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Abstract

In the paper, we propose a new calculation scheme for American options
in the framework of a forward backward stochastic differential equation (FB-
SDE). The well-known decomposition of an American option price with that
of a European option of the same maturity and the remaining early exercise
premium can be cast into the form of a decoupled non-linear FBSDE. We
numerically solve the FBSDE by applying an interacting particle method re-
cently proposed by Fujii & Takahashi (2012c), which allows one to perform a
Monte Carlo simulation in a fully forward-looking manner. We perform the
fourth-order analysis for the Black-Scholes (BS) model and the third-order
analysis for the Heston model. The comparison to those obtained from exist-
ing tree algorithms shows the effectiveness of the particle method.
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1 Introduction

It has been known for a while that an American option value can be decomposed into
that of the corresponding European option and an additional early exercise premium.
Detailed discussions and other related references are available in Kim [22], Carr
et.al. [5], Jacka [19], Rutkowski [30], Saito & Takahashi [31] as well as a textbook
written by Karatzas & Shreve [21]. See also a recent work of Benth [2] which
derives it from a dynamic programming approach. In this paper, we deal with
a non-linear forward backward stochastic differential equation (FBSDE) obtained
from the decomposition formula and calculate an American option price by solving
it numerically.

The framework of FBSDE was first introduced by Bismut [3], and then later
extended by Pardoux and Peng [29] for general non-linear cases. Their financial ap-
plications are discussed in details in, for example, El Karoui, Peng and Quenez [9]
and Ma and Yong [26]. There are increasing interests among researchers in FBSDEs
since their relevance for the analysis of various social phenomena is becoming more
apparent in recent years. In fact, one can find FBSDEs in the valuation problem
of the financial contracts in the presence of credit risk and/or funding cost of col-
laterals ( Duffie & Huang [8], Fujii & Takahashi [11], Crépey [6], for examples. ).
They are also relevant for the utility-indifference pricing in incomplete as well as
constrained markets ( Carmona [4] and references therein. ). In a recent book of
Cvitani¢ and Zhang [7], the authors use FBSDEs to study the optimal contract
theory in continuous time.

Recently, Fujii & Takahashi [12] has proposed a perturbative technique for
generic non-linear FBSDEs. With the help of asymptotic expansion ( Takahashi [32]
), it is possible to derive closed-form analytic expressions for both of the back-
ward components. An explicit example for a quadratic-growth FBSDE appearing
in the optimal portfolio problem in an incomplete market is available in Fujii &
Takahashi [13]. In the following paper, Fujii & Takahashi [14] gave its numerical
evaluation scheme based on an interacting particle method inspired by the work
of McKean [27], ! which enables one to perform Monte Carlo simulation in a fully
forward-looking manner. 2 The validity of its approximation is discussed recently
by Takahashi & Yamada [35] although it is still restricted to a decoupled non-linear
setup. In the current paper, we apply this methodology to evaluate a non-linear FB-
SDE relevant for an American option. Although there remains a small error when
the option is far in the money, we shall see the effectiveness of the particle method
in overall region. The current work not only gives a simple calculation scheme for
American options but also serves as a concrete example showing the usefulness of
the particle method to analyze non-linear FBSDEs and corresponding non-linear

Tt is closely related to the research with a long history on the branching Markov process and
a certain class of semi-linear PDEs. For instance, see Fujita [10], Ikeda, Nagasawa & Watan-
abe [15], [16], [17], Ikeda et.al. [18] and Nagasawa & Sirao [28].

2 A related but different approach was recently applied to evaluate CVA by Henry-Labordére [24].



partial differential equations.

2 FBSDE formulation

Let us take the probability space as (2, F,Q), where Q is a risk-neutral probability
measure. We consider a generic process for the relevant stock price as

dSt = (T’t - yt)Stdt + Stat : th (21)

where W is a d-dimensional Q-Brownian motion and F is a natural filtration gen-
erated by W. All the stochastic processes are assumed to be F;-adapted. Here, r
and y are processes for a risk-free interest rate and a dividend yield, respectively.
o € R? is a volatility process.

It is well-known (eg, [22, 5, 19, 30, 21]) that the price of an American option on
S with a strike K and an expiry T can be expressed as

T
V, = BE[BFYT(S)| F] + BE {/ B Culiv,<u+ (s.)ydu
t

E] (2.2)

where U (z) = max(¥(z),0) denotes a payoff function, which is

U(z) = z— K for a Call
K — 2 for a Put

C} is a process denoting an instantaneous early exercise premium

C ypSy — K for a Call
L reK — Sy for a Put

and

Bi = exp </Ot rsd8> (2.3)

is a standard money-market account.

In the remaining part of this section, we provide a simple heuristic derivation of
Eq. (2.2) for completeness. Firstly, let us provide the decomposition principle of the
Snell envelope for a continuous semimartingale.

Proposition 1 Rutokowski (1994) [30]
Suppose X is a continuous semimartingale with canonical decomposition

X=Xo+M+V (2.4)



where Xy is a constant, M 1s a continuous local martingale with My = 0, and V
denotes a continuous finite variation process with Vo = 0, whose decreasing compo-
nent satisfies AV, = vydt for some adapted nonnegative process v. We assume that
the condition

E[ sup |Xt|] < 0o (2.5)

0<t<T
is satisfied. Let {1} }icpo,r) be a family of {F;}-stopping times satisfying

E[X;;] =ess sup E[X;|F], Vt€[0,T]. (2.6)

t<r<T

Then the following equation holds:

E[X,;

F =EXr|FR]—E

Proof: See Appendix of [30].

For concreteness, let us choose a Call option with strike K as an example. We
consider the dynamics of the discounted payoff process. By applying [t6 formula,
we obtain

1
d(ﬂt—l(St —K)Y) = =B (S, — K)tdt + Bt {1{52K}d5t + 55(Xt - K)d(S)t}
= ﬁt_ll{&zK}StUt - dW;
1
0, s ry (1K — 4 Sp)dt + §ﬁf15(5t — K)d(S), (2.8)

where §(-) is a Dirac delta function. More precisely speaking, the term involves the
delta function is represented by the local time. For our intuitive derivation, however,
the Dirac delta function is more useful to borrow a clear economic insight in a later
stage. Now, applying Proposition 1 gives

Vi

ess sup GE[371(S, — K)*

t<r<T

7]
= BGE |:61_“1(ST — K)Jr‘]:t}

T
1
/ Liri=u} {67:11{Su>K}(yuSu — 1, K)du — 56;15(& — K)d(S),

t

+5,E

5
4

T
BE[B7 (51— K)*|7] + A8 | [ g Lo (S, - rudu




where, in the second equality, the last term vanishes due to the fact that the stock
should be in-the-money region (S, > K) when the option is early exercised. It is
now economically clear to see that the above result can be rewritten as

T
V, = BE|Br (St — KV‘}}] + BE {/ 1w, <(Su—r)} B (YuSu — 1 )du
t

7|

Note that 1y, <(s,—x)+11¢s.>k} = l{v,<(s.—k)+} since the option value should al-
ways be positive. For more rigorous treatment, see the related proof in [30, 21] as
well as [2]. The case for a Put option can be shown similarly. B

Now, from Eq. (2.2), one can see

t
@1Vt+/ B Cul v, <u+ (su)ydu (2.9)
0

is a Q-martingale. Thus, we can conclude that the price of an American option
satisfies

d‘/; == Tt%dt — Ct]-{VtS\I/(St)}dt + Zt . th
Vi = U (Sy) (2.10)
dSt = (Tt - yt>Stdt + Stat . th, SO =S

where Z € R? is an appropriate F;-adapted process that should be solved at the
same time with V. It is a non-linear FBSDE with a decoupled dynamics of forward
component, or the stock process S. Here, we have replaced ¥ by ¥ in the indi-
cator function since V' should be clearly positive. In the next section, we carry out
perturbative approximation procedures to solve the above FBSDE.

3 Perturbative expansion and a particle method
for FBSDE

In [12], a systematic approximation procedures for a generic non-linear FBSDE is
given. It treats the non-linear driver of the FBSDE as a perturbation and converted
the original system into a series of decoupled linear FBSDEs, for which the issue is
equivalent to solve general European contingent claims.

To apply the procedures, let us introduce perturbation parameter € as

{ AV = rVOdt — eCou(S,) — Vi )dt + 2 - aw, (3.1)

V) = Ut (Sy)

where () is the Heaviside step function. We now suppose that the solution of (3.1)
can be expanded as a power series of e:

VO oy 2y sy
2 = 20 v ez 2P0 + 20 1 -
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Economically speaking, we treat the early exercise premium as a perturbation and
expand the price of American option around the corresponding European price. The
method [12] allows to derive a series of linear FBSDEs specifying the dynamics of
(V@ Z@),54 for each order of e. If the non-linear effects are sub-dominant and allow
perturbative treatments, we can expect to obtain a reasonable approximation of the
original model by setting ¢ = 1 at the end of the calculations. For the evaluation
of an American option, the driver (or drift term) of the FBSDE is independent of
the martingale component Z. Thus, in the following, we can focus on the level
component V.

3.1 0Oth order
In the Oth order, we have

[ et 82)

Vi = ()

which clearly represents the dynamics of the corresponding European option price.
We can easily see that it is solved as

VO = BE, [ 8710 (Sr)| F] (33)

Although there is no explicit expression of (3.3) for a generic stock process, it is
always possible to obtain its approximation by asymptotic expansion (See [32, 23,
33, 34] for the details of asymptotic expansion.). It allows us, at least approximately,

to have an explicit expression of Vt(o) as
VO =00, X,) (3.4)

where X; = (S;, 7, Ys, 01, - - - ) contains all the relevant state processes. If necessary,
application of It6 formula or using the process of Malliavin derivative (D, X;) yields
the corresponding martingale component Z©.

3.2 1st order
In the 1st order, the relevant FBSDE is given by

av,V = vVt — Cﬂ(\If(St) — (¢, Xt)>dt + 2z aw, 55)
v =0 '
which is again linear and easy to integrate. We have
T
VO = [ ausiE |5 Cuow(s,) - o) 7] (36)
t

6



where, v denotes v(© (u,X,). ZW is obtained by the similar arguments given in
the previous subsection. Although it is possible to evaluate (3.6) directly by Monte
Carlo simulation, the time integration makes it rather time consuming. In fact, it
soon becomes infeasible when one evaluates e-higher order expansion terms.

In order to avoid the difficulty, we adopt an interacting particle method proposed
in Fujii & Takahashi [14]. We introduce an arbitrary F;-adapted strictly positive
process {\; }+>0 to define

VL = esxp( [ Audu) V0 (3.7)
¢
and ) .
Cis = X exp (/t /\udu) C, (3.8)

for s > t. Then, we have the SDE of XA/t(;) for the time component s (> t),

o : (3.9)

AV = (ry + 0V Dds — A\,C (0 (S,) — 0i7)ds + el e 2D . qw,
V=0

Since ‘A/t(tl ) = Vt(l), we have

T
y E{ / e i ratdduy G o(W(S,) — v)ds Ft] (3.10)
t

= 1{7—1>t}E |:1{7—1<T}€7 ftTl ’"“d“@ﬂe(\lf(sﬁ) — U.(r?))‘ ft] (3.11)

Here, 7 is a F;-stopping time associated with the first jump of Poisson process
whose intensity process is given by {A}i>0. In contrast to (3.6), it is clear the
expression of (3.11) allows one-shot Monte Carlo simulation. More detailed expla-
nation for Monte Carlo simulation will be given in the later section. Although it
is an interesting topic to obtain an optimal intensity process A that achieves the
smallest variance in simulation, it is beyond the current scope of the paper. In the
numerical examples, we simply use a constant intensity.

Remark: In [14], the intensity process A is assumed to be deterministic or an inde-
pendent process for the other underlyings, which makes the evaluation of Malliavin
derivatives required for Z® simpler. For the evaluation of American option, this
assumption is not necessary since there is no need to obtain Z®.

3.3 2nd order

For the 2nd order case, the relevant equation is given by

{ Vi = VPt O3 (s = ol Vi lar+ 20w,

VP =0



where §(-) is a Dirac delta function as before. Since the FBSDE is linear, one can
show easily that

T
t

E} (3.13)

As mentioned in the previous section, the difficulty in a naive application of Monte
Carlo simulation becomes much clearer now. At each point of time u € [t,T] in a
given path, one needs the value of Vu(l), which in turn requires to run Monte Carlo
simulation as well as time integration.

Therefore, let us define

‘775(52) = exp (/S )\udu) vV (3.14)
t
and use a;s as before. Then, for s > t, we have
AV = (ry 4 AV ds + X,Cod (@(S,) = o )V D ds + e 22 - aw, (3.15)
with I//\},T = 0. Thus, one obtains

2 2
AR AR

T
- _E { / e~ i rutdduy @, S(W(S,) — vV Dds

t

;

- _1{Tl>t}E [1{TI<T}6_ J ' TUduat,ﬁé(Tl)‘/T(f)

J-"t] (3.16)
Simple application of the tower property of iterated expectations gives
Vi = “14,4E |1 S rdu @y (1) Cry 1y 0(m0) | F 3.17
v =l E | L cname tr10(71)Cry 1, 0(72) | T (3.17)

where 71 (73) is the first (second) jump time of the Poisson process with the intensity
process A. Here, we have written 6(7) = 6(V(7) — vﬁo)) and 0(1) = 0(¥ (1) — v&o)) to
lighten the notations.

3.4 3rd order

In the 3rd order, the relevant dynamics becomes

av® = r,v®ar + Ct{é <‘If(5t) - UfO))‘/i(Z)
_%85@(&) _ v§0)>(%(1))2}dt+ z% . aw,,
Vi =0



Here, the derivative of a Dirac delta function can be evaluated by approximating
the delta function as a normal density function with a small variance, or using the
integration-by-parts formula if possible. For the details of calculation, see the later
sections treating numerical examples. After integration, we obtain

u

T
v = -3 / QuE |3, Co(W(S,) = VIOV
t

dl

T
1
48 [ duB (510500005 - VOVPPIE]  3as)
t
Let us compress a convoluted expectation as before. Let us denote

XZ(;”) = exp (/ )\udu> Ve (3.19)
t
and continue to use the simplified notations:

0(t) = 0((S;) — v)”) (3.20)
5(t) = 5(0(S,) — v\ (3.21)

Then, (3.18) is equivalent to
~ ~ ~ 1 s
AV = (s + 2V ds + A Cou {05V = S00(5) VD2 hds + el ez aw,

S

with XA/t,T =0, thus

T
s = ]_
VO =B | [ et 8 {5V + Jos(slVI P fas

t

d
_ — [ rudu A . (2) 1 (1)12

=1 onE | 1 <ne Ct,n{ o(m)Vy” + 265(71)[‘/71 7| Fe

(3.22)

Borrowing the idea from McKean [27] and use the tower property of iterated expec-
tations, we finally obtain

— [ rudu ~ ~
‘/;(3) - 1{T1>t}]E []‘{‘F1<‘l'2<7'3<T}6 Ji ¢ Ct77'15(7_1)07'1,7'25(7_2)07'2,730(7_3)‘ ‘/—_;f}
2 T
+1{7—1>t}E

1 T Y ~ (p) Y
1{7’1<T}§€ ftlruduct,Tla(S(Tl)H {1{7'1<T2<p)<T}6 f7'12 TudUCTl,Tép)9<T2(p))}|E]

p=1

(3.23)

with the ¢-th jump time of the Poisson process denoted by 7;.

In (3.23), p = {1,2} indicates one of the two particle groups. In both of the
groups, the relevant state variables (or particles) follow the common diffusion dy-
namics ( those specified by BS or Heston models, for example) but those belong to

9



different groups are independent each other, ie, driven by the two independent set
of Brownian motions. This particle representation compresses (E[ - |F,])? into a
single expectation operation.

More concretely, for the evaluation of the second line, we use the branching dif-
fusion method of McKean. For a each path of simulation, we
(1): update the diffusion process of the underlyings X = {S,r,y,0,---} in a stan-
dard way.
(2): do Poisson draw with intensity A at each step.
(3): if it draws a ”"jump” (or particles interact) at 73 < 7', then the path yields the
two identical copies of particles {X,},=12 of the underlying states as its offspring,
which continue to evolve according to the identical diffusion equations but driven
by the two independent set of Brownian motions.
(4): for each particle group, we continue the Poisson draw of the second interaction
until the maturity.
(5): finally, extract the following term:

~

2
1 _ [T r uA — Tpr U
Lnaryge # 7 Cor00(n) [[ Lnarpenye 700 p0(e) - (3.24)

T1,To
p=1

where 74 is the second interaction time of each particle group.
(6): Repeat the procedures (1-5) and take the average of the values gathered in (5).

3.5 4th order

We can continue the expansion to an arbitrary higher order. In the 4th order, we
have

v = Ve + ¢ {28 — o) VO] = as(w(s) — o) V] V)
+3(w(S) = o) [V }dt + 2 - awy
vV =0

and hence

T
o _5t/ E{ ;1%(]“826(\1/(&)—vif’))[Vu(”}g
t ]

]-"t} du
+6, / CE[8,1CL08(8(5.) — o) [VIV] [Vi] | £ de

T
4, / E (871 Cud(W(S,) — vV 7] du (3.25)

10



Using the similar notations as in the previous sections, one can show that
~ N ~ 1 .
AV = (rg+ 2)Vds + 2, {562&8)[%(“]3 IOIAIAIES 6<s>v;3>} ds
Feli Mudu ZO) gy, (3.26)
and hence

T
ViV =E { / e firuthdey G {—562&8)[%(”]3 +08(s) VIV - 5(s>[v<3>1} ds
, |

7
1
3!

T2

= Lo E {1{TI<T}€_ JitredsC { 0*6(r) VIV + 08 (n) [V, V][VD] = 5(71)[‘/7(13)]}’ ft}
Using the tower property and particle representation, the above result can be
expanded as

3 (p)
1 _ rods A — (2 ryds A
Vt(4) _ _1{T1>t}E 1{71<T}§€ [ red Ct,nazé(ﬁ) H {1{T1< (p)<T}e 72 rad 07_177_2(;0)9(7—2(17))}

T
p=1

) p=1
s v
1, orye St rsd Ct.r, 00(11) {1{T1<7_2(p)<T}€ J72 rsd CTI’TQ(P)G(TQ(Z)))}

2 <73

P (o)A o\
— [ rsds p p
X {1{T1<T(p> #) oy € I C w1 )C w (T )}

+1{71<T2<T3<T4<T}€_ U TSdsé\t,ﬁ5<7—1)67'1,T25<7—2)07'2,T35<T3)CT3,T40(T4)
1 — [T T S ~ ~
+]-{7'1 <m2<T} 56 ft *red Ct,ﬁ(S(Tl)Cn T2 85(7_2)

2 (p)
- 3 Ts SA
<]1 {1{72<T§p)<T}6 b Cm,nf”)e(ép))}‘ ft}
p=1

(3.27)

4 Numerical Examples

This section demonstrates the validity of our method proposed in the previous sec-
tion through numerical experiments.

4.1 Example 1: Black-Scholes model

The first example is taken from Black-Scholes model:

where 7,y and o are all nonnegative constants. We calculate the values up to the
fourth order terms based on our scheme derived as (3.11), (3.17), (3.23) and (3.27)

11



with 10 million trials in Monte Carlo simulation. Here, we adopt the values reported
in [20] as benchmarks. In particular, difficulty arises in differentiations up to the
second order of the delta functions required for evaluation of the third (3.23) as well
as the fourth (3.27) order terms. Since the density function in Black-Scholes model
is explicitly known, we are able to apply integration by parts (IBP) for computation
of these terms in order to avoid differentiation of the delta functions. Moreover, we
approximate each delta function by a normal density function with mean zero and
a certain variance, which enables direct evaluation of the expectation.

As for the third order term, consulting the results based on IBP, we are capable
of determining an appropriate size of the variance for each normal density applied
in the approximation of a delta function. Unfortunately, however, this IBP method
does not yield stable results for some cases in computing the fourth-order term.
It is clear that we want to use a small enough variance for the normal density so
that it is a reasonable approximation of the delta function. On the other hand, too
small variance increases the variation (dispersion) of simulation result. Therefore,
we change the variance from some large value to a smaller one gradually for a given
number of simulation paths and picks up the smallest value beyond which the vari-
ation (dispersion) starts to increase. This scheme can be applied to general cases
where the density functions of the underlying models are not explicitly available.
In fact, we adopt this approach for the numerical example for the Heston model in
the next subsection 3. Of course, there is no guarantee that the choice of variance
that gives the smallest dispersion in simulation also yields the smallest bias in the
numerical result. However, the numerical result suggests that the method produces
accurate enough approximation for practical use given a reasonable number of sim-
ulation paths. Note here that the large number of paths used in this example is to
confirm the convergence of higher order expansions. For practical pricing purpose,
as can be seen in the following example of Heston model, there is no need to run
such a large number of simulation trials.

Table 1 presents the result for American put options with 7' = 3, K = 100,
o = 0.2 and r = 0.08, which confirms that the error ratios become improved in
the results up to the third or the fourth order comparing with those up to the first
and the second orders. In total, the approximations up to the fourth order provide
the most precise ones in terms of the error ratios. Note also that for the dividend
rate y = 0.12 and 0.07, adding the fourth order term to the third one makes the
accuracies of the approximations improved, while for y = 0.04 and 0.00, it makes
the accuracies worse in three and four out of the five cases, respectively. Table 2
(T'=3,K = 100) and Table 3 (T" = 0.5, K = 100, = 0.03,y = 0.07) present the
results for American call options, which shows the error ratios become smaller by

3Notice that there is no need to use unnecessarily small variance for the approximation of delta
function. Intuitively speaking, the delta function within the expectation operation extracts the
density where its argument vanishes. Thus, as long as the density functions of the underlyings do
not change significantly within a given range, one can use it as a variance of the normal density
function as an approximation of the corresponding delta function.

12



adding the third or/and fourth order terms.

4.2 Example 2: Heston model

The next example takes Heston model (4.2):
dSy = (r—y)Sidt + Si/ve - dWhy (4.2)
dvy = &0 —v)dt +nyvi(pdWiy + /1 — p2dWay) 3 vy = 0 (4.3)

where £, i and 6 are positive constants such that £n > 62/2 and Wi ; L Wy ;. Then, we
compute the approximate values for American put prices (7" = 0.25, 0.5, K = 100,
r =005 vy=0n=01 &= 30,0 = 0.04) up to the third order based on
our scheme, (3.11), (3.17) and (3.23) with 50,000 trials in Monte Carlo simulation.
Here, we adopt [1] as the benchmark values, in which a two-dimensional tree with
two hundred time steps and a Control Variate technique is applied. Moreover, an
asymptotic expansion method, particularly, the equation appearing in p.113 of [34]
is used for computation of European option prices, that is, O-th order v(®,

Table 4 demonstrates that our method works effectively in the Heston model,
which suggests its applicability to the pricing problem of American options for other
multi-dimensional models, too. The numerical result shows that the expansion up
to the third order improves the accuracies in most of the cases. For the choice of the
normal density as a approximate delta function, we have used the variance found
to work well in the previous BS model. In the case where it produces too much
dispersion in simulation, we have applied the general methodology explained in the
previous subsection to pick up an appropriate variance. The example shows that
the relatively small number of simulation trials is enough to obtain a reasonable
accuracy for the practical use. In Table 5, we have given the numerical results with
larger number of simulations 500,000 for the same set of American options with
T = 0.5 in Table 4. Although the improvement of accuracy from the second to the
third order approximation becomes more robust in this case, one can observe that
the size of the change in option prices is rather small.

Remark:

Although higher order integration is required, the direct evaluation of (3.13) ( and
corresponding expressions in other orders ) is also possible once we know the transi-
tion density of the underlying states. For the diffusion models, it is always possible
to obtain approximation using the asymptotic expansion [32]. If there exists effi-
cient enough integration technique, such as Gaussian quadrature and its extension,
it could provide another pricing technique. In fact, in BS model, we have compared
this semi-analytic results (by brute force integration within +5-sigma range and
using a normal density function with variance of 1bp of the stock process at each
time as an approximation for the delta function) to those obtained from the particle
method up to the second order terms. We confirmed the consistency between their
numerical results.

13



5 Conclusions

This paper proposed a new calculation technique for American options in an FBSDE
framework. The well-known decomposition of an American option price with that
of the corresponding Furopean option and additional early exercise premium can
be written in a form of a decoupled non-linear FBSDE. We have used the recently
proposed perturbation technique of FBSDE with an interacting particle method to
obtain numerical results. We have tested the effectiveness of our approximation by
comparing the numerical results to those obtained from existing tree algorithms.
Although there remains some subtlety for choosing an appropriate variance for the
normal density function as a proxy of the Dirac delta function, the proposed method
for the variance choice yields accurate enough approximations for BS as well as
Heston models. In the paper, we could only test a narrow range of parameters
with relatively short expiries of options due to the limitation of existing benchmark
results. However, the results are quite encouraging to suggest that our perturbation
technique combined with an interacting particle method can be applied to much
broader range of models and parameters.
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Table 1: American Puts (T'= 3, K = 100,0 = 0.2, = 0.08)

So | Benchmark Oth 1st 2nd 3rd 4th
y=0.12 | 80 25.658 24777 25.829 25.854 25.799 25.739
90 20.083 19.620 20.174 20.187 20.158 20.131
100 15.498 15.252 15.546 15.553 15.538 15.518
110 11.803 11.671 11.830 11.834 11.826 11.822
120 8.886 8.814 8.900 8.902 8.897 8.894
y=10.08 | 80 22.205 19.525 23.553 22.847 22.265 22.194
90 16.207 14.676 16.982 16.522 16.372 16.316
100 11.704 10.817 12.151 11.885 11.800 11.735
110 8.367 7.847  8.629  8.473  8.424  8.409
120 5.930 5.622  6.081 5.989  5.962  5.951
y=10.04 | 80 20.350 14.589 23.683 22.236 21.450 20.348
90 13.497 10.326  16.120 13.774 13.573 13.825
100 8.944 7.168 10.390 9.132  9.070  8.706
110 5.912 4.902 6.720 5992 5957  5.882
120 3.898 3.315 4.360 3.953  3.928  3.827
y=0.00 | 80 20.000 10.253 24.338 22.044 20.892 20.063
90 11.697 6.783 16.534 12.950 11.525 11.959
100 6.932 4.406  9.590 6.719 7.004  6.697
110 4.155 2.826  5.529  4.066 4.198  4.286
120 2.510 1.797  3.232 2457 2506  2.582

Number of simulations = 10,000,000, A = 2, Number of time steps = 6000

Error ratio

So | Benchmark Oth 1st 2nd 3rd 4th
y=0.12 | 80 25.658 -3.434%  0.666%  0.764%  0.550%  0.316%
90 20.083 -2.305%  0.453%  0.518%  0.373%  0.239%
100 15.498 -1.587%  0.310%  0.355%  0.258%  0.129%
110 11.803 -1.118% 0.229%  0.263%  0.195% 0.161%
120 8.886 -0.810%  0.158%  0.180%  0.124%  0.090%
y=0.08 | 80 22.205 -12.069%  6.071%  2.891%  0.270%  -0.050%
90 16.207 -9.447%  4.782% 1.944%  1.018%  0.673%
100 11.704 -7.579%  3.819% 1.546%  0.820%  0.265%
110 8.367 -6.215%  3.131% 1.267%  0.681%  0.502%
120 5.93 -5.194%  2.546%  0.995%  0.540%  0.354%
y=0.04 | 80 20.35 -28.310% 16.378%  9.268%  5.405%  -0.010%
90 13.497 -23.494% 19.434%  2.052%  0.563% = 2.430%
100 8.944 -19.857% 16.167%  2.102%  1.409% -2.661%
110 5.912 -17.084% 13.667% 1.353%  0.761% -0.507%
120 3.898 -14.956% 11.852%  1.411%  0.770% -1.821%
y=0.00 | 80 20 -48.735%  21.690% 10.220%  4.460%  0.315%
90 11.697 -42.011%  41.352% 10.712% -1.470%  2.240%
100 6.932 -36.440% 38.344% -3.073%  1.039% -3.390%
110 4.155 -31.986% 33.069% -2.142%  1.035%  3.153%
120 2.51 -28.406% 28.765% -2.112% -0.159%  2.869%

error ratio = 100*(value-benchmark) /benchmark
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Table 2: American Calls (7' = 3, K = 100)

So | Benchmark Oth 1st 2nd 3rd 4th
oc=0.2 80 2.580 2.241 2.847  2.612 2.602 2.566
r=0.03 | 90 5.167 4.355 5.822 5.240 5.199 5.140
y = 0.07 | 100 9.066 7.386  10.453 9.204  9.121 8.877
110 14.443 11.331 17.036 14.763 14.566 14.322
120 21.414 16.117 25.307 23.173 22.023 21.044
c=04 80 11.326 10.309 11.998 11475 11.399 11.373
r=20.03 | 90 15.722 14.162 16.769 15.975 15.858 15.770
y =0.07 | 100 20.793 18.532 22318 21.132 20.948 20.851
110 26.494 23.363 28.609 26.902 26.672 26.536
120 32.781 28.598 35.599 33.390 33.000 32.681
oc=20.3 80 5.518 4.644 6.254  5.564 5.562 5.511
r=0.00 | 90 8.842 7.269 10.197 8.951 8.914  8.763
y =0.07 | 100 13.142 10.542 15407 13.285 13.178 12.989
110 18.453 14.430 22.004 18.655 18.726 18.144
120 24.791 18.882 30.019 25.587 23.554 24.215
oc=0.3 80 12.146 12.133 12,148 12.148 12.147 12.146
r=0.07 | 90 17.368 17.343 17.373 17374 17.372 17.372
y =0.03 | 100 23.348 23.301 23.359 23.360 23.357 23.355
110 29.964 29.882 29.980 29.982 29.977 29.976
120 37.104 36.972 37.130 37.134 37.125 37.120

Number of simulations = 10,000,000, A = 2, Number of time steps = 6000

Error ratio

So | Benchmark Oth 1st 2nd 3rd 4th
oc=0.2 80 2.58 -13.140% 10.349% 1.240% 0.853% -0.543%
r=0.03 | 90 5.167 -15.715%  12.677% 1.413%  0.619% -0.523%
y = 0.07 | 100 9.066 -18.531% 15.299% 1.522%  0.607% -2.085%
110 14.443 -21.547% 17.953% 2.216%  0.852%  -0.838%
120 21.414 -24.736% 18.180% 8.214%  2.844% -1.728%
oc=04 80 11.326 -8.979%  5.933% 1.316% 0.645%  0.415%
r=0.03 | 90 15.722 -9.922%  6.659% 1.609% 0.865%  0.305%
y = 0.07 | 100 20.793 -10.874%  7.334%  1.630% 0.745%  0.279%
110 26.494 -11.818%  7.983%  1.540% 0.672%  0.159%
120 32.781 -12.760%  8.596%  1.858%  0.668%  -0.305%
oc=0.3 80 5.518 -15.839% 13.338% 0.834% 0.797% -0.127%
r=0.00 | 90 8.842 -17.790% 15.325% 1.233%  0.814%  -0.893%
y = 0.07 | 100 13.142 -19.784% 17.235% 1.088%  0.274% -1.164%
110 18.453 -21.801% 19.243% 1.095%  1.479% -1.675%
120 24.791 -23.835% 21.088% 3.211% -4.990% -2.323%
oc=0.3 80 12.146 -0.107%  0.016% 0.016% 0.008%  0.000%
r=0.07 | 90 17.368 -0.144%  0.029%  0.035% 0.023%  0.023%
y =0.03 | 100 23.348 -0.201%  0.047%  0.051% 0.039%  0.030%
110 29.964 -0.274%  0.053% 0.060% 0.043%  0.040%
120 37.104 -0.356%  0.070% 0.081% 0.057%  0.043%

error ratio = 100*(value-benchmark) /benchmark
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Table 3: American Calls (T'= 0.5, K = 100,r = 0.03,y = 0.07)
So | Benchmark Oth 1st 2nd 3rd 4th

c=02| 80 0.219 0.215 0.222  0.220 0.220  0.220
90 1.386 1.345 1.413 1.391 1.389 1.389
100 4.783 4.578  4.920 4.807 4.795  4.791
110 11.098 10.421 11.569 11.172 11.137 11.221
120 20.000 18.302 20.536 20.350 20.238 20.092

oc=04| 80 2.689 2.651 2.710 2.695 2.692  2.693
90 5.722 5.622  5.778  5.736  5.729  5.730
100 10.239 10.021 10.365 10.272 10.257 10.261
110 16.181 15.768 16.424 16.241 16.214 16.232
120 23.360 22.650 23.778 23.459 23.411 23.395

Number of simulations = 10,000,000, A = 2, Number of time steps = 1000

Error ratio

Sy | Benchmark Oth 1st 2nd 3rd 4th
c=02| 80 0.219 -1.826% 1.370% 0.457% 0.457% 0.457%
90 1.386 -2.958% 1.948% 0.361% 0.216% 0.216%
100 4.783 -4.286% 2.864% 0.502% 0.251% 0.167%
110 11.098 -6.100% 4.244% 0.667% 0.351% 1.108%
120 20 -8.490% 2.680% 1.750% 1.190% 0.460%
c=0.41] 80 2.689 -1.413%  0.781% 0.223% 0.112%  0.149%
90 5.722 -1.748%  0.979% 0.245% 0.122%  0.140%
100 10.239 -2.129%  1.231%  0.322% 0.176% 0.215%
110 16.181 -2.552%  1.502% 0.371% 0.204% 0.315%
120 23.36 -3.039%  1.789%  0.424% 0.218% 0.150%

error ratio = 100*(value-benchmark) /benchmark
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Table 4: American Puts in Heston model (K = 100,r = 0.05,y = 0,7 = 0.1,£ =

3.0,0 = 0.04)
T=0.25
So | Benchmark Oth 1st 2nd 3rd ER(0th) ER(Ist) ER(2nd) ER(3rd)
p=-0.11] 90 10.171 9.643  10.507 10.293 10.141 | -5.18 % 3.31% 1.20 % -0.29 %
c=02 100 3.475 3.374 3.556 3.486 3.481 -2.89 % 2.35 % 0.34 % 0.19 %
110 0.774 0.758 0.783 0.775 0.775 -2.03 % 1.21 % 0.18 % 0.14 %
p=-0.71 90 10.121 9.573  10.455 10.253 10.101 | -5.41 % 3.31% 1.31 % -0.19 %
o=0.2 100 3.481 3.383 3.559 3.493 3.487 -2.81 % 2.24 % 0.36 % 0.18 %
110 0.842 0.829 0.854 0.845 0.845 -1.53 % 1.43 % 0.37 % 0.41 %
p=-0.1 90 12.182 11.896 12.347 12,190 12.173 -2.35 % 1.36 % 0.07 % -0.08 %
o=04 100 6.496 6.379 6.572 6.504 6.501 -1.80 % 1.17 % 0.12 % 0.08 %
110 3.091 3.047 3.118 3.092 3.092 -1.43 % 0.85 % 0.03 % 0.02 %
p=-0.7 90 12.112 11.832  12.291 12.132 12.116 231 % 1.47 % 0.16 % 0.03 %
=04 100 6.490 6.377 6.565 6.505 6.503 -1.74 % 1.16 % 0.23 % 0.20 %
110 3.146 3.104 3.180 3.157 3.157 -1.31 % 1.11 % 0.36 % 0.37 %
Number of simulations = 50,000, A = 4, Number of time steps = 2000
ER = 100*(value-benchmark)/benchmark
T=0.5
So | Benchmark Oth 1st 2nd 3rd ER(0th) ER(1st) ER(2nd) ER(3rd)
p=—0.1 90 10.648 9.864 11.236  10.752  10.532 -7.36 % 5.53 % 0.98 % 1.09 %
oc=0.2 100 4.647 4.423 4.835 4.676 4.665 -4.83 % 4.04 % 0.61 % 0.38 %
110 1.683 1.624 1.733 1.692 1.693 -3.50 % 2.94 % 0.55 % 0.55 %
p=-0.7 1 90 10.564 9.766  11.183 10.688 10.490 | -7.55 % 5.87 % 1.18 % 0.70 %
oc=0.2 100 4.664 4.443 4.844 4.684 4.678 -4.73 % 3.88 % 0.43 % 0.31 %
110 1.787 1.732 1.837 1.798 1.797 -3.08 % 2.79 % 0.61 % 0.52 %
p=-0.11] 90 13.314 12.712  13.664 13.375 13.283 | -4.52 % 2.63 % 0.46 % 0.23 %
c=04 100 8.008 7.705 8.207 8.070 8.021 -3.718 % 2.48 % 0.77 % 0.16 %
110 4.545 4.399 4.642 4.567 4.550 -3.21 % 212 % 0.48 % 0.09 %
p=-0.7 ] 90 13.217 12.625 13.602 13.314 13.229 | -4.48 % 291 % 0.73 % 0.09 %
oc=04 100 8.000 7.705 8.196 8.048 8.012 -3.69 % 2.46 % 0.60 % 0.15 %
110 4.620 4.479 4.709 4.627 4.612 -3.04 % 1.93 % 0.16 % 0.17 %

Number of simulations = 50,000, A = 8, Number of time steps = 2000
ER = 100*(value-benchmark)/benchmark

Table 5: The same setup with 7" = 0.5 in Table 4 but using larger number of

simulation.
T=0.5
So | Benchmark Oth 1st 2nd 3rd ER(0th) ER(Ist) ER(2nd) ER(3rd)
p=—0.1 90 10.648 9.864 11.259  10.758 10.540 | -7.36 % 5.74 % 1.03 % -1.01 %
o=0.2 100 4.647 4.423 4.831 4.674 4.653 -4.83 % 3.95 % 0.57 % 0.11 %
110 1.683 1.624 1.729 1.688 1.683 -3.50 % 2.70 % 0.28 % -0.02 %
p=-07 90 10.564 9.766 11.173  10.696  10.457 | -7.55 % 5.77 % 1.26 % -1.01 %
o=0.2 100 4.664 4.443 4.841 4.688 4.672 -4.73 % 3.81 % 0.53 % 0.19 %
110 1.787 1.732 1.839 1.800 1.795 -3.08 % 2.86 % 0.71 % 0.44 %
p=—0.1 90 13.314 12.712  13.676 13.384 13.311 -4.52 % 2.72 % 0.53 % -0.02 %
=04 100 8.008 7.705 8.202 8.043 8.007 -3.718 % 241 % 0.44 % -0.01 %
110 4.545 4.399 4.643 4.561 4.546 -3.21 % 2.14 % 0.34 % 0.02 %
p=-07 90 13.217 12.625 13.582 13.292 13.216 -4.48 % 2.76 % 0.57 % -0.01 %
=04 100 8.000 7.705 8.194 8.039 8.003 -3.69 % 2.42 % 0.49 % 0.04 %
110 4.620 4.479 4.718 4.640 4.625 -3.04 % 212 % 0.43 % 0.10 %

Number of simulations = 500,000, A = 8, Number of time steps = 2000

ER = 100*(value-benchmark)/benchmark
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