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Abstract

In this article, we propose tests for covariance matrices of high dimension with fewer observations than the
dimension for a general class of distributions with positive definite covariance matrices. In one-sample case,
tests are proposed for sphericity and for testing the hypothesis that the covarianc&risaanmidentity matrix,

by providing an unbiased estimator of ¥ under the general model which requires no more computing time
than the one available in the literature for normal model. In the two-sample case, tests for the equality of two
covariance matrices are given. The asymptotic distributions of proposed tests in one-sample case are derived
under the assumption that the sample $ize O(p°), 1/2 < ¢ < 1, wherep is the dimension of the random

vector, andO(p’) means thalN/p goes to zero abl and p go to infinity. Similar assumptions are made in the
two-sample case.

AMS 2001 subject classification82H15, Secondary 62F05.

Keywords: Asymptotic distributions, covariance matrix, high dimension, non-normal model, sample size
smaller than dimension, test statistics.

AMS 2000 subject classificationBrimary 62H15; secondary 62F05.

1. Introduction

In analyzing data, certain assumptions made implicitly or explicitly should be ascertained. For example in
comparing the performances of two groups based on observations from both groups, it is necessary to ascertain
if the two groups have the same variability. For example, if they have the same variability, we can use the
usualt-statistics to verify that both groups have the same average performance. And if the variability is not
the same, we are required to use Behrens-Fisher type of statistics. When observations are taken on several
characteristics of an individual, we write them as observation vectors. In this case, we are required to check
if the covariance matrices of the two groups are the same by using Wilks (1946) likelihood ratio test statistics
provided the number of characteristics, gais much smaller than the number of observations for each group,
say,N; andN,. In this article, we consider the case wheis larger tharN; andN,.

The problems of large and very small sample size are frequently encountered in statistical data analysis
these days. For example, recent advances in technology to obtain DNA microarrays have made it possible
to measure quantitatively the expression of thousands of genes. These observations are, however, correlated
to each other as the genes are from the same subject. Since the number of subjects available for taking the
observations are so few as compared to the gene expressions, multivariate theory foaladgemall sample
sizeN needs to be applied in the analysis of such data. Alternatively, one may try to reduce the dimension by
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using the false discovery rate (FDR) proposed by Benjamini and Hochberg (1995) provided the observations are
equally positively related as shown by Benjamini and Yekutieli (2001) or apply the average false discovery rate
(AFD) proposed by Srivastava (2010). The above AFD or FDR methods do not guarantee that the dimension
can be reduced to a dimension which is substantially smallerithan

The development of statistical theory for analyzing high-dimensional data has taken a jump start since the
publication of a two-sample test by Bai and Saranadasa (1996) which has also included the two-sample test
proposed by Dempster (1958, 1960). A substantial progress has been made in providing powerful tests in
testing that the mean vectors are equal in two or several samples, see Srivastava and Du (2008), Srivastava
(2009), Srivastava, Katayama and Kano (2013), Yamada and Srivastava (2012) and Srivastava and Kubokawa
(2013). In the context of inference on means of high-dimensional distributions, multiple tests have also been
used, see Fan, Hall and Yao (2007) and Kosorok and Ma (2007) among others. All the methods of inference
on means mentioned above require some verification of the structure of a covariance matrix in one-sample
case and the verification of the equality of two covariance matrices in the two-sample case. The objective of
the present article is to present some methods of verification of these hypotheses. Below, we describe these
problems in terms of hypotheses testing.

Consider the problem of testing the hypotheses regarding the covariance hafrap-dimensional ob-
servation vector based dhindependent and identically distributed (i.i.d) observation veotarg=1,...,N.
In particular, we consider the problem of testing the hypothesisiihattl ,, 2 > 0, and unknown and, that
of testing thatz = 1,; the first hypothesis is called sphericity hypothesis. We also consider the problem of
testing the equality of the covariance matriggsandX, of the two groups whei; i.i.d observation vectors
are obtained from the first group aid i.i.d observation vectors are obtained from the second group. It will
be assumed th&; < N, 0 < N3/N, < 1 andN;/p — 0 as (1, Na, p) — .

We begin with the description of the model for the one-sample case; Lt 1,..., N be i.i.d observation
vectors with mean vectgr, and covariance matriX = FF, whereF is the unique factorization &, that is,
F is a symmetric and positive definite matrix obtainedfas= I'D,I" = I'DY’I'I'DY’I" = FF, where
D, = diag(s, ..., dp) andI'T’ = | ,. We assume that the observation vectgrare given by,

Xj=,u+FUj,j:1,...,N, (1.1)

with
E(u;) =0, Cov(u)) = I, 1.2)

and for integersys,...,yp, 0< X0 w<8,i=1...,N,

P P
EEPﬁ:Ha%, (1.3)

whereuj is thek™ component of the vectar; = (Ujy, .., U, -, Ujp)’. It may be noted that the condition (1.3)
implies the existence of the momentagf, k= 1,..., p, upto the order eight. For comparison with the normal
distribution, we shall write the fourth momenta,, namely,E[u‘j"k] = K4+ 3. For normal distributionk, = 0.

In the general casé&4 > —2. We may also note that instead®f F2, we may also consider as in Srivastava
(2009)x = CC', whereC is ap x p non-singular matrix but it increases the algebraic manipulations with no
apparent gain in showing that the proposed tests can be used in non-normal situations.

We are interested in the following testing of hypothesis problems in one-sample case:

Problem (1)Hy: Z=2Alp, >0 vs Ay : Z # Ay,
Problem (2)Hy: Z =1, vs Ap: Z # .

These problems have been considered many times in the statistical literature. More recently, Onatski, Moreire
and Hallin (2013) and Cai and Ma (2013) have proposed tests for testing the above problems under the assump-
tion that the observation vectors are normally distributed. It has, however, been shown by Srivastava, Kollo and
von Rosen (2011) that many of these tests are not robust against the departure from normality. The objective
of this paper is to propose tests for the above two problems under the assumptions (1.1)-(1.3) which includes
multivariate normal distributions as well as many others.
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Onatskiet al. (2013) test is based on the largest eigenvalue of the sample covarianceSratixt Zi’i L XiX,
wherex; are i.i.d. fromN(0, X) for testingE = o2l ,, against the alternative that= (I, + 6vV), vV'v = 1.
However, Berthet and Rigollet (2013) argue that the largest eigenvalue cannot discriminate between the null
hypotheses and the alternative hypotheses, sing€S) — o asp/N — oo, and hence its fluctuations are too
large and thus would require much largeto be able to discriminate between the two hypotheses; see also
Baik and Silverstein (2006).

Cai and Ma (2013) proposed a test basedJestatistics for testing the hypothesis tiat= 1, based orN
i.i.d. observations fromv (0, X). For normal distribution, the assumption of the mean vector of the observations
to be0 makes no dierence in the use of the propodéestatistics as the observation matrix can be transformed
by a known orthogonal matrix of Helmerts type to obtain= N — 1 observable i.i.d. observation vectors
with mean0 and the same covariance matlx But for non-normal distributions with mean vecter @), this
U-statistics cannot be used for testing the above hypothesis. Thud;sketistics used by Chen, Zhang and
Zhang (2010) is needed to test the above hypothesis which requires computing time of th@(bityerOur
proposed test requires computing time of the o@IEg?).

In the case of two sample case we h&jeand N, independently distribute@-dimensional observation
vectorsxij, j = 1,...,Ni, i = L2; N; < p, Nz < N2, 0 < Ng/Np < 1, andN;/p — 0 as g, Np, p) — oo,
with mean vectorg; and covariance matrice&y = Fiz, i = 1,2, each satisfying the conditions of the model
described in (1.1)-(1.3) witp; andF; in place ofy andF andu;; = (ujj1, .., Uijp)” in place ofu;. We consider

tests for testing the hypothesi vs Az described in the Problem 3 below:
Problem (3)Hz: X3 =X,vs Az: Xg # Xo.

Problem (3) has recently been considered by Cai, Liu and Xia (2013). Following Jiang (2004), they pro-
posed a test against sparse alternative rather than the general alternative given above. In this article, we propose
a test on the lines of Schott (2007) using the estimator of the squared Frobenius nbym B%, under the
assumptions given in (1.1)-(1.3) as has been done in Li and Chen (2012)Wstagistics. However, the
computing time for the Li and Chen statistics is of the or@N*) which for the proposed test, it is only
O(N?).

For testing the hypotheses in Problems (1)-(2), in one-sample case, we make the following assumptions:
Assumption (A)

() N=0(p%), 1/2< 6 < 1.
(i) 0 <ap < oo, as/p=0(1), whereg; = tr[E']/p, i = 1,2,3,4.
iy For £ = (o)), p‘22fj i = o1).
For testing the hypothesis given in Problem (3) for the two-sample case, the Assumption (A) applies to both
the covariance matrice% andX,, and the sample sizes are comparable as stated below:

Assumption (B)

(i) Assumption (A) to both the covariance matricBs and X, with a; = tr [Z‘j] /p, andXj = (ojke)s
i=1,234,j=12.
(i) For N; < Np, 0< Nz/N; < 1.

The organization of the paper is as follows. In Section 2, we give notations and preliminaries for one-
sample testing problems. In section 3, we propose tests and give their asymptotic distributions based on the
asymptotic theory given in Section 6. The problem of testing the equality of two covariance matrices will be
considered in Section 4. Simulation results showing power and attained significance level, the so-called ASL
will be given in Section 5. Section 6 gives the general asymptotic theory under which the proposed statistics
are shown to be normal. In Section 7, we give results on moments of quadratic forms for a general class of
distributions. The paper concludes in Section 8.



2. Notations and Preliminaries in One-Sample Case
Let x1,..., Xy be independently and identically distributpedimension observation vectors with mean
vectoru and covariance matri = F2 satisfying the conditions of the model (1.1)-(1.3). Let

X =

N N
Zx,—,V:Zy]-)/j, yj = Xj =X, (2.1)
=1 =1

2l

i =1,...,N. Itis well known thatn™V, n = N — 1, is an unbiased estimator of the covariance maror

any distribution. Since our focus in this paper is on testing the hypotheses on a covariance matrix or equality
of two covariance matrices, the matkixplays an important role. In this paper, we consider tests based on the
estimator of the squared Frobenius norm, as a distance between the hygdthEsis| , against the alternative

A: X # |, the squared Frobenius norm (dividedfyis given byp=ttr [(£—1,)?] = p~ttr [£2]-2p~ttr [£] +1.

Thus, for notational convenience, we introduce the notation

a :%tr[):i],izl,...,& (2.2)

We estimatey; anda, by
1
&y = —tr[V =N-1 2.
= r(vl, n . (2.3)

and

1
Qsg= ————
=" (-Dh+2)p {
respectively. Srivastava (2005) has shown tHaaridd,s are unbiased and consistent estimatora;adnday
under the assumption of normality and Assumption (A). That is,

tr[V?] - %(tr [V])Z}, (2.4)

A . 4 )
E(8s) = a, Var(@s/ag) = = + ofn %),
1 2
E(a) = ZVar(a) = =.
(&) = ay, % ar(ay) np

However, for the model (1.1)-(1.3) adt= (o7;),

p
n
E(a.) = —K E 2
(aZS) N(N T 1)p 4 = i + ap,

as shown in Section 2.1. Hence, N
EE [Gos — ag] = O(p_lzip:j_ ‘Tﬁ )

which does not go to zero even wh&n= Al,. Thus, &y cannot be asymptotically normally distributed.
Hence, we need to find an unbiased estimatoa,ofor a general class of distributions given by (1.1)-(1.3),
or an estimator with bias of the ord®n=1"¢),¢ > 0. We propose an unbiased estimaigéfined in (2.5).
Its unbiasedness will be shown in Section 2.1, and the variancas &f, and Cov(ay, &) will be given in
subsequent sections.

We define an estimator @ given by,

8 = T {(N = 2ntr [VZ] — Nntr[D?] + (tr [V])?)

T
% {(N—=2)ntr[M?] - Nntr [D?] + (tr[D])?}, (2.5)

wheref = pN(N-1)(N-2)(N-3), M = Y'Y, Y = (y;,...,Yy) @and

D = d'ag(yiyl, ceey yNyN)’
4



namely, D denotes arN x N diagonal matrix with diagonal elements given #yy,...,y\yy. It will be
shown in the following Section 2.1 thag s an unbiased estimator af = tr[£2]/p from which an unbiased
estimator of trE?] is given by pa,. It may be noted that it takes no longer time to compst@iven in (2.5)

than to computeys given in (2.4). It may also be noted that from computing viewpoint, the expression given
in the second line of (2.5) is better suited as all the matricefNaxeN matrices, while the expression in the
first line is a mixture ofN x N andp x p matrices.

2.1. Unbiasedness of the estimador
In this subsection, we show that the estimatpdéfined in (2.5) is an unbiased estimator. For this, we need
to compute the expected values oft?], tr[ D?], and (tr [V])2. Note that,

N

n —
X=X =% -5 2 %= (%~ %)
k=1

where 1
?(j) = F](Ni— Xj), n=N-1

Also, note that; — X does not depend on the mean vegi@iven in the model (1.1), and thus we will assume
without any loss of generality that= 0. Then,E(tr[D?]) is expressed as

N
E@[D?) = ). E[0 - %0 -0

’ &3 ' v 2
E [xjx,- = 2X{X(j) + X(j)X(j)]

’ INTT -/ T 2
E [UjZUj - 2U1-ZLI(J') + U(j)EU(j)] ,
which is rewritten as
ny? < / 2 I N2, (T \2
N Z E [(UJZU]') + 4(UJ-ZU(J')) + (U(j)EU(]‘)) ]
( E [ -4 Zuj)(u{ZT) + 20 Zu;)(T) )]
( E 4(u ZU(J))(U(J)ZU(J))]
Hence, using the results on the moments of quadratic form given in Section 7, we get

E(tr [ D?]) E {[(ujZu))?| + 4E [(u;Zt))?| + E | @ )]}

n

NG
n4

+ 2— E [(U/-ZU]')(UEDEU(]))]

p
:”(n3+1) Z +—tr[):2]+ 2(tr[2])2. (2.6)
i=1

Following the above derivation, we obtain

P

E(tr[V])2 = ”NZK4 Z o2 + 2ntr [£2] + n? (tr [Z])2, 2.7)
i=1
p

E(tr[V?]) = ”NZK4 Z o2 + nNtr[£2] + n(tr[Z])2. (2.8)
i=1
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Collecting the terms according to the formulasgfifi (2.5), we find that the cdBcients ofK, Zi”zl o2 and of
(tr[Z])? are zero. The cdkcients of tr £2] is N(N — 1)(N — 2)(N — 3)/f. Hence,

E(&) = &,

proving thata; is an unbiased estimator af.

Next, we show tha#ys defined in (2.4) is a biased estimatorapf From (2.7) and (2.8), we get

R 1 1
E(&s) = mE {tr [v3 - ﬁ(tr [V])Z}
1 n-n
= 1)(n+2)p{ N Kadoo + (NN = 2)tr [):2]}
_ N oy nP+n-2 a
T (+2N T 2 n-—2
n 18,
= mK4azo+ A, axp= o Z‘Tir (2.9)
i-1

Thus, unles¥, = 0, &y is not an unbiased estimator af, as has been shown in Srivastava, Kollo, and von
Rosen (2011) foE = Al .

2.2. Variance ofy

In this section, we derive the varianceaf The matrix ofN independent observation vectots . . ., Xy
is given byX = (X,..., xny) with E[X] = (i, ..., u) = u1’ wherel is anN-vector of onesl = (1,...,1), and
Cov(x)=X,i=1,...,N. Let A = Iy —N7117, wherel is theN x N identity matrix. Then, witm = N -1,
we defineS asn~1V, which can be written as

S= %(XAX’) = %(x — pl)AX - ul'y.

ThusS does not depend on the mean vegtom the following calculations, we shall assume that 0. Thus,

1(n O 19 19 19
S==|= ) XiXi—— > XiX|== ) XiXi —— > XjXp
n N;'I N].Z;Jk N;'I nN%Jk

and

p
|
'LI—‘
=
%)
I
2|
o
|'M
x
_I
zZ
g
;\

Il
Z|
©
M=
Py
x
|
bz
©
>
g
><\
;>_<

wherex;’s are i.i.d. with mean vectqr = 0 and covariance matriX = FF. We note thaCov(x/x;, x’j X) =0
for j #Kk, andVar(Z‘,'jtk X xk) = (Nn/2)tr [£?]. Hence, from Lemma 7.1 in Section 7,

p
Var(z, ) = NVar(xx) = NVarzu) = Kg > of + 2tr[£?].
i=1

Thus, with
p

1 1
ax = P ; of, and ap = Btr 2], (2.10)
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we get

A 1 2
Var(a]_) = N—pK4a20 + N—paz + N_npa2
2a, o 1 ( n )
=— +Kyg—=—|(2 —K . 2.11
np+ 4Np np az+N 4320 ( )
Thus,
& = &) + Op(Ntp /3, (2.12)
where
o 13 ,
8 = o 0= ) (% — ). (213)
Np

We state these results in the following theorem.

Theorem 2.1 For the general model given {{1.1)-(1.3) and under the assumpti¢A), the means di; as well
as ofa; is a, anda; — & = Op(N1p~%/2). The variance o, is given by

Var(ay) = (2az + nKsazo/N)/(np) = C11/(np).

2.3. Variance of,
In this section, we derive the varianceaf the estimator o0&, given in (2.5). Since

N
[V =tr [(Z vyl ]
i=1

N N
= D+ DA
i=1

i#]

2

N
= D WP+t
i=1

N
Z(yiyi)(y,-y,-)]

i#]

N 2 N N
(tr[vV)? = [Z w] = DO+ D I,
i=1

i=1 i)

we can rewritea; with f = pN(N - 1)(N - 2)(N - 3), as

5o L
27

N N
(N=2)n > (1Y) + (N - 2)n2(m2]
i=1

i#]

N N N
F 2NN O+ Y i + Z(%yi)mypl
i=1 i=1 i#]
N N
= % (N=2n > (v y)? = (20— 1) Y (vy)* + Z(Myixy,-y,-)]
i#] i=1 i#]j

1 N @en-1) & 18
= —=— > (YY)’ - AR ADIADE

i#]
From the Markov inequality we find from (2.6) that for every O,

P{@n-Df N (viy)? > & < % E(tr[D?))
2

< NN 2N = 3% (NKsago + 2Nap + pN&)
= O(N72) + O(pN?) = O(p*~%) = o(1),

7



sinceN = O(p?) for ¢ > 1/2. Similarly,

P(ISILOMIY) > ¢ < NN - D[]
p

B OER S
Hence,
8 = pN(N 3);(yy,)2+op<1)
—, _2
= pN(N 3 ; (xi = X)'(xj - x)} +0p(1)
, 2
= pN(N 1); (%~ ) (xj )} +0(1)
= a; + Op(l)’
where
3= pnNZ - Y O - )
i#]
Thus,

Var(ay) = Var(&;)(1 + o(1)).
To find the variance of, we define

) = %(xi (X~ 1) = \%pui’zw

from the model (1.1). Thus; = ﬁ Zi’ij ;21 and E(zl?j) = ap. Hence, from the results on moments given in
Section 7, we get

Var(a) =

Z(Zz az)

i#]

N2n2 {Z(Z'z a)? + Nere Z:(Z,2 @) (2, - &)

i#] i#j#k

=—V (zz)+ Deovz, 2) (i #j#K
—~_Var[(u/Zu; )2] ;AN -2) {E|(urzup(uizu?| - a3} (i # j # k)
N pz anz i j j =4k 2/ -

For anyi # j # k, the second term of the above expression is

— _ P
4(|i|\ln p22) (E [(U{Zuj)Z(ui’Euk)Z] — &) = 4(||\|\|n p22) {K4;{(22)a’}2 +otr [24]}’

sinceE [(u/Zuj)?(u/Zug)?| - a2 = E [u/Zuju; Buiuy ZuZu; | - a2 = E [u/Z?uiu/2?u;| - a3 = E[(u/2?u)?| -
a2 = Var[(u/Z?u;)?] = Kg 2P {(Z?)}? + 2tr [£%]. For anyi # j, from Lemmas 7.1 and 7.2, we get

P P
Var{(u/xu;)?] = Kq Z ot + 6Ky Z{(}:Z)kk}2 +2(tr [£7))? + 6tr [=4].
k.t k=1

8



Hence

2
Var(@) = ——

N KZZUH + 6K4Z () + 2 [22)2 + 6tr [29]

i=1

P
[ AZ 22)u +2'[I’[Z4] s

i=1

which is rewritten as

iy 4B AN N2 ARNED)
Var(az) = m + an2 K4;{(Z )”} + W tr [Z ]
2 4 8
= n—azz + H)K4b4+ n—pa4+o(n‘2)

42 4 _
=+ n—p(K4b4 + 2a,) + o(n?)

1 _
ﬁczz +0o(n2),

whereCy; = 4[a3 + (n/p)(Kabs + 2a4)], by = p 1 37, {()22)“ }2 anda, = p~ltr[Z?%]. The above result is stated
in the following theorem.

Theorem 2.2 Under the general model given (f.1)-(1.3) and under the assumptidA), the variance o€,
is approximated as

Var(a;) = {az + (K4b4 + 28,)} + o(n"?) = =2 1 o(nd),
where Gy, by and & have been defined above.

2.4. Covariance betweeén anda,

In this section, we derive an expression for the covariance betagandd, which is needed to obtain
the joint distribution ofa] anddy. Sinced; anda; are asymptotically equivalent &j and&, respectively, we
obtain theCoua}, &). In terms of model (1.1),

.
)

N N
1 ’ o _ 1 ’ 2
N_p ; U[ZU[ and a, = m %(UjZUk)

Thus,

Cova;, &) = WE

— aqdy

N
E Z (U/Zu) (U Zu)? + ZZ(u’qu DUjZuy)?

(#j#k j#k

N2np?

N-2
= —a1d + —=

P
S Ng {K4 Z; o (B + 2tr[Z3] + tr [Z]tr [22]} — a3

= 3 (K4b3 + 2a3)

ﬁcﬂ

whereCy, = 2(K4bz + 2ag), bz = p* Zf’zl o (2, andag = ptr[X3®] The above result is stated in the
following theorem.

9



Theorem 2.3 Under the general model given {{1.1)-(1.3) and under the assumptiogid), the covariance
betweerd] and&; is given by
Ax A% 2 C12
Cova;, &) = n—p(K4b3 +2a3) = T’
where B and & are defined above.

Corollary 2.1 From the results of Theorems 2.1-2.3, the covariance mati{&0&})" is approximated as

(212)] - (gijgg 8 21222//((?]29)) +o(n2) = C+o(n?). (2.14)

It will be shown in Section 6 that ad(p) — o, (&], &) is asymptotically distributed as bivariate normal
with mean vectord;, ay)’ and covariance matri as given above in (2.14).

Cov

3. Tests for Testing that = Alpand X = 1,

In this section, we consider the model described in (1.1)-(1.3), and propose tests for the two hypotheses,
namely for testing sphericity and for testing the hypothesisZhatl .
The sphericity hypothesis will be considered first in Section 3.1, and the hypothesE thatl, will be
considered in Section 3.2.

3.1. Testing sphericity
For finite p, andN — oo, John (1972) proposed a locally best invariant test based on the statistic

_ r[S/p 1
NGC R o

and showed that for finitg, asn — oo, NpU/2 it XS under the hypothesis tha = Al,, whered =
p(p+1)/2-1, andi denotes a convergence in distribution. Ledoit and Wolf (2002) showed thai for& oo
such thatp/N — c, the following modified statistic,

Tuw = (NU - p) 5 N(1,4), (32)

under the hypothesis that= Al ,; the distribution of this statistic whe@ # 1l , was not given, but later given
in Srivastava (2005).

Srivastava (2005) showed that from Cauchy-Schwartz inequality

ptyl, A2
%:@21, and =1 iff A = A, (3.3)

a% <p‘1 Zip=1 Aiz)z

where); are the eigenvalues & Thus a measure of sphericity is given by

M= 21, (3.4)
8
which is equal to zero if and only it; = --- = 1, = A. Thus, Srivastava (2005) proposed a test based on

unbiased and consistent estimatorapénda,, namelya; andays defined in (2.3) and (2.4) respectively under
the assumption that the observations are Ngfu, ). This test statistic is given by

Ty = g[% _ 1) (3.5)

Srivastava (2005) showed that asff) — oo Tis 5 N(0,1) under the hypothesis that= 2l ,. The asymptotic
distribution of T, whenX # Al is also given. It has been shown in (2.9) that the estimetais hot unbiased
for the general model given in (1.1)-(1.3).
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An unbiased estimator @ or tr[£?] can be obtained by using Hfiding’s (1948)U -statistics, for details,
see Fraser (1957, chapter 4), Serfling (1980) and Lee (1990). For example, if the meap i@z, tr £2]
can be estimated by

tr[z?) = N(N 5 Z(x Xj)%,
i#]

as has been done by Ahmad, Werner and Brunner (2008) in connection with testing mean vectors in high
dimensional data. The computation of this estimator takes time of @), same as in calculatiras. But
wheny is not known, an unbiased estimator of2f], using Hodfding’s U-statistic is given by

N

1 ’
" NN - DN -2 - 3).¢§¢f[(xi_x") S

“N(N= 1)2( i)’ - N(N-D)(N-2) 1)(N 2) Z XXXk

i#] i#j#k

TNIN= 1)(N 2)N-23) Z XXX

i#j#kel

as used by Chen, Zhang and Zhong (2010) in replaajgdn”Srivastava’s statistid;s by using the above
estimator divided byp. The above estimator of tEf], however, has summation over four indices, and thus
requires computing time d®(N*), which is not easy to compute.

Thus, in this paper, we use the estimagin place ofdys, and propose the statisfig given by

Ti-2 (% - 1) (3.6)

which is a one-sided test since we are testing the hypothisiaV = 0 against the alternativ&; : M; > 0.

In Section 6, we show that adl(p) — oo, (&, &2) has a bivariate normal distribution with covariance matrix

C given in (2.14). Thus, following the delta method for obtaining the asymptotic distribution as in Srivastava
(2005) or Srivastava and Khatri (1979, page 59, Theorem 2.10.2), we can see that the varia@@)ois(
approximated a¥ ar(a,/a2) = r2(n, p) + o(n"?), where

2(n, p) = ( 2a; i](Cn/(np) C12/(np)) (—Zaz/ai)
a3 a2 )\Cr2/(np)  Co2/(M)J\ /8]
_( 232011 Ciz —23Cp2 N sz)(—zaz/af)
npa npaﬁ’ npa n2a’ 1/a5
_ 485C11  2a,Cip  28,Cyo sz
npgd  npdk  npa

3 482 [48%('(4820 + 2ap) 8a2 }
" p

=3 5 — —(Kabs + 2a5) + —(K4b4 + 2ay)
n?aj a ap af
_ 4a2 4a5az0 _ 8aghs g} [Ba2 16ayas 814]
_nzal np 4 a‘13 ag +4a‘1‘ +np a1 ai + o . (3.7)

Thus, we get the following result, stated as Theorem 3.1.

Theorem 3.1 As(n, p) — oo, the asymptotic distribution of the statistié;s/é% under the assumptiofd) and
for the distribution given iff{1.1)-(1.3) is given by

(82/22 - a/@2) /7(n. p) > N(0. 1)

wherer?(n, p) is defined in(3.7).
11



Under the hypothesis tha = Al ,, ay/a3 = 1, ax/a2 = 1, bs/ad = 1, bs/al = 1 andas/aj = 1. Hence,
under the hypothesis, the variance mj/ﬁf) denoted by/ary is given by,

A A 4
Vary(8/8%) = = (3.8)
Hence, we get the following result, stated as Corollary 3.1.

Corollary 3.1 The asymptotic distribution of the test statisticswhenX = Al,, 2 > 0, as(n, p) — oo, is
given by

7. % N, 1)
3.2. Testingt = I

In this section, we consider the problem of testing the hypothesi&tkat,. Nagao (1973) proposed the
locally most powerful test given by,

~ 1
To=Juls- 1), (3.9)
and showed that as goes to infinity whilep remains fixed, the limiting null distribution of
Nps d
TpTl = Yp(p+1)/2 (3.10)

whereYy denotes a2 with d degrees of freedom. Ledoit and Wolf (2002) modified this statistic and proposed
the statistic

1 P, P
W = Btr (S-1p)3 - Naﬁ N (3.11)
and showed that adN( p) — oo in @ manner thap/N — c,
nW-p -3 N(L 4)

under the hypothesis that= I .
The test proposed by Nagao was based on an estimate of the distance

Mo %tr (- 1)

1
B(tr [£?] - 2tr[Z] + p)
—apy—-2a;+ 1 (312)
Srivastava (2005) proposed a test based on unbiased and consistent estipatdess under normality. This
test is given by, N
Tgs = E(égs - Zél + 1) (313)
As (N, p) — oo, it has been shown to be normally distributed under the assumption that the observations are
normally distributed.
We propose the statistic N
T, = 5(32 —-24 +1) (3.14)
and show that asymptotically abl,(p) — oo, T, is normally distributed. It may be noted th& is also a
one-sided test.
From the covariance matrix o{;a,) given in (2.14), the variance oéf{ = 24;) can be approximated as
Var(a, — 24;) = 7%(n, p) + o(n~2), where
7?(n, p) = Var(&,) + 4Var(a,) — 4CoVay, &)
4a% 8a, 8ay 16a3 4K,
=<4 4 =_=4 = — 2bg). A
2 + np + np np + np(b4+3.20 b3) (3 5)
We state these results in Theorem 3.2.
12



Theorem 3.2 Under the assumptio(A) and for the distribution given i(1.1)-(1.3), the asymptotic distribu-
tion of the statistid, — 24, as(n, p) — oo is given by,

A A d
{(&2 — 2&4) — (a2 — 282)} /n(n, p) = N(0, 1), (3.16)
wheren?(n, p) = Var(a; — 24;) given in(3.15).
Since when the hypothesis ti&it= |, a, — 2a = -1, and;?(n, p) = 4/n?, we get the following Corollary.
Corollary 3.2 The asymptotic distribution of the best statisticithenX = 1, is given by

T, 5 N(O. 1),

as(n, p) — oo.

4. Tests for the Equality of Two Covariance Matrices

In this section, we consider the problem of testing the hypothesis of the equality of two covariance matrices
X1 andX; whenN; i.i.d p-dimensional observation vectaxg, j = 1,..., Ny are obtained from the first group
following the model (1.1) - (1.3) witlir replaced byF1, pu by g, andu; by uy; whereX; = Fi. And, similarly
N, i.i.d p-dimensional vectorsyj, j = 1,..., N, are obtained from the second group following the model
(1.1)-(1.3) withF replaced byF», u by u, andu; by uyj, whereX, = Fg. The sample mean vectors are how

given by
1 & 1 &
X1 = N_l lej, and X, = N—2 ZXZJ-.
j=1 j=1
Similarly, we define sample covariance matri&sandS, throughV; andV, given by,
Nl N2
Vi =ZYI]'Y1j’ Vi= Z Y2iYa;
j=1 j=1
1 1 .
S:I. =_V1’ andSZ = _V29 n = NI - 1’ I = l’ 2’
Ny 17}

where
ylj =le—71,j =1,...,Ng, yzj =X2j—72,j =1...,No.

Under normality assumption, the unbiased and consistent estimatags-ofr [¥;]/p anday = tr[£2]/p will
be denoted bwyy; anddys respectively by usiny; in place ofV; andN; ornj = N; — 1 in place ofN, i = 1, 2.
The unbiased estimator a$; under the general model will be denoteddy. Thus,

” 1 R 1 1
&y = m)tr [Vil, &gs = =D+ 2p {tr V3] - H(tr [Vi])z},

and

| =

&g = — {(Ni = 2)nitr [V?] - Nntr[D?] + tr [V?]},

—h

where for i= 1,2,
fi = pPNi(Ni = 1)(Ni = 2)(Ni - 3)
Di = diag(i; Yis. - - Yin¥ing) - Ni X Ni.

To test the hypothesis stated in Problem (3), namely testing the hypokesisY, = X, say, against the
alternativeX; # X,, Schott (2007) proposed the statistic

Teoz 815 + o5 — 2tr [V1V2] /(pruny)
S¢ 2805 (1 + 1/ne)

(4.1)



where

s = " (N1821s + N2822s), (4.2)

np +n.

is the estimator of, = p~tr[X?] under the hypothesis tha = X, = X. It may be noted that the square of
the expression in the denominatoriaf. is an estimate of the variance of the statistic in the numerator. Using
the new unbiased estimator af, we obtain the statistic

81 + Az — 2tr [V1 V2] /(prunz)
v Vma)

Wherevmg) denotes the estimated variance of the numerator of (4.3), namely, the estimated variance of

T = (4.3)

2
O3 = 8o1 + 890 — tr[V1Va],
(0] 21 + A2 o, [ViV2]

under the hypothesis th&f = X, = X. The variance ofj3 is as shown in Sections 4.1 and 4.2, is given by

2
Varg(fs) = Var(az) + Var(azo) +(pr§ ) Var(tr[V1V2])

Z CoMay, tr[V1V2]).

pn 17]
45 4 8 1
= — + —= N N; < No.
n2 n2 nln2 + 0( 1 )7 1> IN2

Thus, assuming thédi/p — 0,i = 1,2, as (N1, N2, p) — oo, the test statistid; defined in (4.3) is given by

81 + Az — 2tr [V1V2]/(prunz)

T2 =
3 28, (1/ + 1/ny) ’

(4.4)

where

Ay =

N18z1 + Npayy). 4.5
n1+n2(121 2322) (4.5)

It may be noted thals is a one-sided test. That is, the hypothesis is rejectéd if z;_,, wherez_, is the
upper 100(% @)% point of the standard normal distribution.

4.1. Evaluation of Variance df [V V3]
To evaluate the variance of W[V;],we note that-; = F, = F, under the hypothesis thgf = X, = X =

F2, and asymptotically
Ny N
Vi=F (Z uliuai) F, Vao=F [Z uz,-u'zj] F
i=1 j=1

Thus
N1

N2
tr[ViVo] = tr l[z UliU'li]Z (Z U2Ju,2j) 2
j=1

i=1

Ny
= > uyCuy,
i=1
whereC = (¢j) = £BX andB = Z;\'jl Upjuy;. Hence,
Varo(tr [V1V2]) = Var (3 uj;Cuy)
- E|Var(2; wyCusfc)| + var(E| £ uyculc|).
Note that

N2
E[Zi,ill u’liculi'c] = Nutr[C] = le U’ZjZZU2j.
=1
14



Hence )
Var(E |2 uyCus[c|) = NEN, [K4 i + 2tr [):4]] .
i=1
Thus, under the assumption (A),

:2 Var(E [Z ulICul.’C]) (K4 + 2)tr[Z%] = o((np) ),
1

and hence 1
g A VaVaD = |Var(£% uCusfc)| + oltnp ™).

For a givenC = XBX, whereB = ijl Uajuy;,

P
Var(¥ uyuy) = Nl[K4Z G2+ 2tr [cz]]

1
N

=Ng|Kq Y & +2tr [EZBEZB]).
i=1

LetX = (01,...,0p). Then,

2
zp: ¢ = Zp:((r Boi)? = Ep: {O'I' [i Uzju'zj]o'i}
i i—1

j=1

p 2 p (N
Z {Z(O’ uy;j) } Z {Z(O’ uzj) + Zo- u2]u2kg-|}
i=1

i=1 j#k
p No
= Z Uiy + > Uz .
i=1 \j=1k j#k

Hence,

P
E[Z c”] N, Z E[(ouzjupon)?] = Ny Z E[(uj; o107 uz)?]

i=1 i=1
P

P
Ka Z Z{(O'io'i’)jj}z + 32(0’{07)2
i=1

i=1 j=1

p
< No(Ka +3) > (0f01)? < No(Ka + 3) tr[Z4],

i=1
N, N
22 (Z UZJU,ZJ]ZZ (Z U2]U’2J]:|]
j=1 j=1
N N
ZZ: (uzjzzu’zj)z + ZZ: (u’szZUZK)Z}

=1 j#k

- 4 - -
sinceX” = Zi oio{oio] + Z#J oio{oj0. Similarly,

E(tr[C?]) = E(tr[2?BX?B]) = E[tr

=E

p
=N, [m D E e +tr [+ (tr [22])2} + Nonatr [£1].
r=1

15



Thus,

o — 55 Van(tr[ViVa]) =
Pneng

p P p
K2 > > (o)) +3K4Z(a'i’0'i)2}
i=1

2
pen.ng i=1 =1

p
2 4 2172 4
p2n1n2 {K“ ; (Z2)r}? + 2tr [£4] + (tr [Z2])% + natr [£ ]}
_ 22

-2
+ o(n
= (™).

4.2. Evaluation of covariance betweag andtr[V,V;]
The covariance between; and tr V1V5] under the hypothesis is given by

C(llz) = Covp[an1, tr[V1V2]/(N1N2p)]

1 N Ny N2
=—— E (u’lji‘.ulk)2 tr 2‘.[ uliu’li)z[ u2|u’2|]
NZNany p? ;; ; ;
N, A
— u Zu tr ugu’ ||| - a2,

sinceus; anduy, are independently distributed aagh Ts independently distributed of,. Hence,

Ny
1
Cl = o Z(uljzulkxul.zzul.)+2Z(u1,zu1k) (up;Bug) | -
1P i#jzk j#k
Nlnl(nl — 1) 2 2N1n1 K4 Zipzl{(zz)ii }2 2tr [24] 2
= 5 a5+ — s A&
Nlnl Nlnl p? p
ng-1 2 2 2 1
= — —1]a5 + — x0(1) = o(N; 7).
( Nl + Nl ) 2+ Nl X ( ) ( 1 )

5. Attained Significance Level and Power

In this section we compare the performance of the proposed test statistics with the tests given under the nor-
mality assumption. The attained significance level to the nominal vaki€.05 and the power are investigated
in finite samples by simulation.

The attained significance level (ASL) is defined by = #(Ty > z,)/r1 for Problems (1) and (2), and
by ar = #(TH > X1 )/r1 for Problem (3), wher@; are values of the test statisfic computed from data
simulated under the null hypothesis r is the number of replicationg, is the 100(1- @)% quantile of the
standard normal distribution arxf is the 100(1- @)% quantile of the chi-square distribution. The ASL
assesses how close the null distributionTa to its limiting null distribution. From the same simulation, we

also obtainz, for Problems (1) and (2) amaia for Problem (3) as the 100&@ @)% sample quantile of the
empirical null distribution, and define the attained powerghy= #(Ta > Z)/r» for Problems (1) and(2),

Bt = #(I',i > XE)/Q for Problem (3), wherd@ 5 are values off computed from data simulated under the
alternative hypothesia. In our simulation, we sat = 10,000 andr, = 5, 000.

It may be noted that irrespective of the ASL of any statistic, the power has been computed when all the
statistics in the comparison have the same specified significance level as tliepmints have been obtained
by simulation. The ASL gives an idea as to how close it is to the specified significance level. If it is not close, the
only choice left is to obtain it from simulation, not from the asymptotic distribution. It is common in practice,
although not recommended, to depend on the asymptotic distribution, rather than relying on simulations to
determine the ASL.

Through the simulation, lgt = 0 without loss of generality. For=1,..., N, u; = (u;;) given in the model
(1.1) is generated with the four cases: one is the normal case and the others are the non-normal cases.
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(Case 1)u;; ~ N(0,1),

(Case Z)Uij = (Vij - 32)/8 for Vij ~/\/§2,
(Case 3)ujj = (vij — 8)/4 for vij ~ x2,
(Case 4)Llij = (Vij - 2)/2 for Vij ~/\{§,

wherey?, denotes the chi-square distribution withdegrees of freedom, angj are standardized. Since the
skewness and kurtosi&{ + 3) of x7, is, respectively, (Bn)Y/2 and 3+ 12/m, it is noted thaty3 has higher
skewness and kurtosis thg@ and)(gz. Following (1.1),x; is generated by; = Fu; for X = F2,

[1] Testing problems (1) and (2). For these testing problems, the null and alternative hypotheses we treat
areH : X = IpandA: X = diag@y,...,dp), d = 1+ (-1)*Y(p—i)/(2p). We compare the two testgs and Ty,
given in (3.5) and (3.6) for Problem (1), and the téstsandT,, given in (3.13) and (3.15) for Problem (2). It
is noted that the 95% point of the standard normal distribution64485. The simulation results are reported
in Tables 1-4 for Problems (1) and (2), respectively.

From the tables, it is observed that the attained significance level (ASL) of the proposdd &t , are
close to the specified level while the ASL values of the t@stsand T,s proposed under normal distribution
are much inflated in Cases 3 and 4. Concerning the powers, both tests have similar performances although the
proposed tests are slightly more powerful in Case 4.

[2] Testing problem (3). For this testing problem, the covariance makiwe treat here is of the form

1 1 1

1-1|10 1-2|10 1-p|10
o1 P11 1 P12 1 oL-nl ‘ o1
o2 -yt j2-2/T0 j2-piT0 o2
— p p “ee p
Z(p) = . s

1 1 1

—1|10 —2/10 —p| 10
ap J ple-u g2 ipep) op

whereo; = 1+ (-1)**U;/2 for a random variabl&J; having uniform distributiort (0, 1). Then we consider
the null and alternative hypotheses giventby X1 = X, = X1 forp = 0.1 andA : X = X(g4) forp = 0.1,

X, = X(o3) for p = 0.3. We compare the two testgandTs, given in (4.1) and (4.4). The simulation results
are reported in Table 5.

For the table, it is revealed that the ASL of the proposedTestre closer to the nominal level thdi .
in Cases 3 and 4. Concerning the powers, both tests have similar performances although the proposed test has
slightly more powerful in Case 4.

6. Asymptotic Distributions

In this section, we show that all the test statistics proposed in Sections 3 and 4 are asymptotically normally
distributed asN;, N2, p) go to infinity. The test statisti€; depends oy anddy;, i = 1,2 or simply on €3, &;)
in one-sample case. We shall considg#,(&11) or equivalently &,,&;,) in probability. To obtain asymptotic
normality, we consider a linear combinatibd;, + |,&], of &, andd;,, where we assume without any loss of
generality thatf + I% = 1. We shall know that for all, andl,, [18,; + 15811 is normally distributed from which
the joint normality ofa; andd;; follow. Note that

Ny
1
as —ay = (u’-):ul-)z—az
B Nlnlp; 1i&U1j
1 -
= U’ Xupi)? — U XUy + Ul X%l — a
Nlnlp;{( LZUL)” — U TP + U2 | - &
1 &
_ ’ N2 _ iy Y2,
= NlnlpZ{(uli):ulj) up Z2ug )+ A,

i#]
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whereA = (N1n;p)~ Z#]( ’ljzzulj—tr[zz]) (Nip)t 2N (u ):Zuli—tr[Zz]) and

Var(A) = N )ZZVar(ul,Z U1i)

(N )24N1(K4 + 2)tr [£%] = o(N;}),

since tr £%]/p? = o(1) from Assumption A. ThusA — 0 in probability. Hence,

Ny i—

1 1
A p 2 F SV v 2. — :

where& = 2(Nip)t Z {(u Eulj)z—u’ljzzulj}. Let Si(b) be ao-algebra generated by random vectors
Uig,..., U, i =1,....Ng, and let 2, J, P) be the probability space, whegeis the whole space arielis the prob-
ability measure. Le be the null set. Then, withY = (0,Q) = 9_3, wefind thad P c 3P .. c 5P c 9,
andE(&|9i-1) = 0. LetB, = Zug,uj X for £ = j, j # k. Then

(MY e

i-1 i—-1
Var(u);Bjuy) + 22 CoWuj; Bjuy;, u; Beus)
=1

j<k
i-1 p
+2) {mZ(B Dee(Be + 2 [B, Bk]},

j<k (=1

i-1

p
[K4 Z{(Bj)é’t’}z + 2tr[B]
=1

where B). is the ¢, Ot diagonal element of the matr; = ((Bj)«). Thus,

j=1

(K“ 2) {( DE(U;Eu)? + (-10-2) 1)2(i ~ 2y [214}
1

4(K4 +2) {

EE) <
(Ka+ 2tr [2]* + (tr[Z?))? + tr[Z]} = O((p~*tr [£2])?).

Hence, the sequend§&, Ji} is a sequence of square integrable martingaiiedince, see Shiryaev (1984) or
Hall and Heyde (1980). Similarly, it can be shown that

D EEA5i) > of
i=0
for some finite constantg. Thus, it remains to show that the Lindberg’s condition, namely
N1 p
D ELEAI (Il > eFi-1)] > O.
i=0
is satisfied. It is known, see, e.g, Srivastava (2009), that this condition will be satisfied if we show that
Ny
Z E(§|4) — 0 asN; — oo,
i=0

Next, we evaluat&(&'). Note that

-5 8ol

j<k

where
Gj = U/liBjuli —-tr[Bj], B; = Zulju’ljz.
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Hence, from an inequality in Rao (2002),

2 \H = i-1
=2(N1p) [ Cﬁ+62 ijCk + 4 Z Cij CikCil Cir | »

j= j<k j<kl<r

and

i-1
Z E(CIJ) + 62 E(Cljclk }

=1 j<k
2
1 i-1
<96——|>» | .
(Nyp)* [Jz_; ”]
Hence, using again an inequality in Rao (2002), we get

& E(cf)
Z E(&") < 192 % 54

i=1

(i #]),

which is of orderO(Nil) or converges to zero abl{, p) — oo under the Assumptions (A1)-(A3) by using the
results on the moments given in Section 7. For example, for some comstaatget from Corollary 7.2, and
the fact thalN = O(p°), 6 > 1/2,

1
FE[(u'lj):zulj)“]
< éy[(tr [Z2)% + (tr[Z2])%tr [2%] + (tr [E4])2 + tr [Z2tr [Z6]) + tr[Z28]],

which is of orerO(1) under the Assumptions (A1)-(A4), because

1 1 1 2
Rl E < tr [ (2] = az% ~0. L[z < p4(tr [£9)2 = (a;) -0,
Similarly, for some constant;,
p14 (El(uyBjuy)IBi]) < énEtzar[B;D“ +(tr[B])*(r[ BE) + (tr[Bf)* + tr[B]]
- Sl ).

Hence E[(u};Bjuy)*/p* = O(1). Similarly,

. 1 Ny ) Ny
WNip@s; - ) = o= {i;(ulizuli —tr [z])} = ;fz,
whereéy = (N1 p)~/?[u;Zuy; — tr[Z]]. It can be checked thd(£Ji-1) = E(£) = 0 and

1
E(§2||S| 1) = Var(&) = lpVar(u1,Zu1,)

1 2
Nlp[K“Z““ +2tr[Z ]]
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Hence L E(¢43i1) = p[Ka 21, 0% + 2tr[E%]] < co. Similarly it can be shown tha&*, E(£) — 0 as
(N1, p) — o. Thus, asymptotically, ad\g, Ny, p) — oo,

_1o[811— a1\ d
911/2(A11 al) - N2(0, 12),
>

whereQ = Q/?Q1/? given by
o (cg/(Nlp) Cil’/(Nlp))
Ch/(Nip)  C3/(N2)

Thus, the asymptotic distribution (ﬁg({/éfl) is normal with mearzxizl/afl and varianceﬁ given by

vi = (-2ap/a}, 1/af) (- 28, /a3, 1/af)
1 1 1
_4ach 4aCh  Cp
aiNip  &Nip  agNg
2
1 (cow_4Nige @), 4N 2@1)).

sz_ai 22 p a 12 p a% 11

7. Moments of Quadratic forms

In this section we give the moments of quadratic forms, which are useful for evaluating the varaiances of
&; anday. For proofs, see Srivastava (2009) and Srivastava and Kubokawa (2013).

Lemma7.1Letu = (Uy,...,up) be a p-dimensional random vector such thguE= 0, Cov(u) = Iy,
E(u) =Ks+3,i=1,...,p,and
E(uauduguf) = E(UR)E(UD)E(UDE(U?),

0<a+b+c+d < 4foralli, j,k, £. Then for any x p symmetric matrices = (a;) andB = (loj;) of constants,
we have

p
E(u’ Au)? = Ky Z a? + 2tr[A?] + (tr[A])%,
i=1

p
Var(u’ Au) = Ky Z a + 2tr[AY,
i=1

p
E[u’ Auu’Bu] = Ky Z ajbj + 2tr [AB] + tr[Altr [B],
i=1

for any symmetric matriB = (l;;) of constants.

Corollary 7.1 Lettu =Nt Zi'il uj, whereus, ..., uy are independently and identically distributed. Then
_ Ks 2
Var(U' Al) = N—g Z az + mtr[Az].
i=1

Lemma 7.2 Letu andv be independently and identically distributed random vectors with zeroes mean vector
and covariance matrixp. Then for any p< p symmetric matridA = (g;),

P P
Var[(u' Av)?] = K2 Z al + 6K, Z{(AZ)ii 12 + Btr [AY] + 2(tr [AY)%
ij

i=1
Note that for any symmetric matrik = (as,...,a,) = A, (A% = aa = X7 &, and % {(A%)i)* =
Zipzl(Z?:l a|2])2 = ij,k a121 a12k
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8. Concluding Remarks

In this paper, we have proposed a new estimatqr &t [£2] which is unbiased and consistent for a general
class of distributions which includes normal distribution. The computing time for this estimator is the same
as the one used in the literature under normality assumption. Using this new estimator we modified the tests
proposed by Srivastava (2005) for testing the sphericity of the covariance asnd for testinge = | ,. The
performance of these two modified tests are compared by simulation. It is shown that the attained significance
level (ASL) of the proposed tests are close to the specified level while the tests proposed under normal distri-
bution, the ASL is 831% for chi-square with 2 degrees of freedom. Thus, the modified proposed test is robust
against departure from normality without losing power.
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Table 1: ASL and powers given in percentage (%) of the tEgf®ndT; for Problem (1), as well as the testss and T, for Problem (2),
under Case IV(0, 1)

ASLin H Power in A
p N Ts T1 Tas To Tis T1 T To
20 10 510 671 550 739 1102 1053 1086 1043
20 518 638 602 704 2098 1869 1976 1789
40 K36 578 568 623 4892 4722 4747 4511
60 K37 579 597 635 7625 7491 7406 7294
40 10 832 714 602 768 1086 1Q34 1015 965
20 551 601 588 643 1959 1888 1928 1829
40 485 523 500 569 4918 4802 4880 4681
60 527 533 569 574 7600 7500 7429 7424
60 10 505 705 536 751 1145 994 1117 1001
20 512 597 552 636 2073 2023 1983 1939
40 485 530 509 554 5Q13 4827 4951 4813
60 505 520 523 544 7677 7565 7612 7527
100 10 513 719 528 736 1040 996 1Q39 963
20 508 608 529 626 1999 1860 1988 1829
40 533 581 533 592 4783 4649 4732 4615
60 470 515 470 525 7743 7593 7701 7548
200 10 538 709 555 720 1091 1074 1Q72 1062
20 508 617 527 624 2107 1886 2052 1869
40 466 521 476 532 5066 4819 4996 4786
60 500 539 501 546 7739 7561 7718 7575
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Table 2: ASL and powers given in percentage (%) of the tBgf®ndT; for Problem (1), as well as the testss and T, for Problem (2),
under Case 3,

ASLin H Power in A
p N Tls Tl TZS T2 Tls Tl TZS T2
20 10 650 641 737 719 1082 1089 1050 985
20 743 672 833 740 2051 1856 1863 1775
40 750 610 837 690 4754 4589 4461 4410
60 760 574 849 645 7422 7409 7190 7241
40 10 719 719 794 756 1117 1043 1050 978
20 781 660 840 695 1920 1809 1824 1804
40 748 585 816 639 4725 4583 4522 4398
60 753 573 796 600 7405 7303 7240 7207
60 10 685 718 727 737 1140 1038 1140 1024
20 754 612 790 642 1989 1879 1916 1869
40 772 580 791 584 4734 4642 4602 4557
60 738 542 765 571 7540 7511 7446 7422
100 10 682 663 696 698 1221 1133 1195 1086
20 693 588 707 611 2177 2036 2171 2033
40 749 588 768 605 4688 4552 4603 4486
60 717 539 735 556 7589 7574 7526 7503
200 10 689 707 715 723 1148 1064 1145 1Q70
20 747 630 739 633 1944 1893 1961 1876
40 746 588 750 594 4613 4532 4595 4544
60 721 532 731 530 7705 7627 7689 7619

Table 3: ASL and powers given in percentage (%) of the tBgf®ndT; for Problem (1), as well as the testss and T, for Problem (2),
under Case 3¢

ASLin H Power in A
p N Tls Tl TZS T2 Tls Tl Tzs T2
20 10 1282 689 1484 791 1Q78 1126 979 1067
20 1503 672 1722 775 1925 1858 1647 1715
40 1787 698 1962 802 4233 4221 3666 4035
60 1786 668 1998 7.72 6610 6809 6149 6593
40 10 1438 7.14 1574 746 1041 1050 1027 1008
20 1737 698 1828 730 1825 1822 1743 1777
40 1807 657 1948 722 4315 4281 4059 4132
60 1855 636 1961 683 6905 6960 6657 6801
60 10 1463 755 1576 774 976 974 960 974
20 1671 633 1720 686 1812 1880 1739 1859
40 1804 621 1886 656 4434 4409 4293 4356
60 1850 589 1920 609 7260 7301 7132 7241
100 10 1527 717 1559 753 1065 1028 1Q11 1Q19
20 1669 573 1708 589 1977 1972 1885 1986
40 1755 589 1817 602 4593 4571 4568 4494
60 1825 586 1868 609 7429 7342 7324 7327
200 10 15%7 710 1576 736 990 1004 985 1Q02
20 1668 601 1693 607 2091 1972 2044 1979
40 1723 585 1761 589 4673 4557 4602 4592
60 1809 522 1822 548 7552 7541 7491 7504
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Table 4: ASL and powers given in percentage (%) of the tEgi®ndT; for Problem (1), as well as the testss and T, for Problem (2),
under Case 42

ASLin H Power in A
p N Tis T Tos T Tis T Tos T
20 10 4216 1024 4293 1131 819 851 741 853
20 5524 1059 5678 1196 1184 1391 998 1289
40 6340 1100 6579 1294 2242 2802 1668 2608
60 6669 1101 6974 1327 3748 4573 2785 4316
40 10 5009 919 4920 960 876 1Q30 833 1032
20 6101 937 6132 1048 1303 1536 1125 1456
40 7125 922 7211 1036 2541 3221 2078 3130
60 7399 902 7536 1044 4474 5476 3657 5250
60 10 5185 930 5120 934 857 943 851 881
20 6454 867 6422 909 1284 1641 1139 1599
40 7286 898 7341 972 2819 3488 2334 3396
60 7684 835 7750 927 4991 5988 4220 5827
100 10 5380 844 5348 864 926 1Q05 918 1026
20 6771 799 6735 863 1354 1674 1254 1646
40 7583 776 7594 837 3183 3901 2761 3799
60 7922 742 7963 781 5403 6345 4908 6265
200 10 5632 782 5593 811 882 986 884 974
20 6945 712 6967 724 1426 1759 1351 1793
40 7890 650 7891 667 3376 4156 3150 4135
60 8115 617 8118 632 6195 7088 5913 7Q42

Table 5: Critical values, ASL and powers given in percentage (%) of theTes®nd T3 for Problem (3)

Critical Value ASLin H Power in A
N p Tsc T3 Tsc Ts Tse Ts
Case 1:N(0,1)
20 40 14359 14740 264 299 2596 2532
40 80 15489 15919 392 429 6948 6850
60 120 16208 16501 470 507 9246 9202
80 200 15983 16186 460 474 9930 9924
Case 2 jx3,
20 40 15380 15127 346 349 2498 2454
40 80 16945 16178 565 475 6874 6858
60 120 17807 16894 654 548 9192 9198
80 200 17424 16257 607 480 9904 9904
Case 3 1x2
20 40 18263 15557 798 383 2004 2310
40 80 20472 16527 1148 508 6474 6754
60 120 21271 16485 1313 507 8926 9108
80 200 21575 16757 1286 532 9848 9878
Case 4 x5
20 40 26124 17723 3178 646 1164 1958
40 80 34193 18795 5170 721 4384 6Q76
60 120 36721 19193 5915 795 7816 8858
80 200 36834 17761 6221 648 9642 9872
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