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Abstract

A multivariate stochastic volatility model with the dynamic correlation and the

cross leverage effect is described and its efficient estimation method using Markov chain

Monte Carlo is proposed. The time-varying covariance matrices are guaranteed to be

positive definite by using a matrix exponential transformation. Of particular interest

is our approach for sampling a set of latent matrix logarithm variables from their con-

ditional posterior distribution, where we construct the proposal density based on an

approximating linear Gaussian state space model. The proposed model and its extend-

ed models with fat-tailed error distribution are applied to trivariate returns data (daily

stocks, bonds, and exchange rates) of Japan. Further, a model comparison is conducted

including constant correlation multivariate stochastic volatility models with leverage.
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1 Introduction

Over the last several decades, there has been a great deal of interest in modeling volatilities of

multivariate stock market returns. The examples are multivariate generalized autoregressive

conditional heteroskedasticity (GARCH) models (see the review of Bauwens, Laurent, and

Rombouts (2006)), multivariate stochastic volatility (SV) models (see the review of Asai,

McAleer, and Yu (2006), Chib, Omori, and Asai (2009) ) and realized covariance models (e.g.

Andersen, Bollerslev, Diebold, and Ebens (2001), Barndorff-Nielsen and Shephard (2004),

Chiriac and Voev (2010), Audrino and Corsi (2010), Voev (2007), Bauer and Vorkink (2010),

Jin and Maheu (2010) and Sheppard (2007)). The realized covariance model uses the high-

frequency data to estimate covariance matrices and regard them as observed covariance

matrices, while they are latent variables in GARCH and SV models.

Various multivariate volatility models have been proposed in the literature to describe

the dynamic properties of the covariance matrices such as the volatility clustering, the

dynamic correlations, and the leverage effects. The DCC models, (Engle (2002)) and BEKK

model (Engle and Kroner (1995)) are such multivariate GARCH models, and autoregressive

Wishart models (Philipov and Glickman (2006) and Gourieroux, Jasiak, and Sufana (2009))

are examples in multivariate SV models. The common difficulty in these models is to keep

the covariance matrices positive definite. To overcome this difficulty, reparameterization

methods are considered in Yu and Meyer (2006), Tsay (2005), and Jungbacker and Koopman

(2006). The Choleski decomposition of the covariance matrix is also considered in Lopes,

McCulloch, and Tsay (2012).

However, there have been still few previous works on the multivariate volatility models

with both dynamic correlations and cross leverage effects. Cross leverage refers to the

correlation between the i-th asset return at time t and the function of j-th asset volatility

at time t+1 (when i = j, we simply call it a leverage effect). Thus, to model these properties

of covariance matrices, this paper considers the matrix logarithm transformation which is

known useful to model positive definite matrices in a flexible way. Since the seminal work

of Chiu, Leonard, and Tsui (1996), the matrix exponential model for the covariance matrix

has been applied to the spatial model to simplify the calculation of log-likelihood functions

(LeSage and Pace (2007)), and is extended to the GARCH model (Kawakatsu (2006)), the

SV model (Asai, McAleer, and Yu (2006)) and the realized covariation model (Bauer and

Vorkink (2010) and Sheppard (2007)) for multivariate financial time series.

We consider the general multivariate volatility model using the matrix exponential SV
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model with cross leverage effects and propose an efficient computational algorithm. This

is a generalization of Ishihara and Omori (2012) who propose the following multivariate

stochastic volatility (MSV) model with cross-asset leverage effect of the form

yt = diag (exp(α1t/2), . . . , exp(αpt/2)) εt, (1)

αt+1 = Φαt + ηt, (2)(
ε′t,η

′
t

)′ ∼ N2p(0,Σ), (3)

where yt = (y1t, . . . , ypt)
′, αt = (α1t, . . . , αpt)

′, Φ = diag(ϕ1, . . . , ϕp) and Np(µ,Σ) denotes

the p-dimensional normal distribution with mean µ and variance Σ. This is fairly gener-

al in the sense that there is no restriction imposed on the covariance matrix Σ, while, in

the previous literature, various parameter restrictions are imposed (e.g. Asai and McAleer

(2006), Asai and McAleer (2009), Chan, Kohn, and Kirby (2006), and Dańıelsson (1998))

to estimate parameters based on the Monte Carlo likelihood. We, further, model the dy-

namic covariance matrices (dynamic variances and correlations) using a matrix logarithm

transformation. Since it is difficult to implement a maximum likelihood estimation for our

proposed model without imposing restrictions on parameters, we take Bayesian approach

and estimate posterior distributions of model parameters using Markov chain Monte Carlo

(MCMC) method. The simple sampling algorithm for the latent covariance matrices is

known to be inefficient as discussed in Ishihara and Omori (2012). They showed that the

single-move sampler which samples one volatility variable given others is highly inefficient

and proposed the efficient multi-move sampler (block sampler) which divides the vector of

all latent variables into blocks and samples one block given other blocks based on Omori

and Watanabe (2008). Thus we construct the multi-move sampler for our matrix exponen-

tial model and show that it is efficient in comparison with the alternative simple sampling

algorithm.

The rest of the paper is organized as follows. In Section 2, we introduce an matrix

exponential stochastic volatility model with cross leverage effects. Bayesian estimation

method and the associated particle filter for calculating likelihood functions are described

in Section 3. Section 4 shows the efficiency of our proposed algorithm using the simulated

data, and, in Section 5, the empirical studies are given using the trivariate asset returns

data (stock indices, bond indices and foreign exchange rates). We conduct a model selection

among the proposed model, extended models with fat-tailed error distribution and some

constant correlation multivariate SV models. Section 6 concludes the paper.
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2 Matrix exponential stochastic volatility

This section proposes the matrix exponential stochastic volatility (MESV) model with cross

leverage effects. The MESV model is based on the matrix exponential transformation as

below. A matrix exponential is widely studied in the context of multidimensional differ-

ential equations and Lie algebra. The statistical applications of the matrix exponential

transformation are given, for example, in Chiu, Leonard, and Tsui (1996), and Kawakatsu

(2006). For any p × p matrix A, the matrix exponential is defined by the following power

series expansion

exp(A) ≡
∞∑
s=0

1

s!
As,

where the series converges absolutely if all eigenvalues of A are finite. ( see e.g. Abadir and

Magnus (2005) for various properties of the matrix exponential transformation). For any

real symmetric positive definite matrix C, there exists a real symmetric p×p matrix A such

that C = exp(A), and the matrix A is obtained by the matrix logarithm transformation.

Conversely, for any real symmetric matrix A, C = exp(A) is a symmetric positive definite

matrix (Chiu, Leonard, and Tsui (1996)). If A is a p×p real symmetric matrix, there exists

a p× p orthogonal matrix U and a diagonal matrix Λ such that A = UΛU′ and

exp(A) = U

( ∞∑
s=0

1

s!
Λs

)
U′ = U exp(Λ)U′.

Now let yt = (y1t, . . . , ypt)
′ denote the p-dimensional asset return vector at time t, and let

Ht denote the matrix logarithm of the variance-covariance matrix of yt. The MESV model

with leverage effects is given by

yt = exp(Ht/2)εt, εt ∼ i.i.d. N (0, Ip), t = 1, . . . , n. (4)

Ht+1 = M+ Φ̃⊙ (Ht −M) +Et, (5) εt

ηt

 ∼ i.i.d. Np+q(0,Σ), Σ =

 Ip Σεη

Σηε Σηη

 , t = 1, . . . , n− 1, (6)

h1 ∼ Nq (µ,Σ0) , (7)

where ηt = vech(Et), q = p(p + 1)/2, M = {µij}, and Φ̃ = {ϕij} are p × p symmetric

matrices of parameters, and ⊙ denotes the Hadamard product. For the identifiability, we
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set the covariance matrix of εt equal to Ip.

If we let ht = vech(Ht) = (h11,t, h21,t, . . . , hp1,t, h22,t . . . , hpp,t)
′ denote the stacked col-

umn vector of the lower triangle elements of the Ht, then the “vech form” of (5) is given

by

ht+1 = µ+Φ(ht − µ) + ηt, (8)

with µ = vech(M) = (µ11, µ21, . . . µp1, µ22, . . . , µpp)
′, Φ = diag(ϕ) (a diagonal matrix whose

diagonal elements are equal to ϕ) and ϕ = vech(Φ̃) = (ϕ11, ϕ21, . . . ϕp1, ϕ22, . . . , ϕpp)
′. The

number of parameters in the MESV model is q(q+2p+3)/2. The covariance matrix of the

initial latent variable, Σ0, is assumed to satisfy a stationary condition such that

vec(Σ0) = (Ip2 −Φ⊗Φ)−1vec(Σηη).

We let Σηη = {ρij,ηησi,ηησj,ηη}, and Σεη = {ρij,εησj,ηη} where σi,ηη is the standard deviation

of ηit and ρij,xy is the correlation coefficient between xit and yjt. Further, for convenience, we

use the notation E(i, j) = k based on the relationship ηt = vech(Et) such that the (i, j)-th

element of Et, Et(i, j), is equal to the k-th element of ηt, ηkt (i.e., E(1, 1) = 1, E(2, 1) = 2,

. . . , E(p, 1) = p, E(2, 2) = p+1,. . . , E(p, p) = p(p+1)/2). Thus, Cov(εlt, ηkt) = ρlk,εησk,ηη

is equal to Cov(εlt,Et(i, j)) = ρlE(i,j),εησE(i,j),ηη.

Remark. Due to the nonlinearity of the matrix exponential transformation, the interpre-

tation of the (untransformed) parameters will depend on the dimension of yt. Thus, we

consider estimates of transformed parameters to investigate the properties of interest, such

as volatilities, correlations, principal components, and the news impact curve.

3 Bayesian estimation and associated particle filter

In this section, we describe an efficient Bayesian estimation method and an associated

particle filter to compute the likelihood for the MESV model. Let θ = (ϕ,µ,Σ) and

h = (h′
1, . . . ,h

′
n)

′ and Yn = (y1, . . . ,yn). Then the joint probability density function of Yn
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and h given θ for (4) and (8) is given by

f(Yn,h|θ) = f(h1|θ)
n−1∏
t=1

f(yt,ht+1|ht,θ)f(yn|hn,θ) (9)

∝ |Σ0|−
1
2 |Σ|−

n−1
2 |Σεε|−

1
2 exp

{
n∑

t=1

lt −
1

2
(h1 − µ)′Σ−1

0 (h1 − µ)

}

× exp

[
− 1

2

n−1∑
t=1

{ht+1 − µ−Φ(ht − µ)}′Σ−1
ηη {ht+1 − µ−Φ(ht − µ)}

]
,

where lt = −1
2

{
tr(Ht) + (yt − µt)

′Σ−1
t (yt − µt)

}
and

µt = exp(Ht/2)mt, (10)

Σt = exp(Ht/2)St exp(Ht/2), (11)

mt = ΣεηΣ
−1
ηη (ht+1 − µ−Φ(ht − µ))I(t < n), (12)

St = Ip −ΣεηΣ
−1
ηη ΣηεI(t < n). (13)

3.1 Prior distributions

For prior distributions of (ϕ,µ), we assume

ϕij + 1

2
∼ B(aij , bij), i = 1, . . . , p, j = 1, . . . , i, (14)

µ ∼ Nq(m
∗
0,V

∗
0), (15)

where B(a, b) denotes a beta distribution with parameters a and b. To define a prior

distribution of Σ, we first denote

Σ−1 =

 Σ11 Σ12

Σ21 Σ22

 ,

where Σ11, Σ12 and Σ22 are p × p, p × q and q × q matrices. Noting that Σ11 = Ip +

Σ12Σ22−1Σ21, we assume the prior distributions such that

vec(Σ21)|Σ22 ∼ Npq(vec(Σ
22∆0),Ω0 ⊗Σ22), Σ22 ∼ W(n0,R0), (16)

where W(n,R) denotes Wishart distribution with parameters n and R.
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3.2 MCMC algorithm

Using Equations (9), (14), (15) and (16), we obtain the joint posterior density function of

(θ,h) given by

π(θ,h|Yn)

∝ f(Yn,h|θ)×
p∏

i=1

i∏
j=1

(1 + ϕij)
aij−1(1− ϕij)

bij−1 × fN (µ|m∗
0V

∗
0)

×fN
(
vec(Σ21)|vec(Σ22∆0),Ω0 ⊗Σ22

)
× |Σ22|

n−q−1
2 exp

{
−1

2
tr
(
R−1

0 Σ22
)}

,(17)

where fN (·|µ,Σ) denotes a normal density with mean µ and covariance matrix Σ. To

obtain the posterior quantities of the parameters θ and volatility variables {ht}nt=1 from

the posterior distribution, we implement the MCMC algorithm in six blocks:

1. Initialize h,ϕ,µ,Σ.

2. Generate h|ϕ,µ,Σ, Yn.

3. Generate µ|ϕ,Σ,h, Yn.

4. Generate Σ|ϕ,µ,h, Yn.

5. Generate ϕ|µ,Σ,h, Yn.

6. Go to Step 2.

3.2.1 Generation of h

As is often pointed out in the literature, it is important to sample the latent volatility

variables {ht}nt=1 in an efficient way. The simple sample method, which samples one ht

at a time given the other hs’s and parameters, is known to be inefficient, often producing

highly autocorrelated MCMC samples. This is because the the estimates of autoregressive

parameters ϕi are often found to be very close to one in empirical studies. Thus, we propose

the sampling method based on a multi-move sampler which samples a set of ht’s as one

block at a time (see e.g.Shephard and Pitt (1997), Watanabe and Omori (2004), Omori

and Watanabe (2008), Ishihara and Omori (2012)). We first describe a simple algorithm

which we call a single-move sampler as we use it as a benchmark to evaluate the estimation

efficiencies of the multi-move algorithm.
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Single-move sampler. LetΣh = Σηη−ΣηεΣεη and µh,t+1 = µ+Φ(ht−µ)+Σηε exp(−Ht/2)yt.

Then, the conditional posterior density of ht given {hs}s ̸=t,Φ and Σ is

π(ht|{hs}s̸=t,Φ,Σ,Yn) ∝ exp

{
−1

2
(ht − γt)

′Γ−1
t (ht − γt) + g(ht)

}
,

where

g(ht) = −1

2
tr(Ht)−

1

2
y′
t exp(−Ht/2)S

−1
t exp(−Ht/2)yt

+(ht+1 − µ−Φ(ht − µ))′Σ−1
h Σηε exp(−Ht/2)ytI(t < n),

and

Γt =


(ΦΣ−1

h Φ+Σ−1
0 )−1, t = 1,

(Σ−1
h +ΦΣ−1

h Φ)−1, 1 < t < n,

Σh, t = n,

γt =


Γ1ΦΣ

−1
h (h2 − (Ip −Φ)µ), t = 1,

Γt(ΦΣ
−1
h (ht+1 − (Ip −Φ)µ) +Σ−1

h µh,t), 1 < t < n,

µh,t, t = n.

We generate a candidate h†
t from h†

t ∼ Nq(γt,Γt) and accept it with probability

min
{
exp{g(h†

t)− g(ht)}, 1
}
, t = 1, . . . , n.

Multi-move sampler. In this algorithm, we first divide h into several blocks, and samples

one block at a time from its conditional posterior distribution given other blocks. Using the

Taylor expansion of the logarithm of the conditional posterior density around the conditional

posterior mode, we derive a candidate distribution as a posterior distribution for some linear

Gaussian state space model to exploit various smoothing and simulation algorithms as in

Omori and Watanabe (2008).

To generate {ht}s+m
t=s+1 given other ht’s, for example, we sample the normalized distur-

bances {xt}s+m−1
t=s instead of {ht}s+m

t=s+1 since such a sampling method is known to reduce

the MCMC sample autocorrelations where

xt = Σ−1/2
ηη ηt, t = 1, . . . , n− 1, x0 = Σ

−1/2
0 η0,
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and Σ
1/2
ηη , Σ

1/2
0 denote Choleski decompositions such that Σηη = Σ

1/2
ηη Σ

1/2′
ηη and Σ0 =

Σ
1/2
0 Σ

1/2′

0 .

Consider the following linear Gaussian state space model:

ŷt = Ztαt +Gtut, t = s+ 1, . . . , s+m, (18)

αt+1 = Φαt +Ktut, t = s+ 1, . . . , s+m− 1, (19)

ut = (ξ′t,x
′
t)
′ ∼ N2p (0, I) ,

whereKt =
[
O,Σ

1/2
ηη

]
for t = 1, . . . , n−1 andK0 =

[
O,Σ

1/2
0

]
, and ŷt, Zt, Gt are computed

as follows:

1. First we set x̂t = xt (t = s, . . . , s+m− 1) where xt is a current sample.

2. Define dt,At and Bt as in Appendix A. Let d̂t, Ât and B̂t denote the vector and

matrices evaluated at xt = x̂t (t = s, . . . , s+m−1). Further, let α̂t+1 = Φα̂t+Σ
1/2
ηη x̂t

(t = s, . . . , s+m− 1) with α̂s = hs − µ.

3. Set bs = 0 and B̂s+m+1 = O. Compute

Dt = Ât − B̂tD
−1
t−1B̂

′
t, bt = d̂t − B̂tD

−1
t−1bt−1, t = s+ 1, . . . , s+m.

4. Let

ŷt = α̂t +D−1
t (bt + B̂′

tα̂t+1), Zt = Ip +D−1
t B̂′

tΦ,

Gt = [D
−1/2′
t ,D−1

t B̂′
tΣηη], t = s+ 2, . . . , s+m,

where D
1/2
t denotes a Choleski decomposition such that Dt = D

1/2
t D

1/2′

t .

5. Implement the disturbance smoother (Koopman (1993)) to obtain {x̂t}s+m−1
t=s , the

mode of the conditional posterior density of {xt}s+m−1
t=s for the model (18) and (19).

If the the mode converges (however, usually several iterations will be sufficient to

construct a proposal distribution), save ŷt, Zt and Gt. Otherwise, go to Step 2.

Then we apply the simulation smoother (e.g. de Jong and Shephard (1995), Durbin and

Koopman (2002)) to generate a candidate {x†
t}

s+m−1
t=s from this state space model for
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Metropolis-Hastings algorithm. We accept a candidate with probability

min

{
1,

f({x†
t}

s+m−1
t=s )f∗({xt}s+m−1

t=s )

f({xt}s+m−1
t=s )f∗({x†

t}
s+m−1
t=s )

}
,

where f({xt}s+m−1
t=s ) and f∗({xt}s+m−1

t=s ) denote conditional posterior densities of {xt}s+m−1
t=s

for MESV model and the linear Gaussian state space model (18)–(19).

3.2.2 Generation of Σ

Since the p×p leading principal submatrix of Σ is an identity matrix, we first generate Σ22

and then sample vec(Σ21) conditional on Σ22, to conduct MH algorithm using the property

of Wishart distribution (see, e.g., Theorem 3.3.9 of Gupta and Nagar (2000)).

Let

R−1 =

 R11 R12

R21 R22

 =

 ∑n−1
t=1 εtε

′
t

∑n−1
t=1 εtη

′
t∑n−1

t=1 ηtε
′
t

∑n−1
t=1 ηtη

′
t

 ,

where R11, R12 = R21′, R22 are p× p, p× q, q × q matrices, εt = exp(−Ht/2)yt and ηt =

ht+1 −µ−Φ(ht −µ). Using tr(AB) = vec(A′)′vec(B) and vec(AXB) = (B′ ⊗A)vec(X),

for X(n× n), A(m× n) and B(n×m), the joint conditional posterior probability density

of Σ12 and Σ22 is obtained as follows.

π(Σ12,Σ22|Φ,h, Yn) = π(Σ22|Φ,h, Yn)π(vec(Σ
21)|Σ22,Φ,h, Yn)

∝ h(Σ)× |Σ|−
n−1
2 exp

{
−1

2
tr
(
R−1Σ

)}
× |Σ22|

n0−q−1
2 exp

{
−1

2
tr
(
R−1

0 Σ22
)}

×fN (vec(Σ21)|vec(Σ22∆0),Ω0 ⊗Σ22)

∝ h(Σ)× |Σ22|
n0+n−1−q−1

2 exp

[
−1

2
tr
{
(R22 −R21R11−1R12 +R−1

0 )Σ22
}]

× exp

{
−1

2
vec(Σ21 +Σ22R21R11−1)′(R11 ⊗Σ22−1)vec(Σ21 +Σ22R21R11−1)

}
×fN (vec(Σ21)|vec(Σ22∆0),Ω0 ⊗Σ22)

∝ h(Σ)× |Σ22|
n1−q−1

2 exp

{
−1

2
tr
(
R−1

1 Σ22
)}
× fN (vec(Σ21)|vec(Σ22∆1),Ω1 ⊗Σ22)
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where n1 = n0 + n− 1, R−1
1 = R22 −∆1Ω

−1
1 ∆′

1 +R−1
0 +∆0Ω

−1
0 ∆′

0 and

Ω1 =
(
R11 +Ω−1

0

)−1
,

∆1 =
(
−R21 +∆0Ω

−1
0

)
Ω1

h(Σ) = |Σ0|−
1
2 exp

{
−1

2
(h1 − µ)′Σ−1

0 (h1 − µ)

}
.

Thus, we generate a candidate Σ† in three steps.

1. Draw Σ22† ∼ W(n1,R1).

2. Draw vec(Σ21†)|Σ22† ∼ Npq(vec(Σ
22†∆1),Ω1 ⊗Σ22†).

3. Compute Σ†
εη = −Σ12†Σ22†−1 and Σ†

ηη = Σ22†−1 +Σ†
ηεΣ

†
εη.

and accept it with probability

min

{
h(Σ†)

h(Σ)
, 1

}
.

3.2.3 Generation of (µ, ϕ)

Generation of µ. The conditional posterior distribution of µ is

µ|Σ,Φ,h, Yn ∼ Nq(m
∗
1,V

∗
1),

where

V∗
1 =

(
Σ−1

0 +

n−1∑
t=1

(Ip −Φ)′Σ−1
h (Ip −Φ) +V∗ −1

0

)−1

,

m∗
1 = V∗

1

[
n−1∑
t=1

(Ip −Φ)′Σ−1
h {ht+1 −Φht −Σεη exp(−Ht/2)yt}+Σ−1

0 h1 +V∗ −1
0 m∗

0

]
.

Generation of ϕ. Let A =
∑n−1

t=1 (ht−µ)(ht−µ)′, B =
∑n−1

t=1 {(ht−µ)y′
t exp(−Ht/2)Σ

12+

(ht − µ)(ht+1 − µ)′Σ22} and b denote a vector whose i-th element is equal to the (i, i)-th

element of B. Then the conditional posterior probability density function of ϕ is

π(ϕ|Σ,α, Yn) ∝ exp

{
−1

2
tr(ΦΣ22ΦA)− 2tr(ΦB)

}
× k(ϕ)

∝ fN (ϕ|µϕ,Σϕ)× k(ϕ),

k(ϕ) = |Σ0|−
1
2π(ϕ) exp

{
−1

2
α′

1Σ
−1
0 α1

}
,
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where µϕ = Σϕb, Σ
−1
ϕ = Σ22 ⊙ A and ⊙ denotes the Hadamard product. To sample ϕ

from its conditional posterior distribution using MH algorithm, we generate a candidate

from a truncated normal distribution over the region R, ϕ† ∼ T NR(µϕ,Σϕ), R = {ϕ :

|ϕj | < 1, j = 1, . . . , p} and accept it with probability min{k(ϕ†)/k(ϕ), 1}.

3.3 Associated particle filter

We describe the associated auxiliary particle filter introduced by Pitt and Shephard (1999)

for the MESV model to compute the log likelihood function. In Section 5, we use this

algorithm to calculate DIC (deviance information criterion proposed by Spiegelhalter, Best,

Carlin, and van der Linde (2002)). Let

f(yt|ht) = (2π)−
p
2 | exp (Ht) |−

1
2 exp

{
−1

2
y′
t exp(−Ht)y

}
,

f(ht+1|yt,ht,θ) = (2π)−
q
2 |Σh|−

1
2 exp

{
−1

2
(ht+1 − µh,t+1)

′Σ−1
h (ht+1 − µh,t+1)

}
,

and f(ht|Yt,θ) denote a conditional density of ht given (Yt,θ). Then the conditional joint

density function of ht+1,ht, given (Yt+1,θ) is

f(ht+1,ht|Yt+1,θ) ∝ f(yt+1|ht+1)f(ht+1|yt,ht,θ)f(ht|Yt,θ).

We first construct an importance function to sample from the conditional joint distribution.

Let f̂(ht|Yt,θ) denote a discrete probability mass function approximating f(ht|Yt,θ) and

g(ht+1,h
i
t|Yt+1,θ) ∝ f(yt+1|µi

h,t+1)f(ht+1|yt,h
i
t,θ)f̂(h

i
t|Yt,θ)

∝ f(ht+1|yt,h
i
t,θ)g(h

i
t|Yt+1,θ),

where

g(hi
t|Yt+1,θ) =

f(yt+1|µi
h,t+1)f̂(h

i
t|Yt,θ)∑I

j=1 f(yt+1|µj
h,t+1)f̂(h

j
t |Yt,θ)

,

f(yt+1|µi
h,t+1) = (2π)−

p
2 | exp(Mi

h,t+1)|−
1
2 exp

{
−1

2
y′
t+1 exp(−Mi

h,t+1)yt+1

}
,

µi
h,t+1 = vech(Mi

h,t+1) = µ+Φ(hi
t − µ) +Σηε exp(−Hi

t/2)yt.

Using this importance function, we implement the auxiliary particle filter as follows.

1. Set t = 1.

12



(a) Generate hi
1 ∼ N (µ,Σ0) (i = 1, . . . , I).

(b) Compute wi = f(y1|hi
1,θ) and save w̄1 =

1
I

∑I
i=1wi.

(c) Let f̂(hi
1|Y1,θ) = πi

1 = wi/
∑I

j=1wj (i = 1, . . . , I).

2. Generate
(
hi
t+1,h

i
t

)
∼ g(ht+1,h

i
t|Yt+1,θ) (i = 1, . . . , I):

(a) Compute µi
h,t+1 = µ+Φ(hi

t − µ) +Σηε exp
(
−Hi

t/2
)
yt.

(b) Generate hi
t ∼ g(hi

t|Yt+1,θ).

(c) Generate hi
t+1 ∼ f(ht+1|yt,h

i
t,θ).

Then compute

wi =
f(yt+1|hi

t+1)f(h
i
t+1|yt,h

i
t,θ)f̂(h

i
t|Yt,θ)

g
(
hi
t+1,h

i
t|yt+1,θ

) ,

=
f(yt+1|hi

t+1)f̂(h
i
t|Yt,θ)

g(hi
t|Yt+1,θ)

, i = 1, . . . , I,

and save

wt =
1

I

I∑
i=1

wi.

Further let f̂(hi
t+1|Yt+1,θ) = πi

t+1 = wi/
∑I

j=1wj (i = 1, . . . , I).

3. Set t← t+ 1. Go to Step 2.

Then, as I →∞, we obtain
∑n

t=1 logwt
p→
∑n

t=1 log f(yt|Yt−1,θ).

13



4 Illustrative example with simulated data

This section shows the efficiency of our proposed method using a simulated data. To

replicate the dynamics of the stock return series, we use the MESV model with

µij =

 0.5, i = j,

0.2, i ̸= j,
, ϕij =

 0.97, i = j,

0.85, i ̸= j,

ρiE(j,k),εη ≡ Corr(εit,Et(j, k)) =

 −0.3, i = j = k,

−0.1, otherwise,

ρE(i,j)E(k,l),ηη ≡ Corr(Et(i, j),Et(k, l)) =

 0.3, i = j ̸= k = l

0.1, otherwise,

σE(i,j),ηη ≡
√

V ar(Et(i, j)) =

 0.2, i = j

0.15, otherwise,

which are based on typical values in our empirical studies where E(1, 1) = 1, E(2, 1) = 2,

E(3, 1) = 3, E(2, 2) = 4, E(3, 2) = 5 and E(3, 3) = 6.

We generate n = 4, 000 observations with p = 3 and q = 6. Prior distributions are

assumed to be as follows.

µ ∼ Nq(0, 5Iq),

ϕij + 1

2
∼

 B(20, 3/2), i = j,

B(1, 1), i ̸= j,

Σ22 ∼ W(6, (6Σ22∗)−1),

vec(Σ21)|Σ22 ∼ Npq(0, (5Ip)⊗Σ22),

where Σ22∗ is a true covariance matrix satisfying E(Σ22) = Σ22∗. The mean and the stan-

dard deviation of the prior distribution of ϕii, j = 1, 2, 3 are set 0.86 and 0.11 respectively.

Using the multi-move (single-move) sampler, we draw 110,000 (550,000) posterior samples

and discard the first 10,000 (50,000) samples as burn-in periods.

Parameter estimation. Tables 1, 2, and 3 show the estimation summaries for all parameters

via the multi-move sampler. The posterior means and 95% credible intervals suggest that the

estimates are sufficiently close to true values, which indicates that our proposed estimation

algorithm works well. The inefficiency factors are also shown for the multi-move sampler
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and the single-move sampler.

The inefficiency factor is the ratio of the numerical variance of the estimate from the

MCMC samples relative to that from hypothetical uncorrelated samples, and is defined

as 1 + 2
∑∞

s=1 ρs where ρs is the sample autocorrelation at lag s. It suggests the relative

number of correlated draws necessary to attain the same variance of the posterior sample

mean from the uncorrelated draws (see e.g. Chib (2001)).

Table 1: Posterior means, 95% credible intervals, and inefficiency factors.

Param. True ij Mean 95% interval
Inefficiency

multi [single]

ϕij

0.97
11 0.967 [0.955, 0.978] 149 [334]
22 0.964 [0.951, 0.975] 119 [115]
33 0.975 [0.965, 0.984] 105 [437]

0.85
21 0.802 [0.701, 0.877] 288 [795]
31 0.841 [0.734, 0.910] 511 [1622]
32 0.837 [0.751, 0.900] 332 [435]

µij

0.5
11 0.572 [0.390, 0.755] 6 [38]
22 0.456 [0.266, 0.649] 6 [75]
33 0.485 [0.225, 0.744] 3 [42]

0.2
21 0.201 [0.159, 0.243] 20 [465]
31 0.203 [0.158, 0.247] 17 [355]
32 0.204 [0.156, 0.252] 18 [304]

σE(i,j),ηη

0.2
11 0.189 [0.158, 0.223] 285 [572]
22 0.216 [0.185, 0.251] 219 [306]
33 0.211 [0.181, 0.242] 180 [657]

0.15
21 0.158 [0.118, 0.204] 460 [1182]
31 0.145 [0.106, 0.194] 646 [1648]
32 0.175 [0.129, 0.230] 438 [761]

σE(i,j),ηη =
√
Var(Et(i, j))

The inefficiency factors for the single-move sampler are about three times larger than

those for the multi-move sampler. This implies that our proposed multi-move sampler is

more efficient than the single-move sampler as we expected.
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Table 2: Posterior means, 95% credible intervals and inefficiency factors.

ρiE(j,k),εη = Corr(εit,Et(j, k))

True i jk Mean 95% interval
Inefficiency

multi [single]

−0.3
1 11 -0.277 [-0.388,-0.159] 61 [133]
2 22 -0.255 [-0.372,-0.134] 84 [126]
3 33 -0.374 [-0.479,-0.264] 81 [220]

−0.1

1 21 0.046 [-0.100, 0.188] 73 [164]
1 31 -0.041 [-0.190, 0.107] 96 [218]
1 22 -0.113 [-0.226, 0.002] 34 [143]
1 32 -0.035 [-0.163, 0.092] 63 [206]
1 33 0.005 [-0.114, 0.123] 66 [155]

2 11 -0.018 [-0.147, 0.111] 60 [231]
2 21 -0.017 [-0.172, 0.131] 94 [164]
2 31 -0.172 [-0.328,-0.022] 86 [289]
2 32 -0.072 [-0.207, 0.061] 65 [189]
2 33 -0.067 [-0.192, 0.057] 71 [184]

3 11 -0.092 [-0.217, 0.030] 61 [159]
3 21 -0.194 [-0.341,-0.047] 87 [113]
3 31 -0.118 [-0.263, 0.028] 91 [293]
3 22 -0.080 [-0.192, 0.035] 51 [174]
3 32 -0.027 [-0.155, 0.104] 72 [149]

Table 3: Posterior means, 95% credible intervals and inefficiency factors.

ρE(i,j)E(k,l),ηη = Corr(Et(i, j)),Et(k, l))

True ij kl Mean 95% interval
Inefficiency

multi [single]

0.3
11 22 0.248 [ 0.080, 0.411] 102 [340]
11 33 0.332 [ 0.170, 0.481] 135 [382]
22 33 0.266 [ 0.104, 0.420] 68 [186]

0.1

11 21 -0.055 [-0.266, 0.177] 184 [971]
11 31 0.150 [-0.066, 0.355] 215 [662]
11 32 0.064 [-0.135, 0.267] 138 [109]

21 31 0.092 [-0.199, 0.377] 301 [110]
21 22 -0.034 [-0.239, 0.188] 205 [133]
21 32 -0.127 [-0.386, 0.142] 239 [100]
21 33 0.203 [-0.028, 0.424] 177 [106]

31 22 0.055 [-0.173, 0.269] 234 [111]
31 32 0.041 [-0.192, 0.275] 213 [161]
31 33 0.213 [ 0.010, 0.413] 224 [931]

22 32 -0.006 [-0.203, 0.189] 137 [536]
32 33 0.053 [-0.134, 0.239] 138 [830]
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5 Application to trivariate asset returns data

5.1 Data

This section applies our proposed MESV model to returns of three assets: (1) Tokyo stock

price index (TOPIX), (2) the Japan government bond clean price index (JGB) provided

by Thomson Reuters Datastream), and (3) the currency exchange rate of Japanese Yen to

U.S. Dollar (Yen/USD) announced by the Federal Reserve Bank at noon in New York. We

excluded those days when at least one of three observations is not reported. The sample

period is from January 4, 1995 to July 30, 2010 for a total of 3710 observations. Figure

1 shows the time series plot of three returns which are 100 times the differences of the

logarithm of the asset values.

Jan. 1995 Feb.1997 Apr.1999 May.2001 Jul.2003 Sep.2005 Oct.2007 Dec.2009

−5

0

5 TOPIX 

Jan. 1995 Feb.1997 Apr.1999 May.2001 Jul.2003 Sep.2005 Oct.2007 Dec.2009

−1

0

1
JGB 

Jan. 1995 Feb.1997 Apr.1999 May.2001 Jul.2003 Sep.2005 Oct.2007 Dec.2009

−2.5

0.0

2.5 Yen/Doller 

Figure 1: TOPIX, JGB and Yen/USD

5.2 Estimation results

5.2.1 Univariate SV and MSV models

We first estimate the (univariate) SV model with leverage effect defined by (1)–(3) with

p = 1 for each series, and the constant correlation multivariate SV (MSV) model defined

by (1)–(3) with p = 3. For the SV model, the prior distributions for ϕi and Σi are assumed
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to be

ϕi + 1

2
∼ B(20, 1.5), Σi ∼ IW(5, (5Σ∗)−1), Σ∗ =

 1 0

0 0.04

 , i = 1, 2, 3.

For the MSV model, we assume prior distributions such that

ϕi + 1

2
∼ B(20, 1.5), i = 1, . . . , 5, Σ ∼ IW(6, (6Σ∗)−1),

where

Σ∗ =


1.52 0 0

0 0.5I2 0

0.22(0.3I3 + 0.7131
′
3)

 .

Tables 4 and 5 show summary statistics of posterior distributions of the parameters for

the SV and the MSV models. In both models, the posterior means of the autoregressive

parameters (ϕj ’s) are very high (between 0.938 and 0.972 in the SV model and between

0.948 and 0.966 in the MSV model) showing that volatilities are highly persistent.

Table 4: Univariate SV model.
Posterior means and 95% credible intervals.

Param. i Mean 95% interval

ϕi

1 0.971 [0.960, 0.981]
2 0.972 [0.959, 0.983]
3 0.938 [0.897, 0.966]

σiε

1 1.177 [1.078, 1.285]
2 0.267 [0.240, 0.298]
3 0.652 [0.609, 0.699]

σiη

1 0.177 [0.148, 0.207]
2 0.184 [0.150, 0.220]
3 0.239 [0.175, 0.321]

ρi

1 -0.511 [-0.604,-0.408]
2 -0.176 [-0.293,-0.052]
3 -0.201 [-0.316,-0.079]

1: TOPIX, 2: JGB, 3: Yen/USD.

Also, the leverage effects are estimated to be negative as in the previous literature where

that of the stock return (−0.511 in the SV model and −0.445 in the MSV model) is much

stronger than those of the bond return and the foreign exchange return (−0.176 and −0.201

in the SV model, −0.177 and −0.167 in the MSV model). In the MSV model, the cross

18



leverage effect, ρ12,εη, (from the stock return to the bond return volatility) is estimated to

be positive (0.189), while the opposite effect, ρ21,εη, (from the bond return to the stock

return volatility) is not credible in the sense that its 95% credible interval doesn’t include

zero. This implies the increase in the stock return at time t causes the high volatility in the

bond return at time t + 1, but the fall of the bond return seems to have a limited impact

on the stock return volatility.

Table 5: MSV model.
Posterior means and 95% credible intervals.

Param. i Mean 95% interval

ϕi

1 0.965 [0.953, 0.975]
2 0.966 [0.952, 0.978]
3 0.948 [0.918, 0.969]

σi,εε

1 1.212 [1.115, 1.322]
2 0.275 [0.249, 0.305]
3 0.662 [0.615, 0.716]

σi,ηη

1 0.191 [0.163, 0.224]
2 0.210 [0.174, 0.249]
3 0.225 [0.173, 0.293]

ρii,εη

1 -0.445 [-0.543,-0.339]
2 -0.177 [-0.281,-0.067]
3 -0.167 [-0.282,-0.045]

Param. ij Mean 95% interval

ρij,εε

12 -0.312 [-0.343,-0.281]
13 0.062 [ 0.028, 0.095]

23 -0.014 [-0.048, 0.020]

ρij,ηη

12 0.196 [ 0.024, 0.363]
13 0.559 [ 0.402, 0.694]

23 0.390 [ 0.221, 0.552]

ρij,εη

12 0.189 [ 0.073, 0.301]
13 -0.003 [-0.127, 0.117]

21 0.091 [-0.021, 0.200]
23 0.035 [-0.077, 0.145]

31 -0.036 [-0.152, 0.079]
32 -0.050 [-0.167, 0.067]

1: TOPIX, 2: JGB, 3: Yen/USD.

σi,εε =
√

Var(εit), σi,ηη =
√
Var(ηit),

ρij,εε = Corr(εit, εjt), ρij,εη = Corr(εit, ηjt), ρij,ηη = Corr(ηit, ηjt).

5.2.2 MESV model

Next, we estimate the MESV model assuming that prior distributions are

ϕij + 1

2
∼

 B(20, 3/2), if i = j,

B(33/4, 11/4), otherwise,

µ ∼ Nq(0, 5Iq),

Σ22 ∼ W(6, (6Σ22∗)−1), vec(Σ21)|Σ22 ∼ Npq(0, (5Ip)⊗Σ22).

The (i, j)-th element of Σ22∗−1 is ρ∗E(k,l)E(m,n),ηησ
∗
E(k,l),ηησ

∗
E(m,n),ηη such that

ρ∗E(k,l)E(m,n),ηη =

 0.6, if k = l ̸= m = n,

0.2, otherwise,

σ∗
E(k,l),ηη = 0.2, 1 ≤ l ≤ k ≤ 3.
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The mean and the standard deviation of the prior distribution of ϕij , i ̸= j are set 0.5 and

0.5 respectively.

We draw 220,000 samples for the multi-move sampler discarding the first 20,000 samples

as a burn-in-period. The number of blocks is set to 185 based on several trials.

Table 6: MESV model.
Posterior means, standard deviations, 95% credible

intervals, and inefficiency factors.

ij Mean Stdev 95% interval IF

ϕij

11 0.968 0.005 [0.958, 0.977] 141
22 0.968 0.006 [0.955, 0.979] 94
33 0.953 0.012 [0.927, 0.972] 648

21 0.860 0.050 [0.738, 0.923] 693
31 0.845 0.060 [0.699, 0.924] 560
32 0.590 0.199 [0.051, 0.826] 741

µij

11 0.286 0.087 [ 0.114, 0.457] 6
22 -2.923 0.113 [-3.143,-2.699] 11
33 -0.929 0.079 [-1.084,-0.773] 16

21 -0.222 0.018 [-0.258,-0.186] 24
31 0.054 0.023 [ 0.009, 0.099] 25
32 0.007 0.017 [-0.027, 0.041] 75

σE(i,j),ηη

11 0.176 0.014 [0.150, 0.204] 253
22 0.211 0.018 [0.176, 0.249] 277
33 0.204 0.027 [0.156, 0.263] 645

21 0.106 0.016 [0.080, 0.144] 742
31 0.133 0.022 [0.097, 0.185] 828
32 0.144 0.022 [0.107, 0.193] 801

1:TOPIX, 2:JGB, 3:Yen/USD

σE(i,j),ηη =
√
V ar(Et(i, j))

The estimation results are summarized in the Tables 6, 7 and 8. We notice that the pa-

rameters of the diagonal elements of Ht (the 1st, 4th, and 6th elements of ht) are similar to

those of MSV models. The autoregressive parameters of log volatilities, (ϕ11, ϕ22, ϕ33), are

(0.968, 0.968, 0.953) while (ϕ1, ϕ2, ϕ3) for MSV models are (0.965, 0.966, 0.948). The poste-

rior means of (µ11, µ22, µ33) are (0.286, −2.923, −0.929), while (log σ2
1,εε, log σ

2
2,εε, log σ

2
3,εε)

evaluated at the posterior means in Table 5 are (0.385,−2.582, −0.825). Further, the es-

timates of standard deviations of the ηit, (σE(1,1),ηη, σE(2,2),ηη, σE(3,3),ηη), are (0.176, 0.211,

0.204), while those of (σ1,ηη, σ2,ηη, σ3,ηη) are (0.191, 0.210, 0.225). Regarding the lever-

age effects, the estimates of (ρ1E(1,1),εη, ρ2E(2,2),εη, ρ3E(3,3),εη) are (−0.467,−0.109,−0.166),

while (ρ11,εη, ρ22,εη, ρ33,εη) for the MSV models are (−0.445,−0.177,−0.167).
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Table 7: MESV model. Posterior means, standard deviations,
95% credible intervals and inefficiency factors.

ρiE(j,k),εη = Corr(εit,Et(j, k))

i jk Mean Stdev 95% interval IF
1 11 -0.467 0.054 [-0.567,-0.358] 90
2 22 -0.109 0.059 [-0.224, 0.008] 64
3 33 -0.166 0.063 [-0.287,-0.041] 87

1 21 -0.100 0.065 [-0.230, 0.027] 71
1 31 -0.050 0.073 [-0.191, 0.094] 89
1 22 0.218 0.060 [ 0.097, 0.332] 65
1 32 0.058 0.085 [-0.108, 0.225] 162
1 33 0.026 0.065 [-0.107, 0.150] 99

2 11 -0.005 0.061 [-0.125, 0.114] 70
2 21 0.023 0.068 [-0.108, 0.160] 74
2 31 0.012 0.072 [-0.130, 0.152] 74
2 32 -0.046 0.080 [-0.204, 0.109] 120
2 33 0.055 0.063 [-0.069, 0.177] 76

3 11 -0.024 0.061 [-0.143, 0.095] 101
3 21 0.078 0.065 [-0.051, 0.206] 69
3 31 -0.128 0.074 [-0.273, 0.016] 109
3 22 -0.061 0.062 [-0.183, 0.061] 67
3 32 0.020 0.085 [-0.148, 0.188] 215

1:TOPIX, 2:JGB, 3:Yen/USD

Table 8: MESV model. Posterior means, standard deviations,
95% credible intervals and inefficiency factors.

ρE(i,j)E(k,l),ηη = Corr(Et(i, j),Et(k, l))

ij kl Mean Stdev 95% interval IF
11 22 0.009 0.091 [-0.168, 0.187] 155
11 33 0.466 0.083 [ 0.293, 0.616] 221
22 33 0.263 0.097 [ 0.064, 0.443] 237

11 21 0.151 0.088 [-0.025, 0.320] 151
11 31 0.155 0.099 [-0.041, 0.350] 181
11 32 -0.233 0.131 [-0.459, 0.056] 362

21 31 0.020 0.108 [-0.185, 0.233] 230
21 22 0.081 0.096 [-0.108, 0.267] 154
21 32 -0.023 0.137 [-0.296, 0.240] 369
21 33 -0.010 0.104 [-0.211, 0.197] 202

31 22 0.045 0.109 [-0.175, 0.252] 193
31 32 -0.151 0.140 [-0.419, 0.135] 395
31 33 0.134 0.109 [-0.079, 0.348] 225

22 32 0.062 0.144 [-0.217, 0.346] 386

32 33 -0.145 0.136 [-0.399, 0.139] 472

1:TOPIX, 2:JGB, 3:Yen/USD
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Estimated volatilities and correlations. However, as mentioned in Section 2, the parameters

such as Φ, M and Σεη in the MESV model do not always correspond to those of the stock,

the bond, and the exchange rate as they are in the MSV model. Thus, to interpret the

estimation results of the MESV model in more intuitive way, we consider the posterior

means of time-varying volatilities of each series, dynamic correlations among three returns

and news impact curves using MCMC simulation technique.

First, we consider the posterior means of the square root of the time-varying variances as

shown in Figure 2. The estimated volatility series of the TOPIX returns sharply increased

in September 2008, corresponding to the financial crisis during which Lehman Brothers filed

for Chapter 11 bankruptcy protection. The volatilities of the JGB index returns increased

in December 1998 and in September 2003 when the index dropped (or equivalently, the JGB

interest rate ran up) in both periods. In December 1998, the JGB is supplied excessively

because the Japanese government issued a large amount of JGB for the economic-stimulus

measure, and the Ministry of Finance Japan announced to stop buying the new bonds in

this month. Moreover, the Moody’s downgraded the JGB rating in November 1998. In

this month, the Nippon Credit Bank was brought under government control because of a

large amount of the bad debt. In the mid 2003s, following the increase of the US bond

interest rate and the economic boom, the deflationary concerns of Japan toned down. The

expectation for the lifting of the zero-interest-rate policy of the Bank of Japan, the JGB

interest rate shot up in June and September of 2003. The volatilities of the Yen/USD

increase after the August 1998 when the ruble devaluation and the Long Term Capital

Management report a large loss. Especially, the USD fell from 135.6 yen to 117 yen in five

days of early October 1998. This is just after the decision of the monetary relaxation policy

in the USA on September 29th and issuing the G-7 communique which urged the injection

of taxpayers’ money to financial institutions in Japan on October 5th.

Next, we investigate the posterior means of dynamic correlations among three returns

as shown in Figure 3. These correlations are computed using the MCMC samples of the

covariance and the variances that are elements of exp(Ht) which is the matrix exponential

transformation of the log volatility matrix Ht. The correlations between the stock and the

JGB returns largely fluctuate taking negative values where they drop to less than −0.86

in January 2008 during the downturn of the stock market. The correlations between the

stock market and the exchange rate returns fluctuates around zero. It is noted that this

takes negative values during Asian crisis period from July 1997 to August 1998. In this

period, the yen kept weakening and Japanese stock prices dropped. The JGB returns and
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the exchange rate returns seem to have no correlation throughout the sample period.

Jan. 1995 Feb. 1997 Apr. 1999 May. 2001 Jul. 2003 Sep. 2005 Oct. 2007 Dec. 2009

2

4

stdev(y1) 

Jan. 1995 Feb. 1997 Apr. 1999 May. 2001 Jul. 2003 Sep. 2005 Oct. 2007 Dec. 2009

0.25

0.50

0.75

1.00
stdev(y2) 

Jan. 1995 Feb. 1997 Apr. 1999 May. 2001 Jul. 2003 Sep. 2005 Oct. 2007 Dec. 2009

1

2 stdev(y3) 

Figure 2: Posterior means of the square root of time-varying variances. Top: TOPIX,
middle: JGB, bottom: Yen/USD.
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Figure 3: Posterior means of time-varying correlations. Top: (TOPIX, JGB), middle:
(TOPIX, Yen/USD), bottom: (JGB, Yen/USD).
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Dynamic principal components implied by the MESV model. Furthermore, we can inter-

pret our estimation results for MESV model in terms of the principal component analysis.

Using the diagonalization to calculate the matrix exponential, we calculate the principal

components of yt. Since Ht = UtΛtU
′
t where Λt = diag(λ1t, λ2t, λ3t) and UtU

′
t = I3, we

obtain

U′
tyt = diag(exp(λ1t/2), exp(λ2t/2), exp(λ3t/2))ε

∗
t , (20)

where ε∗t := U′
tεt ∼ N (0, I3), and we assume λ1t ≥ λ2t ≥ λ3t. The i-th element of U′

tyt in

(20) can be interpreted as the i-th principal component of the returns at time t. Moreover,

the row vector of the loading matrix U′
t can be a interpreted as a weight vector for the

portfolio which represents the stock market principal component. Top and middle panels

of Figure 4 show time series plots of the principal components, U′
tyt, t = 1, . . . , n and their

standard deviations.
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Figure 4: Posterior means of principal components series (top) and their standard deviations
(middle), and contribution ratio series (bottom).

24



The first principal component (blue lines) fluctuates sharply and its variance shot up when

at least one of the volatilities of the original series increase around 1998, 2003 and 2008. The

bottom panel of Figure 4 shows the contribution ratio of each principal component, defined

by exp(λ1t)∑3
i=1 exp(λit)

, exp(λ2t)∑3
i=1 exp(λit)

, exp(λ3t)∑3
i=1 exp(λit)

for t = 1, . . . , n. The ratio of the first principal

component (blue part) increases when one of three return series became more volatile. On

the other hand, the contribution ratio of the second series (green part) decreases in those

volatile periods. The third principal component (red part) has the ratio less than 10 % over

almost all the sample period. This implies that most of the variation of the original three

series can be explained by two principal components.

News impact curves. Finally, to show how the shocks in the returns at time t affect the

volatilities at time t+1, we describe the news impact curve following Engle and Ng (1993).

Similar ideas for stochastic volatility models are discussed by Yu (2005) and Asai and

McAleer (2009). Let Ht = M and Et = O and consider the case where ht+1 = µ +

Σηε exp(−M/2)yt.
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Figure 5: Posterior mean (solid line) and 95% interval (dotted lines) of the news impact
curve∗ for the one-step-ahead conditional covariances of yt+1 when Ht = M and Et = O.
(∗ The domain of the estimated curve is restricted to the range within ±4 sample standard deviation

of actual returns for each yit.)
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Figure 5 shows the posterior news impact curves on standard deviations and correlations

of yt+1 from yt, obtained by calculating the posterior means and the 95% intervals of the

normalized exp(Ht+1) under the various shocks of yt. The horizontal and vertical axes show

the values of yt and the standard deviations and correlations calculated from exp(Ht+1)

respectively.

The left three panels in Figure 5 show the news impacts on the standard deviations

of yt+1 caused by the elements, y1t (red lines), y2t (blue lines) and y3t (black lines). The

negative return on the i-th asset increases its own (i-th) future volatility, indicating the

existence of leverage effects. The red lines in the middle and bottom left panels imply that

the positive TOPIX return increases the future volatility of the JGB and the exchange rate

returns. However, the impact of the TOPIX return on the exchange rate return volatility

is smaller than that on the volatility of the JGB return. The positive shocks of the JGB

return increase the future volatility of the exchange rate, while the negative shocks of the

exchange rate return cause the higher future volatility of the JGB return. These results

are generally consistent with those obtained with MSV model, taking account of the 95%

credible intervals.

The right three panels in Figure 5 show the news impacts on the correlations among

y1,t+1, y2,t+1 and y3,t+1. The top right panel shows the impact on the correlation between

the TOPIX and JGB returns. It is noted that the correlations are strongly affected by the

exchange rate return but hardly affected by the TOPIX and the JGB returns. The black

line in the middle right panel shows the impact on the correlation between the TOPIX and

exchange rate returns caused by the shock of the exchange rate return. Interestingly, the

sign of the correlation between the TOPIX and exchange rate returns strongly depends on

the impact of the shock. More precisely, the large positive shock (greater than one) on

the exchange rate return tends to produce the negative correlation between the TOPIX

and exchange rate return, while the small or negative shock tends to produce the positive

correlation. The sign of the correlation between the JGB and exchange rate returns also

depends on the impacts of the shocks. However, we note that the impacts by shocks of the

TOPIX and exchange rate returns are very small and the impacts by the JGB return shock

have wide 95% intervals.

It is noted that the 95% intervals of the impact on the standard deviations and corre-

lations looks very large and that some of them include the horizontal line (i.e. no leverage

case). Thus, we calculate the posterior probability that the standard deviations and the

correlations calculated from exp(Ht+1) are larger than the posterior means of the standard
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deviations and the correlations from exp(M). It means that the news impacts are larger

than the posterior means of them at yt = 0. Figure 6 shows the posterior probabilities of

such events. The left three panels show the results for standard deviations. The posterior

probability for the standard deviation of the TOPIX (exchange rate) return approaches

one as the TOPIX (exchange rate) return decreases in the top (middle) left panel. The

probability for the standard deviation of the JGB return also approaches one as the TOP-

IX return increases in the middle left panel. The right three panels show the results for

correlation coefficients. The posterior probability for the correlation between the TOPIX

and exchange rate returns rapidly goes to one as the exchange rate return decreases in the

middle right panel.
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Figure 6: Posterior probability that news impact curves are larger than the posterior mean
of exp(M).

5.3 Extensions to fat-tailed error distributions and model comparison

Finally, we conduct a model comparison of the proposed MESV model with MSV models.

In addition to the MESV and MSV models with normal errors, we consider extended models

with fat-tailed error distribution given by

εt = ξ
1/2
t et, et ∼ Np(0, Ip),
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where ξt is a random variable which takes positive values and independent of et. We consider

two cases: (i) multivariate Student-t error with ξ−1
t ∼ G

(
ν
2 ,

ν
2

)
and (ii) log-Gaussian scale

mixture error with log ξt ∼ N
(
− δ2

2 , δ
2
)
. The extensions to these models are straightforward

and hence we omit details of MCMC algorithms (similar specifications and MCMC sampling

are also discussed in the Omori, Chib, Shephard, and Nakajima (2007) for univariate SV

models, and Ishihara and Omori (2012) for MSV models). Thus, we consider the following

six models:

• MSV-n model: MSV model with normal error distribution.

• MSV-t model: MSV model with multivariate Student-t error distribution.

• MSV-g model: MSV model with log-Gaussian scale mixture error distribution.

• MESV-n model: MESV model with normal error distribution.

• MESV-t model: MESV model with multivariate Student-t error distribution.

• MESV-g model: MESV model with log-Gaussian scale mixture error distribution.

We assume the prior distributions ν ∼ G(0.001, 0.001) and δ2 ∼ G(1, 1) respectively.

The estimation results for ν and δ2 are summarized in Table 9. The posterior means of ν

for the MSV and MESV models are small, suggesting fat-tailed error distributions. The

estimate of ν (δ2) for the MSV model is smaller (larger) than that of the MESV model,

probably because the MSV model fails to capture the dynamics of time-varying correlations.

Other parameter estimates are similar to those of models with normal error and hence are

omitted.

Table 9: The estimation results of ν and δ2

Model Param. Mean Stdev 95% interval Param. Mean Stdev 95% interval

MESV
ν

15.8 2.4 [11.8, 21.5]
δ2

0.17 0.02 [0.13, 0.22]

MSV 11.8 1.2 [ 9.8, 14.5] 0.34 0.02 [0.30, 0.38]

We compute the DIC (deviance information criterion) for the model comparison defined by

DIC = Eθ|Yn
[D(θ)] + pD,

pD = Eθ|Yn
[D(θ)]−D(Eθ|Yn

[θ]), D(θ) = −2 log f(Yn|θ) + Cy,
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where Cy is a constant term which depends only on the dataset Yn. Since it cancels out in

all calculations that compare different models, we set Cy = 0 for convenience. To estimate

Eθ|Yn
[D(θ)], we use a sample analogue 1

M

∑M
m=1D(θ(m)), where we set M = 100, and

θ(m)s are resampled from the posterior samples generated by the MCMC method. To

calculate D(Eθ|Yn
[θ]), which equals to D(θ) evaluated at the posterior mean, we implement

an auxiliary particle filter to compute the log-likelihood ordinate log f(Yn|θ), where we set

the number of particles I = 10, 000 for the MSV and the MESV models. We repeat this

procedure ten times to obtain the numerical standard error.

Table 10: The averages of DIC estimates, their standard errors,
the maximum and the minimum of DIC values.

Model ranking DIC (s.e.) DICmax DICmin

MESV-t 1 20066.7 (1.7) 20074.2 20058.3
MESV-g 2 20087.4 (1.8) 20099.6 20079.6
MESV-n 3 20090.1 (1.5) 20098.4 20084.1

MSV-t 4 20118.4 (1.3) 20124.3 20112.4
MSV-g 5 20197.3 (3.2) 20214.3 20180.5
MSV-n 6 20201.2 (1.0) 20206.3 20196.0

Table 10 shows the averages of DIC, their standard errors, and the maximum and the

minimum of DIC values computed for six competing models. The DIC values for the MESV

models are much smaller than those for the MSV models, and hence the MESV models out-

perform the MSV models. Among MESV models, models with fat-tailed error outperform

the model with normal error, and the model with multivariate-t error distribution has the

smallest DIC. This empirical study shows that our proposed model with multivariate-t error

distribution performs quite well to describe the multivariate asset returns data.

6 Conclusion

In this paper, we extend the MSV model to allow the time-varying correlations and pro-

pose an efficient MCMC algorithm using a multi-move sampler. To sample a block of state

vectors, we construct a proposal density using the normal approximation via a Taylor ex-

pansion of the logarithm of the target posterior density for the MH algorithm where the

expectations of Hessian matrices are derived analytically. Moreover, to calculate the log-

likelihood, we describe an auxiliary particle filter. An empirical analysis is presented using
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three returns of the TOPIX, the Japanese bond price index and the Yen/USD exchange

rate. The correlation between returns of the TOPIX and the Japanese bond index is found

to be time-varying. In contrast, the correlation between returns of the Japanese bond price

index and the Yen/USD exchange rate is shown to be stable and less volatile. The posi-

tive cross leverage effects from the TOPIX on the Japanese bond price index is also found.

The news impact curves for the MESV model are presented and investigated in detail. A

model comparison between the MESV model with constant correlation MSV models includ-

ing heavy-tailed error models is conducted. The MESV model with multivariate Student-t

distributed error is found to outperform other models based on DIC.
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Appendix

A Multi-move sampler

The logarithm of the full conditional joint density of {xt}s+m−1
t=s excluding constant terms

is given by

log f({xt}s+m−1
t=s |hs,hs+m+1,ys, . . . ,ys+m) = −1

2

s+m−1∑
t=s

x′
txt + L, (21)
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where

L =
s+m∑
t=s

lt −
1

2
η′
s+mΣ−1

ηη ηs+mI(s+m < n), (22)

ηs+m = hs+m+1 − µ−Φ(hs+m − µ), (23)

xt = Σ−1/2
ηη (ht+1 − µ−Φ(ht − µ)).

Let αt = ht − µ and α̂t = ĥt − µ where ĥt is ht evaluated at xt = x̂t. Consider the

approximation via the second order Taylor expansion around the xt = x̂t (t = s, . . . , s +

m− 1), and replace the Hessian matrices by the negative of information matrices to obtain

log f({xt}s+m−1
t=s |hs,hs+m+1,ys, . . . ,ys+m)

≈ const.− 1

2

s+m−1∑
t=s

x′
txt + L̂

+

s+m∑
t=s+1

[
d̂′
t −

1

2
(αt − α̂t)

′Ât + (αt−1 − α̂t−1)
′B̂t

]
(αt − α̂t)

= const. + log f∗(x|αs,αs+m+1,ys, . . . ,ys+m), (24)

where d′
t = ∂L/∂α′

t,

At = −E
[

∂2L

∂αt∂α′
t

]
, t = s+ 1, . . . , s+m, (25)

Bt = −E
[

∂2L

∂αt∂α′
t−1

]
, t = s+ 2, . . . , s+m, Bs+1 = O, (26)

and d̂t, Ât, B̂t are those evaluated at α̂t. The expectations are taken with respect to yt

given parameters and other latent variables.

A.1 Derivation of dt, At and Bt

Summary of matrix differentiation

We first summarize definitions for the first and second derivatives of a matrix and some

results (Magnus and Neudecker (1999), and Magnus and Abadir (2007)). Let F be a twice

differentiablem×pmatrix function of an n×q matrixX. Then the first derivative (Jacobian

matrix) of F at X is defined by the mp× nq matrix

DF (X) =
∂F (X)

∂X
=

∂vec(F (X))

∂vec(X)′
,
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where vec(·) is a vectorizing operator, and the second derivative (Hessian matrix) of F at

X is defined by the mnpq × nq matrix

HF (X) = D
(
(DF (X))′

)
=

∂

∂(vec(X))′
vec

((
∂vec(F (X))

∂(vec(X))′

)′)
.

Chain rule: Let S a subset of Rn×q, and assume that F : S → Rm×p is differentiable at an

interior point C of S. Let T be a subset of Rm×p such that F (X) ∈ T for all X ∈ S, and

assume that G : T → Rr×s is differentiable at an interior point B = F (C) of T . Then the

composite function H : S → Rr×s defined by H(X) = G(F (X)) is differentiable at C, and

DH(X) = (DG(F (X)))(DF (X)) =
∂vec(G(F (X)))

∂(vec(F (X)))′
∂vec(F (X))

∂(vec(X))′
. (27)

When q = 1, x ∈ Rn×1, f : Rn×1 → Rm×p, g : Rm×p → Rr×s,

∂g(f(x))

∂x′ =
∂vec(g(f(x)))

∂vec(f(x))′
∂vec(f(x))

∂vec(x)′
. (28)

Product rule: Let S a subset of Rn×q, and assume that F : S → Rm×p and G : S → Rp×r

are differentiable at an interior point C of S. Then

∂vec(FG)

∂(vec(X))′
= (G′ ⊗ Im)

∂vec(F )

∂(vec(X))′
+ (Ir ⊗ F )

∂vec(G)

∂(vec(X))′
. (29)

Derivation of dt

Let Ft = −1
2Ht and zt = exp(Ft)yt. The logarithm of the conditional probability density

of yt given ht excluding the constant term is

lt = −1

2
tr(Ht)−

1

2
(zt −mt)

′S−1
t (zt −mt),

where E[zt] = mt = ΣεηΣ
−1
ηη (αt+1 − Φαt)I(t < n) and E[ztz

′
t] = St + mtm

′
t with St =

Ip−ΣεηΣ
−1
ηη ΣηεI(t < n). Further, letDp denote a p

2×q duplication matrix (whose elements

are 0 or 1) such that vec(A) = Dpvech(A) for a symmetric matrix A. Then

∂tr(Ht)

∂α′
t

=
∂tr(Ht)

∂vec(Ht)′
∂vec(Ht)

∂h′
t

= vec(Ip)
′Dp = vech(Ip)

′, (30)

∂mt

∂α′
t

= −ΣεηΣ
−1
ηη ΦI(t < n), (31)

∂mt−1

∂α′
t

= ΣεηΣ
−1
ηη I(t > 1), (32)

32



where we used the chain rule and D′
pvec(A) = vech(A+A′ − (A⊙ Ip)) for a p× p matrix

A in (30) (e.g. Magnus and Neudecker (1999), Magnus (1988)). Further, define

Vt ≡
∂vec(exp(Ft))

∂vec(Ft)′
=

∞∑
i=1

1

i!

i∑
j=1

[
Fi−j
t ⊗ Fj−1

t

]
,

using the product rule and letQt = {exp(−Ft)⊗Ip}Vt. Noting that zt = (y′
t⊗Ip)vec(exp(Ft)),

∂zt
∂α′

t

= −1

2
(y′

t ⊗ Ip)Vt
∂vec(Ht)

∂h′
t

= −1

2
(z′

t ⊗ Ip)QtDp. (33)

Using (30) – (33) and ∂x′Ax/∂x′ = 2x′A for a p × p symmetric matrix A and a p × 1

vector x, we obtain

dt =

[
∂lt
∂α′

t

]′
+

[
∂lt−1

∂α′
t

]′
+ΦΣ−1

ηη (αt+1 −Φαt)I(t = s+m < n)

= −1

2
vech(Ip) +

{
1

2
D′

pQ
′
t(zt ⊗ Ip)−ΦΣ−1

ηη ΣηεI(t < n)

}
S−1
t (zt −mt)

+Σ−1
ηη ΣηεS

−1
t−1(zt−1 −mt−1)I(t > 1) +ΦΣ−1

ηη (αt+1 −Φαt)I(t = s+m < n). (34)

Although Qt involves an infinite series of matrices, its computation is easy as shown in

Appendix A.2.

Derivation of At

By (31)–(34) and Q′
t(zt ⊗ Ip) = Vt(yt ⊗ Ip),

At = −1

2
D′

pE

[
∂Vt(yt ⊗ Ip)S

−1
t (zt −mt)

∂α′
t

]
− 1

2
ΦN′

t

+ΦMtΦ+Mt−1 +ΦΣ−1
ηη ΦI(t = s+m < n), (35)

where

Mt = Σ−1
ηη ΣηεS

−1
t ΣεηΣ

−1
ηη I(1 ≤ t < n), (36)

Nt = D′
pQ

′
t(mt ⊗ Ip)S

−1
t ΣεηΣ

−1
ηη . (37)
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Using a product rule and ∂vec(Ft)/∂α
′
t = −1

2Dp, we obtain

∂Vt(yt ⊗ Ip)S
−1
t (zt −mt)

∂α′
t

= −1

2

{
(zt −mt)

′S−1
t ⊗ Ip2

}{
(y′

t ⊗ Ip)⊗ Ip2
}
WtDp +Vt(yt ⊗ Ip)S

−1
t

∂(zt −mt)

∂α′
t

,

where Wt = ∂vec(Vt)/∂vec(Ft)
′. Since

E
[
{(zt −mt)

′S−1
t ⊗ Ip2}{(y′

t ⊗ Ip)⊗ Ip2}
]

= E
[
(zt −mt)

′S−1
t (y′

t ⊗ Ip)
]
⊗ Ip2

= E
[
vec(S−1

t (zt −mt)y
′
t)
′]⊗ Ip2 = vec(exp(−Ft))

′ ⊗ Ip2 ,

and

E

[
Vt(yt ⊗ Ip)S

−1
t

∂(zt −mt)

∂α′
t

]
= −1

2
Q′

tE
[
(zt ⊗ Ip)S

−1
t (z′

t ⊗ Ip)
]
QtDp +Q′

t(mt ⊗ Ip)S
−1
t ΣεηΣ

−1
ηη Φ

= −1

2
Q′

tE
[
(ztz

′
t)⊗ S−1

t

]
QtDp +Q′

t(mt ⊗ Ip)S
−1
t ΣεηΣ

−1
ηη Φ

= −1

2
Q′

t

{
(St +mtm

′
t)⊗ S−1

t

}
QtDp +Q′

t(mt ⊗ Ip)S
−1
t ΣεηΣ

−1
ηη Φ,

Equation (35) reduces to

At =
1

4
D′

p

[
Pt +Q′

t

{
(St +mtm

′
t)⊗ S−1

t

}
Qt

]
Dp −

1

2
(NtΦ+ΦN′

t)

+ΦMtΦ+Mt−1 +ΦΣ−1
ηη ΦI(t = s+m < n), (38)

where D′
pPt = D′

p

{
vec(exp(−Ft))

′ ⊗ Ip2
}
Wt. The computation of Pt as well as Qt is

discussed in Appendix A.2.

Derivation of Bt

By (31), (33) and (34),

Bt = −Σ−1
ηη ΣηεS

−1
t−1E

[
∂(zt−1 −mt−1)

∂α′
t−1

]
=

1

2
N′

t−1 −Mt−1Φ, t = 2, . . . , n. (39)
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A.2 Computation of Pt and Qt

(1) Qt

Since Ft is a symmetric matrix, there exists a p× p orthogonal matrix Ut such that

U′
tFtUt = Λt,

where Λt = diag(λ1t, λ2t, . . . , λpt) and λ1t ≥ λ2t ≥ . . . ≥ λpt are the ordered eigenvalues of

Ft. Then

Qt = {exp(−Ft)⊗ Ip}
∞∑
i=1

1

i!

i∑
j=1

[
Fi−j
t ⊗ Fj−1

t

]
,

=

∞∑
i=1

1

i!

i∑
j=1

[
exp(−Ft)F

i−j
t ⊗ Fj−1

t

]
,

= (Ut ⊗Ut)

 ∞∑
i=1

1

i!

i∑
j=1

{
exp(−Λt)Λ

i−j
t ⊗Λj−1

t

} (U′
t ⊗U′

t). (40)

The second factor in (40) is a diagonal matrix with its (k, k)-th element given by

∞∑
i=1

1

i!

i∑
j=1

exp(−λat)λ
i−j
at λj−1

bt =

 1, if λat = λbt,
exp(λbt−λat)−1

λbt−λat
, if λat ̸= λbt,

where a = ⌊(k − 1)/p⌋+ 1 and b = k − p⌊(k − 1)/p⌋, and ⌊x⌋ denotes the integer part of x.

Note that λat = λbt for k = (i− 1)p+ i (i = 1, . . . , p).

(2) Pt

Let Kmn denote a mn×mn 0-1 matrix called a commutation matrix such that vec(A′) =

Kmnvec(A) holds for a m× n matrix A (see Chapter 3 of Magnus and Neudecker (1999)).

Using

∂vec(A⊗B)

∂vec(A)′
= (In ⊗Kqm ⊗ Ip)(Imn ⊗ vec(B)),

∂vec(A⊗B)

∂vec(B)′
= (In ⊗Kqm ⊗ Ip)(vec(A)⊗ Ipq),
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where A, B, X are m× n, p× q, n× p matrices respectively, we compute

Wt =
∂vec(Vt)

∂vec(Ft)′
=

∞∑
i=2

1

i!

i∑
j=1

∂vec(Fi−j
t ⊗ Fj−1

t )

∂vec(Ft)′

=

∞∑
i=2

1

i!
(Ip ⊗Kpp ⊗ Ip)

{
i−1∑
j=1

(Ip2 ⊗ vec(Fj−1
t ))

∂vec(Fi−j
t )

∂vec(Ft)′

+

i∑
j=2

(vec(Fi−j
t )⊗ Ip2)

∂vec(Fj−1
t )

∂vec(Ft)′

}
,

and, using the product rule,

∂vec(Fk
t )

∂vec(Ft)′
=

k∑
m=1

Fk−m
t ⊗ Fm−1

t .

Note that

{
vec(exp(−Ft))

′ ⊗ Ip2
}
(Ip ⊗Kpp ⊗ Ip)

{
Ip2 ⊗ vec(Fj−1

t )
} ∂vec(Fi−j

t )

∂vec(Ft)′

= Kpp(F
j−1
t exp(−Ft)⊗ Ip)

∂vec(Fi−j
t )

∂vec(Ft)′
= Kpp

i−j∑
h=1

Fj−1
t exp(−Ft)F

i−j−h
t ⊗ Fh−1

t ,

and

{
vec(exp(−Ft))

′ ⊗ Ip2
}
(Ip ⊗Kpp ⊗ Ip)

{
vec(Fi−j

t )⊗ Ip2
} ∂vec(Fj−1

t )

∂vec(Ft)′

=
{
Fi−j
t exp(−Ft)⊗ Ip

} ∂vec(Fj−1
t )

∂vec(Ft)′
=

j−1∑
h=1

Fi−j
t exp(−Ft)F

i−1−h
t ⊗ Fh−1

t ,

by using

Knn(BA⊗ In) = (vec(A)′ ⊗ In2)(In ⊗Knn ⊗ In)(In2 ⊗ vec(B)), (41)

(BA′ ⊗ In) = (vec(A)′ ⊗ In2)(In ⊗Knn ⊗ In)(vec(B)⊗ In2), (42)
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where A, B are m× n, p× q matrices (e.g. Theorem 4.4 of Rogers (1980) on p. 23). Thus,

using D′
pKpp = D′

p,

D′
pPt = D′

p

{
vec(exp(−Ft))

′ ⊗ Ip2
}
Wt

= D′
p

∞∑
i=2

1

i!

(
i−1∑
j=1

i−j∑
h=1

exp(−Ft)F
i−h−1
t ⊗ Fh−1

t +

i∑
j=2

j−1∑
k=1

exp(−Ft)F
i−k−1
t ⊗ Fk−1

t

)

= 2D′
p

∞∑
i=2

1

i!

i−1∑
j=1

i−j∑
h=1

exp(−Ft)F
i−h−1
t ⊗ Fh−1

t

= 2D′
p

∞∑
i=2

1

i!

i−1∑
j=1

(i− j) exp(−Ft)F
i−j−1
t ⊗ Fj−1

t ,

and we obtain

Pt = 2
∞∑
i=2

1

i!

i−1∑
j=1

i−j∑
h=1

(i− j) exp(−Ft)F
i−j−1
t ⊗ Fj−1

t

= (Ut ⊗Ut)

2 ∞∑
i=2

1

i!

i−1∑
j=1

(i− j)
{
exp(−Λt)Λ

i−j−1
t ⊗Λj−1

t

} (U′
t ⊗U′

t). (43)

The second factor in (43) is a diagonal matrix with its (k, k)-th element given by

2

∞∑
i=2

1

i!

i−1∑
j=1

(i− j) exp(−λat)λ
i−j
at λj−1

bt =

 1, if λat = λbt,
2{exp(λbt−λat)−1−(λbt−λat)}

(λbt−λat)2
, if λat ̸= λbt,

where a = ⌊(k − 1)/p⌋+ 1 and b = k − p⌊(k − 1)/p⌋.
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