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Abstract

The paper develops empirical Bayes and benchmarked empirical Bayes estima-
tors of positive small area means under multiplicative models. A simple example
will be estimation of per capita income for small areas. It is now well-understood
that small area estimation needs explicit, or at least implicit use of models. One
potential difficulty with model-based estimators is that the overall estimator for a
larger geographical area based on (weighted) sum of the model-based estimators is
not necessarily identical to the corresponding direct estimator, such as the overall
sample mean. One way to fix such a problem is the so-called benchmarking ap-
proach which modifies the model-based estimators to match the aggregate direct
estimator.

Benchmarked hierarchical and empirical Bayes estimators have proved to be par-
ticularly useful in this regard. However, while estimating positive small area param-
eters, the conventional squared error or weighted squared loss subject to the usual
benchmark constraint does not necessarily produce positive estimators. Hence, it is
necessary to seek other meaningful losses to alleviate this problem.

In this paper, we consider the transformed Fay-Herriot model as a multiplicative
model for estimating positive small area means, and suggest a weighted Kullback-
Leibler divergence as a loss function. We have found out that the resulting Bayes
estimator is the posterior mean and that the corresponding benchmarked Bayes and
empirical Bayes estimators retain the positivity constraint.

The prediction errors of the suggested empirical Bayes estimators are investi-
gated asymptotically, and their second-order unbiased estimators are provided. In
addition, bootstrapped estimators of these prediction errors are also provided. The
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performance of the suggested procedures is investigated through simulation as well
as with an empirical study.

Key words and phrases: Asymptotic approximation, constrained Bayes, Fay-
Herriot model, parametric bootstrap, second-order approximation, second-order un-
biased.

1 Introduction

Bayesian and the related shrinkage methods have been extensively used and actively stud-
ied in small-area estimation. Since sample sizes of small areas are small, direct estimators,
such as sample means have unacceptable estimation errors, and shrinkage estimators “bor-
rowing strength” from other similar areas can often provide more reliable estimators with
higher precision. However, one potential difficulty of the shrinkage estimators is that
the overall estimator for a larger geographical area, which is often a weighted sum of
the shrinkage estimators of individual small areas, is not necessarily equal to the cor-
responding overall direct estimator. One way to resolve this issue is the benchmarking
approach, which modifies the shrinkage estimators so that one gets the same weighted
aggregate direct estimator for larger geographical areas. To this end, benchmarked Bayes
estimators have been addressed in a series of articles by You and Rao (2002, 2003), Datta,
Ghosh, Steorts and Maples (2011), Steorts and Ghosh (2013), Ghosh and Steorts (2013)
and Bell, Datta and Ghosh (2013). Non-Bayesian approach to this topic is available in
Pfeffermann and Barnard (1991), Isaki, Tsay and Fuller (2000) and Wang, Fuller and Qu
(2008) among others. For a good review on this topic, see Pfeffermann (2013).

In practice, one is often faced with estimation of positive area-level parameters, such as
income, revenue, harvest, production, prices and others in small-areas. This is typical for
the analysis of many official statistics and census data. A standard method for handling
such cases is to make a logarithmic transformation of the data and use an additive linear
mixed model such as the Fay-Herriot (1979) model to produce the small area estimates.
This is equivalently described as a multiplicative model for the original positive data.
Slud and Maiti (2006) discussed the difference between the additive and the multiplicative
models through the second-order mean-squared error (MSE) criterion, i.e. correct MSE
up to the O(m−1) term, where m denotes the number of small areas.

For the problem of estimating positive means of small areas, we want to find hierar-
chical and empirical Bayes estimators subject to the constraint that the weighted sum of
the estimators will equal the direct estimator for larger geographical areas. In the process
of deriving the constrained Bayes estimators, we are faced with the following issues with
a conventional approach:

(I) The standard loss function is the squared error loss (θ̂ − θ)2, and estimators are
evaluated in terms of the mean squared error (MSE). Although the squared error loss is
useful for estimating real θ, it is not necessarily an appropriate measure for estimation
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of positive θ. In fact, the case of θ̂ < θ is less penalized than that of θ̂ > θ because of
limθ̂→0(θ̂ − θ)2 = θ2.

(II) The benchmark constraint considered here is the weighted sum of the original
positive data. This setup is natural in practice. Under this restriction, the resulting
constrained Bayes estimator relative to the squared error loss takes a negative value with
a positive probability. For other conventional losses, the constrained Bayes estimators
have complicated formulae or cannot be expressed in closed forms. Thus, the constrained
Bayes estimators under the conventional losses are not so useful in practice.

As a feasible loss function which resolves these issues, we consider in this paper, a
weighted Kullback-Leibler loss, a variant of the usual Kullback-Leibler loss, given by

LmKL(θ, θ̂) = θ{θ̂/θ − log(θ̂/θ)− 1} = θ̂ − θ − θ log(θ̂/θ) (1.1)

for estimating positive θ. Clearly, LmKL(θ, θ̂) diverges when θ̂ goes to zero or infinity.
It is interesting to note that the resulting Bayes estimator is the posterior mean, and as
we will see later in Section 2, that the benchmarked Bayes estimator can be explicitly
expressed, and hence can be readily implemented. Thus, the weighted Kullback-Leibler
loss seems to be a feasible approach to resolve issues brought out in (I) and (II).

We have derived in this hierarchical empirical Bayes (HBEB) estimators which are
different from the usual empirical Bayes (EB) estimators. While, for a large number of
small areas, the difference between the two is relatively small, the former has an intrinsic
appeal, since it is a Rao-Blackwellized version of the non-hierarchical Bayes estimator,
and estimation of hyperparameters is left until the end. Specifically, for a normal prior,
one can integrate out the mean parameter, and estimation of the prior variance occurs
only at the final stage of estimation.

The paper is organized as follows: In Section 2, we describe the benchmark problem
for the log-transformed Fay-Herriot model and demonstrate that the conventional loss
functions cannot produce a simple and reasonable constrained Bayes estimator to satisfy
the usual benchmark constraint. As an alternative, a weighted Kullback-Leibler loss is
introduced, and the resulting constrained Bayes estimator is obtained in a closed form,
while maintaining the necessary positivity constraint when transformed back. Also, in
this section, we have derived the HBEB and the EB estimators, and have pointed out that
the differ only in the O(m−1) terms, where m is the number of small areas. In Section 3,
we derive the second-order approximation of the risk function for the HBEB estimator.
We also provide the second-order unbiased estimators of the risk function of the HBEB
estimator via (i) an analytic method based on the Taylor expansion and (ii) a numerical
method based on the parametric bootstrap. Section 4 contains some simulation results.
Section 5 contains some approximations to the risks of the constrained HBEB estimators.
Section 5 also contains the analysis of some real data. Some concluding remarks are made
in Section 6. Proofs of some of the technical results are deferred to the appendix.
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2 Constrained Bayes and empirical Bayes Estimation

for Multiplicative Models

2.1 Transformed Fay-Herriot models and the resulting Bayes
estimators

In many surveys, the response consists of positive outcomes, such as income, revenue,
harvest yield, production and many other quantities of interest. Their distributions are
quite often positively skewed, and need suitable transformations for normality to hold.
We will consider here, one such case, namely the multiplicative model (see e.g. Rao, 2003)

yi = θiηi, i = 1, . . . ,m, (2.1)

for positive response yi. The objects of estimation are the θi for i = 1, . . . ,m. It is
convenient to use the log transformation

zi = log yi = ϕi + εi, i = 1, . . . ,m,

for ϕi = log θi and εi = log ηi, where (zi, ϕi), i = 1, . . . ,m are mutually independent. The
conditional distribution of zi given ϕi and the marginal distribution of ϕi are given by

zi|ϕi,β ∼N (ϕi, di),

ϕi|β ∼N (xT
i β, τ

2),
(2.2)

where xi’s are p-variate covariates, and β is a p-variate vector of regression coefficients.
The parameter τ 2 is assumed to be known for the moment, and will be estimated later.
The di’s are assumed to be known throughout to avoid non-identifiability. This is the well-
known Fay-Herriot (1979) model for zi, but the parameters of interest are the θi = exp(ϕi),
i = 1, . . . ,m. We will write z = (z1, . . . , zm)

T , θ = (θ1, . . . , θm)
T , ϕ = (ϕ1, . . . , ϕm)

T ,
XT = (x1, . . . ,xm), and assume rank (X) = p(< m) so that XTX is nonsingular. Also,
we will write

Σ =Σ(τ 2) = diag (d1 + τ 2, . . . , dm + τ 2),

γi =γi(τ
2) = di/(di + τ 2), i = 1, . . . ,m,

hi(ω) = exp(xT
i β + τ 2/2), ω = (β, τ 2).

(2.3)

Concerning β, we consider the following two cases:

(Case 1) Random coefficients for β. It is assumed that β is a random vector of
coefficients having the hierarchical prior distribution as β ∼ uniform(Rp), the uniform
distribution over Rp.

(Case 2) β. It is assumed that β is an unknown parameter which will be estimated
from the marginal distribution of z.
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Cases 1 and 2 lead to different posterior distributions of ϕi. Let the generalized least
squares (GLS) estimator of β for known τ 2 be given by

β̂(τ 2) = (XTΣ−1X)−1XTΣ−1z.

Then, we have the following proposition whose proof we omit.

Proposition 2.1 For Case 1, the posterior of ϕi given z is

ϕi|z, τ 2 ∼ N (ϕ̂HB
i (τ 2), ki(τ

2)), (2.4)

where

ϕ̂HB
i (τ 2) =(1− γi)zi + γix

T
i β̂(τ

2),

ki(τ
2) =τ 2γi + γ2

i x
T
i (X

TΣ−1X)−1xi.
(2.5)

For Case 2, the posterior of ϕi given z is

ϕi|z,β, τ 2 ∼ N (ϕ̂B
i (β, τ

2), τ 2γi(τ
2)), (2.6)

where
ϕ̂B
i (β, τ

2) = (1− γi)zi + γix
T
i β. (2.7)

The posterior means E[ϕi|z] for Cases 1 and 2 are given respectively by ϕ̂HB
i (τ 2) and

ϕ̂B
i (β, τ

2). Substituting the GLS β̂(τ 2) into ϕ̂B
i (β, τ

2) yields the EB estimator

ϕ̂EB
i (τ 2) = (1− γi)zi + γix

T
i β̂(τ

2),

which is identical to the HB estimator ϕ̂HB
i (τ 2). This is not so for the θi, since the

posterior means of the θi for Cases 1 and 2 are given respectively by

θ̂HB
i (τ 2) =E[θi|z, τ 2] = E[exp(ϕi)|z, τ 2]

= exp
{
ϕ̂HB
i (τ 2) + ki(τ

2)/2
}
, (2.8)

θ̂Bi (β, τ
2) =θ̂Bi (ω) = E[θi|z,β, τ 2]

= exp
{
ϕ̂B
i (β, τ

2) + τ 2γi/2
}
, (2.9)

Substituting β̂(τ 2) into θ̂Bi (β, τ
2) gives the EB estimator

θ̂EB
i (τ 2) = exp

{
ϕ̂EB
i (τ 2) + τ 2γi/2

}
, (2.10)

which is not identical to the HB estimator θ̂HB
i (τ 2) given in (2.8). However, the difference

between θ̂HB
i (τ 2) and θ̂EB

i (τ 2) is small as explained in the proposition given below. Assume
the usual regularity conditions (see e.g. Prasad and Rao, 1990)

(C1) XTX/m converges to a positive definite matrix;

(C2) max1≤i≤m xT
i (X

TX)−1xi = O(m−1);

(C3) 0 < dL ≤ di ≤ dU < ∞ for all i = 1, . . . ,m, where dL and dU do not depend on
m.
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Proposition 2.2 Under the assumptions (A.1)-(A.3), it holds that θ̂HB
i (τ 2)− θ̂EB

i (τ 2) =
Op(m

−1) for large m.

In fact, the difference can be approximated as

θ̂HB
i (τ 2)− θ̂EB

i (τ 2) =θ̂EB
i (τ 2)

{
eγ

2
i x

T
i (XTΣ−1X)−1xi − 1

}
=θ̂EB

i (τ 2)γ2
i x

T
i (X

TΣ−1X)−1xi +Op(m
−2), (2.11)

which is of order Op(m
−1) due to the assumptions (C1), (C2) and (C3).

It is relevant to note that one may originally assume both β and τ 2 to be known, and
obtain the Bayes estimator θ̂Bi (ω) of the θi and then obtain the EB estimator of θi by
substituting the GLS estimator of β as before. We prefer the present approach due to
the fact that

θ̂HB
i (τ 2) = E[θi|z, τ 2] = E

[
E[θi|z,β, τ 2]|z, τ 2

]
= E[θ̂Bi (ω)|z, τ 2]

in the framework (2.2) with β ∼ uniform(Rp). By the Rao-Blackwell theorem, θ̂HB
i (τ 2)

has smaller risk than that of θ̂Bi (ω) for any convex loss.

2.2 Benchmark problem and loss functions

We now consider the benchmark problem of estimating the positive parameters θi’s by
estimators θ̂i’s under the constraint

m∑
i=1

wiθ̂i = M(y) and (θ̂1, . . . , θ̂m)
T ∈ Θ, (2.12)

where wi’s are weights such that wi > 0 and
∑m

i=1wi = 1, while Θ = {(θ1, . . . , θm)T |θ1 >
0, . . . , θm > 0}. Here, M(y) is a required constant or random variable like M(y) =∑m

i=1wiyi. A reasonable method for deriving estimators satisfying the benchmark con-
straint (2.12) is the constrained Bayes procedure, which minimizes the posterior risk
function subject to (2.12). A solution of the conditional optimality can be obtained

with the method of Lagrange multipliers. Let L(θ, θ̂) be a loss function for estimating

θ = (θ1, . . . , θm)
T by an estimator θ̂ = (θ̂1, . . . , θ̂m)

T . Then, the Lagrange function is
defined by

LM(θ̂, λ) = E[L(θ, θ̂)|y] + λ
{ m∑

i=1

wiθ̂i −M(y)
}
, (2.13)

where λ is the Lagrange multiplier.

It is seen that the resulting constrained Bayes estimator depends on the choice of the
loss function involved in the posterior risk. Our objective is to suggest an appropriate
loss function so that the benchmarked estimators of the positive parameters θi are also
positive.
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A standard loss function is the quadratic loss given by LQ(θ, θ̂) =
∑m

i=1 ξi(θ̂i−θi)
2 for

positive constants ξi’s. Then the Bayes estimator of θi is the posterior mean E[θi|yi]. The
constrained Bayes estimator can be derived as the minimizer for the Lagrange function
(2.13), and is given by

θ̂Ci = E[θi|yi]−
wi/ξi∑m
j=1w

2
j/ξj

( m∑
j=1

wjE[θj|yj]−M(y)
)
. (2.14)

A drawback of (2.14) is that θ̂Ci takes negative values with a positive probability. This sug-
gests that we should derive a constrained Bayes estimator under the additional restriction
θ̂i > 0, i = 1, . . . ,m. However, such a constrained Bayes estimator cannot be expressed
in a closed form. Another drawback of the quadratic loss (θ̂i − θi)

2 is that it penalizes θ̂i
much less for θ̂i < θi than for θ̂i > θi, since (θ̂i − θi)

2 converges to the finite value θ2i as
θ̂i → 0. Although the quadratic loss function is an appropriate loss for estimation of a
real valued parameter, it is not necessarily suitable for estimation of positive parameters.

An alternative loss is the log-transformed quadratic loss function given by LTQ(θ, θ̂) =∑m
i=1 ξi(log θ̂i−log θi)

2, which is quite natural since the multiplicative model (2.1) is trans-
formed into the additive model via the log transformation. If the constraint is given by
the geometric mean

∏m
i=1 θ̂

1/m
i =

∏m
i=1 y

1/m
i , then the benchmark problem in the multi-

plicative model can be reduced to the problem in the additive model with the constraint
m−1

∑m
i=1 log θ̂i = m−1

∑m
i=1 log yi, and the constrained Bayes estimator and its prop-

erties can be studied along the lines of Datta et al. (2010). However, the constraint
considered in this paper is the weighted mean constraint

∑m
i=1wiθ̂i = M(y), and the

constrained Bayes estimator under this constraint cannot be derived explicitly. In fact,
letting ϕi = log θi and ϕ̂i = log θ̂i, if we consider the problem of minimizing the pos-
terior risk

∑m
i=1wiE[(ϕ̂i − ϕi)

2|z] with respect to estimator ϕ̂i subject to the constraint∑m
i=1wi exp(ϕ̂i) = M(y), the resulting constrained Bayes estimators ϕ̂C

i ’s are solutions of
the nonlinear equations

M(y){ϕ̂C
i − E[ϕi|zi]} = exp ϕ̂C

i

m∑
j=1

wj{ϕ̂C
j − E[ϕj|zj]}, i = 1, . . . ,m.

Unfortunately, the solution cannot be expressed in a closed form, and we do not know
about existence and uniqueness of the solution. Moreover, it is not easy to study any
properties of these estimators. Thus, the loss function LTQ(θ̂,θ) does not seem very
suitable for the benchmark problem addressed here.

For estimating positive quantities, there are other options such as the Kullback-Leibler
or the entropy loss and other related loss functions. James and Stein (1961) used such a
loss in the context of estimation of a covariance matrix. The Kullback-Leibler (KL) loss is

described as LKL(θ, θ̂) =
∑m

i=1{θ̂i/θi−log(θ̂i/θi)−1}, and the resulting Bayes estimator of
θi is not the posterior mean, but the harmonic mean 1/E[θ−1

i |zi]. The constrained Bayes
estimator is then given by (E[θ−1

i |yi] + λwi)
−1 where λ is the solution of the equation∑m

j=1wj/(E[θ−1
j |yj] + λwi) = M(y).
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We have investigated several conventional loss functions so far, but these losses cannot
give us any convenient solution for finding benchmarked estimators of positive parame-
ters. An alternative loss resulting in an easily interpretable estimator for the benchmark
problem is given in the next subsection.

2.3 Constrained HB estimator for a weighted KL loss

Taking into account the drawbacks and/or inconveniences of typical loss functions as
mentioned in the previous subsection, we suggest here an alternative loss function, a
weighted KL loss, which is given by

Lw
KL(θ, θ̂) =

m∑
i=1

wiθi
{
θ̂i/θi − log(θ̂i/θi)− 1

}
=

m∑
i=1

wi

{
θ̂i − θi − θi log(θ̂i/θi)

}
. (2.15)

It is noted that Lw
KL(θ, θ̂) → ∞ as θ̂i → 0 or as θ̂i → ∞. It is interesting to note that

the resulting Bayes estimator of θi is the posterior mean E[θi|yi]. An appealing feature

of the loss Lw
KL(θ, θ̂) is that the minimizer of the Lagrange function (2.13) can be easily

obtained in an easily interpretable closed form. The resulting constrained Bayes estimator
is a ratio adjusted estimator of the posterior mean, and is given by

θ̂Ci = E[θi|yi]
M(y)∑m

j=1wjE[θj|yj]
. (2.16)

This is a multiplicative form, and can be rewritten in a log-linear form as

log θ̂Ci = logE[θi|yi]−
{
log

m∑
j=1

wjE[θj|yj]− logM(y)
}
.

Thus, in this paper, we use the weighted KL loss Lw
KL(θ, θ̂). The properties of the weighted

KL loss are summarized in the following proposition.

Proposition 2.3 Consider estimation of θi(> 0) relative to the loss LmKL(θi, θ̂i) = θ̂i −
θi − θi log(θ̂i/θi). Then, the Bayes estimator of θi is given by the posterior mean E[θi|yi]
and the constrained Bayes estimator is provided as the natural ratio estimator (2.16). In
the case when E[θ̂i/θi] is a positive constant, the unbiased estimator of θi is the best among
estimators cθ̂i for any constant c.

To see this, we write the risk of the estimator cθ̂i is as E[cθ̂i − θi − θi log(cθ̂i/θi)],
which is minimized by c = 1/E[θ̂i/θi]. Thus, when E[θ̂i/θi] does not depend on θi, the
optimal estimator of θi within the given class of constant multiplier estimators of θ̂i is the
unbiased estimator of θi.
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When β is supposed to be distributed uniformly over Rp, the posterior mean of θi
is given by θ̂HB

i (τ 2) = exp{ϕ̂HB
i (τ 2) + ki(τ

2)/2} for ϕ̂HB
i (τ 2) = (1 − γi)zi + γix

T
i β̂(τ

2)
as described in (2.9). Substituting the estimator into (2.16) yields the constrained HB
(CHB) estimator

θ̂CHB
i (τ 2) = θ̂HB

i (τ 2)
M(y)∑m

j=1wj θ̂HB
j (τ 2)

. (2.17)

Since τ 2 is not known in practice, we need to estimate it. For the estimation of τ 2,
there are several methods proposed in the literature, which include the iterative method
of moments estimator by Fay and Herriot (1979) and Morris (1983), the Prasad-Rao
(1990) method of moment estimator, the maximum likelihood (ML) and the restricted
maximum likelihood (REML) estimators proposed by Datta and Lahiri (2000) and the
modified Prasad-Rao estimator proposed by Datta, Rao and Smith (2005). Some of them
are given in the next section.

When τ 2 is estimated by a consistent estimator τ̂ 2, it can be substituted into θ̂HB
i (τ 2)

and θ̂CHB
i (τ 2) to obtain the hierarchical empirical Bayes (HBEB) estimator θ̂HB

i (τ̂ 2)
and the corresponding constrained estimator θ̂CHB

i (τ̂ 2). We will use the abbreviated
notations θ̂HB

i and θ̂CHB
i instead of θ̂HB

i (τ̂ 2) and θ̂CHB
i (τ̂ 2) when there is no cofusion,

and denote these estimators by HB and CHB, respectively. We also use the notations

θ̂
HB

= (θ̂HB
1 , . . . , θ̂HB

m )T and θ̂
CHB

= (θ̂CHB
1 , . . . , θ̂CHB

m )T .

We can use the empirical Bayes estimator θ̂EB
i (τ 2) given in (2.10) instead of θ̂HB

i (τ 2).
However, as shown in Proposition 2.2, the difference between the two estimators is quite
small, and we omit the details for θ̂EB

i (τ 2).

Remark 2.1 It may be interesting to note that the loss θ(θ̂/θ− log(θ̂/θ)−1) is connected
to the loss (log θ̂ − log θ)2 through the loss function

LmKL(θ, θ̂, t) =
θt

t2
{
(θ̂/θ)t − log(θ̂/θ)t − 1

}
for real t. When t → 0, limt→0 LmKL(θ, θ̂, t) = (log θ−log θ)2/2. The loss LmKL(θ, θ̂) given
in (1.1) corresponds to the case when t = 1. For the general loss, the Bayes estimator of
θi is given by

θ̂Bt =
{
E[θt|y]}1/t.

For t = 1 and t = −1, the Bayes estimators correspond to the posterior mean E[θ|y] and
the posterior harmonic mean 1/E[θ−1|y], respectively. For t → 0, the Bayes estimator
tends to the geometric mean exp{E[log(θ)|y]}.
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3 Evaluation and Estimation of Risk of the Empirical

HB Estimator

3.1 A second-order approximation of the risk

Our objective in this section is to find a second order correct (namely, correct up to
O(m−1)) expression for the risk of the empirical HB estimator θ̂HB

i (τ̂ 2) under the loss
LmKL(θi, θ̂i) given in (1.1), which is the i-th component of the loss given in (2.15). To
this end, we need to add a couple of assumptions:

(C4) τ̂ 2(z −Xα) = τ̂ 2(z) for any α, and τ̂ 2(−z) = τ̂ 2(z).

(C5) The estimator τ̂ 2 is consistent and τ̂ 2 − τ 2 = Op(m
−1/2). The bias and variance

of τ̂(z) are denoted by Bias(τ̂ 2) and Var(τ̂ 2), both of which are of order O(m−1).

Assumptions (C4) and (C5) are standard, and have been used for MSE calculations
in Prasad and Rao (1990) (see also Rao, 2003). We now provide the following theorem in
the log-transformed Fay-Herriot model (2.2). The proof is given in the Appendix.

Theorem 3.1 Under assumptions (C1)-(C5) and loss (1.1), the risk of the estimator
θ̂HB
i (τ̂ 2) of θi is

Rω(θ̂
HB
i (τ̂ 2)) =

di
2
(1− γi)hi(ω) +

γ2
i

2
hi(ω)x

T
i (X

TΣ−1X)−1xi

+
γ2
i

8
{(2− γi)

2 + 4γi/di}hi(ω)Var(τ̂
2) +O(m−3/2). (3.1)

It may be noted that only the first term in the right hand side of (3.1) is O(1), while
both the second and the third terms are of O(m−1).

The conditions (C4) and (C5) are satisfied by typical estimators of τ 2. For example,
the Prasad-Rao (1990) estimator for τ 2 is given by τ̂ 2PR = max{0, τ̂ 2U}, where

τ̂ 2U = (m− p)−1
[ m∑
i=1

(zi − xT
i β̃)

2 −
m∑
i=1

di
{
1− xT

i (X
TX)−1xi

}]
, (3.2)

where β̃ = (XTX)−1XTz, the unweighted least square estimate of β. This is useful due
to its simplicity and analytical amenability. It is important to note that P (τ̂ 2PR = 0)
converges to zero at an exponential rate when m → ∞ (see Prasad and Rao, 1990). Also,
Bias(τ̂ 2U) = 0 and Var(τ̂ 2U) = 2m−2tr [Σ2] + O(m−2). Another well-known estimator
τ̂ 2FH is the estimator suggested by Fay and Herriot (1979) and it is given as the solution
of the equation LFH(τ̂ 2FH) = 0, where

LFH(τ 2) = zT
{
Σ(τ 2)−1 − P (τ 2)

}
z − (m− p). (3.3)

It follows from Datta, et al . (2005) that Bias(τ̂ 2FH) = 2{mtr [Σ−2]−(tr [Σ−1])2}/(tr [Σ−1])3+
O(m−3/2) and Var(τ̂ 2FH) = 2m/(tr [Σ−1])2 + O(m−3/2). For the ML and REML estima-
tors, see Datta and Lahiri (2000).
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It is here pointed out that the empirical Bayes estimator θ̂EB
i (τ̂ 2) given in (2.10) has

the same approximation as in (3.1). In fact, as seen from (2.11), we have θ̂HB
i (τ̂ 2) =

θ̂EB
i (τ̂ 2)γ̂2

i x
T
i (X

TΣ(τ̂ 2)−1X)−1xi +Op(m
−2). Then, the risk difference is written as

Rω(θ̂
HB
i (τ̂ 2))−Rω(θ̂

EB
i (τ̂ 2)) =Eω[θ̂

HB
i (τ̂ 2)− θ̂EB

i (τ̂ 2)− θ̂Bi log(θ̂HB
i (τ̂ 2)/θ̂EB

i (τ̂ 2))]

=Eω[θ̂
EB
i (τ̂ 2)γ̂2

i x
T
i (X

TΣ(τ̂ 2)−1X)−1xi

− θ̂Bi log(1 + γ̂2
i x

T
i (X

TΣ(τ̂ 2)−1X)−1xi)] +O(m−2)

=Eω[{θ̂EB
i (τ̂ 2)− θ̂Bi }γ̂2

i x
T
i (X

TΣ(τ̂ 2)−1X)−1xi] +O(m−2)),

which is of O(m−3/2) since θ̂EB
i (τ̂ 2)− θ̂Bi = Op(m

−1/2), where θ̂Bi = θ̂Bi (ω) is given in (2.9).

Proposition 3.1 Under assumptions (C1)-(C5) and the loss (1.1), the risk of the empir-
ical Bayes estimator θ̂EB

i (τ̂ 2) has the same second-order approximation as in the risk of
the empirical HB estimator θ̂HB

i (τ̂ 2).

3.2 Second-order unbiased estimator of the risk

There are two approaches to derivation of the second-order unbiased estimators for the
risk, and we here provide the two methods.

We first estimate the risk based on the second-order approximation given in (3.1).
Except for the first term in the right hand side of (3.1), all the other terms are of order
O(m−1). Accordingly, one simply needs to estimate the unknown parameters β and τ 2

involved in these terms by their estimators β̂(τ̂ 2) and τ̂ 2 given in the previous sections.
Also, one estimates γi = di/(di + τ 2) by γ̂i = di/(di + τ̂ 2). The plug-in estimators for the
terms with O(m−1) in (3.1) are also of order Op(m

−1) and the difference of these estimators
and the terms they estimate are of the order Op(m

−3/2). Thus, the problem reduces to
estimation of the first term 2−1mi(ω) correct up to the order O(m−1) for ω = (τ 2,β),
where

mi(ω) = di(1− γi) exp
{
xT
i β + τ 2/2

}
. (3.4)

When mi(ω) is estimated by the plug-in estimator mi(ω̂) for ω̂ = (β̂(τ̂ 2), τ̂ 2), the second-
order approximation of E[mi(ω̂)] is given in the following lemma which will be proved in
the Appendix.

Lemma 3.1 Under conditions (C1)-(C5), E[mi(ω̂)] is approximated as

E[mi(ω̂)] =mi(ω) +
1

2
γihi(ω)

{
τ 2xT

i (X
TΣ−1X)−1xi + (τ 2 + 2γi)Bias(τ̂

2)

+ (−2γ2
i /di + γi + τ 2/4)Var(τ̂ 2)

}
+O(m−3/2). (3.5)

Substituting the approximation (3.5) into (3.1) yields the second-order unbiased esti-
mator of risk.
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Theorem 3.2 Under assumptions (C1)-(C5) and loss (1.1), the second-order unbiased
estimator of risk of the empirical HB estimator θ̂HB

i (τ̂ 2) is given by

R̂(θ̂HB
i (τ̂ 2)) =

di
2
(1− γ̂i)hi(ω̂) +

1

4
γ̂i(2γ̂i − τ̂ 2)hi(ω̂)x

T
i (X

TΣ−1(τ̂ 2)X)−1xi

− 1

4
γ̂i(2γ̂i + τ̂ 2)hi(ω̂)B̂ias(τ̂

2) (3.6)

+
γ̂2
i

8

{
8γ̂i/di + (2− γ̂i)

2 − 2− τ̂ 2/(2γ̂i)}hi(ω̂)V̂ar(τ̂
2),

where hi(ω̂) = exp{xT
i β̂(τ̂

2)+τ̂ 2/2}. That is, E[R̂(θ̂HB
i (τ̂ 2))] = R(ω, θ̂HB

i (τ̂ 2))+O(m−3/2).

We next provide another approach based on the method of parametric bootstrap.
Consider the following multiplicative model: For i = 1, . . . ,m, a positive observation y∗i
follows the multiplicative model y∗i = θ∗i η

∗
i , where θ

∗
i and η∗i are positive random variables

which are described below. Let z∗i = log y∗i , ϕ
∗
i = log θ∗i and ε∗i = log η∗i . Then, z

∗
i has the

following log linear model:

z∗i =ϕ∗
i + ε∗i , ϕ∗

i = xT
i β̂(τ̂

2) + u∗
i ,

u∗
i ∼N (0, τ̂ 2), ε∗i ∼ N (0, di)

(3.7)

where β̂(τ̂ 2) and τ̂ 2 = τ̂ 2(y) are estimators based on y or z of the original model (2.1).

Let J1(ω) = 2−1hi(ω)τ
2γi, and let J2(ω) = Rω(θ̂

HB
i (τ̂ 2))−J1(ω). Then from Theorem

3.1, it follows that J1(ω) = O(1) and J2(ω) = O(m−1). We shall estimate J1 and J2
using the parametric bootstrap sample from (3.7). It is noted that the calculation of
τ̂ 2∗ = τ̂ 2∗(y∗) is the same as that of τ̂ 2 = τ̂ 2(y) except that τ̂ 2∗ is calculated based on y∗

instead of y. Also, let β̂
∗
(τ̂ 2∗) = (XTΣ−1(τ̂ 2∗)X)−1XTΣ−1(τ̂ 2∗)z∗. For J1, we can use

the arguments as in Butar and Lahiri (2003) to estimate it by

J∗
1 = 2J1(ω̂)− E∗[J1(ω̂

∗)], (3.8)

for ω̂ = (β̂(τ̂ 2), τ̂ 2) and ω̂∗ = (β̂
∗
(τ̂ 2∗), τ̂ 2∗), where E∗[·] denotes the expectation with

respect to the model (3.7). For J2, it can be estimated by

J∗
2 =− 2−1hi(ω̂)γ̂i(2− γ̂i)x

T
i (X

TΣ−1(τ̂ 2)X)−1xi

+ E∗
[
θ̂HB∗
i (τ̂ 2)− θ̂B∗

i (ω̂)− θ̂B∗
i (ω̂) log(θ̂HB∗

i (τ̂ 2∗)/θ̂HB∗
i (τ̂ 2))

]
, (3.9)

where

θ̂HB∗
i (τ̂ 2) = exp

{
(1− γ̂i)z

∗
i + γ̂ix

T
i β̂

∗
(τ̂ 2) + ki(τ̂

2)/2
}
,

θ̂HB∗
i (τ̂ 2∗) = exp

{
(1− γ̂∗

i )z
∗
i + γ̂∗

i x
T
i β̂

∗
(τ̂ 2∗) + ki(τ̂

2∗)
}
,

θ̂B∗
i (ω̂) = exp

{
(1− γ̂i)z

∗
i + γ̂ix

T
i β̂(τ̂

2) +
di
2
(1− γ̂i)

}
, (3.10)

for γ̂∗
i = di/(di + τ̂ 2∗) and β̂

∗
(τ̂ 2) = (XT (XTΣ−1(τ̂ 2)X)−1XTΣ−1(τ̂ 2)z∗. Hence, we can

get the following theorem.
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Theorem 3.3 Assume conditions (C1)-(C5). The second-order unbiased estimator of
risk of the empirical HB estimator θ̂HB

i (τ̂ 2) relative to the loss (1.1) is given by

R̂∗(θ̂HB
i (τ̂ 2)) = J∗

1 + J∗
2 . (3.11)

That is, E[R̂∗(θ̂HB
i (τ̂ 2))] = R(ω, θ̂HB

i (τ̂ 2)) +O(m−3/2).

4 Simulation Study

We begin by investigating the performance of second order unbiased estimators of the risk
suggested in Section 3 by simulation. For the purpose, we adopt part of the simulation
framework of Datta, et al . (2005) for our study. We consider the transformed Fay-Herriot
model (2.1) with m = 15, τ 2 = 1 and two di-patterns: (a) 0.7, 0.6, 0.5, 0.4, 0.3; (b)
2.0, 0.6, 0.5, 0.4, 0.2, which correspond to patterns (a) and (b) of Datta, et al . (2005).
Pattern (a) is less variable in di-values, while pattern (b) has larger variability. There are
five groups G1, . . . , G5 and three small areas in each group. The sampling variances di’s
are the same for area within the same group. For the sake of computational simplicity,
we handle the case xi = 1 and β = 1, namely the model has only the constant term.

We prepare the true values of the risk of the empirical HB estimator R(ω, θ̂HB
i (τ̂ 2))

and the risk of yi, R(ω, yi) in advance, which can be computed based on 100,000 simulated

data. The relative bias and the relative MSE of the estimator R̂i are given by

RBias(ω, R̂i) =100× E
[
R̂i −R(ω, θ̂HB

i (τ̂ 2))
]
/R(ω, θ̂HB

i (τ̂ 2)),

RMSE(ω, R̂i) =100× E
[{

R̂i −R(ω, θ̂HB
i (τ̂ 2))

}2
]
/{R(ω, θ̂HB

i (τ̂ 2))}2.

These values are computed as average values based on 10,000 simulation runs where the
size of the bootstrap sample is 1,000. Further, those values are averaged over areas within
groups Gi, i = 1, . . . , 5.

Let R̂i and R̂∗
i be the estimators of the risk given in (3.6) and (3.11), respectively.

Tables 1 and 2 report the true risks of yi and θ̂HB
i (τ̂ 2), the second order approximation

of R(ω, θ̂HB
i (τ̂ 2)) given in (3.1), the estimates of R̂i, R̂

∗
i , the relative biases of R̂i, R̂

∗
i and

the relative MSE’s of R̂i, R̂
∗
i , where the Prasad-Rao estimator is used in Table 1, and the

Fay-Herriot estimator is used in Table 2.

The tables tell us about some important features. Comparing the true risks of yi
and θ̂HB

i (τ̂ 2), one can see that θ̂HB
i (τ̂ 2) improves on yi, especially the improvement is

significant at G1 for pattern (b). Comparison of the true risks of θ̂HB
i (τ̂ 2) in both tables

tells us that θ̂HB
i (τ̂ 2) with the Fay-Herriot estimator is slightly better than θ̂HB

i (τ̂ 2) with
the Prasad-Rao estimator, but the difference is not significant.

Comparing the risk estimates R̂i and R̂∗
i via analytical and parametric bootstrap

methods, one can see that both estimates are close each other except G1 for pattern
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(b). The analytical estimator R̂i is better than R̂∗
i in terms of dispersion based on MSE.

Also, the biases of R̂i is smaller than R̂∗
i except G1. These observations suggest that

the empirical HB estimator θ̂HB
i (τ̂ 2) with the Fay-Herriot estimator is recommended, and

that the analytical estimator R̂i is better than the parametric bootstrap method R̂∗
i , but

the difference between the two procedures is not significant for pattern (a).

true risk app estimates Rbias RMSE

di yi θ̂HB
i θ̂HB

i R̂i R̂∗
i R̂i R̂∗

i R̂i R̂∗
i

pattern (a)
G1 0.7 1.89 1.12 1.11 1.08 1.08 -2.92 -3.00 29.17 33.10
G2 0.6 1.56 1.00 1.00 0.98 0.97 -1.83 -2.74 27.48 31.32
G3 0.5 1.28 0.88 0.88 0.87 0.85 -1.37 -3.12 25.21 28.41
G4 0.4 0.99 0.74 0.74 0.74 0.72 -0.31 -2.62 22.99 27.86
G5 0.3 0.72 0.59 0.59 0.59 0.57 0.15 -2.61 20.29 23.31

pattern (b)
G1 2.0 7.77 2.22 1.96 1.93 2.25 -12.73 1.47 49.93 88.94
G2 0.6 1.57 1.05 1.06 1.08 0.99 3.20 -5.42 28.94 39.22
G3 0.5 1.27 0.92 0.93 0.96 0.87 4.69 -5.55 25.75 35.41
G4 0.4 0.99 0.78 0.78 0.83 0.74 6.34 -5.66 22.79 34.96
G5 0.2 0.47 0.44 0.43 0.50 0.42 13.39 -5.75 30.94 24.50

Table 1: Values of the true risks, the approximate risks, the risk estimates, the relative
biases and the relative MSEs for the risk estimators for the Prasad-Rao estimator

5 Approximation of Risk of the Empirical Constrained

HB Estimator

We now consider the approximation of the risk function of the empirical CHB estimator
θ̂CHB
i given in (2.17), namely,

θ̂CHB
i (τ̂ 2) = θ̂HB

i (τ̂ 2)
M(y)∑m

j=1wj θ̂HB
j (τ̂ 2)

. (5.1)

The risk relative to the loss LmKL(θi, θ̂i) = θi(θ̂i/θi − log(θ̂i/θi) − 1), which is the i-th
component of the weighted KL loss, is written as

R(ω, θ̂CHB
i (τ̂ 2)) =R(ω, θ̂HB

i (τ̂ 2))

− E
[
θ̂Bi (ω) log

M(y)∑m
j=1 wj θ̂HB

j (τ̂ 2)

]
+ E

[
θ̂HB
i (τ̂ 2)

{ M(y)∑m
j=1 wj θ̂HB

j (τ̂ 2)
− 1

}]
=R(ω, θ̂HB

i )−K1 +K2. (say) (5.2)
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true risk app estimates Rbias RMSE

di yi θ̂HB
i θ̂HB

i R̂i R̂∗
i R̂i R̂∗

i R̂i R̂∗
i

pattern (a)
G1 0.7 1.87 1.11 1.11 1.08 1.08 -2.69 -2.63 29.76 33.04
G2 0.6 1.56 0.99 1.00 0.98 0.97 -1.91 -2.40 27.89 31.65
G3 0.5 1.26 0.87 0.88 0.86 0.85 -1.27 -2.63 25.72 28.35
G4 0.4 0.99 0.74 0.74 0.73 0.72 -0.74 -2.75 23.28 25.76
G5 0.3 0.73 0.58 0.59 0.58 0.57 -0.21 -2.84 20.64 23.32

pattern (b)
G1 2.0 7.81 2.04 1.88 1.83 2.04 -10.38 0.13 47.14 67.94
G2 0.6 1.56 1.01 1.02 0.98 0.97 -2.58 -3.65 29.72 32.83
G3 0.5 1.27 0.88 0.90 0.87 0.85 -1.78 -3.61 27.43 30.15
G4 0.4 1.00 0.75 0.76 0.74 0.72 -1.80 -4.37 24.50 27.08
G5 0.2 0.47 0.41 0.42 0.42 0.40 0.91 -2.93 19.39 22.29

Table 2: Values of the true risks, the approximated risk, the risk estimates, the relative
biases and the relative MSEs for the risk estimators for the Fay-Herriot estimator

Hereafter, we treat the natural target for benchmarking given by

M(y) =
m∑
i=1

wiyi =
m∑
i=1

wie
zi .

Then,
∑m

i=1wiyi and
∑m

j=1wj θ̂
HB
j (τ̂ 2) converge to different values as shown in Lemma

5.1, which will be proved in the Appendix. Assume the following condition on wi:

(C6) The weight wi’s are nonnegative constants satisfying
∑m

i=1wi = 1 and
∑m

i=1 w
2
i =

O(m−1).

Lemma 5.1 Under conditions (C1)-(C6),
∑m

i=1wiyi and
∑m

i=1 wiθ̂
HB
i (τ̂ 2) are approxi-

mated as, for hi(ω) given in (2.3),

m∑
i=1

wiyi =
m∑
i=1

wihi(ω) exp{di/2}+Op(m
−1/2),

m∑
i=1

wiθ̂
HB
i (τ̂ 2) =

m∑
i=1

wihi(ω) +Op(m
−1/2).

Lemma 5.1 means that∑m
i=1wiyi∑m

i=1 wiθ̂HB
i (τ̂ 2)

=

∑m
i=1wihi(ω) exp{di/2}∑m

i=1wihi(ω)
+Op(m

−1/2).

Noting that E[θ̂Bi (ω)] = hi(ω) and limm→∞E[θ̂HB
i (τ̂ 2)] = hi(ω), we can see that

lim
m→∞

{
−K1 +K2

}
= hi(ω)

{
Ci(ω)− logCi(ω)− 1

}
,
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where Ci(ω) =
∑m

i=1wihi(ω) exp{di/2}/
∑m

i=1wihi(ω).

Proposition 5.1 Assume conditions (C1)-(C6). Then,

lim
m→∞

{
R(ω, θ̂CHB

i (τ̂ 2))−R(ω, θ̂HB
i (τ̂ 2))

}
= hi(ω)

{
Ci(ω)− logCi(ω)− 1

}
,

which is positive and of order O(1).

Proposition 5.1 shows that the difference between the risk functions of θ̂CHB
i and θ̂HB

i

is in the leading term, which implies that this difference is not negligible. Thus, we need
to estimate how much the risk of θ̂CHB

i is inflated. We next provide the second-order
unbiased estimator of the risk of θ̂CHB

i using the parametric bootstrap method, because
the corresponding analytical second-order unbiased estimator based on the Taylor series
expansion is harder to derive in this case.

The problem is how we should estimate −K1 +K2. To this end, we shall rewrite it as
−K1 +K2 = E[K̂] +K3, where

K̂ =θ̂HB
i (τ̂ 2)

{ ∑m
i=1 wiyi∑m

j=1wj θ̂HB
j (τ̂ 2)

− log
( ∑m

i=1wiyi∑m
j=1wj θ̂HB

j (τ̂ 2)

)
− 1

}
, (5.3)

K3 =E
[{

θ̂HB
i (τ̂ 2)− θ̂Bi (ω)

}
log

( ∑m
i=1wiyi∑m

j=1wj θ̂HB
j (τ̂ 2)

)]
. (5.4)

Since K̂ is an exact unbiased estimator of E[K̂], it is sufficient to provide a second-order
unbiased estimator of K3. We here estimate K3 using the parametric bootstrap method.
Let y∗i or z∗i , i = 1, . . . ,m, be random variables generated from the model (3.7). Based
on the bootstrap sample y∗i ’s, we define the estimators

K∗
3 = E∗

[{
θ̂HB∗
j (τ̂ 2∗)− θ̂B∗

i (ω̂)
}
log

∑m
i=1 wiy

∗
i∑m

j=1wj θ̂HB∗
j (τ̂ 2∗)

∣∣∣y], (5.5)

where θ̂B∗
i (ω̂) is defined at (3.10). We can see that E[K∗

3 ] = K3 + O(m−3/2) if K3 is
of order O(m−1). In the Appendix, we shall verify that K3 = O(m−1), and prove the
following theorem.

Theorem 5.1 Assume conditions (C1)-(C6). Also, assume that for i = 1, . . . ,m, and
any τ 2, τ̂ 2(z + τ 2ei) = τ̂ 2(z) + Op(m

−1), where ei be an m × 1 vector such that the i-th
element is one and the others are zero. Let M(y) =

∑m
i=1wiyi. Then, the second-order

unbiased estimator of risk of the empirical CHB estimator θ̂CHB
i (τ̂ 2) is given by

R̂∗(θ̂CHB
i (τ̂ 2)) = R̂∗(θ̂HB

i (τ̂ 2)) + K̂ +K∗
3 , (5.6)

where R̂∗(θ̂HB
i (τ̂ 2)), K̂ and K∗

3 are given in (3.11), (5.3) and (5.5), respectively. That is,

E[R̂∗(θ̂CHB
i (τ̂ 2))] = R(ω, θ̂CHB

i (τ̂ 2)) +O(m−3/2).
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We now apply the empirical HB and CHB estimators, given in (2.8) and (5.1), to
the data in the Survey of Family Income and Expenditure (SFIE) in Japan. Also we
investigate the performances of the second-order unbiased estimators of the risks of the
empirical HB and CHB estimators through analysis of the data.

In this study, we use the data of the disbursement item ‘Education’ in the survey in
November, 2011. The average disbursement (scaled by 1,000 Yen) at each capital city
of 47 prefectures in Japan is denoted by yi for i = 1, . . . , 47 with m = 47, and each
variance di is calculated based on data of the disbursement ‘Education’ at the same city
every November in the past ten years. Although the average disbursements in SFIE are
reported every month, the sample sizes are around 100 for most prefectures, and data
of the item ‘Education’ have high variability. On the other hand, we have data in the
National Survey of Family Income and Expenditure (NSFIE) for 47 prefectures. Since
NSFIE is based on much larger sample than SFIE, the average disbursements in NSEDI
are more reliable, but this survey has been implemented every five years. In this study, we
use the log-transformed data of the item ‘Education’ of NSFIE in 2009, which is denoted
by Xi for i = 1, . . . , 47.

For i = 1, . . . , 47, the observation yi follows the multiplicative model

yi = θiηi,

where zi = log yi, ϕi = log θi and εi = log ηi follow the model given in (2.1). For τ 2, we
used the Fay-Herriot estimator, which yields τ̂ 2FH = 0.0520214 in this example. The value
of the ratio

∑m
i=1wiyi/

∑m
j=1wj θ̂

HB
j (τ̂ 2FH) is 1.0876, and the empirical CHB estimates are

obtained by multiplying the empirical HB estimates by 1.0876. The sample size in each
area (prefecture) is denoted by ni. The estimators θ̂HB

i (τ̂ 2FH) and θ̂CHB
i (τ̂ 2FH) given

in (2.8) and (5.1) with τ 2 = τ̂ 2FH are denoted by HB and CHB, respectively, where
M(y) =

∑m
i=1wiyi for wi = ni/

∑47
j=1 nj. For the second-order unbiased estimators of the

risk of θ̂HB
i , the analytical estimator (3.6) and the parametric bootstrap alternative (3.11)

are denoted by RHB and R∗
HB, respectively. The second-order unbiased estimator of the

risk of θ̂CHB
i based on the parametric bootstrap is denoted by R∗

CHB.

Among 47 prefectures in Japan, we select the seven prefectures in the Kanto region
around Tokyo, and Table 3 gives their values of ni, di, yi, HB, CHB, RHB, R

∗
HB and

R∗
CHB, where the values of di, RHB, R∗

HB and R∗
CHB multiplied by 100 are reported.

As seen by comparing the values given in Chiba and Tokyo, the empirical HB estimate
shrinks yi more for larger di. The CHB estimates are sligtly larger than the empirical
HB estimates. The risk estimates RHB and R∗

HB are close each other, which may suggest
that the parametric bootstrap estimates R∗

HB are not bad. It is also revealed that the
estimation errors of the empirical HB estimator for Chiba and Kanagawa are large, while
those for Tokyo is small since ni is large and di is small for Tokyo. The estimation errors
R∗

CHB of the empirical CHB estimator are slightly larger than those of the empirical HB
estimator, and the estimator R∗

CHB works well.
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Table 3: Values of HB and CHB with their risk estimates

Prefecture ni di yi HB CHB RHB R∗
HB R∗

CHB

Ibaraki 95 9.56 8.10 8.88 9.66 19.5 19.1 22.4

Tochigi 95 26.96 10.03 9.47 10.30 23.6 23.4 27.3

Gunma 94 8.41 5.21 7.70 8.38 19.7 19.4 22.3

Saitama 95 3.93 12.33 12.72 13.83 19.9 19.7 25.0

Chiba 94 37.83 30.71 13.05 14.20 32.1 31.5 37.0

Tokyo 386 2.30 15.45 14.44 15.70 12.4 12.7 18.2

Kanagawa 142 15.99 23.25 14.02 15.25 30.0 29.3 35.0

6 Concluding Remarks

In this paper, we have considered the benchmark issue in the log-transformed Fay-Herriot
multiplicative model for analyzing positive data like income, revenue and others, and we
have derived the constrained hierarchical empirical Bayes (CHBEB) estimator relative
to the weighted Kullback-Leibler loss function. Although the constrained Bayes estima-
tors under some typical loss functions have difficulties from an aspect of practical use,
the empirical CHB estimator under the weighted Kullback-Leibler loss is expressed as
a simple and natural ratio-type estimator. We have derived not only the second-order
approximation of the risk of the empirical hierarchical Bayes (HB) estimator, but also
the second-order unbiased estimator of the risk via two approaches, namely, the analyt-
ical method based on Taylor series expansion and the numerical approach based on the
parametric bootstrap.

It is important to point out that the asymptotic risk difference between the empirical
HB and CHB estimators in the multiplicative model appears in the first-order term, while
the corresponding difference in the additive model appears in the second-order term as
shown in Steorts and Ghosh (2013). This fact suggests that the difference between the
empirical HB and CHB estimators is not negligible, and we need to evaluate how much
the risk of the empirical CHB estimator is inflated. We have provided the second-order
unbiased estimator of the risk of the empirical CHB estimator based on the parametric
bootstrap. The performances of the proposed procedures have been investigated through
the empirical study, and it has been confirmed that the second-order unbiased estimators
of the risks of the empirical HB and CHB estimators work well.

It may be meaningful to note that the weighted Kullback-Leibler loss is close to the
quadratic loss functions LQ and LTQ in the neighborhood of θ̂i − θi = 0. In fact, the
Taylor series expansion tells us that it can be approximated as

LmKL(θi, θ̂i) = (θi log(θi/θ̂i) + θ̂i − θi =

{
(θ̂i − θi)

2/(2θi) + op((θ̂i − θi)
2)

θi(log θ̂i − log θi)
2/2 + op({log(θ̂i/θi)}2).

18



However, the LQ-loss is quite different from the LmKL-loss and LTQ-loss when θ̂i is close

to 0. That is, limθ̂i→0(θ̂i − θi)
2 = θ2i , while θi log(θi/θ̂i) + θ̂i − θi and (log θ̂i − log θi)

2 go

to infinity as θ̂i → 0.

This is the first article that considers the benchmark issue in the simple multiplicative
model, namely the transformed Fay-Herriot model. As future projects, one can extend the
results to the unit-level multiplicative models and to the case where the benchmark con-
straint is a geometric mean. It is also interesting to consider the problem of constructing
a confidence interval of θi with second-order accuracy.

A Appendix

A.1 Proof of Theorem 3.1

We begin by providing the following lemmas which will be used for the proof.

Lemma A.1 xT
i β̂(τ

2) and zi−xT
i β̂(τ

2) are independently distributed as xT
i β̂(τ

2) ∼ N (xT
i β, gi)

and zi − xT
i β̂(τ

2) ∼ N (0, di + τ2 − gi), where gi = xt
i(X

TΣX)1x− i, i = 1, . . . ,m.

Lemma A.2 If Y ∼ N (µ, σ2), then E[Y exp{aY }] = (µ+ aσ2) exp{aµ+ a2σ2/2}.

The risk function of θ̂HB
i (τ̂2) is written as

Rω(θ̂
HB
i (τ̂2)) =E

[
θ̂HB
i (τ̂2)− θi − θi log{θ̂HB

i (τ̂2)/θi}
]

=E
[
{θ̂HB

i (τ2)− θi}+ {θi log θi − θi log θ̂
B
i } − θi log{θ̂HB

i (τ2)/θ̂Bi }
]

+ E
[
θ̂HB
i (τ̂2)− θ̂HB

i (τ2)− θi log{θ̂HB
i (τ̂2)/θ̂HB

i (τ2)}
]

=I1 + I2. (say) (A.1)

First, we shall evaluate each term in I1. Note that E[θi] = E[exp{ϕi}] = exp{xT
i β+τ2/2} =

hi(ω). Let gi = gi(τ
2) = xT

i (X
TΣ−1X)−1xi and write β̂ = β̂(τ2). By Lemma A.1,

E[θ̂HB
i (τ2)] =E[exp{xT

i β̂ + (1− γi)(zi − xT
i β̂) + τ2γi/2 + γ2i gi/2}]

= exp{xT
i β + gi/2 + (1− γi)

2(di + τ2 − gi)/2 + τ2γi/2 + γ2i gi/2}
=hi(ω) exp{γigi},

so that one gets

E[θ̂HB
i (τ2)− θi] = hi(ω)[exp{γigi} − 1] = hi(ω)[γigi +O(m−2)]. (A.2)

It is noted that the conditional distribution of ϕi given z for fixed β and τ2 is distributed
as ϕi|z ∼ N (ϕ̂B

i , τ
2γi(τ

2)) for ϕ̂B
i = ϕ̂B

i (ω) = E[ϕi|z] = (1 − γi)zi + γix
T
i β. By Lemma A.2, it

is seen that

E[θi log θi] =E[ϕi exp(ϕi)] = E[E[ϕi exp(ϕi)|z]]

=E
[
{ϕ̂B

i + τ2γi} exp
{
ϕ̂B
i + τ2γi/2

}]
=E

[
θ̂Bi

{
ϕ̂B
i + τ2γi

}]
.
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Again, by Lemma A.2, E[θi log θ̂
B
i ] = E[E[θi|z] log θ̂Bi ] = E[θ̂Bi {ϕ̂B

i + τ2γi/2}]. Hence,

E[θi log θi − θi log θ̂
B
i ] = 2−1τ2γiE[θ̂Bi ] = τ2γihi(ω)/2. (A.3)

For the last term in I1, note that θ̂
HB
i (τ2) = exp{(1−γi)zi+γix

T
i β+ τ2γi/2+γix

T
i (β̂(τ

2)−
β) + γ2i gi/2} = θ̂Bi exp{γixT

i (β̂(τ
2)− β) + γ2i gi/2}. Then,

E[θi log{θ̂HB
i (τ2)/θ̂Bi }] = E[θ̂Bi log{θ̂HB

i (τ2)/θ̂Bi }] = E[θ̂Bi {γixT
i (β̂(τ

2)− β) + γ2i gi/2}]

=E[exp{(1− γi)zi + γix
T
i β + τ2γi/2}γixT

i (β̂ − β)] + γ2i gihi(ω)/2

=E[exp{(1− γi)(zi − xT
i β̂) + (1− γi)x

T
i (β̂ − β) + xT

i β + τ2γi/2}γixT
i (β̂ − β)]

+ γ2i gihi(ω)/2.

By Lemmas A.1 and A.2, this can be evaluated as

γi exp{(1− γi)
2(di + τ2 − gi)/2 + τ2γi/2 + xT

i β}E[exp{(1− γi)x
T
i (β̂ − β)}xT

i (β̂ − β)]

+ γ2i gihi(ω)/2

=γi exp{xT
i β + τ2(1− γi)/2− gi(1− γi)

2/2 + τ2γi/2}(1− γi)gi exp{(1− γi)
2gi/2}

+ γ2i gihi(ω)/2

=hi(ω)γi(1− γi)gi + γ2i gihi(ω)/2 = γigi(2− γi)hi(ω)/2. (A.4)

Combining (A.2)-(A.4), one gets

I1 = hi(ω)γi(τ
2 + γigi)/2 +O(m−2). (A.5)

We next evaluate I2. Write ki = ki(τ
2) = τ2γi + γ2i gi. It is noted that

θ̂HB
i (τ̂2)− θ̂HB

i (τ2) = (τ̂2 − τ2)(θ̂HB
i )′(τ2) + 2−1(τ̂2 − τ2)2(θ̂HB

i )′′(τ2) +Op(m
−3/2).

Since θ̂HB
i (τ2) = exp{ϕ̂HB

i (τ2)+ki(τ
2)/2}, it is observed that (θ̂HB

i )′(τ2) = θ̂HB
i (τ2){(ϕ̂HB

i )′(τ2)+
2−1k′i(τ

2)} and

(θ̂HB
i )′′(τ2) = θ̂HB

i (τ2){(ϕ̂HB
i )′(τ2) + 2−1k′i(τ

2)}2 + θ̂HB
i (τ2){(ϕ̂HB

i )′′(τ2) + 2−1k′′i (τ
2)}.

Hence,

θ̂HB
i (τ̂2)− θ̂HB

i (τ2) =(τ̂2 − τ2)θ̂HB
i (τ2){(ϕ̂HB

i )′(τ2) + 2−1k′i(τ
2)}

+ 2−1(τ̂2 − τ2)2θ̂HB
i (τ2){(ϕ̂HB

i )′(τ2) + 2−1k′i(τ
2)}2

+ 2−1(τ̂2 − τ2)2θ̂HB
i (τ2){(ϕ̂HB

i )′′(τ2) + 2−1k′′i (τ
2)}+Op(m

−3/2). (A.6)

Also, it is seen that

E[θi log{θ̂HB
i (τ̂2)/θ̂HB

i (τ2)}] = E[θ̂Bi log{θ̂HB
i (τ̂2)/θ̂HB

i (τ2)}]

=E[θ̂HB
i (τ2) log{ θ̂

HB
i (τ̂2)

θ̂HB
i (τ2)

}] + E[{θ̂Bi − θ̂HB
i (τ2)} log{ θ̂

HB
i (τ̂2)

θ̂HB
i (τ2)

}]. (A.7)
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Note that

ϕ̂HB
i (τ̂2)− ϕ̂HB

i (τ2) +
1

2
ki(τ̂

2)− 1

2
ki(τ

2)

=(τ̂2 − τ2){(ϕ̂HB
i )′(τ2) + 2−1k′i(τ

2)}

+ 2−1(τ̂2 − τ2)2{(ϕ̂HB
i )′′(τ2) + 2−1k′′i (τ

2)}+Op(m
−3/2). (A.8)

Hence, from (A.6)-(A.8),

I1 =
1

2
E
[
(τ̂2 − τ2)2θ̂HB

i (τ2){(ϕ̂HB
i )′(τ2) + 2−1k′i(τ

2)}2
]

+ E[{θ̂Bi − θ̂HB
i (τ2)} log{ θ̂

HB
i (τ̂2)

θ̂HB
i (τ2)

}] +O(m−3/2). (A.9)

We shall approximate each term in (A.9). It can be seen that

E
[
(τ̂2 − τ2)2θ̂HB

i (τ2){(ϕ̂HB
i )′(τ2) + 2−1k′i(τ

2)}2
]

=E[(τ̂2 − τ2)2]E
[
θ̂HB
i (τ2){(ϕ̂HB

i )′(τ2) + 2−1k′i(τ
2)}2

]
+ Cov[(τ̂2 − τ2)2, θ̂HB

i (τ2){(ϕ̂HB
i )′(τ2) + 2−1k′i(τ

2)}2]

={Var(τ̂2) +O(m−2)}E
[
θ̂HB
i (τ2){(ϕ̂HB

i )′(τ2) + 2−1k′i(τ
2)}2

]
+O(m−3/2). (A.10)

Note that Var(τ̂2) = O(m−1). Next observe that

(ϕ̂HB
i )′(τ2) =(γ2i /di)(zi − xT

i β̂(τ
2))− γix

T
i (X

TΣ−1X)−1XTΣ−2(z −Xβ̂(τ2))

=(γ2i /di)(zi − xT
i β̂(τ

2)) +Op(m
−1/2),

k′i(τ
2) =γ2i + 2γigi + γ2i x

T
i (X

TΣ−1X)−1XTΣ−2(XTΣ−1X)−1xi = γ2i +O(m−1).

This leads to (ϕ̂HB
i )′(τ2) + 2−1k′i(τ

2) = (γ2i /di)(zi − xT
i β̂(τ

2)) + 2−1γ2i +Op(m
−1/2), so that

E
[
θ̂HB
i (τ2){(ϕ̂HB

i )′(τ2) + 2−1k′i(τ
2)}2

]
=γ4i E

[
θ̂HB
i (τ2){(zi − xT

i β̂(τ
2))/di + 2−1}2

]
+O(m−3/2)

=γ4i E
[
{(zi − xT

i β̂(τ
2))/di + 2−1}2 exp{xT

i β̂ + (1− γi)(zi − xT
i β̂)}

]
+O(m−3/2)

=γ4i E[exp{xT
i β̂}]E

[
{(zi − xT

i β̂(τ
2))/di + 2−1}2 exp{(1− γi)(zi − xT

i β̂)}
]
+O(m−3/2)

=γ4i exp{xT
i β + τ2γi/2}

× E
[
{(zi − xT

i β̂(τ
2))2/d2i + (zi − xT

i β̂(τ
2))/di + 1/4} exp{(1− γi)(zi − xT

i β̂)}
]
+O(m−3/2).

(A.11)
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Now using the result that if Y ∼ N (0, σ2), for any constant a, E[Y 2 exp{aY }] = (a2σ4 +
σ2) exp{a2σ2/2} and Lemma A.2,

E
[
exp

{
(1− γi)(zi − xT

i β̂(τ
2))

}{
(zi − xT

i β̂(τ
2))2/d2i + (zi − xT

i β̂(τ
2))/di + 1/4

}]
=exp

{
2−1(1− γi)

2(di + τ2 − gi)
}

×
[
(1− γi)

2(di + τ2 − gi)
2/d2i + (di + τ2 − gi)/d

2
i + (1− γi)(di + τ2 − gi)/di + 1/4

]
=exp

{
τ2(1− γi)/2

}[
τ4/d2i + (γidi)

−1 + τ2/di + 1/4
]
+O(m−1/2)

= exp
{
τ2(1− γi)/2

}
(4γi)

−1
[
(2− γi)

2 + 4γi/di

]
+O(m−1/2), (A.12)

since τ2/di = (1− γi)/γi. Then, one gets

1

2
E
[
(τ̂2 − τ2)2θ̂HB

i (τ2){(ϕ̂HB
i )′(τ2) + 2−1k′i(τ

2)}2
]

=
γ2i
8
Var(τ̂2)hi(ω)

[
(2− γi)

2 + 4γi/di
]
+O(m−3/2). (A.13)

Finally, consider {θ̂Bi − θ̂HB
i (τ2)} log{θ̂HB

i (τ̂2)/θ̂HB
i (τ2)}, which is rewritten as

θ̂Bi [exp{γixT
i (β̂ − β)} − 1][ϕ̂HB

i (τ̂2)− ϕ̂HB
i (τ2) + {ki(τ̂2)− ki(τ

2)}/2].

It is noted that exp{γixT
i (β̂−β)}−1 = γix

T
i (β̂−β)+2−1γ2i x

T
i (β̂−β)(β̂−β)Txi+Op(m

−3/2) and

that (ϕ̂HB
i )′(τ̂2) = γ2i [(zi −xT

i β̂)/di + 1/2}+Op(m
−1). Then from (A.8) and the independence

of β̂ with (τ̂2, zi − xT
i β), it follows that

E[{θ̂Bi − θ̂HB
i (τ2)} log{θ̂HB

i (τ̂2)/θ̂HB
i (τ2)}]

=E[exp{(1− γi)x
T
i (β̂ − β)}γixT

i (β̂ − β)]E[(τ̂2 − τ2){(zi − xT
i β̂)/di + 1/2}] +O(m−3/2)

=γi(1− γi)gi exp{(1− γi)
2gi/2}E[(τ̂2 − τ2){(zi − xT

i β̂)/di + 1/2}] +O(m−3/2), (A.14)

which is of order O(m−3/2). Combining (A.13) and (A.14) yields that

I2 =
γ2i
8
Var(τ̂2)hi(ω)

[
(2− γi)

2 + 4γi/di
]
+O(m−3/2). (A.15)

Therefore, combining (A.5) and (A.15), one gets (3.1). □

A.2 Proof of Lemma 3.1

Recall that mi = mi(ω) = di(1 − γi)hi = τ2γihi for hi = hi(ω) = exp{xT
i β + τ2/2}. Then,

∂mi/∂β = mixi, ∂
2mi/∂β∂β

T = mixix
T
i , ∂

2mi/∂β∂τ
2 = (∂mi/∂τ

2)xi, ∂mi/∂τ
2 = γ2i hi +

τ2γihi/2 and

∂2mi/∂(τ
2)2 =− 2(γ3i /di)hi + γ2i hi/2 + γihi/2− τ2(γ2i /di)hi/2 + τ2γihi/4

= −2(γ3i /di)hi + γ2i hi + τ2γihi/4.
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Thus, it is observed that

mi(ω̂) =mi(ω) + xT
i (β̂(τ̂

2)− β)mi(ω) + (τ̂2 − τ2)
∂mi(ω)

∂τ2

+
1

2
{xT

i (β̂(τ̂
2)− β)}2mi(ω) +

1

2
(τ̂2 − τ2)2

∂2mi(ω)

∂(τ2)2

+
1

2
(β̂(τ̂2)− β)T (τ̂2 − τ2)

∂mi(ω)

∂β∂τ2
+Op(m

−3/2)

=mi(ω) + {β̂(τ̂2)− β̂(τ2) + β̂(τ2)− β}mi(ω)

+ (τ̂2 − τ2)(γ2i hi +
1

2
τ2γihi) +

1

2
[xT

i {β̂(τ̂2)− β̂(τ2) + β̂(τ2)− β}]2mi(ω)

+
1

2
xT
i {β̂(τ̂2)− β̂(τ2) + β̂(τ2)− β}(τ̂2 − τ2)

∂mi(ω)

∂τ2
+Op(m

−3/2).

Using the independence of τ̂2 and β̂(τ2) and the fact that E[β̂(τ̂2)− β] = 0, one gets

E[mi(ω̂)] =mi(ω) +
1

2
γihi(τ

2 + 2γi)E[τ̂2 − τ2] +
1

2
E[[xT

i {β̂(τ2)− β}]2]{1 +O(m−1/2)}mi(ω)

+
1

2
γihi(−2γ2i /di + γi + τ2/4)E[(τ̂2 − τ2)2] +O(m−3/2),

which leads to the second-order approximation of E[mi(ω̂)] is given in Lemma 3.1.

A.3 Proof of Lemma 5.1

Let si = (zi − xT
i β)/

√
τ2 + di for i = 1, . . . ,m, and let s = (s1, . . . , sm)T = Σ−1/2(z − Xβ)

for Σ = diag (d1 + τ2, . . . , dm + τ2). Since s ∼ N (0, I), it is seen that E[yi] = E[ezi ] =

ex
T
i βE[e

√
τ2+disi ] = exp{xT

i β + (τ2 + di)/2}. Since zi and zj are mutually independent for
i ̸= j, it is observed that

Var
( m∑
i=1

wiyi

)
=

m∑
i=1

w2
iE

[{
yi − E[yi]}2

]
=

m∑
i=1

w2
i e

2xT
i βE

[
(e
√

τ2+disi − e(τ
2+di)/2)2

]
)

=
m∑
i=1

w2
i e

2xT
i β+τ2+di(eτ

2+di − 1),

which is of order O(m−1) from conditions (C3) and (C6). This implies the first approximation
in Lemma 5.1.

For the second approximation in Lemma 5.1, note that τ̂2 − τ2 = Op(m
−1/2) and γ̂i − γi =

Op(m
−1/2) from condition (C5) for γ̂i = γi(τ̂

2) = di/(di + τ̂2). Then, it can be seen that

log θ̂HB
i (τ̂2) =zi − γ̂i(zi − xT

i β̂(τ̂
2)) + τ̂2γ̂i/2

=
{
zi − γi(zi − xT

i β) + τ2γi/2
}
+ (γi − γ̂i)(zi − xT

i β − τ2/2)

+ (τ̂2 − τ2)γi/2 +Op(m
−1),
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so that we get the approximation as

θ̂HB
i (τ̂2) =θ̂Bi (ω) exp

{
(γi − γ̂i)(zi − xT

i β − τ2/2) + (τ̂2 − τ2)γi/2 +Op(m
−1)

}
=θ̂Bi (ω)

{
1 + (γi − γ̂i)(zi − xT

i β − τ2/2) + (τ̂2 − τ2)γi/2 +Op(m
−1)}. (A.16)

Thus, θ̂HB
i (τ̂2) can be approximated as

m∑
i=1

wiθ̂
HB
i (τ̂2) =

m∑
i=1

wihi(ω) +

m∑
i=1

wi

{
θ̂Bi (ω)− hi(ω)

}
(A.17)

+

m∑
i=1

wiθ̂
B
i (ω)

{
(γi − γ̂i)(zi − xT

i β − τ2/2) + (τ̂2 − τ2)γi/2
}
+Op(m

−1).

Since the third term in the r.h.s. of (A.17) is of order Op(m
−1/2), it is sufficient to show that

m∑
i=1

wi

{
θ̂Bi (ω)− hi(ω)

}
= Op(m

−1/2). (A.18)

It is noted that log θ̂Bi (ω) is expressed as θ̂Bi (ω) = exp{aisi + xT
i β + τ2γi/2} for ai = (1 −

γi)
√
di + τ2, so that E[θ̂Bi (ω)] = exp{a2i /2 + xT

i β + τ2γi/2} = hi(ω). Thus,
∑m

i=1wiE[θ̂Bi (ω)−
hi(ω)] = 0. Then the variance of

∑m
i=1wiθ̂

B
i (ω) is approximated as

Var
( m∑
i=1

wiθ̂
B
i (ω)

)
=

m∑
i=1

w2
i α

2
iE

[{
eaisi − E[eaisi ]

}2
]

=

m∑
i=1

w2
i α

2
i

{
E
[
e2aisi

]
−

(
E
[
eaisi

])2}
,

for αi = exp{xT
i β + τ2γi/2}. It can be easily verified that

m∑
i=1

w2
i α

2
i

{
E
[
e2aisi

]
−

(
E
[
eaisi

])2}
= O(m−1), (A.19)

from condition (C6). Combining (A.17), (A.18) and (A.19) shows that
∑m

i=1wiθ̂
HB
i (τ2) =∑m

j=1wjhi(ω) +Op(m
−1/2).

A.4 Proof of Theorem 5.1

Let us consider K3 = K3(ω) and K∗
3 given in (5.4) and (5.5). If K3(ω) = O(m−1), then K3(ω̂) =

K3(ω)+Op(m
−3/2). Thus, K∗

3 = K3(ω̂)+Op(m
−3/2), so that E[K∗

3 ] = E[K3(ω̂)]+O(m−3/2) =
K3(ω) +O(m−3/2). This implies that K∗

3 is an estimator of K3 with E[K∗
3 ] = K3 +O(m−3/2).

Hence, it is sufficient to show that K3(ω) = O(m−1).
We begin by expanding log(

∑m
i=1wiyi/

∑m
j=1wj θ̂

HB
j (τ̂2)) stochastically. The first approxi-

mation in Lemma 5.1 gives the expression as
∑m

i=1wiyi = B0+B1, whereB0 =
∑m

i=1wihi(ω)e
di/2 =

O(1) and

B1 =

m∑
i=1

wi

{
yi − hi(ω)e

di/2
}
= Op(m

−1/2).
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Also, from (A.17) and (A.19), it follows that
∑m

i=1wiθ̂
HB
i (τ̂2) = A0 +A1 +Op(m

−1), where

A0 =

m∑
i=1

wihi(ω) = O(1),

A1 =

m∑
i=1

wi

{
θ̂Bi (ω)− hi(ω)

}
+

m∑
i=1

wiθ̂
B
i (ω)

{
(γi − γ̂i)

(
zi − xT

i β − τ2

2

)
+ (τ̂2 − τ2)

γi
2

}
,

which is of order Op(m
−1/2). Using these expansions, we can get the approximations given by∑m

i=1wiyi∑m
i=1wiθ̂HB

i (τ̂2)
=
B0

A0
− B0

A2
0

A1 +
1

A0
B1 +Op(m

−1),

log
( ∑m

i=1wiyi∑m
i=1wiθ̂HB

i (τ̂2)

)
= log

(B0

A0

)
− 1

A0
A1 +

1

B0
B1 +Op(m

−1). (A.20)

For the term θ̂Bi (ω)− θ̂HB
i (τ̂2), from (A.16), it follows that

θ̂Bi (ω)− θ̂HB
i (τ̂2) = θ̂Bi (ω)

{
−(γi − γ̂i)(zi − xT

i β − τ2/2)− (τ̂2 − τ2)γi/2
}
+Op(m

−1), (A.21)

which is of order Op(m
−1/2). Combining (A.20) and (A.21), we can approximate K3 as

K3 =− E
[
θ̂Bi (ω)

{
(γi − γ̂i)

(
zi − xT

i β − τ2

2

)
+ (τ̂2 − τ2)

γi
2

}{
log

(B0

A0

)
− 1

A0
A1 +

1

B0
B1

}]
+O(m−3/2)

=− log
(B0

A0

)
E
[
θ̂Bi (ω)

{
(γi − γ̂i)

(
zi − xT

i β − τ2

2

)
+ (τ̂2 − τ2)

γi
2

}]
+O(m−1).

It is noted that

γi − γ̂i =
di

(di + τ2)2
(τ̂2 − τ2) +Op(m

−1).

Hence, for the proof of K3 = O(m−1), it suffices to show that

E
[
θ̂Bi (ω)(τ̂

2 − τ2)
]
=O(m−1),

E
[
θ̂Bi (ω)(τ̂

2 − τ2)(zi − xT
i β)

]
=O(m−1).

(A.22)

To show these properties, note that

θ̂Bi exp
{
− 1

2(di + τ2)
(zi − xT

i β)
2
}
= hi(ω) exp

{
− 1

2(di + τ2)
(zi − xT

i β − τ2)2
}
,

where hi(ω) = exp{xT
i β + τ2/2}. Thus, for a function f(z) satisfying E[|f(z)|] < ∞,

E[θ̂Bi f(z)] = hi(ω)E[f(v +Xβ + τ2ei)], (A.23)

where v is a random variable having N (0,Σ), and ei is an m-variate vector such that the i-th
element is one and the others are zero. Then, we can rewrite the condition (A.22) as

E[τ̂2(v + τ2ei)− τ2] =O(m−1),

E[{τ̂2(v + τ2ei)− τ2}(vi + τ2)] =O(m−1).
(A.24)
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Here from the assumption of the theorem, it follows that τ̂2(z + τ2ei) = τ̂2(z) + Op(m
−1) and

E[τ̂2 − τ2] = O(m−1), which shows that E[τ̂2(v + τ2ei)− τ2] = O(m−1). Similarly, the second
claim in (A.24) can be verified if E[{τ̂2(v) − τ2}vi] = O(m−1), or E[τ̂2(v)vi] = O(m−1). It
is verified that E[τ̂2(v)vi] = 0 from condition (C4). Hence, the sufficient conditions given in
(A.24) are satisfied, and the proof of Theorem 5.1 is complete.
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