0.230] 438  [761]

OB(i,j)m = v Var(E(i, j))

2The acceptance rates for ¢, ¥ and Happo in MH algorithms are 0.93, 0.97 and 0.55 (0.94, 0.98 and
0.70) for the multi-move sampler (single-move sampler). For MH algorithms with DR, they are 0.99, 0.99
and 0.92 (0.99, 0.99 and 0.93) for the multi-move sampler (single-move sampler), and 0.99, 0.99, and 0.93
for the mixture of the multi-move and single-move samplers. The elapsed times for the simulation using
the multi-move, single-move, multi-move with DR, single-move with DR, mixture with DR samplers are
9.38, 0.56, 17.81, 1.13 and 2.96 hours per 10,000 iterations with Richland AMD A10-6800K Black Edition
(4.1GHz).
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Table 2: Posterior means, 95% credible intervals and inefficiency factors.

PiE(jk),en = Corr(eit, By (5, k))

True i jk  Mean 95% interval  Lheficiency
multi  [single]
111 -0.277 [0.388,0.159] 61  [133]

—0.3 222 -0255 [0.372-0.134] 84  [126]
333 -0.374 [0479-0.264] 81  [220]
121 0.046 [-0.100, 0.188] 73 [164]
131 -0.041 [0.190,0.107] 96  [218]
122 -0.113 [0.226,0.002] 34  [143]
132 -0.035 [0.163,0.092] 63  [206]
133 0005 [0.114,0.123] 66  [155]

211 -0.018 [-0.147,0.111] 60  [231]
221 -0.017 [-0.172,0.131] 94 [164]
—0.1 231 -0.172 [-0.328,-0.022] 86 [289]
232 -0.072 [-0.207, 0.061] 65  [189]
233 -0.067 [-0.192, 0.057] 71 [184]

311 -0.092 [-0.217,0.030] 61  [159]
321 -0.194 [0.341,-0.047] 87  [113]
331 -0.118 [0.263,0.028] 91  [293]
322 -0.080 [0.192,0.035] 51  [174]
332 -0.027 [-0.155,0.104] 72 [149]

Table 3: Posterior means, 95% credible intervals and inefficiency factors.

PE(i,j)E(k,l)mm = Corr(Ey(i, 7)), E¢ (K, 1))

Inefficiency
multi  [single]
1122 0.248 [0.080, 0.411] 102 [340]
0.3 1133 0.332 [0.170, 0.481] 135
2233 0.266 [0.104, 0.420] 68
1121 -0.055 [-0.266, 0.177] 184
1131 0.150 [-0.066, 0.355] 215
1132 0.064 [-0.135, 0.267] 138

[

[

[

[

[

2131 0.092 [-0.199,0.377] 301 |

2122 -0.034 [-0.239,0.188] 205 |
2132 -0.127 [-0.386,0.142] 239  [100]

[

[

[

[

[

[

True ij kI Mean 95% interval

01 2133 0.203 [-0.028,0.424] 177
3122 0.055 [-0.173,0.269] 234
3132 0.041 [-0.192,0.275] 213
3133 0213 [0.010,0.413] 224
2232 -0.006 [-0.203,0.189] 137
3233 0.053 [-0.134,0.239] 138

16



Table 4: Inefficiency factors.

Param. ij Inefficiency
multi single multi DR single DR mixed DR
11 149 334 95 191 198
22 119 115 114 178 57
i 33 105 437 113 151 71
N 21 288 795 458 598 353
31 011 1622 332 1149 560
32 332 435 290 506 247
11 6 38 6 28 22
22 6 75 6 20 10
N 33 3 42 4 15 6
Hi 21 20 465 20 91 20
31 17 355 18 125 43
32 18 304 6 50 38
11 285 572 182 399 296
22 219 306 199 321 146
33 180 657 177 248 161
OE(i,5),mn
21 460 1182 583 957 478
31 646 1648 510 1099 819
32 438 761 422 668 324
TB(i,j)m =V Var(E(i, j))
Table 5: Inefficiency factors.
PiE (k) en = Corr(gir, B (4, k))
- Inefficiency
tJ multi single multi DR single DR mixed DR
111 61 133 37 137 68
2 22 84 126 41 121 47
333 81 220 58 105 48
121 73 164 95 163 111
131 96 218 101 268 105
122 34 143 23 96 71
132 63 206 33 124 64
133 66 155 54 84 90
211 60 231 42 256 70
221 94 164 84 169 98
231 86 289 76 212 150
2 32 65 189 46 90 52
233 71 184 47 110 52
311 61 159 39 146 66
321 87 113 80 270 91
331 91 293 85 290 108
322 ol 174 50 118 29
3 32 72 149 46 106 30
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Table 6: Inefficiency factors.
PE(ij) Bk = Corr(E(i, 7)), B (k, 1))

.. Inefficiency

WHLulti single multi DR single DR mixed DR
1122 102 340 64 198 136
1133 135 382 160 325 156
2233 68 186 78 232 124
1121 184 971 130 403 203
1131 215 662 122 435 162
1132 138 109 151 340 370
2131 301 110 263 405 457
2122 205 133 192 330 218
2132 239 100 215 595 324
2133 177 106 201 353 272
3122 234 111 110 422 201
3132 213 161 144 390 161
3133 224 931 130 366 268
2232 137 536 69 299 131
3233 138 830 103 245 81

Table 7: Inefficiency factors of Hoggg

Parameter multi single multi DR single DR mixed DR

Hi1.2000 8 121 4 99 32
H3.2000 8 141 4 88 28
Hs3.9000 10 171 11 168 47
Hi12.9000 6 36 9 45 16
Hi3.2000 6 62 5 60 25
Hos.9000 5 40 3 36 20

Example 2. As another example, we consider the model with highly persistent ¢;;’s such

that
0.5, i=j, 0.99, =7,
Hij = ) ) ij = ) )
0.2, 1 #j, 0.90, 1 # 7,
—-0.3, i=7j=k,

PiE G k),en = Corr(ei, By(j, k) = _
—0.1, otherwise,

18



06, i=j£k=1

PEGg) Bk = Corr(E(i, 5), By (k, 1)) = 0.2. otherwise

0.2, i=j

OFE(ij)ym = V Var(Eq(i,j)) =

0.2, otherwise.

Tables 8, 9, and 10 show the estimation summaries for all parameters via the multi-move
sampler. As in the previous example, the posterior means and 95% credible intervals suggest
that the estimates are sufficiently close to true values, which indicates that our proposed
estimation algorithm works well. The inefficiency factors for the single-move sampler are
about twice larger than those for the multi-move sampler, and as shown in Table 14, these
inefficiency factors of Haggg for the single-move sampler are about twenty times larger
than those for the multi-move sampler, implying that our proposed multi-move sampler
is efficient. Further, Tables 11, 12, 13 and 14 compare inefficiency factors for the single-
move and the multi-move samplers with and without DR. > The DR algorithm reduces the
inefficiency factors, but, overall, its performance is similar to those in the previous example.

Table 8: Posterior means, 95% credible intervals, and inefficiency factors.
Inefficiency
multi  [single]
11 0.992 [0.989, 0.996] 60  [297]
099 22 0.992 [0.989, 0.995] 44 222
33 0.992 [0.989, 0.996] o7 [151]

Param. True ij Mean 95% interval

Pi 21 0925 [0.897,0.947] 367  [ATS]
090 31 0.879 [0.843,0.909] 168  [239]
32 0901 [0.868,0.929] 178  [304]
11 0.350 [-0.406, 1.102] 2 B
0.5 22 0.551 [-0.149, 1.236] 1 7]
) 33 0.354 [-0.394, 1.080] 2 [6]
His 21 0.240 [0.160 , 0.320] 6 [25]
0.2 31 0.264 [0.202, 0.327] 9 [47]
32 0.209 [0.140, 0.278] 6 [24]
11 0.189 [0.167,0.214] 206  [620]
0.2 22 0187 [0.165,0.212] 192  [547]
33 0.187 [0.165,0.210] 197  [346]
O E(i,5),mm

21 0.174 [0.145,0.208] 514  [632]
0.2 31 0215 [0.181,0.253] 279  [409]
32 0196 [0.163,0.233] 296  [442]

OB (i) = V Var(E(i, j))

3The acceptance rates for ¢, ¥ and Hapgp in MH algorithms are 0.82, 0.98 and 0.31 for the multi-move
sampler, 0.83, 0.98 and 0.70 for the single-move sampler, 0.97, 1.99 and 0.81 for the multi-move sampler with
DR, 0.97, 1.00 and 0.91 for the single-move sampler with DR, and 0.97, 1.00, and 0. 90 for the mixed-move
sampler with DR.
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Table 9: Posterior means, 95% credible intervals and inefficiency factors.
PiE(jk)en = Corr(gir, B (4, k))

True i jk Mean 95% interval Inefﬁmepcy
multi  [single]
T11 0252 [0351,0147] 80  [173]
—-0.3 222 -0.296 [-0.396,-0.189] 80 [234]
333 -0.334 [-0436,-0.226] 89  [151]

121 -0.060 [0.161, 0.044] 63 [76]
131 -0.215 [-0.311-0.116] 60 98]
122 -0.122 [-0.223,-0.013] 76 [150]
132 -0.184 [-0.282,-0.086] 50 [99]

133 -0.101 [0.207,0.008] 58  [202]

211 -0.140 [-0.248,-0.028] 80 [271]
221 0.007 [-0.098, 0.114] 60  [151]
-0.1 231 -0.091 [-0.191, 0.007] 70 [74]
232 -0.116 [-0.217,-0.009] 58 [117]
233 -0.103 [-0.217,0.010] 110  [297]

311 -0.143 [-0.255-0.026] 111  [203]
321 -0.038 [-0.147,0.073] 83 82]
331 -0.121 [0.221-0.018] 58 [99]
322 -0.167 [-0.278-0.049] 111  [236]
332 -0.130 [0.236-0.025] 66  [204]

Table 10: Posterior means, 95% credible intervals and inefficiency factors.

PE(i,j)ERk1)mm = Corr(BEq(i, 7)), By (k, 1))

True ij kI Mean 95% interval Inefﬁmepcy
multi  [single]
1122 0670 [0.563,0.762] 167 [521]
0.6 1133 0585 [0.451,0.697] 203  [796]
2233 0.651 [0.534,0.751] 265 [1177]
1121 0.166 [0.005,0.333] 241
1131 0.168 [0.003, 0.321] 192
1132 0.231 [0.070, 0.388] 178

[
[
[
2131 0261 [0.107,0413] 169 |
2122 0201 [0.048,0.355] 203 |
2132 0.044 [-0.112,0.198] 142 |
0.2 2133 0.212 [0.045,0.378] 169  [489]

[

[

[

[

[

3122 0.209 [0.046, 0.364] 190
3132 0.034 [-0.126, 0.192] 141
3133 0.165 [0.003,0.319] 213

2232 0.097 [-0.059, 0.252] 142
3233 0.122 [-0.038, 0.275] 131
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Table 11: Inefficiency factors.

Param ij Inefficiency
) multi single multi DR single DR mixed DR
11 60 297 32 56 98
22 44 222 12 37 76
i 33 57 151 18 73 73
N 21 367 478 99 185 279
31 168 239 23 75 104
32 178 304 58 110 49
11 2 ) 0.2 ) 1
22 1 7 0.5 4 1
33 2 6 0.1 6 2
Mij
21 6 25 4 18 9
31 9 47 1 15 14
32 6 24 1 14 12
11 206 620 13 143 211
22 192 547 21 223 300
33 197 346 95 311 131
OE(i,5),mm
21 514 632 108 272 292
31 279 409 15 125 247
32 296 442 113 174 102
o5 (i) = V Var(Ex (i, 7))
Table 12: Inefficiency factors.
PiE(jk)en = Corr(gir, B (4, k))
- Inefficiency
tJ multi single multi DR single DR mixed DR
111 80 173 9 150 146
222 80 234 1 198 87
333 89 151 8 227 65
121 63 76 35 61 30
131 60 98 3 70 59
122 76 150 9 98 26
132 50 99 3 105 39
133 58 202 3 58 76
211 80 271 4 59 79
221 60 151 7 177 114
231 70 74 2 66 14
2 32 o8 117 42 218 37
233 110 297 30 86 66
311 111 203 10 43 63
321 83 82 1 97 52
331 58 99 54 204 62
322 111 236 7 72 80
332 66 204 30 117 112
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Table 13: Inefficiency factors.

PE(ij) Bk = Corr(E(i, 7)), B (k, 1))

.. Inefficiency
WHLulti single multi DR single DR mixed DR
1122 167 921 15 510 356
1133 203 796 83 151 259
2233 265 1177 44 344 114
1121 241 407 1 306 259
11 31 192 318 25 228 88
1132 178 318 2 207 257
21 31 169 385 26 127 41
2122 203 340 32 251 218
2132 142 374 9 171 140
2133 169 489 37 171 177
3122 190 467 16 160 115
3132 141 201 4 107 89
3133 213 404 40 83 45
2232 142 271 74 84 131
3233 131 238 70 115 89
Table 14: Inefficiency factors of Hoggg
Parameter multi single multi DR single DR mixed DR
Hi1 2000 12 162 3 122 32
H3 2000 9 65 6 39 22
H33 9000 6 30 5 18 10
Hi 2000 14 236 5 142 50
H 32000 6 45 4 26 18
H>3 2000 13 277 6 156 47

5 Application to trivariate asset returns data

5.1 Data

This section applies our proposed MESV model to returns of three assets: (1) Tokyo stock
price index (TOPIX), (2) the Japan government bond clean price index (JGB) provided
by Thomson Reuters Datastream), and (3) the currency exchange rate of Japanese Yen to
U.S. Dollar (Yen/USD) announced by the Federal Reserve Bank at noon in New York. We
excluded those days when at least one of three observations is not reported. The sample

period is from January 4, 1995 to July 30, 2010 for a total of 3710 observations. Figure
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1 shows the time series plot of three returns which are 100 times the differences of the

logarithm of the asset values.
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Figure 1: TOPIX, JGB and Yen/USD

5.2 Estimation results
5.2.1 MSV models

For the MSV model, we assume prior distributions such that

oi +1

5 B(20,1.5), i=1,...,5, X L~W(6, (6%,

where

.52 0 0
0.5, 0
0.22(0.3I3 4 0.7131%)

4
I

The prior mean and standard deviation of ¢; are 0.86 and 0.11 respectively reflecting the
high persistence of log volatilities in past empirical studies. The prior mean of 37! is equal
to ¥*~! where we choose * based on past empirical studies, that is volatilities is based on
the univariate result and set the correlation of log-volatilities are high (0.7). Note that we

take the degrees-of-freedom small but the prior distribution is still proper.
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Tables 15 shows summary statistics of posterior distributions of the parameters for the
MSV models. The posterior means of the autoregressive parameters (¢;’s) are very high
(between 0.948 and 0.966) showing that volatilities are highly persistent. The leverage
effects are estimated to be negative as in the previous literature where that of the stock
return (—0.445) is much stronger than those of the bond return and the foreign exchange
return (—0.177 and —0.167). The cross leverage effect, pi2 .y, (from the stock return to the
bond return volatility) is estimated to be positive (0.189), while the opposite effect, po1 o,
(from the bond return to the stock return volatility) is not credible in the sense that its
95% credible interval doesn’t include zero. This implies the increase in the stock return at
time ¢ causes the high volatility in the bond return at time ¢ + 1, but the fall of the bond

return seems to have a limited impact on the stock return volatility.

Table 15: MSV model.
Posterior means and 95% credible intervals.

Param. i Mean 95% interval

Param. ¢ Mean 95% interval 19 0313 0,343 0981
1T 0965 [0.953, 0.975] ) 5 0062 ['0'028"0'095]

i 2 0966 [0.952,0.978] Pijee : [0.028,0.095]
30948 [0.918, 0.969] 23 -0.014 [-0.048, 0.020]

1T 1212 [1.115, 1.322] 12-0.196 [ 0.024, 0.363]

Oice 2 0275 [0.249, 0.305] Pijon 13 0.559  [0.402, 0.694]
30662 [0.615,0.716] 23 0.390 [0.221,0.552]

T 0191 [0.163, 0.224] 12 0.189 [0.073,0.301]

Oign 2 0210  [0.174, 0.249] 13 -0.003 [-0.127,0.117]
3 0.225 [0.173, 0.293] D 21 0.091 [-0.021, 0.200]

1 -0445 [-0.543,-0.339] DT 93 0,035 [-0.077, 0.145]

Pien 2 LT [‘8'32;8'82? 31 -0.036 [0.152, 0.079]
- [-0.282,-0.045] 32 -0.050 [-0.167, 0.067]

1: TOPIX, 2: JGB, 3: Yen/USD.

Oice =/ Var(€it), oiny =/ Var(ni),

pijee = Corr(eir, €j1), pijen = Corr(ei,mjt), pijum = Corr(nie, mje).-

5.2.2 MESV model
For the MESV model, we assume that prior distributions are
¢ij+1 8(20715)7 if 1 =7,
2 B(8.25,2.75), otherwise,
uo~ Nq(O, 51,),
B2~ W(6,67'2%),  vec(Z?!)|B?2 ~ Ny (0, (51,) ® =2).
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The mean and the standard deviation of the prior distribution of ¢;;, i # j are set 0.5
and 0.25 respectively, which is fairly flat as we shall see in our posterior estimation results.
4 We take %% = 237! assuming =* = diag(I3, 23,) and the (i, §)-th element of 3%, is
PijmTiamTjny Such that

PE(k1)E(m,n),m 0.2, otherwise

U*E(k,l),nﬂ = 02, 1 S l S k S 3.

which is based on the MSV model result and we set the correlations between non diagonal
elements of H; is smaller than that of diagonal. We draw 220,000 samples for the multi-
move sampler discarding the first 20,000 samples as a burn-in-period. The number of blocks
is set to 185 based on several trials®. The acceptance rates for ¢, & and h in MH algorithms

are on average 0.89, 0.98 and 0.81 respectively®.

*We also tried a uniform prior for ¢;; with i # j. Although its sample path becomes a bit unstable in the
sense that it sometimes takes low values around zero, but the parameter estimates are basically the same.

®The number of blocks is selected by trials and errors to minimize the maximum of inefficiency factors.
The average number of variables in one block is chosen to be about 20.

®The elapsed time for the simulation using the multi-move (single-move) sampler is 8.95 (0.43) hours
per 10,000 iterations with Richland AMD A10-6800K Black Edition (4.1GHz). The inefficiency factor for
Hii,1855, for example, is 9.0 (250.2). Taking account of both elapsed time and inefficiency factors, the
multi-move sampler is highly efficient.
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Table 16: MESV model.
Posterior means, standard deviations, 95% credible
intervals, and inefficiency factors.

ij Mean Stdev 95% interval IF

11 0.968 0.005 [0.958,0.977] 141

22 0.968 0.006 [0.955, 0.979] 94
i 33 0.953 0.012 [0.927,0.972] 648
ij
21 0.860 0.050 [0.738,0.923] 693
31 0.845 0.060 [0.699, 0.924] 560
32 0.590 0.199 [0.051,0.826] 741
110286 0.087 [0.114,0457] 6
22 -2.923 0.113 [—3.143,—2.699] 11
i 33 -0.929 0.079 [-1.084,-0.773] 16
ij
21 -0.222 0.018 [—0.258,—0.186] 24
31 0.054 0.023 [0.009, 0.099] 25
32 0.007 0.017 [-0.027, 0.041] 75
11 0176 0.014 [0.150,0.204] 253
22 0211 0.018 [0.176,0.249] 277
33 0.204 0.027 [0.156, 0.263] 645
OE(i,5),m
21 0.106 0.016 [0.080,0.144] 742
31 0.133 0.022 [0.097,0.185] 828

32 0.144 0.022 [0.107,0.193] 801

1:TOPIX, 2:JGB, 3:Yen/USD

ou(ij)mn = VVar(E(i, j))
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Table 17: MESV model. Posterior means, standard deviations,
95% credible intervals and inefficiency factors.

PiE (k) ,en = Corr(ei, By (4, k))

it jk Mean Stdev  95% interval IF
111 -0.467 0.054 [-0.567,-0.358] 90
222 0109 0.059 [-0.224,0.008] 64
333 -0.166 0.063 [-0.287,-0.041] 87

121 -0.100 0.065 [-0.230,0.027] 71
131 -0.050 0.073 [-0.191,0.094] 89
122 0.218 0.060 [0.097,0.332] 65
132 0.058 0.085 [-0.108,0.225] 162
133 0.026 0.065 [-0.107,0.150] 99

211 -0.005 0.061 [-0.125,0.114] 70
221 0023 0068 [0.108,0.160] 74
231 0012 0072 [-0.130,0.152] 74
232 -0.046 0.080 [0.204,0.109] 120
233 0055 0.063 [0.069,0.177] 76

311 -0.024 0.061 [-0.143,0.095] 101
321 0078 0.065 [-0.051,0.206] 69
331 -0.128 0.074 [-0.273,0.016] 109
322 -0.061 0062 [-0.183,0.061] 67
332 0020 0085 [-0.148,0.188] 215

1:TOPIX, 2:JGB, 3:Yen/USD

Table 18: MESV model. Posterior means, standard deviations,
95% credible intervals and inefficiency factors.

PEG,j)E(k),m = Corr(Eq(i, j), By (k,1))

ij kI  Mean Stdev  95% interval IF
1122 0.009 0.091 0.168, 0.187] 155
1133 0466 0.083 0.293, 0.616] 221
2233 0.263 0.097 0.064, 0.443] 237

1121 0.151 0.088 0.025, 0.320] 151
1131 0.155 0.099 0.041, 0.350] 181
1132 -0.233 0.131 0.459, 0.056] 362

[_
[
[
[_
[_
[_
2131 0.020 0.108 [-0.185,0.233] 230
2122 0.081 0.096 [-0.108,0.267] 154
[_
[_
[_
[_
[_
[_
[_

21 32 -0.023 0.137 0.296, 0.240] 369
2133 -0.010 0.104 0.211, 0.197] 202

3122  0.045 0.109 0.175, 0.252] 193
3132 -0.151 0.140 0.419, 0.135] 395
3133 0.134 0.109 0.079, 0.348] 225

2232 0.062 0.144 0.217,0.346] 386
3233 -0.145 0.136 0.399, 0.139] 472

1:TOPIX, 2:JGB, 3:Yen/USD
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The estimation results are summarized in the Tables 16, 17 and 18. We notice that the pa-
rameters of the diagonal elements of H; (the 1st, 4th, and 6th elements of h;) are similar to
those of MSV models. The autoregressive parameters of log volatilities, (¢11, ¢22, ¢33), are
(0.968, 0.968, 0.953) while (¢1, ¢2, ¢3) for MSV models are (0.965, 0.966, 0.948). The poste-
rior means of (11, p122, p33) are (0.286, —2.923, —0.929), while (log o7, log o3 ., logo3 .
evaluated at the posterior means in Table 15 are (0.385, —2.582, —0.825). Further, the es-
m)s are (0.176, 0.211,
0.204), while those of (01,02, 03,m,) are (0.191, 0.210, 0.225). Regarding the lever-

timates of standard deviations of the ni, (0g(1,1)np OE(©2,2).mm) OE(3,3)

age effects, the estimates of (01 p(1,1),en» P2E(2,2),en) P3E(3,3),en) aTe (—0.467, —0.109, —0.166),
while (p11,er, p22,en, P33,en) for the MSV models are (—0.445, —0.177, —0.167).

Estimated volatilities and correlations. However, as mentioned in Section 2, the parameters
such as &, M and X, in the MESV model do not always correspond to those of the stock,
the bond, and the exchange rate as they are in the MSV model. Thus, to interpret the
estimation results of the MESV model in more intuitive way, we consider the posterior
means of time-varying volatilities of each series, dynamic correlations among three returns
and news impact curves using MCMC simulation technique.

First, we consider the posterior means with 95% credible intervals for the square root
of the time-varying variances as shown in Figure 2. The estimated volatility series of the
TOPIX returns sharply increased in September 2008, corresponding to the financial crisis
during which Lehman Brothers filed for Chapter 11 bankruptcy protection. The volatilities
of the JGB index returns increased in December 1998 and in September 2003 when the index
dropped (or equivalently, the JGB interest rate ran up) in both periods. In December 1998,
the JGB is supplied excessively because the Japanese government issued a large amount
of JGB for the economic-stimulus measure, and the Ministry of Finance Japan announced
to stop buying the new bonds in this month. Moreover, the Moody’s downgraded the
JGB rating in November 1998. In this month, the Nippon Credit Bank was brought under
government control because of a large amount of the bad debt. In the mid 2003s, following
the increase of the US bond interest rate and the economic boom, the deflationary concerns
of Japan toned down. The expectation for the lifting of the zero-interest-rate policy of
the Bank of Japan, the JGB interest rate shot up in June and September of 2003. The
volatilities of the Yen/USD increase after the August 1998 when the ruble devaluation and
the Long Term Capital Management report a large loss. Especially, the USD fell from
135.6 yen to 117 yen in five days of early October 1998. This is just after the decision of the

monetary relaxation policy in the USA on September 29th and issuing the G-7 communique
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which urged the injection of taxpayers’ money to financial institutions in Japan on October

oth.
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Figure 2: Posterior means with 95% credible intervals for the square root of time-varying
variances. Top: TOPIX, middle: JGB, bottom: Yen/USD.
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Figure 3: Posterior means with 95% credible intervals for time-varying correlations. Top:
(TOPIX, JGB), middle: (TOPIX, Yen/USD), bottom: (JGB, Yen/USD).
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Next, we investigate the posterior means with 95% credible intervals for dynamic corre-
lations among three returns as shown in Figure 3. These correlations are computed using
the MCMC samples of the covariance and the variances that are elements of exp(H;) which
is the matrix exponential transformation of the log volatility matrix H;. The correlations
between the stock and the JGB returns largely fluctuate taking negative values where they
drop to less than —0.86 in January 2008 during the downturn of the stock market. The cor-
relations between the stock market and the exchange rate returns fluctuates around zero. It
is noted that this takes negative values during Asian crisis period from July 1997 to August
1998. In this period, the yen kept weakening and Japanese stock prices dropped. The JGB
returns and the exchange rate returns seem to have no correlation throughout the sample
period.

News impact curves. Finally, to show how the shocks in the returns at time ¢ affect the
volatilities at time ¢+ 1, we describe the news impact curve following Engle and Ng (1993).
Similar ideas for stochastic volatility models are discussed by Yu (2005) and Asai and

McAleer (2009). Let H, = M and E; = O and consider the case where hyy 1 = p +
Ena eXp(_M/2)yt-

stdev(yl) | yil o 4 ~ Corr(yl,y2)
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Figure 4: Posterior mean (solid line) and 95% interval (dotted lines) of the news impact
curve® for the one-step-ahead conditional covariances of y;11 when H; = M and E; = O.
(* The domain of the estimated curve is restricted to the range within +4 sample standard deviation
of actual returns for each y;;.)
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Figure 4 shows the posterior news impact curves on standard deviations and correlations
of y; 1 from y;, obtained by calculating the posterior means and the 95% intervals of the
normalized exp(H;1) under the various shocks of y;. The horizontal and vertical axes show
the values of y; and the standard deviations and correlations calculated from exp(H;,1)
respectively.

The left three panels in Figure 4 show the news impacts on the standard deviations
of y;+1 caused by the elements, y1; (red lines), y9; (blue lines) and ys; (black lines). The
negative return on the i-th asset increases its own (i-th) future volatility, indicating the
existence of leverage effects. The red lines in the middle and bottom left panels imply that
the positive TOPIX return increases the future volatility of the JGB and the exchange rate
returns. However, the impact of the TOPIX return on the exchange rate return volatility
is smaller than that on the volatility of the JGB return. The positive shocks of the JGB
return increase the future volatility of the exchange rate, while the negative shocks of the
exchange rate return cause the higher future volatility of the JGB return. These results
are generally consistent with those obtained with MSV model, taking account of the 95%
credible intervals.

The right three panels in Figure 4 show the news impacts on the correlations among
Y1,t+1, Y2,4+1 and y3 ;11. The top right panel shows the impact on the correlation between
the TOPIX and JGB returns. It is noted that the correlations are strongly affected by the
exchange rate return but hardly affected by the TOPIX and the JGB returns. The black
line in the middle right panel shows the impact on the correlation between the TOPIX and
exchange rate returns caused by the shock of the exchange rate return. Interestingly, the
sign of the correlation between the TOPIX and exchange rate returns strongly depends on
the impact of the shock. More precisely, the large positive shock (greater than one) on
the exchange rate return tends to produce the negative correlation between the TOPIX
and exchange rate return, while the small or negative shock tends to produce the positive
correlation. The sign of the correlation between the JGB and exchange rate returns also
depends on the impacts of the shocks. However, we note that the impacts by shocks of the
TOPIX and exchange rate returns are very small and the impacts by the JGB return shock

have wide 95% intervals.
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5.3 Extensions to fat-tailed error distributions and model comparison

Finally, we conduct a model comparison of the proposed MESV model with MSV models.
In addition to the MESV and MSV models with normal errors, we consider extended models

with fat-tailed error distribution given by

1/2
& = t/ €t, € NNP([)?IID)a

where &; is a random variable which takes positive values and independent of e;. We consider
the multivariate Student-¢ error with &, Leg (%, %) The extension is straightforward and
hence we omit details of MCMC algorithms (similar specifications and MCMC sampling
are also discussed in the Omori, Chib, Shephard, and Nakajima (2007) for univariate SV
models, and Ishihara and Omori (2012) for MSV models). Thus, we consider the following

six models:

e MSV-n model: MSV model with normal error distribution.

MSV-t model: MSV model with multivariate Student-# error distribution.

MESV-n model: MESV model with normal error distribution.

MESV-t model: MESV model with multivariate Student-# error distribution.

BEKK(Asymmetric) model: Multivariate asymmetric GARCH model (diagonal BEKK
model, see e.g. Kroner and Ng (1998)) defined by

Yt = €, (18)
1/2

gt = Ht €, €p N3(0,I), (19)

Ht =W =+ Ast_ls;_lA' + BHt_lB, + Cs;‘_lsf'_lc', (20)

W=0Q-A0A'-BOQB' - CNC/,

where e, = €;I(ey < 0), @ = E(H;) = E(ese}), N = E(eje;’) and A,B,C are

assumed to be diagonal. The matrix N is given by
N=(Q6oD)Y2{05I+Ro (1315 - )} (Q o T)/2, (21)

where 13 is a 3 x 1 vector with all elements equal to one, and the (i, 7)-th element of
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R is

1
Tij = L(pij)xpij+%\/1_p%j7
Lip) = — / / { La? ~ 2pmy +42)/(1 2)}dd
p) = ———— exp { —= (2% — 2pzy + 1)/ (1 — p*) ¢ dzdy,
2m/1 —p? J 00 ) -0 2

pij = Corr(git, €jt),

(see e.g. Rosenbaum (1961)).

e BEKK(Symmetric) model: Multivariate symmetric GARCH model (obtained by set-

ting C = O in the asymmetric model).

We assume the prior distributions v ~ G(0.001,0.001). The estimation results for v are
summarized in Table 19. The posterior means of v for the MSV and MESV models are
small, suggesting fat-tailed error distributions. The estimate of v for the MSV model is
smaller than that of the MESV model, probably because the MSV model fails to capture
the dynamics of time-varying correlations. Other parameter estimates are similar to those

of models with normal error and hence are omitted’.

Table 19: The estimation results of v
Model Param. Mean Stdev 95% interval
MESV y 15.8 2.4 [11.8, 21.5]
MSV 11.8 1.2 [ 9.8, 14.5]

Comparison based on DIC. We compute the DIC (deviance information criterion) for the

model comparison defined by

DIC = Eg)y,[D(0)] +pp,
pp = Eg)y, [D(0)] — D(Eg)y, [0]), D(8) = —2log f(Y5|0) + C,

where Cy is a constant term which depends only on the dataset Y,,. Since it cancels out in
all calculations that compare different models, we set €'y = 0 for convenience. To estimate
Ey|y,[D(0)], we use a sample analogue ﬁE%ﬂ D(0™), where we set M = 100, and
0(™s are resampled from the posterior samples generated by the MCMC method. To

calculate D (Egy, [0]), which equals to D (@) evaluated at the posterior mean, we implement

"Estimation results for the BEKK models are omitted to save space.
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an auxiliary particle filter to compute the log-likelihood ordinate log f(Y},|@), where we set
the number of particles I = 10,000 for the MSV and the MESV models. We repeat this

procedure ten times to obtain the numerical standard error.

Table 20: The averages of DIC estimates, their standard errors,
the maximum and the minimum of DIC values.

Model ranking DIC (s.e.) DICpax DIChin
MESV-t 1 20066.7 (1.7) 20074.2 20058.3
MESV-n 2 20090.1 (1.5) 20098.4 20084.1
MSV-t 3 201184 (1.3) 20124.3 20112.4
MSV-n 4 202012 (1.0) 20206.3 20196.0
BEKK (Asymmetric) 5 20564.8 (0.7) 20569.7 20562.8
BEKK (Symmetric) 6 20685.4 (0.8) 20688.8 20680.9

Table 20 shows the averages of DIC, their standard errors, and the maximum and the

minimum of DIC values computed for six competing models. The DIC values for the MESV
models are much smaller than those for the MSV models and the BEKK models, and hence
the MESV models outperform other models. Among MESV models, models with fat-tailed
error outperform the model with normal error, and the model with multivariate-t error
distribution has the smallest DIC. This empirical study shows that our proposed model
with multivariate-t error distribution performs quite well to describe the multivariate asset
returns data escribe the multivariate asset returns data.
Comparison based on the prediction of the realized covariances. Further, we compare the
volatility predictive performances of proposed models using both daily stock returns and
daily realized covariances discussed in Noureldin, Shephard, and Sheppard (2012). We use
1511 daily return series (IBM, Alcoa and General Electric) from January 2nd, 2004 to
December 31st, 2009. Model parameters are estimated using first 1411 observations, and
T days ahead predictions (7' = 1,5,10) are considered with a rolling window estimation
method (the numbers of predictions are 100, 96 and 91 respectively). We predict the future
realized covariance matrix using the posterior predictive means of the covariance matrix
of y;, which we denote by V,. The quasi-likelihood loss function (described in Noureldin,
Shephard, and Sheppard (2012)) is used for the prediction comparison,

L(Q, Vi) = log [Vi| + tx(V, ") — K,
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where ), is a realized covariance matrix, and K is constant which depends only on the data.
The realized covariance matrix is used as a proxy of the true covariance matrix. Under this
loss function, the ranking based on the conditionally unbiased estimator of the covariance

matrices is consistent with the ranking based on the true covariance matrices.

Table 21: Average of loss differences from MESV-t model.

T=1 T=5 T =10
Model Mean Std. Err. Mean Std. Err. Mean Std. Err.
MESV-n 0.883 0.099 0.965 0.088 0.960 0.084
MSV-t -0.308 0.155 1.753 0.167 3.116 0.208
MSV-n 0.934 0.126 1.164 0.121 1.289 0.115

BEKK (Asymmetric)  1.462 0.298 1.006 0.233 0.543 0.173
BEKK (Symmetric) 1.949 0.317 1.652 0.271 1.413 0.233

Table 21 shows the average of loss differences from MESV-t model for each model
(the average loss of each model minus the average loss of the MESV-t model). Since
the negative value implies that the model performs better than the MESV-t model, the
MESV-t model performs better than other models for all periods except the MSV-t model
with T = 1. However, taking account of standard errors, the MESV-t model and the
MSV-t model have similar performances in one day ahead prediction. For T' = 5 and
10, dynamic correlation models such as MESV models and asymmetric BEKK models
outperform constant correlation MSV models. This result implies the evidence of time-

varying correlations among the multivariate stock returns data.

6 Conclusion

In this paper, we extend the MSV model to allow the time-varying correlations and pro-
pose an efficient MCMC algorithm using a multi-move sampler. To sample a block of state
vectors, we construct a proposal density using the normal approximation via a Taylor ex-
pansion of the logarithm of the target posterior density for the MH algorithm where the
expectations of Hessian matrices are derived analytically. Moreover, to calculate the log-
likelihood, we describe an auxiliary particle filter. An empirical analysis is presented using
three returns of the TOPIX, the Japanese bond price index and the Yen/USD exchange
rate. The correlation between returns of the TOPIX and the Japanese bond index is found

to be time-varying. In contrast, the correlation between returns of the Japanese bond price
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index and the Yen/USD exchange rate is shown to be stable and less volatile. The positive
cross leverage effects from the TOPIX on the Japanese bond price index is also found. The
news impact curves for the MESV model are presented and investigated in detail. A model
comparison between the MESV model with constant correlation MSV models including
heavy-tailed error models is conducted. The MESV model with multivariate Student-¢ dis-
tributed error is found to outperform other models based on DIC and forecast performance

of the future realized covariance matrix.
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Appendix

A Multi-move sampler

To generate {ht}fiﬁl given other h;’s, for example, we sample the normalized disturbances
{z ;27" instead of {h,};I", since such a sampling method is known to reduce the

MCMC sample autocorrelations where

- —-1/2
:Btzﬁlrml/Qnt, t=1,...,n—1, =z =13, /770,

and 21/2, /2 denote Choleski decompositions such that X,, = n2nl2 and ¥y =
m 0 m m nn

/2,

The logarithm of the full conditional joint density of {z;};X"™ ! excluding constant
terms is given by
1 s+m—1
log f({mt}iiéniwhs, hs+m+17 Ysy - - ays+m) = _5 Z :B;:Dt + L, (22)
t=s
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where

s+m
Z L — "75+m m "75+mI(3 +m <n), (23)
Ns+m = hs-l—m—l—l — K — q)(hs—l—m - l"')a (24)

=302 (hir1 — o — ®B(hy — p)).

Let a; = hy — p and &; = izt — p where ﬁt is h; evaluated at x; = @4.
Consider the approximation via the second order Taylor expansion of L around the a; =
& (t=s,...,5+m — 1), and replace the Hessian matrices by the negative of information

matrices to obtain

IOg f({mt}s+m ! |h’57 h’s+m+17 Ys,--- 7ys+m)

s+m—1
~ const. — 3 tz; zix + L
s+m
+ Z |:dl - = at at) A.t + (atfl - dtfl)lBt (at — dt)
t=s+1
= const. + log f* ({mt}s+m ! |ots, Csimi1, Yss oo s Ysm)s (25)
where d}, = 0L/0a,
9*L
A, = —-F t= 1,... 26
t [8at8a2]’ s+ ) 73+m7 ( )
B oy I + B o) (27)
— =S - m =
t aataa:f,l ) ) ) ) s+1 )

and Jt, At, B, are those evaluated at é&;. The expectations are taken with respect to y;
given parameters and other latent variables.
Then f*({z;};=™ !|-) is a conditional posterior density of {a;}:=™ ! for the following

linear Gaussian state space model (28)—(29):

A

Uy = Zioy+Guuy, t=s+1,...,8s+m, (28)
oy = Po+Kuy, t=s+1,...,s+m—1, (29)

ur = (527 :13;), ~ Np+q (07 I) )

where K; = [O, 2,17{,2] fort=1,...,n—1and Ky = [O, 2(1]/2}, and ¥, Z;, G; are computed
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as follows:

1. First we set & =, (t =s,...,8+m — 1) where &, is a current sample.
2. Let 1 = Béy + Soha, (t=s5,....5+m — 1) with 6, = hy —

3. Set by = 0 and ]§5+m+1 = 0. Compute
Dt = At —ﬁtDt__ll]%;, bt = dt_]gtDt__llbt—la t=8+1,...,8

4. Let

9 = & +D; (b +Blayy1), Z;=1,+D;'B®,
G, = D/ D;'B|Z,,], t=s+2...,s+m,

where D% /% denotes a Choleski decomposition such that D; = D% / ZD% /2

5. Implement the disturbance smoother (Koopman (1993)) to obtain {&;};X™ !, the

mode of the conditional posterior density of {@;};*™ ! for the model (28) and (29).

If the the mode converges (however, usually several iterations will be sufficient to

construct a proposal distribution), save g;, Z; and G;. Otherwise, go to Step 2.

Then we apply the simulation smoother (e.g. de Jong and Shephard (1995), Durbin and

Koopman (2002)) to generate a candidate {a:t}s+m ! from this state space model for

Metropolis-Hastings algorithm. We accept a candidate with probability

i {1 e DY AE? }”ml)}
fqdi2r (el

A.1 Derivation of d;, A; and B;

Summary of matrix differentiation

We first summarize definitions for the first and second derivatives of a matrix and some

results (Magnus and Neudecker (1999), and Magnus and Abadir (2007)). Let F' be a twice

differentiable m x p matrix function of an nx ¢ matrix X. Then the first derivative (Jacobian

matrix) of F' at X is defined by the mp X ng matrix

OF(X)  0Ovec(F (X))

DF(X) = 0X  Ovec(X)
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where vec(-) is a vectorizing operator, and the second derivative (Hessian matrix) of F' at

X is defined by the mnpg x ng matrix

0 vec(F(X))\’
HF(X)=D ((DF(X))) = ———— — .
30 =0 (@50 = g (e
Chain rule: Let S a subset of R"*?, and assume that F' : S — R™*P ig differentiable at an
interior point C of S. Let T be a subset of R™*P such that F(X) € T for all X € S, and
assume that G : T'— R"*® is differentiable at an interior point B = F(C) of T'. Then the
composite function H : S — R™** defined by H(X) = G(F (X)) is differentiable at C, and

DH(X) = (DG(F(X)))(DF(X)) = %V(ife(cc(’l(?f? %)))),) %V(evce(cl?g)),). a0

When qg= 1, = Rnxl, f . Rnxl N Rmxp7 qg: RMXp _y Rrxs,

09(f(x)) _  9vec(g(f(x))) dvec(f(x))

ox’ ~ Ovec(f(x)) Ovec(x) (31)

Product rule: Let S a subset of R**Y, and assume that F': S — R™*? and G : § — RP*"

are differentiable at an interior point C' of S. Then

ovec(FQ)
d(vec(X))

ovec(F)
d(vec(X))!

ovec(Q)

— (G’ ®1,) d(vee(X))”

+ @ ®F) (32)

Derivation of d;

Let F; = —%Ht and z; = exp(F;)y;. The logarithm of the conditional probability density

of y; given h; excluding the constant term is
1 1 el
lt = —Etr(Ht) — §(Zt — mt) St (Zt — mt),

where E[z] = my = 2,2, (a1 — ®ay)I(t < n) and E[z2z{] = S; + mymj} with S; =

I,,—EEHE;,}E"EI (t < n). Further, let D, denote a p? x ¢ duplication matrix (whose elements

are 0 or 1) such that vec(A) = Dpvech(A) for a symmetric matrix A. Then

otr(Hy)  otr(Hy) o ,
Bag o avech(Ht)/ - VeC(Ip) Dp - VeCh(Ip) ) (33)
8mt B
b, = 3,2, It < n), (34)
omy_y 1
oar) BeySy 1(t > 1), (35)

39



where we used the chain rule and Djvec(A) = vech(A + A’ — (A © 1)) for a p x p matrix
A in (33) (e.g. Magnus and Neudecker (1999), Magnus (1988)). Further, using the product

rule for the power series expansion of F; with

i

dvec(F}) i—j j—1
Sty = ; [Ft @ Fi ] , (36)

we obtain

ovec(exp(F;)) i 1 Ovec(F})
Ovech(F;) < ! ovech (Fy)’

7

_ VD vV, = ovec(exp(Fy)) il [ 13®FJ 1}
= tp, t = 8Vec Ft P 2! =

Let Q; = {exp(—F;) ® I,} V. Noting that z; = (y; ® I,)vec(exp(F})),

th 1 1
der, = _E(y{t ®1I,)V,D, = _E(zzlt ® I,)Q¢Dy. (37)

Using (33) — (37) and 0z’ Azx/dx’ = 2x’'A for a p x p symmetric matrix A and a p x 1

vector &, we obtain

o1 o] 1
* = [3—04] " [8—04 + ®%,, (a1 — Poy)I(t =s+m < n)

1 1
= —§vech(1p) + {gD;;Q;(Zt ®I,) — @2;"127751(15 < n)} S (21 — my)
2;,712"58;11(2,5,1 —my_)I(t>1)+ Qﬁgnl(atﬂ — ®oy)I(t =s+m <n). (38)

Although Q; involves an infinite series of matrices, its computation is easy as shown in

Appendix A.2.

Derivation of A,

y (34)-(38) and Qi(2: ®@ L) = Vi(y: @ I),

1 th(yt ®1 )S_l(zt — mt) 1
A, = —--D.E L — —®N|
! 2P dal, 2 !
+OM;® + M,y + B, ®I(t =5+ m < n), (39)
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where

M, = %, %,.8'%,%, 'T(1<t<n), (40)
N; = D Qj(m;®L)S; 'S, I(t < n). (41)
Using a product rule and dvec(F;)/dc; = —3D,, we obtain

OVi(y: @ 1,)S; ' (20 — my)
Jay

_10(zs —m
= ——{Zt m,)'S; ®Ip}{yt®1 ) ® L }Wt ’I‘Vt(yt@Ip)Stl (i?a’ t)v
t

where W, = dvec(V;)/dvec(F,)'. Since

E[{(z—m)'S; ' @12} {(y; ®L,) ® L2}
= Ef(ze—my)'S;'(y;®1,)] ® 1,
= E [vec(S; ' (ze — my)y;)'] ® L2 = vec(exp(—F;))' ® Lz,

and

d(zy — my)
17
FE Vt(yt@)l )S 8at
1
= 5 QE[(281,)8; (2 81,))] QD, + Q(m; ® L,)S; ' ., %, @
1
= ——Q;E [(2e27) ® S;'] QD + Q(m; ® I, )stlzgnz ®

——Qt{ (St +mym)) ® S;'} QD, + Qj(m; ® 1, )stlzgnz &,

Equation (39) reduces to

_ 1
A, = ZD;, P+ Qi {(St + mm)) ®S;'} Q| D, - —(Nt<I> + ®N))
+OM;® + M,y + B, ®I(t =5+ m < n), (42)

where D, P; = D;, {vec(exp(—Ft))' ® ng}Wt. The computation of P; as well as Q; is
discussed in Appendix A.2.
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Derivation of B;
By (34), (37) and (38),

241 — mMy_1)
!
dovy_y

)
B, = —z:;nlzmstllE[( ]— N}, —M; ®, t=2,...,n. (43)

A.2 Computation of P, and Q;

(1) Q

Since F is a symmetric matrix, there exists a p X p orthogonal matrix U; such that
U,F,U; = Ay,

where Ay = diag(Aig, Aot ..., Ape) and Ay > Agp > ... > Ay are the ordered eigenvalues of
Ft. Then

o¢] [

{exp(—F}) ®IP}Z;Z[ F @R 1}

7

= ZEZ[exp 17®Fg_1},

=1 ji=1

Q¢

= (U, Uy Z Z{exp —A)AITT @ AT 1} (U, @ UY). (44)
1= 1 7=1

The second factor in (44) is a diagonal matrix with its (k, k)-th element given by

1, if Aot = At

Z Zexp NN =0 (45)
= explue2at) L i Xy # At

where a = |(k—1)/p| + 1 and b=k —p|(k —1)/p], and [z] denotes the integer part of z.
Note that Ay = Ay for k= (i —)p+i (i =1,...,p).

(2) P,

Let Ky, denote a mn x mn 0-1 matrix called a commutation matrix such that vec(A') =

K, nvec(A) holds for a m x n matrix A (see Chapter 3 of Magnus and Neudecker (1999)).
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Using

Ovec(A ® B
W = (In @ Kgm @ Ip)(I;mp ® vec(B)),
Ovec(A ® B
ey = (L8 Ky 0T,)(vec(A) O T,

where A, B, X are m X n, p X ¢, n X p matrices respectively, we compute

W, — ovec(V Z .ZavecF ]®F b

avec ovec(Fy)

i—

ovec (Fi_j )

1
I, pi 1)) Vet )
(L2 ® vec(Fy 7)) Bvec(Fy)
1

~

1
= Z.—,(Ip®Kpp®Ip){
i=2

j:
: - dvec(FI 1)
i—j ) t
+ jEZQ(vec(Ft ) ® Ipz)iavec(Ft)’ .

Using the product rule,

k

dvec(Fy) k— -1
ovec(Fy)! Z 0%

m=1
we note that

- vec(F! ™
{vec(exp(~F)) @ L2 } (T, @ Kpp @ T,) {Ip2 ® VeC(Fi_l)} BN

ovec(Fy)
= K,p(F/ lexp(-F) ® 1, )W—K iFﬂ exp(—F)F 7" g ph1,
PPt ¢ ovec(Fy) pph ‘ t
and
dvec(FI™h
{Vec(exp(—Ft))' ® Ip2} (Ip ® Kpp & Ip) {VeC(F ) ® I } W(Ft‘t)’
i Ovec(FI 1 = i 1— _
= {Fi T exp(~Fy) ®1p} W = ZF@ T exp(~F)F VhgFh1,
h=1
by using

K.,(BA®IL,) = (vec(A) ®I,2)(I, ® Kun ®L,)(I,2 ® vec(B)),
(BAI ® In) = (VeC(A), ® InQ)(In Q@ Kpp ® In)(vec(B) ® In2)a
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where A, B are m x n, p X ¢ matrices (e.g. Theorem 4.4 of Rogers (1980) on p. 23). Thus,
using DK, = Dy,

D,P; = D) {vec(exp(-F;)) ®1,:} W,
0 1 i—1 i—j i =1 .
= D2y (Z D exp(-F)F "I @FIT 4} Y exp(-F)F, " @ Ff*)
i=2 " \j=1h=1 =2 k=1
00 1 i—1 t—jJ .
= 2D} =) > exp(-F)F " o R
i=2 " j=1h=1
o 4 il |

and we obtain

)

oo

1 ) -
P, = 22_—' (1 —j)exp(— Ft)Fl 7= 1(X)Fg !
1=2

|
-

=
<.
Il
—_

00 i—1

1 | P

= (Uou)|2) :—' (G — ) {exp(—At)At It @ A 1} (UL @U)). (48)
i=2 " j=1

The second factor in (48) is a diagonal matrix with its (k, k)-th element given by

1 = 1 if At = Aot
1 _ ij-1yj—1_ ) b a :
(=9 exp(=Aa)Aar” Mot = 3 sfexpOiedad) 1 Oap—dat)}

' (49)
=i Dur )2 ;i Aat # Aot

where a = [(k —1)/p] + 1 and b =k — p[(k —1)/p].

B Delaying rejection algorithm

To improve the MH algorithm by reducing the number of rejected proposals, Mira (2001)
proposes the delaying rejection algorithm. Let 6° denote the current value, and let 6”7
(J =1,2,...) denote the J-th stage proposal. Further, let 7(-) and g;(+|---) be an invariant
density and the J-th proposal density. The delaying rejection algorithm is described as

follows:

1. For J = 1, we generate @' from the proposal distribution with the density ¢;(8'|0°)
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and accept it with probability

) m(60')q1(0°)6"
a1(6°,0') := mm{IW}’ 0)

If it is accepted, go to Step 3. If it is rejected, then increase J by one, and move to

the second stage.

2. For the J-th stage, we generate 8”7 from the proposal distribution with the density
q7(07168°,0',...,6771) and accept it with probability

as(6°,6',...,67)
o m@N T a0 87,87 T T TTE {1~ 087,07 )
: ) 7(6°) [1, 4;(607160°,0", .., 09=)) [[1=1{1 — a; (6, ..., 07)} :

If it is accepted, go to Step 3. Otherwise, increase J by one, and repeat Step 2.
3. Accept 87 as a new MCMC sample, and go to Step 1.

In this paper, we only use the independence sampler for our MH algorithm, and hence
q7(0716°,0',...,07"1) = ¢(07). Tt makes the algorithm simple, but it may result in re-
peating Steps 2 and 3 with large J. Thus, sometimes the delaying rejection algorithm with
independent proposal can not exit from Step 2. To reduce the computational time, we only

implement the algorithm until J <5 where

(51)

Iy _ . J
s (0°,0",....07) :min{l, max{0,9(0”) — max;-....1-1 9(6 )}},

g(0°) —max;j—; 7 19(6%)
and ¢(67) = m(67)/q(67). If the proposal is rejected at the fifth stage, we use the current
value as an MCMC sample.
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