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Abstract:
We consider minimax shrinkage estimation of a location vector of a

spherically symmetric distribution under a loss function which is a con-
cave function of the usual squared error loss. In particular for distributions
which are scale mixtures of normals (and somewhat more generally), and
for concave loss functions whose derivatives are completely monotone (and
somewhat more generally), we give classes of minimax shrinkage estima-
tors where the shrinkage constants are larger than those currently in the
literature.
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1. Introduction

This paper concerns minimax shrinkage estmation of a location vector of a spher-
ically symmetric distribution under a loss function which is a concave function of
the usual squared error loss. The main contribution is an improvement in shrink-
age constants for minimax estimators over those in Brandwein and Strawderman
(1980, 1991), and Brandwein Ralescu and Strawderman (1994), particularly for
variance mixtures of normals (and somewhat more generally), and for concave
functions of squared error loss for which the derivative of the concave function
is completely monotone (and somewhat more generally). For Baranchik-type
estimators and for scale mixtures of multivariate normal distributions, we also
show that our minimax improvements hold in dimension 3 which improves over
the restriction that p ≥ 4 in the earlier papers.

Specifically, let X have the p-dimensional spherically symmetric density
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f(||X − θ||2) (1.1)

and consider the problem of estimating the unknown location vector θ under
the loss function

L(θ, d) = l(||d− θ)||2), (1.2)

where l(t) is a non-negative, non-decreasing concave function, and ||d − θ||2 is
the usual squared error loss function.

For a multivariate normal distribution with squared error loss, James and
Stein (1961), Baranchik (1970), Strawderman (1971), Stein (1981) and others
gave shrinkage estimators of the mean vector which are minimax and which im-
prove on the usual estimator, X, when the dimension, p, is at least three. Straw-
derman (1974) gave extensions to variance mixtures of normals. Extensions to
wider classes of spherically symmetric distributions were provided by Berger
(1975), Brandwein and Strawderman (1978), Brandwein (1979), Brandwein and
Strawderman (1991) and others.

Brandwein and Strawderman (1980), Brandwein and Strawderman (1991)
and Brandwein, Ralescu, and Strawderman (1993) gave minimax shrinkage es-
timators which improve on X in higher dimensions for concave functions of
squared error loss.

A basic tool in much of the literature on concave loss is the following simple
result which will be used extensively in the following.

Lemma 1.1. Suppose that X is distributed as in (1.1), and that loss is given by
(1.2), where l(t) is a non-negative, non-decreasing concave function such that
l′(t) exists.

a. Then the risk, R(θ, δ), of an estimator of the form δ(X) = X + g(X),
satisfies the inequality

R(θ, δ) ≤ R(θ,X) + Eθ[l
′(||X − θ||2)(||g(X)||2 − 2(X − θ)′g(X))]. (1.3)

b. Hence δ(X) dominates X under loss (1.2) if it dominates X under quadratic
loss, ||d− θ||2, for a location family with density f∗(||x− θ||2) proportional to
f(||x− θ||2)l′(||x− θ||2).

Proof. Part a. follows easily, on taking expectations, from the concave function
inequality l(t+ y) ≤ l(t) + yl′(t) with t = ||X − θ||2 and y = ||g(X)||2
+ 2(X − θ)′g(X).

Part b. follows immediately from part a.

Remark 1.1. That the usual estimator X is minimax follows fairly easily when
the underlying spherically symmetric density (1.1) is unimodal and when the
loss function (1.2) is monotone (but not necessarily concave) in ||d− θ||2. This
follows because X is the unique minimum risk equivariant (MRE) estimator
under these assumptions and is hence minimax by the well known result that
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if a minimax estimator exists in a location problem, there is an equivariant
minimax estimator. For completeness we formalize this in Theorem 1.1.

Theorem 1.1. Suppose that the density f(‖X − θ‖2) is unimodal and that
`′(t) ≥ 0 with `′(t) > 0 on an interval. Then, the usual estimator X is the
unique minimum risk equivariant (MRE) estimator, and is hence minimax

Proof. Note first that a general equivariant estimator is of the form X + d for
some vector d in <p, which because of the spherical symmetry we may take to be
of the form (a, 0, . . . , 0). Let Y = (X2, . . . , Xp), let `Y ((X1−a)2) = `((X1−a)2)+
‖Y ‖2). Then, conditioning on Y , it suffices to show that E[`Y ((X1 − a)2)|Y ] >
E[`Y (X2

1 )|Y ] for a 6= 0. Let fY ((x1−a)2) be the conditional density of X1 given
Y . The conditional risk difference is expressed as

∆Y (a) =E[`Y ((X1 − a)2)|Y ]− E[`Y (X2
1 )|Y ] = E

[∫ a

0

d

dt
`Y ((X1 − t)2)dt

∣∣∣Y ]
=2

∫ ∞
−∞

∫ a

0

(t− x)`′Y ((x− t)2)fY (x2)dtdx

=2

∫ ∞
−∞

∫ a

0

(−z)`′Y (z2)fY ((z + t)2)dtdz

=2

∫ ∞
−∞

(−z)`′Y (z2)

∫ a+z

z

fY (u2)dudz,

where we used the transformations z = x− t (dz = dx) and u = t+ z (du = dt).
Let FY (z) =

∫ z
−∞ fY (u2)du. Then, we can rewrite the conditional risk difference

as

∆Y (a) =2

∫ ∞
−∞

z`′Y (z2){FY (z)− FY (z + a)}dz

=2

∫ ∞
0

z`′Y (z2)
[
{FY (z)− FY (z + a)} − {FY (−z)− FY (−z + a)}

]
dz

=2

∫ ∞
0

z`′Y (z2)
[
{FY (z)− FY (−z)} − {FY (z + a)− FY (−z + a)}

]
dz

=2

∫ ∞
0

z`′Y (z2)
[∫ z

−z
fY (u2)du−

∫ z+a

−z+a
fY (u2)du

]
dz.

Since fY (u2) is symmetric and unimodal about u = 0, it can be seen that∫ z
−z fY (u2)du >

∫ z+a
−z+a fY (u2)du for a 6= 0. Noting that `′Y (z2) ≥ 0 with

`′Y (z2) > 0 on an interval of z, we can conclude that ∆Y (a) > 0 for a 6= 0.

In almost all of our examples, the density (1.1) is unimodal and hence both X
and our improved estimators will be minimax. It seems likely that minimaxity
of X via its uniqueness as an MRE is considerably more general than illutrated
herein.

In section 2 of this paper we combine the methods of Strawderman (1974) and
Brandwein and Strawderman (1980) to enlarge the range of minimax shrinkage
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over that in Brandwein and Strawderman (1980) for variance mixtures of nor-
mals for James-Stein and Baranchik-type estimators. However we restrict the
class of concave loss functions to those for which l′(t) is completely monotone.

In Section 3 we broaden the class of estimators as well as the class of distribu-
tions and losses and obtain similar extensions in the range of minimax shrinkage
over that in Brandwein and Strawderman (1991).

Our interest in returning to the problem of improved estimation of location
parameters under concave loss was generated by our recent research in predic-
tive density estimation for location families under integrated L1 and L2 losses.
Often, the loss function for a plug in-type density estimator turns out to be
equivalent to a concave loss function of the form (1.2) in the associated location
estimation problem. Thus improved estimators in the point estimation problem
under concave loss lead to improved plug in estimators in the associated predic-
tive density estimation problem. We report on this work in another publication.

2. Scale Mixtures of Normals

A random vector,X, in p -dimensions has a scale mixture of normal distributions
if its distribution has the following hierarchical structure: the distribution of X
given V is Np(θ, V Ip), where V is a non-negative random variable with cdf H(v).
Scaled multivariate-t distributions are perhaps the most important of these and
form an important alternative error distribution to the multivariate normal in
a variety of modelling situations where tails which are thicker than those of the
normal distribution seem warranted.

A basic result for estimation of the mean vector θ under quadratic loss,
||d− θ||2, for such mixtures is the following, from Strawderman (1974):

Lemma 2.1. (Strawderman (1974)) Suppose that X has a scale mixture of
normal distribution with mixing distribution H(v). An estimator of θ of the
form

δa(X) = (1− ar(||X||2)/||X||2)X (2.1)

dominates X under loss ||d− θ||2 provided E[V ] and E[V −1] are finite, and
a. 0 ≤ r(t) ≤ 1
b. r(t) is non-decreasing,
c. r(t)/t is non-increasing, and
d. 0 < a ≤ 2/E0[1/||X||2] = 2(p− 2)/E[1/V ],
and δa(X) differs from X on a set of positive measure.

We also require the following preliminary result:

Lemma 2.2. a. A density of the form (1.1) is a mixture of normals if and only
if f(t) is completely monotone, i.e., (−1)i(di/dtif(t)) ≥ 0, for i = 0, 1, . . ..

b. The product of two completely monotone functions is completely monotone.

Proof. Part a. is well known. See, e.g. Berger (1975) for some discussion and
references. A straightforward computation establishes Part b.
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Theorem 2.1 is the main result of this section.

Theorem 2.1. Suppose that X has a scale mixture of normal distribution with
mixing distribution H(v). Consider estimation of θ under the concave loss(1.2),
where l′(t) is a completely monotone function.

Then, an estimator of the form
δa(X) = (1 − ar(||X||2)/||X||2)X dominates X provided the conditions of

Lemma 2.1 hold with d. replaced by
dd. 0 < a ≤ 2/E∗0 [1/||X||2] , where E∗ denotes expectation with respect to

the density of Lemma 1.1 (i.e., f∗(t) is proportional to f(t)l′(t)).

Proof. The density f∗(·) defined in Lemma 1.1 is completely monotone and is
hence a scale mixture of normals by Lemma 2.2. The result then follows from
Lemma 2.1.

Many, if not most of the concave losses encountered in practice are covered by
the theorem, including “Lq” for 0 < q ≤ 2 i.e., (L(θ, d) = ||d− θ||q, l(t) = tq/2),
losses formed from reflecting a multiple of the pdf, f , of a univariate scale
mixture of normals (l(t) = k(f(0)−f(t))), and also 2F (||d−θ||)−1, where F (t)
is a (one-dimensional) cdf for which F ′(t1/2)/t1/2 is completely monotone. These
losses play a role in the problem of improved plug in-type predictive density
estimation under several different predictive density estimation losses. These
include Kullback-Leibler, α-divergence, and integrated L1 and L2 differences.

Remark 2.1. The improvement given by Theorem 2.1 over the corresponding
result in Brandwein and Strawderman (1980) comes mainly from an extension
of the range of the shrinkage constant a from 0 < a ≤ 2(p− 2)/(pE∗0 [1/||X||2])
in the earlier paper to 0 < a ≤ 2/E∗0 [1/||X||2] in Theorem 2.1. This represents
a large improvement for low dimensional problems. For example, for p = 4,
Theorem 2.1 gives a 100 percent increase in the shrinkage factor. Additionally,
the above result applies for p ≥ 3, while that of Brandwein and Strawderman
(1980) applies for p ≥ 4. Of course, the result in Brandwein and Strawderman
(1980) applies to the more general class of all spherically symmetric unimodal
distributions and not just scale mixtures of normals.

Example 1: (Normal Distributions, Lq loss) Suppose X has a multivariate
normal distribution with mean vector θ and covariance matrix Ip. Let the loss
function be given by L(θ, d) = ||d − θ||q (l(t) = tq/2), for some 0 < q ≤ 2.
Brandwein and Strawderman (1980) show, for this case, that E∗0 [1/||X||2] of
Theorem 2.1, c. is equal to 1/(p+ q− 4). Therefore estimators of the form (2.1)
satisfying 0 < a ≤ 2(p + q − 4) dominate X for this loss. The corresponding
result in Brandwein and Strawderman (1980) reduces the upper bound by a
factor of (p− 2)/p.

Note that in either case there is a requirement that p > 4− q in order for the
required expectations to exist. Thus for 0 < q ≤ 1, both results require p ≥ 4.
However for 1 < q ≤ 2 only the result of this section applies if p = 3.

Example 2: (Scale Mixtures of Normal Distributions, Reflected Normal
Loss) Suppose X has a p-variate scale mixture of normal distribution with mean
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vector θ and mixing variance V . Let the loss function be given by L(θ, d) = 1−
exp(−||d−θ||2/w) for some w > 0 (l(t) = 1−exp(−t/w), l′(t) = exp(−t/w)/w).
In this case the requirements of Theorem 2.1 are met and it is straightfor-
ward to see that the density f∗(||x − θ||2) of Lemma 1.1 is a scale mixture
of normals with a mixing variance given by V w/(V + w). Hence the range of
values for the shrinkage constant in Theorem 2.1 is 0 < a ≤ 2/E∗0 [1/||X||2] =
2(p−2)/E[(V w/(V +w))−1]. Once again, the corresponding result in Brandwein
and Strawderman (1980) would reduce the upper bound by a factor of (p−2)/p.
In this example, the dimensions for the applicability of the result differ, being
p ≥ 3 for this paper and p ≥ 4 for Brandwein and Strawderman (1980). This
example can easily be extended to the case where the loss is a mixture (in w)
of the above loss.

3. More General Estimators, Distributions, and Losses

This section is devoted to minimaxity of general estimators of the form

δ(X) = X + ag(X), (3.1)

and is not restricted to Baranchik-type estimators of the form (2.1).
The family of spherically symmetric distributions will also be enlarged from

the class of scale mixtures of normal distributions considered in section 2 to
the class of spherically symmetric distributions of the form (1.1) satisfying the
following Assumption:

Assumption 1:f(t) ≥ 0, and f(t)/(−f ′(t)) is non-decreasing.
We also will refer to this assumption for non-negative functions which are not
necessarily a density.

A related assumption is,

Assumption 1a: F (t)/f(t) is monotone non-decreasing, where

F (t) =

∫ ∞
t

f(u) du, (3.2)

provided F (0) exists and is finite.

Lemma 3.1 below states that Assumption 1 implies Assumption 1a, and also
that scale mixtures of normal distributions (and more generally, completely
monotone functions) satisfy Assumption 1 (and therefore 1a provided f(t) is
integrable). That Assumption 1 implies Assumption 1a is well known (see e.g.
Bagnoliane and Bergstrom (2006)) but we provide a simple proof for complete-
ness.

Additionally, the class of concave loss functions will be enlarged from that
of Theorem 2.1 to the class of loss functions of the form (1.2) satisfying the
following assumption.

Assumption 2: l(t) is non-negative, non-decreasing and concave,
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and l′(t)/(−l′′(t)) is non-decreasing.

Again Lemma 3.1 implies that a concave loss, l(t) such that l′(t) is completely
monotone satisfies Assumption 2. Part c gives a useful sufficient (essentially
equivalent) condition.

Lemma 3.1. a. If h(t) is non-negative and satisfies Assumption 1, then it also
satisfies Assumption 1a provided h(t) is integrable, i.e H(0) is finite.

b. If f(·) in (1.1) is the density of a scale mixture of normals, then f(t)
satisfies Assumption 1.

c. If h(t) is non-negative, and log(h(t)) is convex, then h(t) satisfies assump-
tion 1.

d. The product of two non-negative functions gi(t), i = 1, 2, such that each
satisfies Assumption 1, also satisfies Assumption 1.

Proof. To show part a, note that
H(t)/h(t)
=
∫∞
t
h(u) du/(−

∫∞
t
h′(u) du)

=
∫∞
t
h(u) du/(

∫∞
t

(−h′(u)/h(u))h(u) du)
= 1/E[(−h′(U)/h(u)],

where the expectation is with respect to the density proportional to h(u) on the
interval u ≥ t, which has monotone likelihood ratio in t. Hence part a follows
by the assumed monotonicity of h(t)/(−h′(t)).

Parts b, c, and d follow by straightforward calculations.

A basic result underlying the main Theorem (3.2) of this section is due to
Brandwein, Ralescu, and Strawderman (1993) for quadratic loss, and which is
presented next in the notation of this paper.

Theorem 3.1. ( Brandwein, Ralescu, and Strawderman (1993), Theorem 2.2)
Let X in Rp have a a density of the form (1.1) which satisfies Assumption 1a,
and let δa(X) = X + a g(X) where g(X) satisfies

a. −div g(X) ≥ −h(X) where, for each θ, h(X) is such that E[R2h(W )] is
non-increasing in R, where W has a uniform distribution on the sphere of radius
R centered at θ.

b. ||g(X)||2 + 2 h(X) ≤ 0, and
c. 0 < a ≤ 1/[(p− 2)E[1/||X||2]]
Then δa(X) is minimax and dominates X under quadratic loss ||d − θ||2

(provided all expectations exist and are finite).

Brandwein, Ralescu, and Strawderman (1993) note, for p ≥ 4, that for esti-
mators of the Baranchik form (2.1), conditions a. and b. are satisfied provided
0 ≤ ar(t) ≤ 2(p− 2), r(t) is non-decreasing and r(t)/t is non-increasing.

Here is the main result of this section.

Theorem 3.2. Let X in Rp have a density of the form( 1.1) which satisfies
Assumption 1, and let δa(X) = X + a g(X) where g(X) satisfies a. and b. of
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Theorem 3.1. Let the loss be of the form (1.2), where l(t) satisfies Assump-
tion 2. Then δa(X) is minimax and dominates X provided 0 < a ≤ 1/[(p −
2)E∗[1/||X||2]], where E∗ represents expectation with respect to the density pro-
portional to f∗(||X − θ||2) with f∗(t) = f(t)l′(t) (provided all expectations exist
and are finite).

Proof. The proof follows directly from Theorem 3.1 since f(t)l’(t) satisfies As-
sumption 1a by Lemma 3.1.

Remark 3.1. While Theorem 3.2 applies to wider classes of densities, estimators
and losses than Theorem 2.1 it is not strictly more general. In part, this is
because Theorem 3.2 requires the dimension, p to be at least 4 when applied to
Stein-type estimators (see the comment immediately after theorem 3.1) while
Theorem 2.1 applies also for p = 3 as long as all expectations are finite. However
for James-Stein estimator (and more generally, for Baranchik-type estimators
with non-decreasing r(t) and non-increasing r(t)/t), the two results give the
same range of minimax shrinkage, although this is not immediately obvious
from the statements of the two theorems.

To see that both give the same result for James-Stein estimators, note that
Theorem 3.2, applied to δa(X) = (1 − a 2(p − 2)/||X||2)X, with h(X) =
−2(p − 2)/||X||2, gives minimaxity for 0 ≤ a ≤ 1/[(p − 2)E∗[1/||X||2]], or
equivalently for 0 ≤ 2a(p − 2) ≤ 2/E∗[1/||X||2]], which is the same range of
minimax shrinkage given by Theorem 2.1. Note that a = 0 corresponds to the
minimax estimator X so we include a = 0 in the range of minimax shrinkage
(but not domination over X) in each case.

Remark 3.2. The results of this section give essentially the same improvement
in the range of minimax shrinkage over corresponding results in Brandwein
and Strawderman (1991) as do those observed in the remark of section 2 for
Baranchik-type estimators. In addition the requirements on the function g(X)
are somewhat less stringent due to the developments in Brandwein, Ralescu,
and Strawderman (1993).

Example 3: (Normal Distributions, Reflected Normal Loss) Suppose X has
a p-variate normal distribution with mean vector θ and covariance matrix vIp.
Let the loss function be given by L(θ, d) = 1−exp(−||d−θ||2/w) for some w > 0
(l(t) = 1 − exp(−t/w), l′(t) = exp(−t/w)/w). In this case Lemma 1.1 applies
directly and f∗(||x− θ||2) is seen to be a multivariate normal distribution with
mean vector θ, and covariance matrix (vw/(v + w))Ip. Hence classical normal
theory applies and, for example, an estimator of the form δ(X) = X + a (1/v+
1/w)−1g(X) is minimax and dominates X provided ||g(x)||2 + 2 divg(x) ≤ 0,
and 0 < a ≤ 1 without recourse to the results of this section (but, instead,
directly using the results of Stein (1981) together with Lemma 1.1).

If, however the distribution of X is a scale mixture of normals then, with the
additional requirements on g(X), and a given in Theorem 3.2, a class of general
minimax estimators dominating X may be obtained. In addition such results
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may be extended to the case where the loss is a mixture in w of the above loss,
e.g., a folded scale mixture of normals loss, such as L(θ, d) = 1− 1/||d− θ||2.

4. Concluding Remarks

In this paper we have studied estimation of the location vector for p-variate
spherically symmetric distributions under losses which are concave functions
of the usual squared-error loss. For distributions which are scale mixtures of
multivariate normals and for concave losses for which the derivative l′(t) is
completely monotone we give minimax estimators of the Baranchik form for
which the range of minimax shrinkage is considerably extended over that found
in Brandwein and Strawderman (1980). For the broader class of distributions
and losses satisfying the assumptions of section 3, and for a broader class of
estimators (essentially those satisfying a version of Stein’s differential inequality
plus other monotonicity assumptions), we have similarly broadened the range
of minimax shrinkage compared to the results of Brandwein and Strawderman
(1991).

References

Bagnoli, M. and Bergstrom, T. (2005). Log-concave probability and its
applications. Economic Theory 26 445-469.

Baranchik, A. J. (1970). A family of minimax estimators of the mean of a
multivariate normal distribution. Ann. Math. Statist. 41 642-645.

Berger, J. O. (1975). Minimax estimation of location vectors for a wide class
of distributions. Ann. Statist. 3 1318-1328.

Brandwein, A. C. (1979). Minimax estimation of the mean of spherically
symmetric distributions under general quadratic loss. J. Multivariate Anal. 9
579-588.

Brandwein, A. C. Ralescu, S. and Strawderman, W. E. (1993). Shrink-
age estimation of the location parameters for certain spherically symmetric
distributions. Ann. Inst. Statist. Math. 45 551-565.

Brandwein, A. C. and Strawderman, W. E. (1980). Minimax estimation of
location parmeters for spherically symmetric distributions with concave loss.
Ann. Statist. 8 279-284.

Brandwein, A. C. and Strawderman, W. E. (1978). Minimax estimation
of location parmeters for spherically symmetric unimodal distributions. Ann.
Statist. 6 377-416.

Brandwein, A. C. and Strawderman, W. E. (1991). Generalizations of
James-Stein estimators under spherical symmetry. Ann. Statist. 19 1639-
1650.

James, W. and Stein, C. (1961). Estimation with quadratic loss. In Proc. 4th
Berkeley Sympos. Math. Statist. and Prob., Vol. I 361–379. Univ. California
Press, Berkeley, Calif.



T. Kubokawa, E. Marchand and W. Strawderman/Concave loss 10

Strawderman, W. E. (1971). Proper Bayes minimax estimators of the mul-
tivariate normal mean. Ann. Math. Statist. 42 385-388.

Strawderman, W. E. (1974). Minimax estimation of location parameters for
certain spherically symmetric distributions. J. Multivariate Anal. 8 255-264.

Stein, C. (1981). Estimation of the mean of a multivariate normal distribution.
Ann. Statist. 9 1135-1151.


