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Abstract

The problem of estimating a covariance matrix in multivariate linear regression
models is addressed in a decision-theoretic framework. Although a standard loss
function is the Stein loss, it is not available in the case of a high dimension. In this
paper, a new type of a quadratic loss function, called the intrinsic loss, is suggested,
and unified dominance results are derived under the loss, irrespective of order of
the dimension, the sample size and the rank of the regression coefficients matrix.
Especially, using the Stein-Haff identity, we develop a key inequality which is useful
for constructing a truncated and improved estimator based on the information con-
tained in the sample means or the ordinary least squares estimator of the regression
coefficients.

AMS 2010 subject classifications: Primary 62F11, 62J12, Secondary 62C15, 62C20.

Key words and phrases: high dimension, inadmissibility, invariant loss, Moore-
Penrose inverse, statistical decision theory.

1 Introduction

The problems of estimating the covariance matrix in multivariate linear regression models
are addressed in a decision-theoretic framework. The dominance properties of truncated
estimators over non-truncated and unbiased estimators have been studied in Sinha and
Ghosh (1987), Kubokawa and Srivastava (2003) and Kubokawa and Tsai (2006). These
are multivariate extensions of Stein (1964) who established that the best location-scale
equivariant estimator of a normal variance is dominated by the truncated estimator using
the information contained in a sample mean. All the dominance results have been derived
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when the dimension p of the covariance matrix is less than the degrees of freedom n. In
this paper, we want to establish unified dominance results which cover both cases of p > n
and n > p.

To explain the problem specifically, let us consider a canonical model of the multi-
variate linear regression model. Let X = (Xq,..., X))  and Y = (Y,...,Y,)" be,
respectively, m X p and n x p random matrices, where X,;’s and Y ;’s are mutually and
independently distributed as

XZN./\/;)(OHE), izl,...,m,

. (1.1)
Y; ~N,(0,,%), j=1,...,n.

Suppose that 6;’s are unknown mean vectors and that 3 is an unknown positive definite
matrix.

Let V. = Y'Y = Y7 | Y,Y. Then, V has a Wishart distribution W,(n,X) for
n > p, but a singular Wishart distribution for p > n (see Srivastava (2003)). Our primary
interest is in estimation of the covariance matrix 3 based on (V, X) and in derivation
of unified dominance results irrespective of order of n, p and m in a decision-theoretic
framework. In the case of n > p, a standard loss function is the Stein loss given by

Lg(E, %) =tr =2 —log |E=7Y — p, (1.2)

which is easier to handle than a quadratic loss tr[(EX ™" — I »)?]. Also, the unbiased
estimator n~!'V is the best among estimators ¢V for positive constant c¢. In the case
of p > n, however, the Stein loss is not available, since n='V is singular. Thus, in this
paper, we suggest a new intrinsic loss function given by

Ly(2,2) = 2[S(27'8 - [’V = [ 1SVE] — 20 [V + 2[ZVH],  (1.3)

where V' is the Moore-Penrose inverse of V. The intrinsic loss corresponds to the loss
derive by substituting V't into one of two 3! in the quadratic loss. It is interesting to
point out the following properties of the intrinsic loss (1.3).

(1) In the case of n > p, there are several similar properties between the losses (1.2)
and (1.3). First, the unbiased estimator n~'V is the best location-equivariant under
the two losses. Secondly, the unbiased estimator can be improved on by the same
James-Stein (1961) estimator under the two losses. Thirdly, the Bayes estimator of
¥ is of the same form (E[X7'|V])~! under the two losses.

(2) The decision-theoretic results derived in the case of n > p can be extended to the
case of p > n under the intrinsic loss with exchanging n and p.

(3) The terms which we need to evaluate analytically under the two loss functions (1.2)
and (1.3) are E[tr[f]E_l]] and E[tr[E_lflV+ZA]}], while we need to evaluate the term
E[tr[E27'E% Y] for the quadratic loss. This shows that the two losses are easier
to treat analytically than the quadratic loss.



The main objective of this paper is the derivation of unified dominance results that
estimators of ¥ can be improved on by truncated estimators based on the information
contained in X, irrespective of order among n, p and m. Such a dominance result was first
established by Stein (1964), and several extensions to the multivariate models were studied
by Sinha and Ghosh (1987), Perron (1990), Kubokawa, Robert and Saleh (1992) and
Kubokawa and Srivastava (2003) in the case of n > p. These articles applied conditional
arguments to deriving the dominance results. Kubokawa and Tsai (2006) suggested a new
method based on the Stein-Haff identity developed by Stein (1977) and Haff (1980) for
n > p. In this paper, we use the same method to extend the dominance results to the
case of p > n under the intrinsic loss.

The paper is organized as follows: In Section 2, we illustrate several important points
on how similar the intrinsic loss (1.3) is to the Stein loss (1.2). In the univariate case of
p = 1, the unbiased estimator of o2 can be improved on by a common estimator under
the same conditions relative to the two losses. In the multivariate case, the unified James-
Stein type estimator is developed for the two cases of n > p and p > n relative to the
intrinsic loss. This estimator is identical to the James-Stein (1961) estimator under the
Stein loss for n > p.

In Section 3, we analytically derive unified dominance results that estimators of ¥
can be improved on by truncated estimators based on the information contained in X,
irrespective of order among n, p and m. The main issue in Section 3 from a technical
point of view is the derivation of a key inequality to showing the dominance. Also,
some numerical results of simulation studies are provided for the risk functions of several
truncated estimators. The numerical results show nice performances of the truncated
estimators for various n, p and m.

In Section 4, we extend the results to the estimation of the covariance matrix in linear
mixed models and to the estimation of the precision matrix. Concerning the former issue,
the covariance matrix 3 corresponds to the ‘within’ component of variance. Although
the estimation of variance components in univariate random effects models have been
studies in many articles, multivariate cases have been discussed in several articles including
Amemiya (1985), Calvin and Dykstra (1991), Mathew, Niyogi and Sinha (1994) and
Srivastava and Kubokawa (1999). The results given in Section 3 can be applied to this
problem.

2 Similarity between the Intrinsic and the Stein Losses

2.1 A univariate case

In the univariate case of p =1, let V. =>" YV? and X = (X1,...,X,,)" in the model

(2

(1.1). Then, V/o* ~ x2 and X ~ N(0,0%I,,). The Stein loss and the intrinsic loss



functions are described as

Ls(6*,0%) = 6% /o® — log(6?/0?) — 1,

(&2)2 5‘2 0.2
-2 _

o2V \%4 + Vv’

both of which are invariant under scale transformations. Since a class of location-scale

Ly (6%, 0%) = 0*(6%/o* = 1)*/V =

equivariant estimators is of the form ¢V for positive constant ¢, the corresponding loss
functions for the estimator ¢V are given by

9 vV o?

Ly (cV,07) _C{ﬁ + BT 2},
both of which are zero at c¢V/o? = 1 and diverge when cV/o? — 0 or ¢V/o? — oco.
Although a standard loss function is the scale-invariant quadratic loss Lg(62,0%) =
(62/0? — 1)?, the penalties are extremely unbalanced for the two cases of cV/o? < 1
and cV/o? > 1, since Lg(cV,0?) converges to 1 as ¢V/o? — 0, while it diverges when
cV/o? — oo. This undesirable property may be relaxed in the losses Lg(cV,0?) and
Ly (cV,0?).

It is interesting to demonstrate that the losses Lg(cV,0?) and Ly (cV, 0?) provide the
same minimax and unbiased estimator, the same Bayes estimator and the same class of
improved minimax estimators.

(1) Tt is seen that the unbiased estimator 62 = n~'V is the best location-invariant and
minimax under the two loss functions.

(2) Concerning the Bayes estimation, the Bayes estimator of o2 is given by the posterior
harmonic mean 6224 = (E[(¢?)7!V])~! under the two loss functions.

(3) Concerning the improvement over 63, the Stein-type truncated estimator
G2 TR = min{n_lv, (n4+m) YV + ||X||2)} (2.1)

dominates 62 relative to the two loss functions.

This type of truncated estimator (2.1) was first established by Stein (1964) under
the quadratic loss. This dominance result can be verified below for a general class of
scale-equivariant estimators given by

oo =o(W)V, for W=|X|*/V.
where | X||*> = X' X.

Theorem 2.1 Assume that ¢p(w) satisfies the following conditions:

(a) ¢(w) is non-decreasing and lim, o, ¢(w) =n~"t.
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(b) ¢(w) > do(w) for
oo(w) = /000 Fm(wv)fn(v)dv/ /000 vE (wv) fr(v)dv

where fn,(v) and F,,(v) denote density and distribution functions of a central chi-square
distribution with m degrees of freedom.

Then, the scale-equivariant estimator &é dominates 62 under the intrinsic loss and
Stein loss functions.

Proof. We first show the dominance result for the intrinsic loss Ly (62, 02). Since

limy 00 ¢(w) = n_17

Ay(N) =E[Ly(65,0%) — Ly (65,07)]

B[ GLveV)V.oa

—2] / OO{ Y oew) - 1}W¢ (tW)dt]
—2/ / / Ugb tu — 1} &' (tu/v)dt fr, (u; N) fr(v)dudv,

where f,,(v; A) denotes the density function of a non-central chi-square distribution with
m degrees of freedom and non-centrality parameter A = ||0]|>/(20?). Making the trans-
formations w = (t/v)u and z = vw/t with dw = (t/v)du and dz = (vw/t?)dt, we can
rewrite A(\) as

A) =2 T —1 ’me N dz £, (v)dvg dw. 2.2
) / / {oé(w) — 1) / Fn(z3 M)z o (0) o) () (2.2)
Since ¢'(w) > 0, it is seen that Ay () > 0 if

IS fa(v) E (vw; A)do
— Ufn F(vw; N)dv’
for F,(vw; A) = fovw fm(z; A)dz. It can be verified that
Jo falv (Uw dv fo Jn(0) Frp (vw; N)do
fo Ufn Uw dU fO Ufn (vw )\)dU

which proves the part of the intrinsic loss in Theorem 2.1.
For the Stein loss Lg(62,0?), it is seen that

Ag(N) =E[Lg(65,0%) — Ls(63,0°)]

g / " LWV, 07

:E[/loo{¥¢(tW) . 1}WZ((5MM;)) dt],

it can be seen that

¢(w) >




which can be verified to be non-negative if ¢(w) satisfies the conditions (a) and (b) in
Theorem 2.1. Therefore, the proof is complete. O

Let ¢rr(w) = min{n~!, (n +m)~'(1 +w)}. Then, ¢rr(w) satisfies the conditions (a)
and (b) since ¢o(w) < ¢rr(w), and it yields the Stein type truncated estimator 62°7. Also,
¢o(w) satisfies the conditions (a) and (b). Thus, the estimators 65 and 67 dominate
62 under the intrinsic and Stein loss functions. Especially, (73)0 is the generalized Bayes

estimator of o2 relative to the two loss functions.

2.2 A multivariate case

We next treat the estimation of the covariance matrix ¥ in the model (1.1). Let V =
S Y, Y!. In the case n > p, V has a Wishart distribution W,(n, ¥) with E[V] = nX,
and the unbiased estimator of 3 is ZU8 = V /n, which is neither admissible nor minimax,
however. In fact, James and Stein (1961) showed that U is dominated by the minimax
estimator f];s =T D;S T" relative to the Stein loss function

Ls(E, ) = tr[E% 7 — log |27 — p,

where T is a p X p lower triangular matrix with positive diagonal elements satisfying
V =TT" and D;S is the diagonal matrix of order p with the ¢-th diagonal element being
(n+p—2i+1)"%

A drawback of the Stein loss is that it is not available when p > n. As an alternative
loss, we here use the intrinsic loss function

Ly(E,%) = a[S(=7'S - ,)’V] =[S 'SV - 2u[SVH + t[SVH],  (2.3)

where VT is the Moore-Penrose inverse of V. It is interesting to point out that the
intrinsic loss Ly (3, ¥) not only produces the same minimax estimator ZP{S as given
under the Stein loss for n > p, but also extends the dominance result to the case of p > n.

In the case p > n, the James-Stein type estimator is constructed as follows: Let T' be
a p X n matrix such that V.= Y'Y = TT" and

T = (ty) = (2) :

where T’y is an n X n lower triangular matrix with positive diagonal elements and T’y is
a (p —n) x n matrix. Then the James-Stein type estimator is given by

EJJS — TDJSTt

where D% = diag(d/®,...,d’%) for d/% = (n+p—2i +1)~.



Theorem 2.2 For real numbers a and b, denote a\VVb = max{a,b} and a Ab = min{a, b}.
Let V.= TT", where T is a p X (n A p) matriz such that all the diagonal elements
are positive and all the off-diagonal elements above the diagonals are zeros. Let D7 =
diag(d{®,...,d)3 ) with d{® = (n+p—2i+1)~'. Then the James-Stein type estimator

) 'mAp
378 = TD’ST (2.4)
dominates $US relative to the loss (2.3), where the estimator

S A 1
EUS = C()V, Co = nAap = s (25)
np nvVop

is the best among estimators ¢V for positive constants ¢ under the loss (2.3).

Proof. Since the case of n > p can be easily verified, we here treat the case of p > n.
Let us consider a class of estimators

> =TD,T,

where the size of T is p x n and D,, = diag(ds, ..., d,) is an n X n diagonal matrix with
constant diagonals. We shall evaluate the risk of 37 relative to the intrinsic loss. Using
Corollary 3.1 of Srivastava (2003), we can express the p.d.f. of T as
1 2n7rn2/2 n )
— Sy TTT) < ST
i=1
where I',[n/2] = a"=DATT™ T[(n — i+ 1)/2]. Let ' = B'B, where B = (b;;) is
a p X p lower triangular matrix with positive diagonal elements. Since the Jacobian of

1
PR PIEE

transformation A = (a;;) = BT is given by

p
J[T — A] = (Hb” )( 11 b;i">,
i=n-+1
the p.d.f. of A is written as
1 22 1 A\ T i
@2m)e2 T, (n)2) < —pirad > 114

i=1

n n— z —a2,/2 i—1)An a?/2>
)

p (- 2
- (Ui iz ) (11 11"

namely, a ~ x2_,., for i = 1,...,n, and a;; ~ N(0,1) for 2 < i <pand1 < j <
(i — 1) An. All the a;;’s are mutually independent.

The risk of 37 is expressed by

R(ET %) = E[wrs™'TD, T (TT)" TD,T' — 2t'TD, T (TT")* + trV 7]
= E[trAD?A"] — 2trD,, + E[trZV ],



Denote A = (A, AL)!, where A, is the n x n matrix. It follows that

trAD?A' = t1D>*A'A = ttD2A' A, + trtD2 AL A, = Za 42+ Z Za 3

(/] (YA
i>j i=n+1 j=1

which yields

n

E[trAD? A'| :Z(n—i+1)df+id§+ zp: Zn:dﬁzzn:(n+p—2i+1)d§.

i=1 i>j i=n+1 j=1 i=1

Hence the risk of 7 is rewritten by
R(ED, %) =) {(n+p—2i+1)d? - 2d;} + B[SV . (2.6)
i=1

The best constant for d; minimizing the risk is given by
d/*=(mn+p-2i+1)""  (i=1,...,n),

which yields the James-Stein type estimator 7S for p>n.

Concerning estimators f]c = ¢V for positive constant ¢, the best ¢ is n~! under the
loss (2.3) in the case of n > p, while in the case of p > n, the best ¢ is p~! under the loss
(2.3), since R(cV,X) = npc? — 2nc+ E[trEV ], In any of these cases, the estimator ¢V’
with the best ¢ can be improved on by the James-Stein type estimator 379 relative to
the loss (2.3). O

3 Dominance Results in Estimation of the Covari-
ance Matrix

3.1 Notations and preliminaries

We begin by giving some notations. Let O(r) be the group of r x r orthogonal matrices.
For r > ¢, let V., be the Stiefel manifold, namely the set of r x ¢ matrices M such that
M'M = I,. Tt is noted that O(r) = V,,. Define D/ as the set of r x r diagonal matrices
diag(dy,...,d,) such that dy > --- > d, > 0.

Let £ = m A p An. The eigenvalue decomposition of V' = Y'Y is written as

V =HLH', for HeV,,, and LeDj,,

1/2

The nonsingular part of the singular value decomposition of X HL™"/“ is defined as

XHL'? = RF'?P,



where R € Vg, P € Voppe and FY2 = diag(f1?,..., f}’*) € Df. Let V* be the
Moore-Penrose inverse of V. It is noted that V¥ = HL 'H? and

XVTX!'=XHL 'H'X'= RFR'.

Note also that R is orthogonal if / = m and otherwise P is orthogonal.

A class of estimators treated in this section is of the form

A~

() = Y5 4+ QU(F)Q' = co{V + Q¥(F)Q'} (3.1)

where Q = HL'Y?P is a p x ¢ matrix and W(F) is an ¢ x ¢ diagonal matrix such that
the diagonal elements are absolutely continuous functions of F'. The class (3.1) can be
rewritten by

B(0) =S 4 VVX'RF U (F)R'XVV™. (3.2)
Let Q- = P'L™Y?H!. Then Q™ is the generalized inverse of Q because
QQ Q=HLY*PP'L'*H'HL'?P = HL'*P = Q.
It follows that
QV@Q)=IL QXXQ)=F

However, it is noted that

HLH' =V for m > n A p,

t_
QQ = { VVIXH XVTXHT"XVVT form <nAp,

and
QFQt — HL1/2PFI/ZRtRFl/ZPtLl/QHt
= HH'X'XHH'
=VVIX'XVV™,

To evaluate risk properties of the estimator (3.1), we here give some calculus and
lemmas which will be used in the next subsection.

For an m X ¢ rectangular matrix Z = (z;;), define an m x ¢ rectangular matrix of
differential operators with respect to Z as

Vz = (ai)‘

The operation in terms of Vz is defined as follows: For a differentiable and scalar-valued

function ¢(Z), Vzg(Z) indicates an m x ¢ rectangular matrix such that the (7,j)-th
element is (0/0z;;)9(Z). Also for a ¢ x r matrix-valued function G(Z) = (g;;(Z)),
VzG(Z) is an m x r matrix whose (i, j)-th element is given by > _,(0/0z)gx; (Z).

9



Let Z be an m x ¢ matrix and L a g x ¢ diagonal matrix. Let W = ZL ' Z". Denote
by Dy = (d}}) the symmetric matrix of differential operators with respect to W' = (w;),

where

gl 2 (‘3w,~j
with 6;; = 1 for i = j and d;; = 0 for 7 # j. The operation in terms of Dy is defined in

the same way as for V.

The Stein (1973) identity, which is given in the following lemma, is a key tool to
evaluating the risk function. For details, see Bilodeau and Kariya (1989) and Konno
(1992).

Lemma 3.1 Let Z = (zi5) ~ Nuxq(Omxqs Im @82). Let G = (gi;) be a ¢ x m matriz such
that all the elements g;; are absolutely continuous functions of Z and satisfy E||gapzca|] <
oo and E[|0gaw/0zq4|] < 00 for a,d=1,...,q and b,c=1,...,m. It then follows that

E[trZQ'G] = E[trV ,G].

The following two lemmas are useful for showing Theorem 3.1 given in the next sub-
section. The lemmas are easily proved by the same arguments as in Konno (1992, Lemma
2.1.9) and in Tsukuma and Kubokawa (2014, equation (6.18)), respectively, and the proofs
are omitted.

Lemma 3.2 Let Z be an m x q matriz and L a q X q diagonal matriz. Let g(Z) be a
differentiable and scalar-valued function of Z. Define G(W') as an m x m symmetric
matriz such that all the elements are differentiable functions of W = ZL *Z"'. Then we
have

V2{Z'G(W)g(Z)} = 9(Z)(¢ — m — DG (W) + 29(Z) Dy {W G(W)}
+trZ'G(W){Vz9(2)},

Lemma 3.3 Let the notation be as in (3.1) and (3.2). Denote W = XV X", Let ®(F)
be an ¢ x { diagonal matriz such that the diagonal elements are absolutely continuous
functions of F'. Then we have

E[trS7'Q®(F)Q'] = E[atr®(F) — 2trDy RF®(F)R'],

where a =2(nVp)—p—n+2m+ 1.

3.2 A key inequality to improvement

We now prove the following theorem which will be used as a key tool to showing the
Stein-type dominance results in the next subsection.

10



Theorem 3.1 Let ®(F) be an { x { diagonal matriz such that the diagonal elements are
absolutely continuous and nonnegative functions of F'. Then we have

EtrE7'Q(I, + F)®(F)Q'] > E[(n V p + m)tr®(F)].
Proof. Abbreviate ®(F') to ®. Define
I, = E[X7'Q®Q'], I, =FE[uS 'QF®Q".

The probability density function (p.d.f.) of X is proportional to
1 -1 t
F(X]©,%) exp(—gtr(X —_e)x (X - 0) )

where a normalizing constant is omitted. Take Hy as a p X (p — n A p) matrix such that
Hj, € Vyy(p—nnp) and H)H = O(p—nnp)x(nrp)- Note that [H, Hy] € O(p) and

tr(X —0)X (X -0) =auXHH'YS 'HH'X' + 20 XHH'S (X H H|, — ©)'
+tr(XHyH) - ©)X (XH H}, — ©)".

Making the orthogonal transformation (Z, Z,) = (X H, X H), we get the joint p.d.f. of
(Z,Z,), which is proportional to

1 1
exp<—§trZQ_1Zt + 01ZE' — Jt(ZoHjy - ©)5 7 (ZoH) - @)t>,
where Q7' = H'S'H and E = —(Z H}, — ©)X 'H. This implies that Z|Z,, Y ~
Ninx (nrp) (B2, I, @ Q). Thus I, is expressed as
L=EuX 'VVTX'ROR' XVV | = EZY [EZ20Y [ty ZO ' Z' R® R,

where EZ>Y denotes expectations with respect to (Zy,Y) and EZ1%0Y denotes condi-
tional expectation with respect to Z given (Z,,Y). It is noted that

RFR = XV*X'=ZL'Z'
and
EZ20Y 1y ZO ' Z' RO R
1 —cy—t —1 rpt t 1 —1 7t —
= Kexp(—gtr:. z) trZQY " Z"RPR exp(—étrZQ Z"+trZ=2 )dZ,

where K is a normalizing constant.

Using the same arguments as in the proof of Theorem 3.3 of Diaz-Garcia et al. (1997),

we obtain 11
exp(trZE!) = o F} (55; EZ' Et>,

11



where oFi(+) is a hypergeometric function with matrix argument. For details of a hyper-
geometric function, see Muirhead (1982, Section 7.3). Hence it is observed that

11
EZ20Y [, ZQ ' Z'RBR!| = E, [trZQ_lztRcht Ry (55; LEZ' Etﬂ ,

where E, denotes expectation with respect to Z|Y ~ Ny (nap) (Omx (nap)s Im ® 2). Using
Lemmas 3.1 and 3.2 gives that

E, [trZQ_lztRcIJRt P (%e; iazt Etﬂ
11
— E, [trVZZtRQRt R (55; EZ' Etﬂ
11
- B, [OFl (512; ;52" Et) {astrd® + 2trDWRF<I>Rt}]

+E, [tthRQ)Rt{VZ oF) (%e; iazﬁ Et) }] : (3.3)

foraa=nAp—m—1and W = ZL 'Z' = RFR'. Using Lemma 3.4 given below, we
see that the second term in the last r.h.s. of (3.3) is nonnegative, which implies that

11
I > E%oY [E [OFl <§£; EZ' Et> {astr® + 2trDWRF<I>Rt}H

= Elaytr® + 2trDy RF® R']. (3.4)

Applying Lemma 3.3 to I}, we get
I, = Ela;tr® — 26Dy RF®RY], (3.5)
where a; = 2(nV p) —p —n+ 2m + 1. It is here observed that

aj+a=nVp+{nVp+nApt—p—n+m
=nVp+m. (3.6)

Combining (3.4), (3.5) and (3.6) gives that
EltrX'Q(I,+ F)®Q' =1, + I, > E[(nV p+ m)trd®].
Hence the proof is complete. 0

Lemma 3.4 Let ® be a diagonal matrix such that the diagonal elements are nonnegative
functions of F'. Then we observe that

11
tthR@Rt{VZ - 0F1(§£; EZ' Et>} > 0.

12



Proof. The proof will be proved by the same way as in Kubokawa and Tsai (2006). For
a nonnegative integer k, let k = {ky, ..., k;} be a partition of k, namely k; +---+k; = k,
where k; > 0 for ¢ = 1,...,¢. Denote by ) the summation over all partitions x =
{k1,...,k¢} of k, where ky > ... > ky, > 0. It follows from the definition of hypergeometric
function (Muirhead (1982, p.258)) that

1 1 . )
= — § § Op (=gt gt

k=0 &K

where o) are positive constants and C,(EZ'ZE") are the zonal polynomials. For details

of the hypergeometric function and the zonal polynomial, see Muirhead (1982) and also
Takemura (1984).

Denote ¢ = n A p. It follows that

m q
trZ'R®R'V 4,C,.(E ZZ{ZtR@Rt}]Z C.(EZ'ZEY).
=1 j=1
Let U = (ug) = ZE' and E = (£,). Since the (a,b)-th element of U is given by
Ugh = D oy ZacCpe, it is observed that

0 = Ou b 0
—C.(BEZ" L. —C.(UU
0zij (= =)= = 0z Qg ( )
- Z >G5 C U
a,b c=1 Uab
_ o t
— Zgbj 8uibC“(U U).
b=1
Write the eigenvalue decomposition of U'U as U'U = Odiag(d,, ..., d;)O", where O =
(0ab) € Vi and dy, . .., dy are the nonzero eigenvalues of U'U. Let
0 ‘
Bro = 7 CHU'D)

It is noted that B,, > 0 for every x and a because the zonal polynomial C,{(UtU ) is
a symmetric homogeneous polynomial of the nonzero eigenvalues of U'U with positive
coefficients. Hence the chain rule gives that

9 _ { m
aZijC uZtZ t Zgbja ZZSZ)]/BHCL_

a=1 b=1

Using Lemma 4.1 of Konno (2009) yields that

=2 E OcaUicOba,,
8qu
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so that

0
aTCn(EZt =2 Z Z gb]ﬁn aOcaWicOba = 2 Z{UO}ZG/BH a{Ot:}a]
2]

a=1 b,

Thus we get

y4
trZ'R®R'V ,C.(BZ'ZE") =2 B, .{O'U'R®R'UO},, >0,

a=1

which completes the proof. 0

3.3 Methods for improvements

We here present some kinds of improvements. Consider first the class of estimators (3.1),
given by

3(T) =X+ Q¥(F)Q" = oV + Q¥(F)Q"),
where ¢g = (n V p)~!. We derive conditions for improvements over the James-Stein
estimator 379 given in (2.4) and the estimator Y5 = ¢,V given in (2.5).

Theorem 3.2 Let { = n ApAm and ¥ = diag(vs, ..., ¢). For any order among n, p
and m, the risk function of the estimator 3(W) given in (3.1) relative to the intrinsic loss
(2.3) is expressed as
R(E(¥),X) =R(ZV5, %)
) o (3.7)
+ B [Z{azw — )bt — 491 (W) — 29()|,

where a; = |n—p|+2i—1 fori=1,...,0 and

2
zmw% o zz“% LYY

=1 7>t f]

Proof. It is observed that

R(E(U), %) = BE[Ly(2(¥), )] = E[rX(ceX 'V — I, + (X 'QU(F)Q")*V*]
= R(EV %) + 200 E[cotrVE'QU(F)Q'V' — 1Q¥ (F)Q'V ]
+qEtET'QU(F)Q'VIQY(F)Q|
= R(2V %) + A(2E, — 2¢; ' Ey + Ej), (3.8)

where B = E[trS7'QW¥(F)Q'V V], E, = E[trQ¥(F)Q'V "] and
Ey=EmET'QY(F)Q'VIQY(F)Q.
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Since Q'VTQ = I, it is seen that
4
E, = EtU(F) = FE {Z ¢Z} : (3.9)
=1

Note that Q'VTV = P'LY?H'HH' = P'L'Y?H* = Q. Applying Lemma 3.3 to E;
leads to

E, = ErX'Q¥Q'] = Eja,tr¥ — 2trDy RFY R'|,

where ¥ = W(F) and a; = 2(nVp) —p—n+2m+1. Using Lemma 6.4 of Tsukuma and
Kubokawa (2014) gives that

4

trDWRF\IJRt:Z{(m_g+ wﬁftc‘)ﬁ Zfz i fﬂ/@}

=1 7>

:Z{ _Z+1¢z+fzgzﬁ: Z¢1_¢]fj}

7>t t

which implies that

L l

i=1 ¢

where o; =2(nVp)—p—n+2m+1—-2(m—i+1) = |n—p|+2i— 1. Similarly, F5 can
be expressed as

By = E[nX~'QU*(F Z{ 4fz¢zg? 22 = Jfg} (3.11)

=1 >t
Combining (3.8), (3.9), (3.10) and (3.11), we obtain (3.7). Thus the proof is complete. [J

Using Theorem 3.2, we can investigate dominance properties for a couple of estimators.
A Stein-type estimator is described by

S(U5T) = co{V + QU (F)Q'}, U (F) = diag(w?”, ... 57),

where fort =1,...,¢,
ol — nAp—2+1

ST _ _
vt = a; In—p|+2i—1

Then from Theorem 3.2, it follows that f?(\IIST) dominates £US for any order of n, p and
m, and that it further dominates the James-Stein type estimator 7% if m > n Ap. In
fact, the risk function of 3(¥5T) under the loss (2.3) is expressed as

¢ —1
R(E(PST), %) = R(EVS %) — ¢ Z — —QCOE[gg(\IfST)}

=1
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which is less than R(ZUS, ) since, for j > i,
(T + 2687 = (657~ 2057 = (o — ) >0

7

namely go(¥°") > 0. Furthermore, when £ = n A p, namely, m > n A p, it then follows
that

n/\p -1 nAp
— 1 ~
R(EVS, % (o =’ S* 1 plasve] - rES, )
SR T =L PRV = RETE)
This shows that if £ = n A p then Z(\I'ST) dominates 79 relative to the loss (2.3).
Another reasonable estimator is the Haff (1980) type estimator
S = o(V +QEMQ),  WI(F) = diag(u{”,...vf'"),
HF a -
= —F; =1,...,0).
¢l trFfZ (Z ? ’ )

Using Theorem 3.2, we can show that the Haff type estimator i(\IIH F) dominates $Us
if constant a satisfies the inequality 0 < a <2(nAp—1)/(ln —p|+ 1) fornAp > 1. In
fact, it is noted that

ZZ = fj fi = trFZij gz—l (3.12)

i=1 j>i i=1 5>t
and also
wHF Z/}HF 2 [
ZZ ( ) fJ = (traF)z ZZ(fz + fj)fj
i=1 5>t =1 j>1
o2 ¢ ¢
- o E;Zfifj + P E;fo
¢ 2
0 F 22 (Zfzf] z) ( F)2 ;(Z_l)ff
trF — Z {fitrF + (2i — 3)f?} . (3.13)

Combining these identities (3.12) and (3.13) gives

¢

(trF)J —a>=2(nAp—la- 4E[91(‘I’HF)]} .
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Since trF?/(trF)% < 1 and

L

() = ST (1 S (1 Ly s

i=1

it is observed that
RE(W"),E) - REYS, %) < & {(In—pl+ 1)a> = 2(n Ap— 1)a},

which shows the dominance result.

Next, we consider improvement on f)(\IlS Ty and f)(lIJH ) by using Theorem 3.1. Let
()T = diag(TB(F),..., v (F)) be a diagonal matrix of order ¢ such that the i-th
diagonal element is given by

nvVp

(1+ fi) — 1},

where W(F') = diag(¢1(F),...,v(F)). Then we obtain a general dominance result for
improvement on the class (3.1).

Theorem 3.3 Assume that each diagonal element of W(F') + I, is larger than or equal

to zero. For any tuple of positive integers n, p and m, the truncated estimator f)([\II]TR)

dominates f](\Il) relative to the loss (2.3) if Pr([®]TE #£ ¥) > 0.

Proof. Abbreviate W(F) to W. The difference in risk of £(®¥) and S([®]7F) is
expressed by

A~

R(Z(®), ) — R(E([2]™), %)
= ElcgtrS ™' Q{®? + 2@ — ([W]"F)? — 2[0]"M}Q" — 2¢otr (¥ — [¥]"7)]
= coBlcotr2 ' Q{(¥ + I,)* — ([P)"F + 1,)*}Q" — 2tr (¥ — [¥]TH)].

Denote ¥ = diag(¢1, ..., 1) and [®]TF = diag(¢ T, ..., 9I"). From the given assump-
tion and the definition of [®]TE it is seen that 1; > ¢! % and ¢I% + 1 > 0 for each i.
Thus using Theorem 3.1 verifies
R(S(), %) — RE(¥)™), 8)
> coElco(nVp+m)tr(I,+ F) 7 H{(® + 1,)* — ([®]"F + 1,)*} — 2tr(P — [¥]TH)).
(3.14)

The r.h.s. of (3.14) is rewritten as
COE|:Z(77D1' —wiTR){COM(%—l—wiTR—FQ) — 2}] (3.15)

i=1 L+ fi
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Recall that 7 = min{¢;, cg'(nVp+m) (14 f;) — 1} < ¢;. The summation inside the
square brackets in (3.15) is bounded below by

L
S — e B Iy g -

— o> (w1,

which is equal to zero. Hence the proof is complete. 0

It is obviously seen that 7 + 1 > 0 and ¥#¥ +1 > 0 for i = 1,...,¢. Hence the
following corollary is given from Proposition 3.3.

Corollary 3.1 The truncated estimator S([W5T|TR) dominates S(¥5T) relative to the
loss (2.3). Also, S([WTF]TR) dominates S(WHF) relative to the loss (2.3).

We conclude this section with providing other types of estimators. As shown in The-
orem 2.2, the James-Stein estimator $7S dominates 3US under the intrinsic loss (2.3).
Using Theorem 2.2 of Konno (2009), we can show that 3375 is further dominated by the
orthogonally invariant estimator £°5 = HLD’SH! relative to the loss (2.3). The es-
timator £P5 is called the Dey-Srinivasan (1985) type estimator. It is recalled that the
truncated Stein type estimator is given by E([\IIST] Ry = US4 ¢ oQ[ET|TEQ!. In this
estimator, we can suggest replacing VS with £/5 and EDS which gives

SVSTR _$\JS _'_COQ[\I,ST]TRQt’ (3.16)
SDSTR _$3DS COQ[\IIST]TRQt. (3.17)

It is, however, difficult to show that $ISTR and SPSTR dominate 275 and BP9 , respec-
tively, relative to the loss (2.3). In the next subsection, we will investigate the perfor-
mances of X757 and BP5TR through the Monte Carlo simulations.

3.4 Simulation studies

We here briefly report risk performances of estimators suggested in this section by simula-
tion. Especially, it is interesting to investigate whether 3(®¥°7) or Z([¥*7]7%) dominates
the James-Stein estimator £ in the case of m < p, because this dominance result can not

iJSTR and iDSTR

be shown analytically. Since dominance properties of the estimators
given in (3.16) and (3.17) cannot be shown analytically, it is also interesting to examine

their risk performances numerically.

In our simulation studies, we consider the following two cases: (A) ¥ = I, and (B)
3 = diag(1,2,...,p) as the true covariance matrix 3. The true mean matrix © = (6;;)
is supposed as (a) © = Oy, (b) 0;; = 3sin(i* + j) and (c) 6;; = 10sin(:? + j) for
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1=1,...,mand j = 1,...,p. Values of m, p and n are taken as combinations of 5, 10
and 15.

Through the simulation experiments, we investigate the risk performances of the esti-

mators suggested by the previous subsection, given by

1.

2.

6.

7.

SHE = (WP with a = (n Ap — 1)/(|n — p| + 1);

SHFTR = S([@"F)"R) with a = (n Ap—1)/(In — p| + 1);

25T = 55T,

SISTTR _ i([\I,ST]TR);
SVSTR _ IS + COQ[\I,ST]TRQt;
SPS = HLD’*H',

SDSTR _ $3DS . COQ[\IIST]TRQt_

The improvements of the above estimators over 375 are measured by the percentage

relative improvement in risk (PRIR), which is defined as

R<§J57 2) — R<§7 2)

100 x —
R(X%75) %)

Y

where 3 is any of the above estimators from 1 to 7. The risk function of each estimator

is calculated by average of the loss function (2.3) based on 50,000 replications. The
estimated PRIRs are reported in Table 1.

Table 1 indicates several interesting observations.

(1)

(2)

(3)

The negative PRIRs imply that the corresponding estimators are inferior to 7S,
Such PRIRs frequently appear in the cases of m < p.

In the cases satisfying m < p, 97 and 277! sometimes improve on X7 and
sometimes do not.

When (n,p,m) = (15,10,5) and (10, 15,5), namely £ = m (m < n A p), the im-
provements over X7 are generally poor since the information is not much available

on the sample mean matrix X with small m.

The risk functions of SHF, SHFTR $ST SISTTR 4nq $7STR o not depend on 3
when n > p and © = 0,,,,. This fact follows from invariance of these estimators
under a scale transformation. On the other hand, the risk function of £P5 is
invariant under a location transformation on X for any fixed (n, m, p) because >.D0s
is independent of X.
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(5) BISTR and BPSTR substantially reduce the risks of £75 and $P5, respectively.

(6) In our simulation studies, the excellent estimator is SIDSTR among the estimators
considered here, though it is difficult to establish the improvement of 3P5TR
3PS analytically.

over

4 Extensions

The results given in the previous sections will be here extended to the two directions:
Estimation of a component of covariance and estimation of the precision matrix.

4.1 Estimation of the covariance matrix in linear mixed models

A canonical form of multivariate linear mixed models can be provided by the marginal
distribution of the model (1.1) under the assumption that 8, ~ N,(0,,X,) for i =
1,...,m. Then, the canonical model is expressed as

X~ N0, +3%,), i=1,...,m,

. (4.1)
Y; ~N,(0,,%), j=1,...,n,

where the covariance matrices X and X4 are referred to as the ‘within’ and ‘between’
multivariate components of variance, respectively. Let V' = > " | Y, Y! and V, =
S X X! The problem is that we want to construct truncated estimators improv-
ing the unbiased estimator n~'V using the statistic V5. This is known to be a hard
issue, and in the case of n > p and m > p, Srivastava and Kubokawa (1999) used the
conditional distribution of V' given V, Y QVV; Y2 to get the improvement. Kubokawa
and Tsai (2006) derived the dominance result using the Stein-Haff identity in the case of
n > p without any constraints on m and p.

It is noted that the risk function of estimator 3 relative to the intrinsic loss is
R(Z, 34, %) = E[Ly(2,%)] = E[E[Ly (2, %)|0)]],

where ©® = (04,...,6,,)". Since E[Lv(fl, 3)|®] is the corresponding risk in the original
model (1.1), it can be seen that all the dominance results given in the model (1.1) still
hold in the covariance components model (4.1). Thus, one gets unified dominance results
in the model (4.1), irrespective of n, p and m.

4.2 Estimation of the precision matrix

Let X = (X1,..., X ) and Y = (Y4,...,Y,)! be random matrices having distributions
given in (1.1) with unknown 6,’s and unknown ¥. Consider the problem of estimating
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the precision matrix 37! under a weighted invariant quadratic loss given by

L6, 7Y = tr[{(6 — = HV}]

X R (4.2)
= tr[6V V] — 2r[S ' VEV] + r[S I VE V],

where & is an estimator of X', The merit of this loss function is that we can use the key
inequality given in Theorem 3.1.

Consider first the simple class of estimators ¢V, where c is a positive constant. The
risk function of ¢V is calculated as

R(cVT, S = E[L(cVT, ] = (nAp)® — 2npc+ E[tr[E'VEV].
Thus the best estimator among the class is given by

57 = {np/(n APIVF = (nV p)VF = ' V.

We next consider the class of estimators (T")* DT, where T is defined in Theorem
2.2, TT = (T'T)~'T" is the Moore-Penrose inverse of T and D is an (n A p) x (n A p)
diagonal matrix with constant diagonal elements. Denote D = diag(dy, ..., dyr,). Using
the same lines as in the proof of Theorem 2.2, we evaluate the risk function of (T")* DT

as
nAp

R(TY'DT*,X7") =) {d} —2(n+p—2i+1)d;} + E[tr[Z"'VEV]].
i=1
Hence the best estimator among the class (T")* DT is
5]5 — (Tt)+(DJS)—1T+
where D”* is defined in Theorem 2.2. It is here noted that 6% = {£75}+ is better than
0PV = {ZUS} relative to the loss (4.2).

We derive alternative estimators to 8%V and 79, For Q = HLY?P given below (3.1),
we have Q™ = P'L™Y2H". Tt is noted that Q~ is the generalized inverse of Q. Consider
the class of estimators of the form

5(®) =" + Q) TQT = (VT +(Q7)"2Q),

where ¥ = W(F) is an ¢ x ¢ diagonal matrix such that the diagonal elements are absolutely
continuous functions of F'.

Theorem 4.1 The risk difference between §(¥) and 65V is given by

R(6(®),x71) — R(6%Y, =7h)

¢ ¢
= E {Z{%Z — 2(coa; — 1)ahi + 400fig—;/f +4co Z wz: — % fJH )
i=1 ¢ g>i J

(2

where o, = |n —p|+2i—1 fori=1,...,¢.
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Proof. It is noted that Q" V = Q" and Q~V(Q")~ = I,. The risk difference between
5(W) and 6°Y is expressed as

R(6(W), x71) — R(6%Y, =7
= E2¢;'tr(6%Y == HV(Q) ¥Q TV + ¢, tr(Q) ¥QV(Q) TQ V]
=y 2E2tr¥ — 2c,trX ' QU Q" + tr¥?).

Using the same arguments as (3.10) gives the result of this theorem. O

For examples of §(¥) improving on 6V, the Stein type estimator §(¥>") is defined
as
ST = diag(77, ... 05T), T =cpas—1 (i=1,...,0).

It can easily be verified that 6(¥5”) dominates 6°Y relative to the loss (4.2) and also, if
¢ =n A p, then §(¥5T) is superior to 67°.

We next consider the Haff type estimator 6(¥7F), where
fi (Z: 1,...,6),

WHE _ HF  HF HF _ @
1ag( 1 > > L )v wz trF

where a is a nonpositive constant. Applying Theorem 4.1 to 6(¥"F), we obtain
R(S(WHF) =7 — R(6PY, =7h)

tr >
(trF)?

14

fi fi
ZtrF (1 a trF)] ’

1=1

= d’F [ } +2co(n Ap—1)a+ 4cpaE

which is bounded above by a? + 2¢o(n A p — 1)a. Thus, when —2co(n Ap —1) < a < 0,
S(THF) dominates 67V relative to the loss (4.2).

For improvement on estimators §(¥) with ¥ = diag(¢y,...,1), we can apply the
truncation method. Let [®]TF = diag(y7 %, ... ] T) be a diagonal matrix of order ¢ such
that the i-th diagonal element is given by ¢! = max{t;, co(nV p+m)(1+ fi)~' — 1}.
Theorem 3.1 provides the following proposition.

Proposition 4.1 If Pr([®]TR £ W) > 0, then, for any tuple of positive integers n, p and
m, the truncated estimator §([®]'R) dominates §(®) relative to the loss (4.2).

Proof. Since
I = max{e;, conVp+m)(1+ ;)7 =1} > o (4.3)
for each i, it is observed that

R(8(®),7") — R(8([®]"),=7)

= ¢y 2Etr{¥? 4 2¥ — ([®)TH)2 — 2[W]TF) — 2cotr2~'Q{¥ — [¥]TF}1 Q"]

> ¢y 2Etr{W? 4+ 2W — ([P]TH)2 — 2[W]TE} — 2¢o(n V p + m)tr(I, + F) ¥ — [¥]TH}]
= ¢ 2B[tr{ ¥ — [W]"FHW + (O] 421, — 2co(n V p+m) (I, + F)}], (4.4)
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where the inequality is verified by Theorem 3.1. The last r.h.s. of (4.4) is expressed by
¢

7B | (0 - o vk e 2 - 20 T2 (45
i=1 ’

Once again using (4.3), we can see that the summation in (4.5) is bounded below by

l
S {2 2"
i=1 v

¢ nVp+m
_ TR TR eV
- 2;(#& wz ){wz +1 Co 1 + fz }7

which is equal to zero. Hence the proof is complete. 0

Using Proposition 4.1 immediately yields the following corollary.

Corollary 4.1 The truncated estimator §([®°1]"R) dominates §(W°T) relative to the
loss (4.2). Also, ([THF]TRY dominates (W) relative to the loss (4.2).
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Table 1: Estimated PRIR (%) in estimation of the covariance matrix

D) e n (m, p) EHF EHFTR EST ESTTR EJSTR EDS EDSTR
(A) (a) 15 (10,5) 1.2 98 125 143 182 244 356
10 (15,5) 2.3 104 13.6 15.1 18.7 18.9 30.3
5 (15,10) 2.3 104  13.7 15.2 18.8 19.0 30.6
15 (5,100 —0.9 —-0.8 3.0 3.5 10.0 174 27.2
10 (5,15) —0.9 -0.8 29 3.4 10.0 17.3 27.1
5 (10,15) 1.2 9.8 12.5 14.3 182 244 35.6
(A) (b) 15 (10,5) 0.4 6.2 6.3 72 117 244 316
10 (15,5) 1.3 6.7 7.2 8.0 12.4 189 26.7
5 (15,10) 1.1 65 6.8 76 118 190  26.6
15 (5,10) —-18 =17 0.5 07 7.3 174  25.1
10 (5,15) —1.8 —-1.8 0.5 0.7 72 17.3 25.0
5 (10,15) 0.0 6.0 5.9 6.8 11.3 244  31.3
(A) (¢) 15 (10,5) 0.0 55 5.3 61 106 244 308
10 (15,5) 08 58 5.7 64 110 189 257
5 (15,10) 0.3 53 47 54 9.7 190  25.1
15 (5,10) —-23 —22 —-04 —-0.1 6.5 174 24.4
10 (5,15) —24 —-23 —-04 —-0.2 6.4 17.3 24.3
5 (10,15) —0.6 49 41 4.9 9.5 244 30.0
(B) (a) 15 (10,5) 1.2 98 125 143 182 163  29.8
10 (15,5) 2.3 104 13.6 15.1 18.7 14.2 27.6
5 (15,10) 1.7 73 97 107 145 117  20.6
15 (5,100 —0.9 —-0.8 3.0 3.5 10.0 13.0 22.9
10 (5,15) —0.7 —0.6 2.2 2.5 8.0 11.1 18.3
5 (10,15) 0.7 5.5 7.1 8.1 11.3 12.0 18.8
(B) (b) 15 (10,5) 0.6 6.8 7.6 85 162 163 234
10 (15,5) 1.7 74 9.0 98 169 142 227
5 (15,10) 1.4 59 8.0 8.6 129 11.7 19.3
15 (5,100 —14 —-1.3 1.5 1.8 9.7 13.0 20.1
10 (5,15) —-09 —08 1.7 1.9 77 111 176
5 (10,15) 0.6 47 6.3 70 103 120 182
(B) (c) 15 (10,5) —0.1 54 46 54 140 163 206
10 (15,5) 0.8 5.9 5.7 6.4 145 14.2 19.8
5 (15,10) 0.4 4.0 4.0 4.5 9.0 11.7 16.3
15 (5,10) —24 -24 —-04 =02 8.5 13.0 17.8
10 (5,15) —1.6 -1.5 0.1 0.2 6.3 11.1 16.0
5 (10,15) —0.0 3.2 3.2 3.7 71 120 158
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