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Abstract

In this article, we propose tests for covariance matrices of high dimension with fewer observations than the
dimension for a general class of distributions with positive definite covariance matrices. In one-sample case,
tests are proposed for sphericity and for testing the hypothesis that the covariance matrixΣ is an identity matrix,
by providing an unbiased estimator of tr [Σ2] under the general model which requires no more computing time
than the one available in the literature for normal model. In the two-sample case, tests for the equality of two
covariance matrices are given. The asymptotic distributions of proposed tests in one-sample case are derived
under the assumption that the sample sizeN = O(pδ), 1/2 < δ < 1, wherep is the dimension of the random
vector, andO(pδ) means thatN/p goes to zero asN andp go to infinity. Similar assumptions are made in the
two-sample case.
AMS 2001 subject classifications:62H15, Secondary 62F05.

Keywords: Asymptotic distributions, covariance matrix, high dimension, non-normal model, sample size
smaller than dimension, test statistics.
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1. Introduction

In analyzing data, certain assumptions made implicitly or explicitly should be ascertained. For example in
comparing the performances of two groups based on observations from both groups, it is necessary to ascertain
if the two groups have the same variability. For example, if they have the same variability, we can use the
usualt-statistics to verify that both groups have the same average performance. And if the variability is not
the same, we are required to use Behrens-Fisher type of statistics. When observations are taken on several
characteristics of an individual, we write them as observation vectors. In this case, we are required to check
if the covariance matrices of the two groups are the same by using Wilks (1946) likelihood ratio test statistics
provided the number of characteristics, say,p is much smaller than the number of observations for each group,
say,N1 andN2. In this article, we consider the case whenp is larger thanN1 andN2.

The problems of largep and very small sample size are frequently encountered in statistical data analysis
these days. For example, recent advances in technology to obtain DNA microarrays have made it possible
to measure quantitatively the expression of thousands of genes. These observations are, however, correlated
to each other as the genes are from the same subject. Since the number of subjects available for taking the
observations are so few as compared to the gene expressions, multivariate theory for largep and small sample
sizeN needs to be applied in the analysis of such data. Alternatively, one may try to reduce the dimension by
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using the false discovery rate (FDR) proposed by Benjamini and Hochberg (1995) provided the observations are
equally positively related as shown by Benjamini and Yekutieli (2001) or apply the average false discovery rate
(AFD) proposed by Srivastava (2010). The above AFD or FDR methods do not guarantee that the dimensionp
can be reduced to a dimension which is substantially smaller thanN.

The development of statistical theory for analyzing high-dimensional data has taken a jump start since the
publication of a two-sample test by Bai and Saranadasa (1996) which has also included the two-sample test
proposed by Dempster (1958, 1960). A substantial progress has been made in providing powerful tests in
testing that the mean vectors are equal in two or several samples, see Srivastava and Du (2008), Srivastava
(2009), Srivastava, Katayama and Kano (2013), Yamada and Srivastava (2012) and Srivastava and Kubokawa
(2013). In the context of inference on means of high-dimensional distributions, multiple tests have also been
used, see Fan, Hall and Yao (2007) and Kosorok and Ma (2007) among others. All the methods of inference
on means mentioned above require some verification of the structure of a covariance matrix in one-sample
case and the verification of the equality of two covariance matrices in the two-sample case. The objective of
the present article is to present some methods of verification of these hypotheses. Below, we describe these
problems in terms of hypotheses testing.

Consider the problem of testing the hypotheses regarding the covariance matrixΣ of a p-dimensional ob-
servation vector based onN independent and identically distributed (i.i.d) observation vectorsx j , j = 1, . . . ,N.
In particular, we consider the problem of testing the hypothesis thatΣ = λI p, λ > 0, and unknown and, that
of testing thatΣ = I p; the first hypothesis is called sphericity hypothesis. We also consider the problem of
testing the equality of the covariance matricesΣ1 andΣ2 of the two groups whenN1 i.i.d observation vectors
are obtained from the first group andN2 i.i.d observation vectors are obtained from the second group. It will
be assumed thatN1 ≤ N2, 0 < N1/N2 ≤ 1 andNi/p→ 0 as (N1,N2, p)→∞.

We begin with the description of the model for the one-sample case. Letx j , j = 1, . . . ,N be i.i.d observation
vectors with mean vectorµ, and covariance matrixΣ = FF , whereF is the unique factorization ofΣ, that is,
F is a symmetric and positive definite matrix obtained asΣ = ΓDλΓ′ = ΓD1/2

λ Γ
′ΓD1/2

λ Γ
′ = FF , where

Dλ = diag(λ1, . . . , λp) andΓΓ′ = I p. We assume that the observation vectorsx j are given by,

x j = µ + Fu j , j = 1, . . . ,N, (1.1)

with
E(u j) = 0, Cov (u j) = I p, (1.2)

and for integers,γ1, . . . , γp, 0≤ ∑p
k=1 γk ≤ 8, j = 1, . . . ,N,

E

 p∏
k=1

uγk

jk

 = p∏
k=1

E(uγk

jk), (1.3)

whereu jk is thekth component of the vectoru j = (u j1, .., u jk, .., u jp)′. It may be noted that the condition (1.3)
implies the existence of the moments ofu jk, k = 1, . . . , p, upto the order eight. For comparison with the normal
distribution, we shall write the fourth moment ofu jk, namely,E[u4

jk] = K4+3. For normal distribution,K4 = 0.

In the general case,K4 ≥ −2. We may also note that instead ofΣ = F2, we may also consider as in Srivastava
(2009)Σ = CC′, whereC is a p × p non-singular matrix but it increases the algebraic manipulations with no
apparent gain in showing that the proposed tests can be used in non-normal situations.

We are interested in the following testing of hypothesis problems in one-sample case:

Problem (1)H1 : Σ = λI p, λ > 0 vs A1 : Σ , λI p.
Problem (2)H2 : Σ = I p vs A2 : Σ , I p.

These problems have been considered many times in the statistical literature. More recently, Onatski, Moreire
and Hallin (2013) and Cai and Ma (2013) have proposed tests for testing the above problems under the assump-
tion that the observation vectors are normally distributed. It has, however, been shown by Srivastava, Kollo and
von Rosen (2011) that many of these tests are not robust against the departure from normality. The objective
of this paper is to propose tests for the above two problems under the assumptions (1.1)-(1.3) which includes
multivariate normal distributions as well as many others.
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Onatskiet al. (2013) test is based on the largest eigenvalue of the sample covariance matrixS= N−1 ∑N
i=1 xi x′i ,

wherexi are i.i.d. fromNp(0,Σ) for testingΣ = σ2I p, against the alternative thatΣ = σ2(I p + θvv′), v′v = 1.
However, Berthet and Rigollet (2013) argue that the largest eigenvalue cannot discriminate between the null
hypotheses and the alternative hypotheses, sinceλmax(S) → ∞ asp/N → ∞, and hence its fluctuations are too
large and thus would require much largerθ to be able to discriminate between the two hypotheses; see also
Baik and Silverstein (2006).

Cai and Ma (2013) proposed a test based onU-statistics for testing the hypothesis thatΣ = I p based onN
i.i.d. observations fromN(0,Σ). For normal distribution, the assumption of the mean vector of the observations
to be0 makes no difference in the use of the proposedU-statistics as the observation matrix can be transformed
by a known orthogonal matrix of Helmerts type to obtainn = N − 1 observable i.i.d. observation vectors
with mean0 and the same covariance matrixΣ. But for non-normal distributions with mean vector (, 0), this
U-statistics cannot be used for testing the above hypothesis. Thus, theU-statistics used by Chen, Zhang and
Zhang (2010) is needed to test the above hypothesis which requires computing time of the orderO(N4). Our
proposed test requires computing time of the orderO(N2).

In the case of two sample case we haveN1 andN2 independently distributedp-dimensional observation
vectorsxi j , j = 1, . . . ,Ni , i = 1,2; Ni < p, N1 ≤ N2, 0 < N1/N2 ≤ 1, andNi/p → 0 as (N1,N2, p) → ∞,
with mean vectorsµi and covariance matricesΣi = F2

i , i = 1,2, each satisfying the conditions of the model
described in (1.1)-(1.3) withµi andF i in place ofµ andF andui j = (ui j1, .., ui jp)′ in place ofu j . We consider
tests for testing the hypothesisH3 vs A3 described in the Problem 3 below:

Problem (3)H3 : Σ1 = Σ2 vs A3 : Σ1 , Σ2.

Problem (3) has recently been considered by Cai, Liu and Xia (2013). Following Jiang (2004), they pro-
posed a test against sparse alternative rather than the general alternative given above. In this article, we propose
a test on the lines of Schott (2007) using the estimator of the squared Frobenius norm ofΣ1 − Σ2, under the
assumptions given in (1.1)-(1.3) as has been done in Li and Chen (2012) usingU-statistics. However, the
computing time for the Li and Chen statistics is of the orderO(N4) which for the proposed test, it is only
O(N2).

For testing the hypotheses in Problems (1)-(2), in one-sample case, we make the following assumptions:

Assumption (A)

(i) N = O(pδ), 1/2 < δ < 1.
(ii) 0 < a2 < ∞, a4/p = o(1), whereai = tr [Σi ]/p, i = 1,2,3,4.

(iii) For Σ = (σi j ), p−2 ∑p
i, j σ

4
i j = o(1).

For testing the hypothesis given in Problem (3) for the two-sample case, the Assumption (A) applies to both
the covariance matricesΣ1 andΣ2, and the sample sizes are comparable as stated below:

Assumption (B)

(i) Assumption (A) to both the covariance matricesΣ1 andΣ2 with ai j = tr [Σi
j ]/p, andΣ j = (σ jkℓ),

i = 1,2,3,4, j = 1,2.
(ii) For N1 ≤ N2, 0 < N1/N2 ≤ 1.

The organization of the paper is as follows. In Section 2, we give notations and preliminaries for one-
sample testing problems. In section 3, we propose tests and give their asymptotic distributions based on the
asymptotic theory given in Section 6. The problem of testing the equality of two covariance matrices will be
considered in Section 4. Simulation results showing power and attained significance level, the so-called ASL
will be given in Section 5. Section 6 gives the general asymptotic theory under which the proposed statistics
are shown to be normal. In Section 7, we give results on moments of quadratic forms for a general class of
distributions. The paper concludes in Section 8.
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2. Notations and Preliminaries in One-Sample Case

Let x1, . . . , xN be independently and identically distributedp-dimension observation vectors with mean
vectorµ and covariance matrixΣ = F2 satisfying the conditions of the model (1.1)-(1.3). Let

x =
1
N

N∑
j=1

x j , V =
N∑

j=1

y j y
′
j , y j = x j − x, (2.1)

j = 1, . . . ,N. It is well known thatn−1V, n = N − 1, is an unbiased estimator of the covariance matrixΣ for
any distribution. Since our focus in this paper is on testing the hypotheses on a covariance matrix or equality
of two covariance matrices, the matrixV plays an important role. In this paper, we consider tests based on the
estimator of the squared Frobenius norm, as a distance between the hypothesisH : Σ = I p against the alternative
A : Σ , I p, the squared Frobenius norm (divided byp) is given byp−1tr [(Σ− I p)2] = p−1tr [Σ2]−2p−1tr [Σ]+1.
Thus, for notational convenience, we introduce the notation

ai =
1
p

tr [Σi ], i = 1, . . . ,8. (2.2)

We estimatea1 anda2 by

â1 =
1

np
tr [V], n = N − 1, (2.3)

and

â2s =
1

(n− 1)(n+ 2)p

{
tr [V2] − 1

n
(tr [V])2

}
, (2.4)

respectively. Srivastava (2005) has shown that ˆa1 andâ2s are unbiased and consistent estimators ofa1 anda2

under the assumption of normality and Assumption (A). That is,

E(â2s) = a2, Var(â2s/a2) =
4
n2
+ o(n−2),

E(â1) = a1,
1
a2

Var(â1) =
2

np
.

However, for the model (1.1)-(1.3) andΣ = (σi j ),

E(â2s) =
n

N(N + 1)p
K4

p∑
i=1

σ2
ii + a2,

as shown in Section 2.1. Hence,
n
2

E [â2s − a2] = O(p−1∑p
i=1σ

2
ii ),

which does not go to zero even whenΣ = λI p. Thus, â2s cannot be asymptotically normally distributed.
Hence, we need to find an unbiased estimator ofa2 for a general class of distributions given by (1.1)-(1.3),
or an estimator with bias of the orderO(n−1−ε), ε > 0. We propose an unbiased estimator ˆa2 defined in (2.5).
Its unbiasedness will be shown in Section 2.1, and the variances of ˆa1, â2, andCov(â1, â2) will be given in
subsequent sections.

We define an estimator ofa2 given by,

â2 =
1
f

{
(N − 2)ntr [V2] − Nntr [ D2] + (tr [V])2

}
=

1
f

{
(N − 2)ntr [M2] − Nntr [ D2] + (tr [ D])2

}
, (2.5)

where f = pN(N − 1)(N − 2)(N − 3), M = Y′Y, Y = (y1, . . . , yN) and

D = diag(y′1y1, ..., y
′
NyN),
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namely, D denotes anN × N diagonal matrix with diagonal elements given byy′1y1, . . . , y
′
NyN. It will be

shown in the following Section 2.1 that ˆa2 is an unbiased estimator ofa2 = tr [Σ2]/p from which an unbiased
estimator of tr [Σ2] is given by pâ2. It may be noted that it takes no longer time to compute ˆa2 given in (2.5)
than to compute ˆa2s given in (2.4). It may also be noted that from computing viewpoint, the expression given
in the second line of (2.5) is better suited as all the matrices areN × N matrices, while the expression in the
first line is a mixture ofN × N andp× p matrices.

2.1. Unbiasedness of the estimatorâ2

In this subsection, we show that the estimator ˆa2 defined in (2.5) is an unbiased estimator. For this, we need
to compute the expected values of tr [V2], tr [ D2], and (tr [V])2. Note that,

x j − x = x j −
1
N

N∑
k=1

xk =
n
N

(x j − x( j))

where

x( j) =
1
n

(Nx − x j), n = N − 1.

Also, note thatx j − x does not depend on the mean vectorµ given in the model (1.1), and thus we will assume
without any loss of generality thatµ = 0. Then,E(tr [ D2]) is expressed as

E(tr [ D2]) =
N∑

j=1

E
[
(x j − x)′(x j − x)

]2

=

( n
N

)4 N∑
j=1

E
[
x′j x j − 2x′j x( j) + x′( j)x( j)

]2

=

( n
N

)4 N∑
j=1

E
[
u′jΣu j − 2u′jΣu( j) + u′( j)Σu( j)

]2
,

which is rewritten as ( n
N

)4 N∑
j=1

E
[
(u′jΣu j)

2 + 4(u′jΣu( j))
2 + (u′( j)Σu( j))

2
]

+

( n
N

)4 N∑
j=1

E
[
−4(u′jΣu j)(u′jΣu j) + 2(u′jΣu j)(u

′
( j)Σu( j))

]
+

( n
N

)4 N∑
j=1

E
[
−4(u′jΣu( j))(u

′
( j)Σu( j))

]
.

Hence, using the results on the moments of quadratic form given in Section 7, we get

E(tr [ D2]) =
n4

N3
E

{[
(u′jΣu j)

2
]
+ 4E

[
(u′jΣu( j))

2
]
+ E

[
(u′( j)Σu( j))

2
]}

+ 2
n4

N3
E

[
(u′jΣu j)(u

′
( j)Σu( j))

]
=

n(n3 + 1)
N3

K4

p∑
i=1

σ2
ii +

2n2

N
tr [Σ2] +

n2

N
(tr [Σ])2. (2.6)

Following the above derivation, we obtain

E(tr [V])2 =
n2

N
K4

p∑
i=1

σ2
ii + 2ntr [Σ2] + n2 (tr [Σ])2 , (2.7)

E(tr [V2]) =
n2

N
K4

p∑
i=1

σ2
ii + nNtr [Σ2] + n (tr [Σ])2 . (2.8)
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Collecting the terms according to the formula of ˆa2 in (2.5), we find that the coefficients ofK4
∑p

i=1σ
2
ii and of

(tr [Σ])2 are zero. The coefficients of tr [Σ2] is N(N − 1)(N − 2)(N − 3)/ f . Hence,

E(â2) = a2,

proving thatâ2 is an unbiased estimator ofa2.

Next, we show that ˆa2s defined in (2.4) is a biased estimator ofa2. From (2.7) and (2.8), we get

E(â2s) =
1

(n− 1)(n+ 2)p
E

{
tr [V2] − 1

n
(tr [V])2

}
=

1
(n− 1)(n+ 2)p

{
n2 − n

N
K4a20 + (nN− 2)tr [Σ2]

}
=

n
(n+ 2)N

K4a20 +
n2 + n− 2
n2 + n− 2

a2

=
n

N(N + 1)
K4a20 + a2, a20 =

1
p

p∑
i=1

σ2
ii . (2.9)

Thus, unlessK4 = 0, â2s is not an unbiased estimator ofa2, as has been shown in Srivastava, Kollo, and von
Rosen (2011) forΣ = λI p.

2.2. Variance of̂a1

In this section, we derive the variance of ˆa1. The matrix ofN independent observation vectorsx1, . . . , xN

is given byX = (x1, . . . , xN) with E[X] = (µ, . . . ,µ) = µ1′ where1 is anN-vector of ones,1 = (1, . . . , 1)′, and
Cov (xi) = Σ, i = 1, . . . ,N. Let A = I N −N−111′, whereI N is theN×N identity matrix. Then, withn = N−1,
we defineS asn−1V, which can be written as

S=
1
n

(XAX′) =
1
n

(X − µ1′)A(X − µ1′)′.

ThusSdoes not depend on the mean vectorµ. In the following calculations, we shall assume thatµ = 0. Thus,

S=
1
n

 n
N

N∑
i=1

xi x′i −
1
N

N∑
j,k

x j x′k

 = 1
N

N∑
i=1

xi x′i −
1

nN

N∑
j,k

x j x′k,

and

â1 =
1
p

tr [S] =
1

Np

N∑
i=1

x′i xi −
1

Npn

N∑
j,k

x′j xk

=
1

Np

N∑
i=1

x′i xi −
2

Npn

N∑
j<k

x′j xk,

wherexi ’s are i.i.d. with mean vectorµ = 0 and covariance matrixΣ = FF . We note thatCov(x′i xi , x′j xk) = 0

for j , k, andVar(
∑N

j<k x′j xk) = (Nn/2)tr [Σ2]. Hence, from Lemma 7.1 in Section 7,

Var(
∑N

i=1 x′i xi) = NVar(x′i xi) = NVar(u′iΣui) = K4

p∑
i=1

σ2
ii + 2tr [Σ2].

Thus, with

a20 =
1
p

p∑
i=1

σ2
ii , and a2 =

1
p

tr [Σ2], (2.10)

6



we get

Var(â1) =
1

Np
K4a20 +

2
Np

a2 +
2

Nnp
a2

=
2a2

np
+ K4

a20

Np
=

1
np

(
2a2 +

n
N

K4a20

)
. (2.11)

Thus,
â1 = â∗1 +Op(N−1p−1/2), (2.12)

where

â∗1 =
1

Np

N∑
i=1

(xi − µ)′(xi − µ). (2.13)

We state these results in the following theorem.

Theorem 2.1 For the general model given in(1.1)-(1.3) and under the assumption(A), the means of̂a1 as well
as ofâ∗1 is a1, andâ∗1 − â1 = Op(N−1p−1/2). The variance of̂a1 is given by

Var(â1) = (2a2 + nK4a20/N)/(np) ≡ C11/(np).

2.3. Variance of̂a2

In this section, we derive the variance of ˆa2, the estimator ofa2 given in (2.5). Since

tr [V2] = tr


 N∑

i=1

yi y
′
i

2 = N∑
i=1

(y′i yi)
2 + tr

 N∑
i, j

(yi y
′
i )(y j y

′
j)


=

N∑
i=1

(y′i yi)
2 +

N∑
i, j

(y′i y j)
2,

(tr [V])2 =

 N∑
i=1

y′i yi

2

=

N∑
i=1

(y′i yi)
2 +

N∑
i, j

(y′i yi)(y
′
j y j),

we can rewrite ˆa2 with f = pN(N − 1)(N − 2)(N − 3), as

â2 =
1
f

(N − 2)n
N∑

i, j

(y′i y j)
2 + (N − 2)n

N∑
i=1

(y′i yi)
2


+

1
f

−Nn
N∑

i=1

(y′i yi)
2 +

N∑
i=1

(y′i yi)
2 +

N∑
i, j

(y′i yi)(y
′
j y j)


=

1
f

(N − 2)n
N∑

i, j

(y′i y j)
2 − (2n− 1)

N∑
i=1

(y′i yi)
2 +

∑
i, j

(y′i yi)(y
′
j y j)


=

1
pN(N − 3)

N∑
i, j

(y′i y j)
2 − (2n− 1)

f

N∑
i=1

(y′i yi)
2 +

1
f

N∑
i, j

(y′i yi)(y
′
j y j).

From the Markov inequality we find from (2.6) that for everyε > 0,

P
{
(2n− 1) f −1∑N

i=1(y′i yi)
2 > ε

}
≤ 2n

f ε
E(tr [ D2])

≤ 2
N(N − 2)(N − 3)ε

(
NK4a20 + 2Na2 + pNa2

1

)
= O(N−2) +O(pN−2) = O(p1−2δ) = o(1),
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sinceN = O(pδ) for δ > 1/2. Similarly,

P
{
f −1∑N

i, j(y
′
i yi)(y

′
j y j) > ϵ

}
≤ 1

f ϵ
N(N − 1)(tr [Σ])2

=
p

(N − 2)(N − 3)ε
a2

1 = o(1).

Hence,

â2 =
1

pN(N − 3)

N∑
i, j

(y′i y j)
2 + op(1)

=
1

pN(N − 3)

N∑
i, j

{
(xi − x)′(x j − x)

}2
+ op(1)

=
1

pN(N − 1)

N∑
i, j

{
(xi − µ)′(x j − µ)

}2
+ op(1)

= a∗2 + op(1),

where

â∗2 =
1

pnN

N∑
i, j

{
(xi − µ)′(x j − µ)

}2
.

Thus,
Var(â2) = Var(â∗2)(1+ o(1)).

To find the variance of ˆa∗2, we define

zi j =
1
√

p
(xi − µ)′(x j − µ) =

1
√

p
u′iΣu j

from the model (1.1). Thus, ˆa∗2 =
1

Nn

∑N
i, j z2

i j andE(z2
i j ) = a2. Hence, from the results on moments given in

Section 7, we get

Var(â∗2) = E

 1
nN

N∑
i, j

(z2
i j − a2)


2

=
2

N2n2
E

 N∑
i, j

(z2
i j − a2)2 +

4
N2n2

N∑
i, j,k

(z2
i j − a2)(z2

ik − a2)


=

2
Nn

Var(z2
i j ) +

4(N − 2)
Nn

Cov(z2
i j , z

2
ik) (i , j , k)

=
2

Nnp2
Var[(u′iΣu j)

2] +
4(N − 2)

Nnp2

{
E

[
(u′iΣu j)

2(u′iΣuk)
2
]
− a2

2

}
. (i , j , k)

For anyi , j , k, the second term of the above expression is

4(N − 2)
Nnp2

{
E

[
(u′iΣu j)

2(u′iΣuk)
2
]
− a2

2

}
=

4(N − 2)
Nnp2

K4

p∑
ℓ=1

{(Σ2)ℓℓ}2 + 2tr [Σ4]

 ,
sinceE

[
(u′iΣu j)2(u′iΣuk)2

]
−a2

2 = E
[
u′iΣu ju′jΣuiu′iΣuku′kΣui

]
−a2

2 = E
[
u′iΣ

2uiu′iΣ
2ui

]
−a2

2 = E
[
(u′iΣ

2ui)2
]
−

a2
2 = Var[(u′iΣ

2ui)2] = K4
∑p
ℓ=1{(Σ

2)ℓℓ}2 + 2tr [Σ4]. For anyi , j, from Lemmas 7.1 and 7.2, we get

Var[(u′iΣu j)
2] = K4

p∑
k,ℓ

σ4
kℓ + 6K4

p∑
k=1

{(Σ2)kk}2 + 2(tr [Σ2])2 + 6tr [Σ4].
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Hence

Var(â∗2) =
2

Nnp2

K2
4

p∑
i, j

σ4
i j + 6K4

p∑
i=1

{
(Σ2)ii

}2
+ 2(tr [Σ2])2 + 6tr [Σ4]


+

4(N − 2)
Nnp2

K4

p∑
i=1

{
(Σ2)ii

}2
+ 2tr [Σ4]

 ,
which is rewritten as

Var(â∗2) =
4a2

2

Nn
+

4(N + 1)
Nnp2

K4

p∑
i=1

{
(Σ2)ii

}2
+

4(2N + 1)
Nnp2

tr [Σ4]

=
4a2

2

n2
+

4
np

K4b4 +
8

np
a4 + o(n−2)

=
4a2

2

n2
+

4
np

(K4b4 + 2a4) + o(n−2)

≡ 1
n2

C22 + o(n−2),

whereC22 = 4
[
a2

2 + (n/p)(K4b4 + 2a4)
]
, b4 = p−1 ∑p

i=1

{
(Σ2)ii

}2
anda4 = p−1tr [Σ4]. The above result is stated

in the following theorem.

Theorem 2.2 Under the general model given in(1.1)-(1.3) and under the assumption(A), the variance of̂a∗2
is approximated as

Var(â∗2) =
4
n2

{
a2

2 +
n
p

(K4b4 + 2a4)
}
+ o(n−2) =

C22

n2
+ o(n−2),

where C22, b4 and a4 have been defined above.

2.4. Covariance between̂a1 andâ2

In this section, we derive an expression for the covariance between ˆa1 and â2 which is needed to obtain
the joint distribution of ˆa1 andâ2. Sinceâ1 andâ2 are asymptotically equivalent to ˆa∗1 andâ∗2 respectively, we
obtain theCov(â∗1, â

∗
2). In terms of model (1.1),

â∗1 =
1

Np

N∑
ℓ=1

u′ℓΣuℓ and â∗2 =
1

pnN

N∑
j,k

(u′jΣuk)
2

Thus,

Cov(â∗1, â
∗
2) =

1
N2np2

E

 N∑
ℓ=1

u′ℓΣuℓ

 N∑
j,k

u′jΣuk


2 − a1a2

=
1

N2np2
E

 N∑
ℓ, j,k

(u′ℓΣuℓ)(u′jΣuk)
2 + 2

N∑
j,k

(u′jΣu j)(u′jΣuk)
2

 − a1a2

=
N − 2

N
a1a2 +

2
Np2

K4

p∑
r=1

σrr (Σ
2)rr + 2tr [Σ3] + tr [Σ]tr [Σ2]

 − a1a2

=
2

np
(K4b3 + 2a3)

≡ 1
np

C12.

whereC12 = 2(K4b3 + 2a3), b3 = p−1 ∑p
r=1σrr (Σ2)rr anda3 = p−1tr [Σ3] The above result is stated in the

following theorem.
9



Theorem 2.3 Under the general model given in(1.1)-(1.3) and under the assumption(A), the covariance
between̂a∗1 andâ∗2 is given by

Cov(â∗1, â
∗
2) =

2
np

(K4b3 + 2a3) =
C12

np
,

where b3 and a3 are defined above.

Corollary 2.1 From the results of Theorems 2.1-2.3, the covariance matrix of(â∗1, â
∗
2)′ is approximated as

Cov
[(

â∗1
â∗2

)]
=

(
C11/(np) C12/(np)
C12/(np) C22/(n2)

)
+ o(n−2) = C+ o(n−2). (2.14)

It will be shown in Section 6 that as (N, p) → ∞, (â∗1, â
∗
2)′ is asymptotically distributed as bivariate normal

with mean vector (a1,a2)′ and covariance matrixC as given above in (2.14).

3. Tests for Testing thatΣ = λI p andΣ = I p

In this section, we consider the model described in (1.1)-(1.3), and propose tests for the two hypotheses,
namely for testing sphericity and for testing the hypothesis thatΣ = I p.
The sphericity hypothesis will be considered first in Section 3.1, and the hypothesis thatΣ = λI p will be
considered in Section 3.2.

3.1. Testing sphericity

For finite p, andN→ ∞, John (1972) proposed a locally best invariant test based on the statistic

U =
tr [S2]/p

(tr [S]/p)2
− 1, S=

1
n

V (3.1)

and showed that for finitep, as n → ∞, NpU/2
d→ χ2

d under the hypothesis thatΣ = λI p, whered =

p(p+1)/2−1, and
d→ denotes a convergence in distribution. Ledoit and Wolf (2002) showed that for (n, p)→ ∞

such thatp/N→ c, the following modified statistic,

TLW = (NU − p)
d→ N(1,4), (3.2)

under the hypothesis thatΣ = λI p; the distribution of this statistic whenΣ , λI p was not given, but later given
in Srivastava (2005).

Srivastava (2005) showed that from Cauchy-Schwartz inequality

a2

a2
1

=

(
p−1 ∑p

i=1 λ
2
i

)
(
p−1

∑p
i=1 λ

2
i

)2
≥ 1, and = 1 iff λi = λ, (3.3)

whereλi are the eigenvalues ofΣ. Thus a measure of sphericity is given by

M1 =
a2

a2
1

− 1, (3.4)

which is equal to zero if and only ifλ1 = · · · = λp = λ. Thus, Srivastava (2005) proposed a test based on
unbiased and consistent estimators ofa1 anda2, namelyâ1 andâ2s defined in (2.3) and (2.4) respectively under
the assumption that the observations are i.i.dNp(µ,Σ). This test statistic is given by

T1s =
n
2

 â2s

â2
1

− 1

 (3.5)

Srivastava (2005) showed that as (n, p)→ ∞ T1s
d→ N(0, 1) under the hypothesis thatΣ = λI p. The asymptotic

distribution ofT1s whenΣ , λI p is also given. It has been shown in (2.9) that the estimator ˆa2s is not unbiased
for the general model given in (1.1)-(1.3).
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An unbiased estimator ofa2 or tr [Σ2] can be obtained by using Hoeffding’s (1948)U-statistics, for details,
see Fraser (1957, chapter 4), Serfling (1980) and Lee (1990). For example, if the mean vectorµ is zero, tr [Σ2]
can be estimated by

tr [Σ2] =
1

N(N − 1)

N∑
i, j

(x′i x j)
2,

as has been done by Ahmad, Werner and Brunner (2008) in connection with testing mean vectors in high
dimensional data. The computation of this estimator takes time of orderO(N2), same as in calculating ˆa2s. But
whenµ is not known, an unbiased estimator of tr [Σ2], using Hoeffding’sU-statistic is given by

t̂r [Σ2] =
1

4N(N − 1)(N − 2)(N − 3)

N∑
i, j,k,ℓ

[(xi − x j)
′(xk − xℓ)]2

=
1

N(N − 1)

N∑
i, j

(x′i x j)
2 − 2

N(N − 1)(N − 2)

N∑
i, j,k

x′i x j x′j xk

+
1

N(N − 1)(N − 2)(N − 3)

N∑
i, j,k,ℓ

x′i x j x′kxℓ,

as used by Chen, Zhang and Zhong (2010) in replacing ˆa2s in Srivastava’s statisticT1s by using the above
estimator divided byp. The above estimator of tr [Σ2], however, has summation over four indices, and thus
requires computing time ofO(N4), which is not easy to compute.

Thus, in this paper, we use the estimator ˆa2 in place ofâ2s, and propose the statisticT1 given by

T1 =
n
2

 â2

â2
1

− 1

 , (3.6)

which is a one-sided test since we are testing the hypothesisH1 : M = 0 against the alternativeA1 : M1 > 0.
In Section 6, we show that as (N, p) → ∞, (â1, â2) has a bivariate normal distribution with covariance matrix
C given in (2.14). Thus, following the delta method for obtaining the asymptotic distribution as in Srivastava
(2005) or Srivastava and Khatri (1979, page 59, Theorem 2.10.2), we can see that the variance of (ˆa2/â2

1) is
approximated asVar(â2/â2

1) = τ2(n, p) + o(n−2), where

τ2(n, p) =

−2a2

a3
1

,
1

a2
1

 (C11/(np) C12/(np)
C12/(np) C22/(n2)

) (
−2a2/a3

1
1/a2

1

)
=

−2a2C11

npa3
1

+
C12

npa2
1

,
−2a2C12

npa3
1

+
C22

n2a2
1

 (−2a2/a3
1

1/a2
1

)
=

4a2
2C11

npa6
1

− 2a2C12

npa5
1

− 2a2C12

npa5
1

+
C22

n2a4
1

=
4a2

2

n2a4
1

+
1

np

4a2
2(K4a20 + 2a2)

a6
1

− 8a2

a5
1

(K4b3 + 2a3) +
4

a4
1

(K4b4 + 2a4)


=

4a2
2

n2a4
1

+
1

np
K4

4a2
2a20

a6
1

− 8a2b3

a5
1

+ 4
b4

a4
1

 + 1
np

8a3
2

a6
1

− 16a2a3

a5
1

+
8a4

a4
1

 . (3.7)

Thus, we get the following result, stated as Theorem 3.1.

Theorem 3.1 As(n, p) → ∞, the asymptotic distribution of the statisticsâ2/â2
1 under the assumption(A) and

for the distribution given in(1.1)-(1.3) is given by(
â2/â

2
1 − a2/a

2
1

)
/τ(n, p)

d→ N(0,1),

whereτ2(n, p) is defined in(3.7).
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Under the hypothesis thatΣ = λI p, a2/a2
1 = 1, a20/a2

1 = 1, b3/a3
1 = 1, b4/a4

1 = 1 anda4/a4
1 = 1. Hence,

under the hypothesis, the variance of (ˆa2/â2
1) denoted byVar0 is given by,

Var0(â2/â
2
1) =

4
n2
. (3.8)

Hence, we get the following result, stated as Corollary 3.1.

Corollary 3.1 The asymptotic distribution of the test statistics T1 whenΣ = λI p, λ > 0, as (n, p) → ∞, is
given by

T1
d→ N(0,1)

3.2. TestingΣ = I p

In this section, we consider the problem of testing the hypothesis thatΣ = I p. Nagao (1973) proposed the
locally most powerful test given by,

T̃1 =
1
p

tr [(S− I p)2], (3.9)

and showed that asN goes to infinity whilep remains fixed, the limiting null distribution of

Np
2

T̃1
d→ Yp(p+1)/2 (3.10)

whereYd denotes aχ2 with d degrees of freedom. Ledoit and Wolf (2002) modified this statistic and proposed
the statistic

W =
1
p

tr [(S− I p)2] − p
N

â2
1 +

p
N

(3.11)

and showed that as (N, p)→ ∞ in a manner thatp/N→ c,

nW− p
d→ N(1,4)

under the hypothesis thatΣ = I p.

The test proposed by Nagao was based on an estimate of the distance

M2 =
1
p

tr [(Σ − I p)2]

=
1
p

(tr [Σ2] − 2tr [Σ] + p)

= a2 − 2a1 + 1. (3.12)

Srivastava (2005) proposed a test based on unbiased and consistent estimators ˆa1 andâ2s under normality. This
test is given by,

T2s =
n
2

(â2s − 2â1 + 1). (3.13)

As (N, p) → ∞, it has been shown to be normally distributed under the assumption that the observations are
normally distributed.

We propose the statistic

T2 =
n
2

(â2 − 2â1 + 1) (3.14)

and show that asymptotically as (N, p) → ∞, T2 is normally distributed. It may be noted thatT2 is also a
one-sided test.

From the covariance matrix of (ˆa1, â2) given in (2.14), the variance of (ˆa2 − 2â1) can be approximated as
Var(â2 − 2â1) = η2(n, p) + o(n−2), where

η2(n, p) = Var(â2) + 4Var(â1) − 4Cov(â1, â2)

=
4a2

2

n2
+

8a4

np
+

8a2

np
− 16a3

np
+

4K4

np
(b4 + a20 − 2b3). (3.15)

We state these results in Theorem 3.2.
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Theorem 3.2 Under the assumption(A) and for the distribution given in(1.1)-(1.3), the asymptotic distribu-
tion of the statistiĉa2 − 2â1 as(n, p)→ ∞ is given by,

{(â2 − 2â1) − (a2 − 2a2)} /η(n, p)
d→ N(0,1), (3.16)

whereη2(n, p) = Var(â2 − 2â1) given in(3.15).

Since when the hypothesis thatΣ = I p, a2− 2a1 = −1, andη2(n, p) = 4/n2, we get the following Corollary.

Corollary 3.2 The asymptotic distribution of the best statistic T2 whenΣ = I p, is given by

T2
d→ N(0,1),

as(n, p)→ ∞.

4. Tests for the Equality of Two Covariance Matrices

In this section, we consider the problem of testing the hypothesis of the equality of two covariance matrices
Σ1 andΣ2 whenN1 i.i.d p-dimensional observation vectorsxi j , j = 1, . . . ,N1 are obtained from the first group
following the model (1.1) - (1.3) withF replaced byF1, µ by µ1 andu j by u1 j whereΣ1 = F2

1. And, similarly
N2 i.i.d p-dimensional vectorsx2 j , j = 1, . . . ,N2 are obtained from the second group following the model
(1.1)-(1.3) withF replaced byF2, µ by µ2 andu j by u2 j , whereΣ2 = F2

2. The sample mean vectors are now
given by

x1 =
1
N1

N1∑
j=1

x1 j , and x2 =
1
N2

N2∑
j=1

x2 j .

Similarly, we define sample covariance matricesS1 andS2 throughV1 andV2 given by,

V1 =

N1∑
j=1

y1 j y
′
1 j , V1 =

N2∑
j=1

y2 j y
′
2 j

S1 =
1
n1

V1, andS2 =
1
n2

V2, ni = Ni − 1, i = 1,2,

where
y1 j = x1 j − x1, j = 1, . . . ,N1, y2 j = x2 j − x2, j = 1, . . . ,N2.

Under normality assumption, the unbiased and consistent estimators ofa1i = tr [Σi ]/p anda2i = tr [Σ2
i ]/p will

be denoted by ˆa1i andâ2is respectively by usingV i in place ofV1 andNi or ni = Ni − 1 in place ofN, i = 1,2.
The unbiased estimator ofa2i under the general model will be denoted by ˆa2i . Thus,

â1i =
1

ni p
tr [V i ], â2is =

1
(ni − 1)(ni + 2)p

{
tr [V2

i ] − 1
ni

(tr [V i ])
2

}
,

and

â2i =
1
fi

{
(Ni − 2)ni tr [V2

i ] − Nntr [ D2
i ] + tr [V2

i ]
}
,

where for i= 1,2,

fi = pNi(Ni − 1)(Ni − 2)(Ni − 3)

Di = diag(y′i1yi1, . . . , y
′
iN yiNi

) : Ni × Ni .

To test the hypothesis stated in Problem (3), namely testing the hypothesisΣ1 = Σ2 = Σ, say, against the
alternativeΣ1 , Σ2, Schott (2007) proposed the statistic

TS c=
â21s + â22s − 2tr [V1V2]/(pn1n2)

2â2s (1/n1 + 1/n2)
, (4.1)
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where

â2s =
1

n1 + n2
(n1â21s + n2â22s), (4.2)

is the estimator ofa2 = p−1tr [Σ2] under the hypothesis thatΣ1 = Σ2 = Σ. It may be noted that the square of
the expression in the denominator ofTS c is an estimate of the variance of the statistic in the numerator. Using
the new unbiased estimator ofa2i , we obtain the statistic

T3 =
â21 + â22 − 2tr [V1V2]/(pn1n2)√

̂Var0(q̂3)
, (4.3)

where ̂Var0(q̂3) denotes the estimated variance of the numerator of (4.3), namely, the estimated variance of

q̂3 = â21 + â22 −
2

pn1n2
tr [V1V2],

under the hypothesis thatΣ1 = Σ2 = Σ. The variance of ˆq3 is as shown in Sections 4.1 and 4.2, is given by

Var0(q̂3) = Var(â21) + Var(â22) +

(
2

pn1n2

)2

Var(tr [V1V2])

− 4
pn1n2

2∑
i=1

Cov(â2i , tr [V1V2]).

=
4a2

2

n2
1

+
4a2

2

n2
2

+
8a2

2

n1n2
+ o(N−1

1 ), N1 ≤ N2.

Thus, assuming thatNi/p→ 0, i = 1,2, as (N1,N2, p)→ ∞, the test statisticT3 defined in (4.3) is given by

T3 =
â21 + â22 − 2tr [V1V2]/(pn1n2)

2â2 (1/n1 + 1/n2)
, (4.4)

where

â2 =
1

n1 + n2
(n1â21 + n2â22). (4.5)

It may be noted thatT3 is a one-sided test. That is, the hypothesis is rejected ifT3 > z1−α, wherez1−α is the
upper 100(1− α)% point of the standard normal distribution.

4.1. Evaluation of Variance oftr [V1V2]

To evaluate the variance of tr [V1V2],we note thatF1 = F2 = F, under the hypothesis thatΣ1 = Σ2 = Σ =

F2, and asymptotically

V1 = F

 N1∑
i=1

u1iu′1i

 F, V2 = F

 N2∑
j=1

u2 ju′2 j

 F.

Thus

tr [V1V2] = tr


 N1∑

i=1

u1iu′1i

Σ
 N2∑

j=1

u2 ju′2 j

Σ
 = N1∑

i=1

u′1iCu1i ,

whereC = (ci j ) = ΣBΣ andB =
∑N2

j=1 u2 ju′2 j . Hence,

Var0(tr [V1V2]) = Var
(∑N1

i=1 u′1iCu1i

)
= E

[
Var

(∑N1
i=1 u′1iCu1i

∣∣∣∣C)]
+ Var

(
E

[∑N1
i=1 u′1iCu1i

∣∣∣∣C])
.

Note that

E
[∑N1

i=1 u′1iCu1i

∣∣∣∣C]
= N1tr [C] = N1

N2∑
j=1

u′2 jΣ
2u2 j .
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Hence

Var
(
E

[∑N1
i=1 u′1iCu1i

∣∣∣∣C])
= N2

1N2

K4

p∑
i=1

{(Σ2)ii }2 + 2tr [Σ4]

 .
Thus, under the assumption (A),

4

p2n2
1n2

2

Var
(
E

[∑N1
i=1 u′1iCu1i

∣∣∣∣C])
≤ 1

N2p2
(K4 + 2)tr [Σ4] = o((np)−1),

and hence
1

p2n2
1n2

2

Var(tr [V1V2]) =
1

p2n2
1n2

2

E
[
Var

(∑N1
i=1 u′1iCu1i

∣∣∣∣C)]
+ o((np)−1).

For a givenC = ΣBΣ, whereB =
∑N2

j=1 u2 ju′2 j ,

Var
(∑N1

i=1 u′1iu1i

)
= N1

K4

p∑
i=1

c2
ii + 2tr [C2]


= N1

K4

p∑
i=1

c2
ii + 2tr [Σ2BΣ2B]

 .
LetΣ = (σ1, . . . ,σp). Then,

p∑
i=1

c2
ii =

p∑
i=1

(σ′i Bσi)
2 =

p∑
i=1

σ′i
 N2∑

j=1

u2 ju′2 j

σi


2

=

p∑
i=1


N2∑
j=1

(σ′i u2 j)
2


2

=

p∑
i=1


N2∑
j=1

(σ′i u2 j)
4 +

N2∑
j,k

σ′i u2 ju′2kσi


=

p∑
i=1

 N2∑
j=1k

σ′i u2 ju′2kσi +

N2∑
j,k

σ′i u2 ju′2kσi

 .
Hence,

E

 p∑
i=1

c2
ii

 = N2

p∑
i=1

E[(σ′i u2 ju′2 jσi)
2] = N2

p∑
i=1

E[(u′2 jσiσ
′
i u2 j)

2]

= N2

K4

p∑
i=1

p∑
j=1

{(σiσ
′
i ) j j }2 + 3

p∑
i=1

(σ′iσi)
2


≤ N2(K4 + 3)

p∑
i=1

(σ′iσi)
2 ≤ N2(K4 + 3) tr [Σ4],

sinceΣ4 =
∑p

i=1σiσ
′
iσiσ

′
i +

∑p
i, j σiσ

′
iσ jσ

′
j . Similarly,

E(tr [C2]) = E(tr [Σ2BΣ2B]) = E

tr
Σ2

 N2∑
j=1

u2 ju′2 j

Σ2

 N2∑
j=1

u2 ju′2 j





= E

 N2∑
j=1

(
u2 jΣ

2u′2 j

)2
+

N2∑
j,k

(
u′2 jΣ

2u2k

)2


= N2

K4

p∑
r=1

{(Σ2)rr }2 + tr [Σ4] + (tr [Σ2])2

 + N2n2tr [Σ4].
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Thus,

1

p2n2
1n2

2

Var0(tr [V1V2]) =
1

p2n1n2

K2
4

p∑
i=1

p∑
j=1

(σiσ
′
i ) j j + 3K4

p∑
i=1

(σ′iσi)
2


+

2
p2n1n2

K4

p∑
r=1

{(Σ2)rr }2 + 2tr [Σ4] + (tr [Σ2])2 + n2tr [Σ4]


=

2a2
2

n1n2
+ o(n−2).

4.2. Evaluation of covariance betweenâ2i andtr [V1V2]
The covariance between ˆa21 and tr [V1V2] under the hypothesis is given by

C(1)
12 ≡ Cov0[â21, tr [V1V2]/(N1N2p)]

=
1

N2
1N2n1p2

E




N1∑
j,k

(u′1 jΣu1k)
2

 tr

Σ
 N1∑

i=1

u1iu′1i

Σ
 N2∑
ℓ=1

u2lu′2l



 − a2

2

=
N2

N2
1N2n1p2

E




N1∑
j,k

(u′1 jΣu1k)
2

 tr

Σ
 N1∑

i=1

u1iu′1i



 − a2

2,

sinceu1 j andu2ℓ are independently distributed and ˆa21 is independently distributed ofu2ℓ. Hence,

C(1)
12 =

1

N2
1n1p2

E

 N1∑
i, j,k

(u′1 jΣu1k)(u′1iΣ
2u1i) + 2

N1∑
j,k

(u′1 jΣu1k)
2(u′1 jΣu1 j)

 − a2
2

=
N1n1(n1 − 1)

N2
1n1

a2
2 +

2N1n1

N2
1n1

K4
∑p

i=1{(Σ
2)ii }2

p2
+

2tr [Σ4]
p2

+ a2
2

 − a2
2

=

(
n1 − 1

N1
+

2
N1
− 1

)
a2

2 +
2
N1
× o(1) = o(N−1

1 ).

5. Attained Significance Level and Power

In this section we compare the performance of the proposed test statistics with the tests given under the nor-
mality assumption. The attained significance level to the nominal valueα = 0.05 and the power are investigated
in finite samples by simulation.

The attained significance level (ASL) is defined by ˆαT = #(TH > zα)/r1 for Problems (1) and (2), and
by α̂T = #(T2

H > χ
2
1,α)/r1 for Problem (3), whereTH are values of the test statisticT computed from data

simulated under the null hypothesisH, r1 is the number of replications,zα is the 100(1− α)% quantile of the
standard normal distribution andχ2

1,α is the 100(1− α)% quantile of the chi-square distribution. The ASL
assesses how close the null distribution ofT is to its limiting null distribution. From the same simulation, we

also obtainẑα for Problems (1) and (2) and̂χ2
1,α for Problem (3) as the 100(1− α)% sample quantile of the

empirical null distribution, and define the attained power byβ̂T = #(TA > ẑα)/r2 for Problems (1) and(2),

β̂T = #(T2
A > χ̂

2
1,α)/r2 for Problem (3), whereTA are values ofT computed from data simulated under the

alternative hypothesisA. In our simulation, we setr1 = 10,000 andr2 = 5,000.

It may be noted that irrespective of the ASL of any statistic, the power has been computed when all the
statistics in the comparison have the same specified significance level as the cut off points have been obtained
by simulation. The ASL gives an idea as to how close it is to the specified significance level. If it is not close, the
only choice left is to obtain it from simulation, not from the asymptotic distribution. It is common in practice,
although not recommended, to depend on the asymptotic distribution, rather than relying on simulations to
determine the ASL.

Through the simulation, letµ = 0 without loss of generality. Forj = 1, . . . ,N, u j = (ui j ) given in the model
(1.1) is generated with the four cases: one is the normal case and the others are the non-normal cases.
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(Case 1)ui j ∼ N(0,1),
(Case 2)ui j = (νi j − 32)/8 for νi j ∼ χ2

32,
(Case 3)ui j = (νi j − 8)/4 for νi j ∼ χ2

8,
(Case 4)ui j = (νi j − 2)/2 for νi j ∼ χ2

2,

whereχ2
m denotes the chi-square distribution withm degrees of freedom, andui j are standardized. Since the

skewness and kurtosis (K4 + 3) of χ2
m is, respectively, (8/m)1/2 and 3+ 12/m, it is noted thatχ2

2 has higher
skewness and kurtosis thanχ2

8 andχ2
32. Following (1.1),x j is generated byx j = Fu j for Σ = F2.

[1] Testing problems (1) and (2). For these testing problems, the null and alternative hypotheses we treat
areH : Σ = I p andA : Σ = diag(d1, . . . ,dp), di = 1+ (−1)i+1(p− i)/(2p). We compare the two testsT1s andT1,
given in (3.5) and (3.6) for Problem (1), and the testsT2s andT2, given in (3.13) and (3.15) for Problem (2). It
is noted that the 95% point of the standard normal distribution is 1.64485. The simulation results are reported
in Tables 1-4 for Problems (1) and (2), respectively.

From the tables, it is observed that the attained significance level (ASL) of the proposed testsT1 andT2 are
close to the specified level while the ASL values of the testsT1s andT2s proposed under normal distribution
are much inflated in Cases 3 and 4. Concerning the powers, both tests have similar performances although the
proposed tests are slightly more powerful in Case 4.

[2] Testing problem (3). For this testing problem, the covariance matrixΣ we treat here is of the form

Σ(ρ) =


σ1

σ2

. . .

σp



ρ|1−1|

1
10 ρ|1−2|

1
10 · · · ρ|1−p|

1
10

ρ|2−1|
1
10 ρ|2−2|

1
10 · · · ρ|2−p|

1
10

. . .

ρ|p−1|
1
10 ρ|p−2|

1
10 · · · ρ|p−p|

1
10



σ1

σ2

. . .

σp

 ,

whereσi = 1 + (−1)i+1Ui/2 for a random variableUi having uniform distributionU(0,1). Then we consider
the null and alternative hypotheses given byH : Σ1 = Σ2 = Σ(0.1) for ρ = 0.1 andA : Σ1 = Σ(0.1) for ρ = 0.1,
Σ2 = Σ(0.3) for ρ = 0.3. We compare the two testsTS c andT3, given in (4.1) and (4.4). The simulation results
are reported in Table 5.

For the table, it is revealed that the ASL of the proposed testT3 are closer to the nominal level thanTS c

in Cases 3 and 4. Concerning the powers, both tests have similar performances although the proposed test has
slightly more powerful in Case 4.

6. Asymptotic Distributions

In this section, we show that all the test statistics proposed in Sections 3 and 4 are asymptotically normally
distributed as (N1,N2, p) go to infinity. The test statisticTi depends on ˆa2i andâ1i , i = 1,2 or simply on (â2, â1)
in one-sample case. We shall consider (ˆa21, â11) or equivalently (ˆa∗21, â

∗
11) in probability. To obtain asymptotic

normality, we consider a linear combinationl1â∗21 + l2â∗11 of â∗21 andâ∗11, where we assume without any loss of
generality thatl21 + l22 = 1. We shall know that for alll1 andl2, l1â21+ l2â11 is normally distributed from which
the joint normality ofâ21 andâ11 follow. Note that

â∗21 − a2 =
1

N1n1p

N1∑
i, j

(u′1iΣu1 j)
2 − a2

=
1

N1n1p

N1∑
i, j

{
(u′1iΣu1 j)

2 − u′1 jΣ
2u1 j + u′1 jΣ

2u1 j

}
− a2

=
1

N1n1p

N1∑
i, j

{
(u′1iΣu1 j)

2 − u′1 jΣ
2u1 j

}
+ A,

17



whereA = (N1n1p)−1 ∑N1
i, j

(
u′1 jΣ

2u1 j − tr [Σ2]
)
= (N1p)−1 ∑N1

i=1

(
u′1iΣ

2u1i − tr [Σ2]
)

and

Var(A) =
1

(N1p)2

N1∑
i=1

Var(u′1iΣ
2u1i)

≤ 1
(N1p)2

4N1(K4 + 2)tr [Σ4] = o(N−1
1 ),

since tr [Σ4]/p2 = o(1) from Assumption A. Thus,A→ 0 in probability. Hence,

n1(â∗21 − a2)
p
=

2
N1p

N1∑
i=2

i−1∑
j=1

{
(u′1iΣu1 j)

2 − u′1 jΣ
2u1 j

}
=

N1∑
i=2

ξi ,

whereξi ≡ 2(N1p)−1 ∑i−1
j=1

{
(u′1iΣu1 j)2 − u′1 jΣ

2u1 j

}
. Let ℑ(b)

i be aσ-algebra generated by random vectors
u11, . . . , u1i , i = 1, ....N1, and let (Ω,ℑ,P) be the probability space, whereΩ is the whole space andP is the prob-
ability measure. Let∅ be the null set. Then, withℑ(p)

0 = (∅,Ω) = ℑ−1, we find thatℑ(p)
0 ⊂ ℑ

(p)
1 ⊂ · · · ⊂ ℑ

(p)
N1
⊂ ℑ,

andE(ξi |ℑi−1) = 0. Let Bℓ = Σu1ℓu′1ℓΣ for ℓ = j, j , k. Then

(N1p
2

)2

E(ξ2i |ℑi−1) =
i−1∑
j=1

Var(u′1i B ju1i) + 2
i−1∑
j<k

Cov(u′1i B ju1i ,u′1i Bku1i)

=

i−1∑
j=1

K4

p∑
ℓ=1

{(B j)ℓℓ}2 + 2tr [B2
j ]

 + 2
i−1∑
j<k

K4

p∑
ℓ=1

(B j)ℓℓ(Bk)ℓℓ + 2tr [B j Bk]

 ,
where (B j)ℓℓ is the (ℓ, ℓ)tth diagonal element of the matrixB j = ((B j)ℓr ). Thus,

E(ξ2i ) ≤ 4
(K4 + 2)

N2
1 p2

{
(i − 1)E(u′jΣ

2u j)
2 +

(i − 1)(i − 2)
2

tr [Σ]4

}
≤ 4(K4 + 2)

p2

{
(K4 + 2)tr [Σ]4 + (tr [Σ2])2 + tr [Σ4]

}
= O((p−1tr [Σ2])2).

Hence, the sequence
{
ξi ,ℑi

}
is a sequence of square integrable martingale difference, see Shiryaev (1984) or

Hall and Heyde (1980). Similarly, it can be shown that

N1∑
i=0

E(ξ2i |ℑi−1)
p
→ σ2

0

for some finite constantσ2
0. Thus, it remains to show that the Lindberg’s condition, namely

N1∑
i=0

E[ξ2i I (|ξi | > ϵ |ℑi−1)]
p
→ 0.

is satisfied. It is known, see, e.g, Srivastava (2009), that this condition will be satisfied if we show that

N1∑
i=0

E(ξ4i )→ 0 asN1→ ∞.

Next, we evaluateE(ξ4i ). Note that

ξ2i =

(
2

N1p

)2
 i−1∑

j=1

c2
i j + 2

i−1∑
j<k

ci j cik

 ,
where

ci j = u′1i B ju1i − tr [B j ], B j = Σu1 ju′1 jΣ.
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Hence, from an inequality in Rao (2002),

ξ4i ≤ 2

(
2

N1p

)4

 i−1∑

j=1

c2
i j


2

+ 4

 i−1∑
j<k

ci j cik


2

= 2

(
2

N1p

)4
 i−1∑

j=1

c4
i j + 6

i−1∑
j<k

c2
i j c

2
ik + 4

i−1∑
j<k,l<r

ci j cikcil cir

 ,
and

E(ξ4i ) ≤ 2

(
2

N1p

)4

E

 i−1∑
j=1

c4
i j + 6

i−1∑
j<k

c2
i j c

2
ik


≤ 32

(
1

N1p

)4
 i−1∑

j=1

E(c4
i j ) + 6

i−1∑
j<k

E(c2
i j c

2
ik)


≤ 96

1
(N1p)4

 i−1∑
j=1

c2
i j


2

.

Hence, using again an inequality in Rao (2002), we get

N1∑
i=1

E(ξ4i ) ≤ 192
E(c4

i j )

N3
1 p4

(i , j),

which is of orderO(N−1
1 ) or converges to zero as (N1, p) → ∞ under the Assumptions (A1)-(A3) by using the

results on the moments given in Section 7. For example, for some constantγ, we get from Corollary 7.2, and
the fact thatN = O(pδ), δ > 1/2,

1
p4

E[(u′1 jΣ
2u1 j)

4]

≤ 1
p4
γ[(tr [Σ2])4 + (tr [Σ2])2tr [Σ4] + (tr [Σ4])2 + tr [Σ2]tr [Σ6]) + tr [Σ8]] ,

which is of orerO(1) under the Assumptions (A1)-(A4), because

1
p3

tr [Σ6] ≤ 1
p3

tr [Σ2]tr [Σ4] = a2
a4

p
→ 0,

1
p4

tr [Σ8] ≤ 1
p4

(tr [Σ4])2 =

(
a4

p

)2

→ 0.

Similarly, for some constantγ1,

1
p4

E{E[(u′1i B ju1i)
4|B j ]} ≤

1
p4
γ1E[2(tr [B j ])

4 + (tr [B j ])
2(tr [ B2

j ]) + (tr [B2
j ])

2 + tr [B4
j ]]

=
5
p4
γ1E[(u′1 jΣ

2u1 j)
4].

Hence,E[(u′1i B ju1i)4]/p4 = O(1). Similarly,

√
N1p(â∗11 − a1) =

1
√

N1p

 N1∑
i=1

(u′1iΣu1i − tr [Σ])

 = N1∑
i=1

ξ2i ,

whereξ2i = (N1p)−1/2[u′1iΣu1i − tr [Σ]]. It can be checked thatE(ξ2i |ℑi−1) = E(ξ2i) = 0 and

E(ξ22i |ℑi−1) = Var(ξ2i) =
1

N1p
Var(u′1iΣu1i)

=
1

N1p

K4

p∑
j=1

σ2
j j + 2tr [Σ2]

 .
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Hence,ΣN1
i=1E(ξ2i |ℑi−1) = p−1[K4

∑p
j=1σ

2
j j + 2tr [Σ2]] < ∞. Similarly it can be shown thatΣN1

i=1E(ξ4i ) → 0 as
(N1, p)→ ∞. Thus, asymptotically, as (N1,N2, p)→ ∞,

Ω
−1/2
1

(
â11 − a1

â21 − a2

)
d→ N2(0, I 2),

whereΩ = Ω1/2
1 Ω

1/2
1 given by

Ω =

(
C(1)

11/(N1p) C(1)
12/(N1p)

C(1)
12/(N1p) C(1)

22/(N
2
1)

)
Thus, the asymptotic distribution of (ˆa21/â2

11) is normal with meana21/a2
11 and varianceν21 given by

ν21 = (−2a2/a
3
1, 1/a

2
1)Ω(−2a2/a

3
1,1/a

2
1)′

=
4a2

2C
(1)
11

a6
1N1p

−
4a2C

(1)
12

a5
1N1p

+
C(1)

22

a4
1N2

1

=
1

N2
1a4

1

C(1)
22 −

4N1

p
a2

a1
C(1)

12 +
4N1

p

a2
2

a2
1

C(1)
11

 .
7. Moments of Quadratic forms

In this section we give the moments of quadratic forms, which are useful for evaluating the varaiances of
â1 andâ2. For proofs, see Srivastava (2009) and Srivastava and Kubokawa (2013).

Lemma 7.1 Let u = (u1, . . . ,up)′ be a p-dimensional random vector such that E(u) = 0, Cov (u) = I p,
E(u4

i ) = K4 + 3, i = 1, . . . , p, and

E(ua
i ub

j u
c
ku

d
ℓ ) = E(ua

i )E(ub
j )E(uc

k)E(ud
ℓ ),

0 ≤ a+b+c+d ≤ 4 for all i , j, k, ℓ. Then for any p× p symmetric matricesA = (ai j ) andB = (bi j ) of constants,
we have

E(u′Au)2 = K4

p∑
i=1

a2
ii + 2tr [A2] + (tr [ A])2,

Var(u′Au) = K4

p∑
i=1

a2
ii + 2tr [A2],

E[u′Auu′Bu] = K4

p∑
i=1

aii bii + 2tr [AB] + tr [ A]tr [ B],

for any symmetric matrixB = (bi j ) of constants.

Corollary 7.1 Letu = N−1 ∑N
i=1 ui , whereu1, . . . ,uN are independently and identically distributed. Then

Var(ū′Aū) =
K4

N3

p∑
i=1

a2
ii +

2
N2

tr [ A2].

Lemma 7.2 Let u andv be independently and identically distributed random vectors with zeroes mean vector
and covariance matrixI p. Then for any p× p symmetric matrixA = (ai j ),

Var[(u′Av)2] = K2
4

p∑
i, j

a4
i j + 6K4

p∑
i=1

{(A2)ii }2 + 6tr [A4] + 2(tr [A2])2.

Note that for any symmetric matrixA = (a1, . . . , ap) = A′, (A2)ii = a′i ai =
∑p

j=1 a2
i j , and

∑p
i=1{(A2)ii }2 =∑p

i=1(
∑p

j=1 a2
i j )

2 =
∑p

i, j,k a2
i j a

2
ik.
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8. Concluding Remarks

In this paper, we have proposed a new estimator ofp−1tr [Σ2] which is unbiased and consistent for a general
class of distributions which includes normal distribution. The computing time for this estimator is the same
as the one used in the literature under normality assumption. Using this new estimator we modified the tests
proposed by Srivastava (2005) for testing the sphericity of the covariance matrixΣ, and for testingΣ = I p. The
performance of these two modified tests are compared by simulation. It is shown that the attained significance
level (ASL) of the proposed tests are close to the specified level while the tests proposed under normal distri-
bution, the ASL is 83.61% for chi-square with 2 degrees of freedom. Thus, the modified proposed test is robust
against departure from normality without losing power.
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Table 1: ASL and powers given in percentage (%) of the testsT1s andT1 for Problem (1), as well as the testsT2s andT2 for Problem (2),
under Case 1,N(0,1)

ASL in H Power in A
p N T1s T1 T2s T2 T1s T1 T2s T2

20 10 5.10 6.71 5.50 7.39 11.02 10.53 10.86 10.43
20 5.18 6.38 6.02 7.04 20.98 18.69 19.76 17.89
40 5.36 5.78 5.68 6.23 48.92 47.22 47.47 45.11
60 5.37 5.79 5.97 6.35 76.25 74.91 74.06 72.94

40 10 5.32 7.14 6.02 7.68 10.86 10.34 10.15 9.65
20 5.51 6.01 5.88 6.43 19.59 18.88 19.28 18.29
40 4.85 5.23 5.00 5.69 49.18 48.02 48.80 46.81
60 5.27 5.33 5.69 5.74 76.00 75.00 74.29 74.24

60 10 5.05 7.05 5.36 7.51 11.45 9.94 11.17 10.01
20 5.12 5.97 5.52 6.36 20.73 20.23 19.83 19.39
40 4.85 5.30 5.09 5.54 50.13 48.27 49.51 48.13
60 5.05 5.20 5.23 5.44 76.77 75.65 76.12 75.27

100 10 5.13 7.19 5.28 7.36 10.40 9.96 10.39 9.63
20 5.08 6.08 5.29 6.26 19.99 18.60 19.88 18.29
40 5.33 5.81 5.33 5.92 47.83 46.49 47.32 46.15
60 4.70 5.15 4.70 5.25 77.43 75.93 77.01 75.48

200 10 5.38 7.09 5.55 7.20 10.91 10.74 10.72 10.62
20 5.08 6.17 5.27 6.24 21.07 18.86 20.52 18.69
40 4.66 5.21 4.76 5.32 50.66 48.19 49.96 47.86
60 5.00 5.39 5.01 5.46 77.39 75.61 77.18 75.75
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Table 2: ASL and powers given in percentage (%) of the testsT1s andT1 for Problem (1), as well as the testsT2s andT2 for Problem (2),
under Case 2,χ2

32

ASL in H Power in A
p N T1s T1 T2s T2 T1s T1 T2s T2

20 10 6.50 6.41 7.37 7.19 10.82 10.89 10.50 9.85
20 7.43 6.72 8.33 7.40 20.51 18.56 18.63 17.75
40 7.50 6.10 8.37 6.90 47.54 45.89 44.61 44.10
60 7.60 5.74 8.49 6.45 74.22 74.09 71.90 72.41

40 10 7.19 7.19 7.94 7.56 11.17 10.43 10.50 9.78
20 7.81 6.60 8.40 6.95 19.20 18.09 18.24 18.04
40 7.48 5.85 8.16 6.39 47.25 45.83 45.22 43.98
60 7.53 5.73 7.96 6.00 74.05 73.03 72.40 72.07

60 10 6.85 7.18 7.27 7.37 11.40 10.38 11.40 10.24
20 7.54 6.12 7.90 6.42 19.89 18.79 19.16 18.69
40 7.72 5.80 7.91 5.84 47.34 46.42 46.02 45.57
60 7.38 5.42 7.65 5.71 75.40 75.11 74.46 74.22

100 10 6.82 6.63 6.96 6.98 12.21 11.33 11.95 10.86
20 6.93 5.88 7.07 6.11 21.77 20.36 21.71 20.33
40 7.49 5.88 7.68 6.05 46.88 45.52 46.03 44.86
60 7.17 5.39 7.35 5.56 75.89 75.74 75.26 75.03

200 10 6.89 7.07 7.15 7.23 11.48 10.64 11.45 10.70
20 7.47 6.30 7.39 6.33 19.44 18.93 19.61 18.76
40 7.46 5.88 7.50 5.94 46.13 45.32 45.95 45.44
60 7.21 5.32 7.31 5.30 77.05 76.27 76.89 76.19

Table 3: ASL and powers given in percentage (%) of the testsT1s andT1 for Problem (1), as well as the testsT2s andT2 for Problem (2),
under Case 3,χ2

8

ASL in H Power in A
p N T1s T1 T2s T2 T1s T1 T2s T2

20 10 12.82 6.89 14.84 7.91 10.78 11.26 9.79 10.67
20 15.03 6.72 17.22 7.75 19.25 18.58 16.47 17.15
40 17.87 6.98 19.62 8.02 42.33 42.21 36.66 40.35
60 17.86 6.68 19.98 7.72 66.10 68.09 61.49 65.93

40 10 14.38 7.14 15.74 7.46 10.41 10.50 10.27 10.08
20 17.37 6.98 18.28 7.30 18.25 18.22 17.43 17.77
40 18.07 6.57 19.48 7.22 43.15 42.81 40.59 41.32
60 18.55 6.36 19.61 6.83 69.05 69.60 66.57 68.01

60 10 14.63 7.55 15.76 7.74 9.76 9.74 9.60 9.74
20 16.71 6.33 17.20 6.86 18.12 18.80 17.39 18.59
40 18.04 6.21 18.86 6.56 44.34 44.09 42.93 43.56
60 18.50 5.89 19.20 6.09 72.60 73.01 71.32 72.41

100 10 15.27 7.17 15.59 7.53 10.65 10.28 10.11 10.19
20 16.69 5.73 17.08 5.89 19.77 19.72 18.85 19.86
40 17.55 5.89 18.17 6.02 45.93 45.71 45.68 44.94
60 18.25 5.86 18.68 6.09 74.29 73.42 73.24 73.27

200 10 15.57 7.10 15.76 7.36 9.90 10.04 9.85 10.02
20 16.68 6.01 16.93 6.07 20.91 19.72 20.44 19.79
40 17.23 5.85 17.61 5.89 46.73 45.57 46.02 45.92
60 18.09 5.22 18.22 5.48 75.52 75.41 74.91 75.04
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Table 4: ASL and powers given in percentage (%) of the testsT1s andT1 for Problem (1), as well as the testsT2s andT2 for Problem (2),
under Case 4,χ2

2

ASL in H Power in A
p N T1s T1 T2s T2 T1s T1 T2s T2

20 10 42.16 10.24 42.93 11.31 8.19 8.51 7.41 8.53
20 55.24 10.59 56.78 11.96 11.84 13.91 9.98 12.89
40 63.40 11.00 65.79 12.94 22.42 28.02 16.68 26.08
60 66.69 11.01 69.74 13.27 37.48 45.73 27.85 43.16

40 10 50.09 9.19 49.20 9.60 8.76 10.30 8.33 10.32
20 61.01 9.37 61.32 10.48 13.03 15.36 11.25 14.56
40 71.25 9.22 72.11 10.36 25.41 32.21 20.78 31.30
60 73.99 9.02 75.36 10.44 44.74 54.76 36.57 52.50

60 10 51.85 9.30 51.20 9.34 8.57 9.43 8.51 8.81
20 64.54 8.67 64.22 9.09 12.84 16.41 11.39 15.99
40 72.86 8.98 73.41 9.72 28.19 34.88 23.34 33.96
60 76.84 8.35 77.50 9.27 49.91 59.88 42.20 58.27

100 10 53.80 8.44 53.48 8.64 9.26 10.05 9.18 10.26
20 67.71 7.99 67.35 8.63 13.54 16.74 12.54 16.46
40 75.83 7.76 75.94 8.37 31.83 39.01 27.61 37.99
60 79.22 7.42 79.63 7.81 54.03 63.45 49.08 62.65

200 10 56.32 7.82 55.93 8.11 8.82 9.86 8.84 9.74
20 69.45 7.12 69.67 7.24 14.26 17.59 13.51 17.93
40 78.90 6.50 78.91 6.67 33.76 41.56 31.50 41.35
60 81.15 6.17 81.18 6.32 61.95 70.88 59.13 70.42

Table 5: Critical values, ASL and powers given in percentage (%) of the testsTS c andT3 for Problem (3)

Critical Value ASL in H Power in A
N p TS c T3 TS c T3 TS c T3

Case 1 :N(0, 1)
20 40 1.4359 1.4740 2.64 2.99 25.96 25.32
40 80 1.5489 1.5919 3.92 4.29 69.48 68.50
60 120 1.6208 1.6501 4.70 5.07 92.46 92.02
80 200 1.5983 1.6186 4.60 4.74 99.30 99.24

Case 2 :χ2
32

20 40 1.5380 1.5127 3.46 3.49 24.98 24.54
40 80 1.6945 1.6178 5.65 4.75 68.74 68.58
60 120 1.7807 1.6894 6.54 5.48 91.92 91.98
80 200 1.7424 1.6257 6.07 4.80 99.04 99.04

Case 3 :χ2
8

20 40 1.8263 1.5557 7.98 3.83 20.04 23.10
40 80 2.0472 1.6527 11.48 5.08 64.74 67.54
60 120 2.1271 1.6485 13.13 5.07 89.26 91.08
80 200 2.1575 1.6757 12.86 5.32 98.48 98.78

Case 4 :χ2
2

20 40 2.6124 1.7723 31.78 6.46 11.64 19.58
40 80 3.4193 1.8795 51.70 7.21 43.84 60.76
60 120 3.6721 1.9193 59.15 7.95 78.16 88.58
80 200 3.6834 1.7761 62.21 6.48 96.42 98.72

24


