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Abstract

The daily return and the realized volatility are simultaneously modeled in the stochastic volatility

model with leverage and long memory. The dependent variable in the stochastic volatility model

is the logarithm of the squared return, and its error distribution is approximated by a mixture of

normals. In addition, we incorporate the logarithm of the realized volatility into the measurement

equation, assuming that the latent log volatility follows an Autoregressive Fractionally Integrated

Moving Average (ARFIMA) process to describe its long memory property. Using a state space

representation, we propose an e�cient Bayesian estimation method implemented using Markov chain

Monte Carlo method (MCMC). Model comparisons are performed based on the marginal likelihood,

and the volatility forecasting performances are investigated using S&P500 stock index returns.

Key word: ARFIMA; leverage e�ect; long memory; Markov Chain Monte Carlo; Mixture

sampler; Realized volatility; Realized stochastic volatility model; State space model.

1 Introduction

The realized volatility is de�ned as the sum of the squared intraday returns over a speci�ed

time interval such as a day (e.g., Andersen and Bollerslev (1998) and Barndor�-Nielsen and

Shephard (2001)). This measure would provide a consistent estimator of the latent volatility

under the ideal market assumption. The theory of the realized volatility is discussed in

Barndor�-Nielsen and Shephard (2002) and Meddahi (2002), and there have been extensive

studies on its time series structure and performance in volatility prediction (e.g., Andersen

et al. (2003), Andersen et al. (2007), Andersen et al. (2004), Koopman et al. (2005) and

Maheu and McCurdy (2007)).

In the real market, however, two major problems arise in measuring the daily realized

volatility using high frequency return data: (1) the presence of non-trading hours and (2)
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market microstructure noise in transaction prices. The �rst problem arises because the stock

market is usually open for only part of the day. For example, the Tokyo Stock Exchange

(TSE) is open for 4.5 hours a day and there is a lunch break. If we calculate the realized

volatility as the sum of the squared intraday returns when the market is open, we may

underestimate the latent one-da y volatility. To avoid this underestimation, Hansen and

Lunde (2005) proposed a scale realized volatility that adjusts the realized volatility by the

ratio of the variance of the daily return to the mean of the realized volatility.

Market microstructure noise has various causes, including bid-ask spread and variation in

trade sizes (see O'Hara (1995) and Hasbrouck (2007) for details) and can cause the realized

volatility to be a biased estimator of the latent volatility. As the sample time interval

approaches zero, the bias owing to microstructure noise is expected to increase signi�cantly.

Aït-Sahalia et al. (2005) and Bandi and Russell (2008) propose a procedure to determine

the optimal sampling interval, and Zhang et al. (2005) propose a bias adjusting method by

assigning di�erent weights to the realized volatilities calculated using di�erent time intervals.

In addition, Barndor�-Nielsen et al. (2008) derive the Realized Kernel (RK) as a consistent

estimator of the latent volatility using high frequency data with noise.

Whereas, the intraday returns are heavily contaminated by microstructure noise, the

daily returns are less subject to the noise. The daily returns could, therefore, provide ad-

ditional information to eliminate the bias owing to microstructure noise and non-trading

hours simultaneously. Takahashi et al. (2009) propose an extension of the stochastic volatil-

ity (SV) model to include such simultaneous modeling of the daily returns and realized

volatility known as the Realized Stochastic Volatility (RSV) model. Hansen et al. (2011)

implement a similar simultaneous modeling approach within the GARCH framework, called

the Realized GARCH model, and demonstrate the superior, performance of the proposed

model compared to GARCH (using daily returns only). Maheu and McCurdy (2011) con-

sider the simultaneous modeling of S&P500 and IBM data and show that this approach

outperforms the conventional EGARCH model.

Two important properties of the stochastic volatility and realized volatility have been

discussed in previous empirical studies: (i) the leverage e�ect and (ii) long memory. The

leverage e�ect refers to the correlation between the return at time t and the logarithm of

the volatility at time t+1 and has been well established in empirical studies of stock returns

(see, e.g., the survey by Shephard (2005)). To account for leverage e�ects, Melino and

Turnbull (1990), for example, use the GMM (generalised methods of moments), and Harvey

and Shephard (1996) use the QML (quasi-maximum likelihood method) with the Kalman

�lter for their estimation. Bayesian estimations have been described in various studies (e.g.,

Jacquier et al. (2004), Omori et al. (2007), Omori and Watanabe (2008)). Takahashi et al.

(2009) further propose a Bayesian estimation method for the RSV model including the

leverage e�ect.

The long memory property of the realized volatility has also been investigated in many
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empirical studies using the high frequency data (e.g., Andersen, Bollerslev, Diebold, and

Ebens (2001)) and Raggi and Bordignon (2012) modeled the realized volatility with long

memory and Markov switching dynamics using a Bayesian estimation method for the state

space model. The SV model with long memory is discussed in Breidt et al. (1998) using

the frequency domain approach (spectral likelihood estimator) and in So (2002) using a

Bayesian approach with the state space model (So (1999)). Ruiz and Veiga (2008) consider

both the leverage e�ect and the long memory property of the volatility in the SV model (but

without using the realized volatility), and propose an e�cient method based on moments,

in which they compare its various moments with those of FIEGARCH models.

This paper extends the RSV model by incorporating both the leverage e�ects in the SV

model and the long memory property of the realized volatility, and proposes a highly e�cient

Bayesian estimation method with a Markov chain Monte Carlo (MCMC) implementation.

Instead of the block sampler used in Takahashi et al. (2009), we employ the mixture sampler,

a highly e�cient Bayesian estimation method proposed by Kim et al. (1998) and Omori et al.

(2007). In this methods, we take the logarithm of the squared asset return as a dependent

variable to obtain linear measurement equations and approximate the error distribution by a

mixture of normal distributions. In addition to the transformed stochastic volatility model,

we assume an Autoregressive Fractionally Integrated Moving Average (ARFIMA) process

for the logarithm of the log volatility to describe the long memory property of the realized

volatility.

The paper is organized as follows. In Section 2, we introduce our model and its mo-

tivation. Section 3 describes the Bayesian estimation procedure based on the state space

representation and Markov chain Monte Carlo methods. We illustrate our proposed method

through numerical examples using simulated data in Section 4. In Section 5, we present

our empirical studies using S&P500 realized volatility and realized kernels, perform model

comparisons based on the marginal likelihood, and investigate the volatility forecast perfor-

mances. We conclude in Section 6.
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2 Realized stochastic volatility with leverage and long mem-

ory

2.1 Realized stochastic volatility with leverage

The simple stochastic volatility model with leverage is given by

y1t = exp(ht/2)ϵt, t = 1, 2, . . . , n, (1)

ht+1 = µ+ ϕ(ht − µ) + ηt, t = 1, . . . , n, (2)(
ϵt

ηt

)
∼ i.i.d. N

((
0

0

)
,

(
1 ρση

ρση σ2η

))
, |ϕ| < 1, (3)

h1 ∼ (µ, σ2/(1− ϕ2)), (4)

where y1t is a stock return at time t. The parameter ρ measures the correlation between

ϵt and ηt and, when negative, captures the increase in volatility following a drop in equity

returns (e.g., Black (1976), Nelson (1991), Yu (2005)). The volatility clustering is described

by the �rst order autoregressive process (2) with mean µ for the ht+1 (the log volatility at

time t+ 1). Because it is di�cult to evaluate the likelihood function using the high dimen-

sional numerical integration, Bayesian e�cient estimation methods have been proposed in

previous studies (e.g., Omori et al. (2007), Omori and Watanabe (2008)).

Furthermore, to incorporate the information contained in the realized volatility, Taka-

hashi et al. (2009) propose simultaneous modeling of the daily returns and realized volatility

by introducing an additional measurement equation

y2t = ξ + ht + ut, t = 1, 2, . . . , n, ut ∼ i.i.d. N(0, σ2u), (5)

where y2t is the logarithm of the realized volatility at time t, and ut is assumed to be indepen-

dent of ϵt and ηt. This model makes it possible to use the realized volatility calculated from

all available returns without any additional adjustment such as selecting the optimal sam-

pling frequency to compute the realized volatility. The bias adjustment term, ξ, accounts

for the e�ects of the market microstructure noise and non-trading hours simultaneously.

When it is negative (positive), the realized volatility is considered to underestimate (over-

estimate) the latent volatility. We refer to this model as the Realized Stochastic Volatility

(RSV) model (e.g., Koopman and Scharth (2011), Dobrev and Szerszen (2010)). Although

we could extend the model by replacing ht with ψht in (5), where ψ is another adjustment

coe�cient, this extension does not necessarily improve the model �t in the empirical studies

in Section 5.3. We therefore adopt the measurement equation (5) for the logarithm of the

realized volatility by setting ψ = 1.

Takahashi et al. (2009) compared the simultaneous models using naive and scaled realized

volatilities based on the marginal likelihood, and demonstrated that the e�ect of non-trading

hours is more important than that of microstructure noise.
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2.2 The long memory property of the realized volatility

In empirical studies, the realized volatilities often display long memory properties, and

the ARFIMA process is frequently used to express this characteristic (Andersen et al.

(2003), Giot and Laurent (2004), Koopman et al. (2005), Raggi and Bordignon (2012)).

The ARFIMA(p,d,q) process is de�ned by

(1− L)dΦ(L)(ht+1 − µ) = Θ(L)ηt, t = 0, 1, . . . , n, (6)

where ηt denotes white noise, L is the lag operator such that Liht = ht−i, Φ(L) = 1 −
ϕ1L − . . . − ϕpLp, and Θ(L) = 1 − θ1L − . . . − θqLq. When d = 1, it is referred to as the

ARIMA(p,1,q) process and is nonstationary. We observe that in general

(1− L)d = 1 +
∞∑
j=1

d(d− 1) · · · (d− j + 1)

j!
(−L)j = 1 +

∞∑
j=1

γjL
j , (7)

γ0 = 1, γj+1 =
j − d
j + 1

γj , j ≥ 0. (8)

We assume that 0 < d < 1 because the estimates of the memory parameter, d, are typically

found to fall between 0 and 1 in empirical studies of the realized volatilities. The process is

stationary if d < 0.5 and nonstationary if d ≥ 0.5.

Long memory stochastic volatility models where the latent log volatility is assumed to

follow an ARFIMA process have also been discussed in several studies without explicitly

utilizing the information contained in the realized volatilities (e.g., Breidt et al. (1998), So

(2002), Ruiz and Veiga (2008)). Koopman and Scharth (2011) implement a superposition

model in the RSV framework, describing the long range behavior of the log volatility process.

However, in this paper, we consider a straightforward description of the long range behavior

by adapting the ARFIMA process directly in the RSV framework. To incorporate the long

memory property of the realized volatility into the stochastic volatility model, we consider

the following state space model, referred to as the Realized Stochastic Volatility with Long

Memory model (RSV-LM(p,d,q)):

y1t = exp(ht/2)ϵt, t = 1, 2, . . . , n, (9)

y2t = ξ + ht + ut, t = 1, 2, . . . , n, (10)

(1− L)dΦ(L)(ht+1 − µ) = Θ(L)ηt, t = 0, 1, . . . , n, (11)ϵtut
ηt

 ∼ i.i.d. N


0

0

0

 ,

 1 0 ρση

0 σ2u 0

ρση 0 σ2η


 . (12)

In this paper, we focus on three speci�c cases of appearing frequently in empirical studies:

RSV-LM(0,d,0), RSV-LM(0,d,1) and RSV-LM(1,d,0). We therefore assume that Φ(L) = 1−
ϕL andΘ(L) = 1−θL, where |ϕ| < 1 and |θ| < 1. We assume that ut is independent of (ϵt, ηt)
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because the measurement error is dominated by the computing the realized volatilities.

However, it is straightforward to extend our model to incorporate a correlation between ut

and the other error terms.

3 Highly e�cient Bayesian estimation

This section describes the highly e�cient Bayesian estimation of the parameter using the

MCMC method. Following the mixture sampler approach (e.g., Kim et al. (1998), Omori

et al. (2007)), we �rst represent the RSV-LM model in linear Gaussian state space form to

utilize e�cient estimation procedures such as �ltering, smoothing and prediction.

3.1 The e�cient auxiliary mixture sampler

The mixture sampler proposed by Kim et al. (1998) and Omori et al. (2007) is well-known

as an e�cient MCMC sampling method for SV models. Its basic idea is to transform the

nonlinear measurement equation into a linear equation and to approximate the distribution

of the non-normal disturbances by a mixture of normals. We �rst transform y1t to (y∗1t, δt)

in Equation (9) as follows.

y∗1t = log y21t = ht + ϵ∗t , ϵ∗t = log ϵ2t , (13)

δt = I(y1t ≥ 0)− I(y1t < 0), (14)

for t = 1, 2, . . . , n. Because ϵ∗t is the logarithm of the chi-square random variable with one

degree of freedom, its probability density is given by

f(ϵ∗t ) =
1√
2π

exp

(
ϵ∗t − exp(ϵ∗t )

2

)
. (15)

We approximate this density by mixtures of normal densities as follows:

g(ϵ∗t ) =
K∑
j=1

pjfN (ϵ∗t |mj , v
2
j ), (16)

where fN (ϵ∗t |m, v2) denotes the probability density of a normal distribution with mean m

and variance v2, N(m, v2). As the conditional distribution of ηt given ϵ
∗
t and δt is

ηt|ρ, ση, δt, ϵ∗t ∼ N(δtρσηexp(ϵ
∗
t /2), σ

2
η(1− ρ2)), (17)

where the mean is a nonlinear function of ϵ∗t , we furthermore employ a linear approximation

of exp(ϵ∗t /2). We therefore approximate the distribution of (ϵ2t , ηt) by a bivariate mixture

normal distribution given δt,

g(ϵ∗t , ηt|ρ, ση, δt) =
K∑
j=1

pjfN (ϵ∗t |mj , v
2
j )

× fN [ηt|δtρσηexp(mj/2){aj + bj(ϵ
∗
t −mj)}, σ2η(1− ρ2)]. (18)
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This approximation is generally quite accurate and there is little di�erence between the true

and approximated probability densities. Omori et al. (2007) propose the approximation

with K = 10 and provide their selected pj ≡ Pr(st = j) and mixture component parameters

(mj , vj , aj , bj) for j = 1, . . . , 10; we reproduced this parameter list in Table 1.

Table 1: The values of pj ,mj , v
2
j , aj , bj

j pj mj v2j aj bj

1 0.00609 1.92677 0.11265 1.01418 0.50710

2 0.04775 1.34744 0.17788 1.02248 0.51124

3 0.13057 0.73504 0.26768 1.03403 0.51701

4 0.20674 0.02266 0.40611 1.52070 0.52604

5 0.22715 -0.85173 0.62699 1.08153 0.54076

6 0.18842 -1.97278 0.98583 1.13114 0.56557

7 0.12047 -3.46788 1.57469 1.21754 0.60877

8 0.05591 -5.55246 2.54498 1.37454 0.68728

9 0.01575 -8.68384 4.16491 1.68327 0.84163

10 0.00115 -14.65000 7.33342 2.50097 1.25049

3.2 Linear Gaussian state space representation

Given s = {s1, . . . , sn}, we obtain a linear Gaussian measurement equation. Noting that

ht = E(ht|ht−1, ht−2, . . .) + ηt−1, we de�ne a dependent vector and a state vector,

y∗t =

(
y∗1t
y2t

)
, αt =



ηt−1

E(ht|ht−1, ht−2, . . .)

E(ht+1|ht−1, ht−2, . . .)
...

E(ht+M−1|ht−1, ht−2, . . .)


, (19)

so that ht is a sum of the �rst two elements of αt, Let 0k, 1l and Im denote a k × 1 zero

vector, a l × 1 vector with all elements equal to one, and an m×m identity matrix. Then,

using the MA representation of an ARFIMA process for the state equation based on the
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�nite truncation 1,

ht+1 = µ+Φ(L)−1(1− L)−dΘ(L)ηt

= µ+
∞∑
j=0

ψjηt−j

≈ µ+

M∑
j=0

ψjηt−j , ψ0 = 1, ψ ≡ (ψ1, . . . , ψM )′, (20)

we can represent the RSV-LM model as the following linear Gaussian state space model:

y∗t = Xtβ + Ztαt +Gtu
∗
t , t = 1, 2, . . . , n, (21)

αt+1 =Wtβ + Ttαt +Htu
∗
t , t = 0, 1, . . . , n− 1, (22)

α0 ≡ 0, u∗t ∼ i.i.d. N(03, I3), (23)

where

Xt =

(
mst 0 0

0 1 0

)
, β =

1

ξ

µ

 , Zt =

(
1 1 0′M−1

1 1 0′M−1

)
,

Wt =

(
δtρσηastexp(mst/2)

0M
0M+1

0M

1

)
, Tt =

 0

ψ
0M+1

0′M−1

IM−1

0′M−1

 ,

Gt =

(
vt 0 0

0 σu 0

)
, Ht =

(
δtρσηbstvstexp(mst/2) 0 ση

√
1− ρ2

0M 0M 0M

)
.

For the initial latent log volatility, h1, we assume that

W0 =

(
0M+1 0M+1

0

1M

)
, H0 =

(
0M+1 0M+1 ση1M+1

)
.

for simplicity. If ht follows an ARFIMA(1,d,0) process, then the coe�cient ψj is given by

ψi = ϕi + γ̃1ϕ
i−1 + . . .+ γ̃i−1ϕ+ γi, (24)

where

γ̃0 = 1, γ̃j+1 =
j + d

j + 1
γ̃j , j ≥ 0.

Conditional on s, we obtain the linear Gaussian state space representation, and can therefore

generate samples from the conditional posterior distributions using the simulation smoother

and augmented Kalman �lter (de Jong (1991)). As we shall see in the next subsection,

by integrating out the latent state variables and mean parameter µ using the augmented

Kalman �lter, we generate posterior samples in a highly e�cient way.
1The state equation expressed by the ARFIMA process contains in�nite past disturbance terms. Even

if we truncate it using M (≥
√
n) past disturbances to implement the maximum likelihood estimation, the

consistency and asymptotic normality of the maximum likelihood estimator are established for a stationary

ARFIMA process (Chan and Palma (1998)).
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3.3 MCMC implementation

Let s = {st}nt=1, y
∗ = {y∗t }nt=1, h = {ht}nt=0, δ = {δt}nt=1 and set the prior probability

densities π(ζ) and π(φ) for ζ = (ϕ, θ, σ2η, d, ρ, σ
2
u)

′ and φ = (ξ, µ)′. We draw samples from

the posterior distribution with probability density π(ζ, φ, h, s|y) using the MCMC technique.

We summarize the sampling steps as follows.

1. Set the initial value of ζ, φ, s.

2. Generate s|ζ, φ, h, y∗, δ.

3. Generate (ζ, φ, h)|s, y∗, δ.

(a) Generate ζ|s, y∗, δ.

(b) Generate φ|ζ, s, y∗, δ.

(c) Generate h|ζ, φ, s, y∗, δ.

4. Return to step 2.

We will describe each sampling step in detail below.

Generation of s. The posterior probability mass function of st given ζ, φ, h, y
∗, δ is given by

π(st = j|φ, ζ, h, y∗, δ) ∝

Pr(st = j)v−1
j exp

{
−(ϵ∗t −mj)

2

2v2j
− [ηt − δtρσηexp(mj/2){aj + bj(ϵ

∗
t −mj)}]2

2σ2η(1− ρ2)

}
where

ϵ∗t = y∗1t − ht, ηt = ht+1 − µ− ϕ(ht − µ).

We can generate a sample from this discrete distribution using the inverse distribution

method.

Generation of (ζ, φ, h). The conditional posterior probability density function of (ζ, φ, h) is

π(ζ, φ, h|s, y∗, δ) ∝ π(ζ|s, y∗, δ)π(φ|ζ, s, y∗, δ)π(h|φ, ζ, s, y∗, δ), (25)

where

π(ζ|s, y∗, δ) ∝ f(y∗|ζ, s, δ)π(ζ), (26)

and f is the conditional likelihood of the approximated model. We note that the conditional

posterior probability density π(ζ|s, y∗, δ) is marginalized over both h and φ. By implement-

ing the augmented Kalman Filter (de Jong (1991)), we can integrate out (h, φ) to obtain the

conditional likelihood f(y∗|ζ, s, δ) (see Appendix B for the details). Using this likelihood

and the prior probability density, we use the Metropolis-Hastings algorithm (MH, e.g., Chib

and Greenberg (1995)) to generate posterior samples of parameters as follows.
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(a) Generate ζ ∼ π(ζ|s, y∗, δ).

To generate ζ in the region R = {γ : |ϕ| < 1, |θ| < 1, σ2η > 0,−1/2 < d < 1, |ρ| < 1, σ2u >

0}, we consider the transformation ζ† = (log(1 + ϕ) − log(1 − ϕ), log(1 + θ) − log(1 −
θ), log(σ2η), log(1 + 2d)− log(1− d), log(1 + ρ)− log(1− ρ), log(σ2u))′. First we compute

the mode, ζ̂†, of the conditional posterior density of ζ†, π(ζ†|s, y∗, δ), numerically, and

then construct the proposal density based on the Taylor expansion around the mode:

log π(ζ†|s, y∗, δ) ≈ log π(ζ̂†|s, y∗, δ) + g
′

ζ̂†
(ζ† − ζ̂†) + 1

2
(ζ† − ζ̂†)′gζ̂†ζ̂†′(ζ

† − ζ̂†)

= const.− 1

2
(ζ† − µζ)

′
Σ−1
ζ (ζ† − µζ),

Σ−1
ζ = −gζ†ζ†′ , µζ = ζ̂† +Σζgζ† ,

where

gζ† ≡ d log π(ζ†|s, y∗, δ)
dζ†

∣∣∣∣
ζ†=ζ̂†

, gζ†ζ†′ ≡
d2 log π(ζ†|s, y∗, δ)

dζ†dζ†′

∣∣∣∣
ζ†=ζ̂†

.

We generate a candidate ζ† ∼ N(µζ ,Σζ) and conduct MH algorithm.

(b) Given ζ, generate φ = (ξ, µ)′ ∼ N(φ1, C1) where φ1 and C1 are de�ned in Appendix B.

(c) Given ζ and φ, generate h simultaneously using a simulation smoother by Durbin and

Koopman (2002)), which is known to be stable when the dimension of the state vector

is high. We generate state disturbances, {u∗t }, from the posterior distribution and

substitute them into the state equation to obtain h recursively.

4 Illustrative example using simulated data

To illustrate our proposed estimation method, we consider the RSV-LM (1,d,0) model with

the true parameters are set equal to

ϕ = 0.2, σ2η = σ2u = 0.16, d = 0.6,

ρ = −0.4 µ = 1, ξ = 0,

and generate 2,000 observations. As suggested by Kim et al. (1998) and Omori et al. (2007),

we take y∗1t = log(y21t + c) where c = 10−4 is the o�set used to handle very small values of

y21t. Let Beta(a,b) denote the beta distribution with parameters (a,b) and mean a/(a+ b),

and let IG(a,b) denote the inverse Gamma distribution with parameters (a,b) and mean

b/(a− 1). The prior densities are assumed to be as follows:

µ ∼ N(0, 1),
1 + ϕ

2
∼ Beta(20, 1.5), σ2η ∼ IG(5/2, 0.05/2)

ξ ∼ N(0, 1),
1 + ρ

2
∼ Beta(1, 1), σ2u ∼ IG(5/2, 0.05/2),

1 + 2d

3
∼ Beta(1, 1), (27)
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based on previous empirical studies, (e.g., Takahashi et al. (2009)) where we also account

for the nonstationary case by setting −1/2 < d < 1 as, d is sometimes observed to vary

between 0.5 and 0.6 in empirical studies.

The number of iterations in our MCMC implementation is set to 1, 500 after 500 samples

are discarded as the burn-in period. The number of truncation lags, M , is set to 50.

Table 2: RSV-LM (1,d,0) model for the simulated data

Param. True Mean Stdev 95% interval IF

ϕ 0.2 0.268 0.083 [0.112, 0.438] 4.9

σ2η 0.16 0.146 0.022 [0.104, 0.193] 6.6

d 0.6 0.592 0.029 [0.532, 0.647] 1.7

ρ -0.4 -0.350 0.033 [-0.414, -0.284] 3.2

σ2u 0.16 0.170 0.014 [0.139, 0.198] 6.0

µ 1 0.949 0.121 [0.722, 1.194] 1.6

ξ 0 0.005 0.033 [-0.060, 0.070] 5.9

Table 2 shows the true values, posterior means, posterior standard deviations, posterior

95% credible intervals and ine�ciency factors (IF) 2. The estimation result shows that our

estimates are close to the true values of the parameters and that all of the 95% credible

intervals include these true values. We note that the ine�ciency factors are extremely

low (1 ∼ 7) in comparison to the values using other approaches (see, e.g., Omori and

Watanabe (2008), where the ine�ciency factors are 68 ∼ 433 for the multi-move sampler

and 103 ∼ 3507 for the single move sampler). This result demonstrates that our proposed

estimation method is highly e�cient and that we have successfully extended the work of

Omori et al. (2007) to the RSV-LM model without loss of sampling e�ciency.

5 Application to S&P500 returns data

5.1 Data

We apply our proposed model to the daily returns and realized volatility (or the realized

kernel) of the S&P500 stock index. The sample period is from January 3, 1996 to February

2The ine�ciency factor (IF, see, e.g., Chib (2001)) is de�ned by 1 + 2
∑∞

s=1 ρs, where ρs is the sample

autocorrelation at lag s. It measures how well the MCMC chain mixes. It is the estimated ratio of the

numerical variance of the posterior sample mean to the variance of the sample mean from uncorrelated

draws. When the ine�ciency factor is equal to N , we must draw MCMC samples N times to generate one

uncorrelated sample.
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27, 2009, and the number of observations is n = 3, 263.3 Figure 1 shows a time series plot

of the logRV , and the mean level appears to be slowly changing. The mean level began to

increase at the lower level and remained near zero for the �rst half of the sample period. It

later began decreasing again but then increased sharply toward the end of second half. This

behavior suggests that the logarithm of the realized volatility has the long memory property.

The summary statistics are also shown in Table 3. The distributions of the logRV

and logRK are much closer to a normal distribution than those of the RV and RK. This

indicates that our normality assumption for the error term in (5) is plausible for our empirical

analysis, and we defer the extension to a non-normal error distribution to future work.

Figure 1: Time series plot of logRV .
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Table 3: Summary statistics. S&P500 returns.

Variable Mean Stdev Skew Kurt Max Min

Rt 0.005 1.312 -0.258 8.038 10.956 -9.469

RVt 0.964 2.088 10.981 199.500 56.482 0.022

RKt 1.002 2.141 10.410 178.260 55.961 0.022

logRVt -0.656 0.992 0.556 0.828 4.033 -3.800

logRKt -0.621 1.000 0.530 0.774 4.024 -3.791

3These are obtained from the Oxford-Man Institute's Realized Library (Heber et al. (2009)). The realized

kernel is calculated using the method of Barndor�-Nielsen et al. (2008) to account for microstructure noise.
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5.2 Estimation results

The estimation results for the RSV model are shown in Tables 4 and 5 using logRVt and

logRKt for y2t. The prior distributions of the parameters are assumed to be the same

as in Section 4. The number of iterations is set to 1,500 and the initial 500 samples are

discarded as the burn-in period, accounting for the ine�ciency factors. As in the previous

section, these factors are extremely small (1 ∼ 6), and our MCMC estimation method is

highly e�cient. This is because we use the mixture sampler, which integrates out all of

the latent volatility variables to compute the conditional likelihood and, furthermore, uses

the additional information based on the logarithm of the realized volatilities. We note

that these ine�ciency factors are even smaller overall than those obtained using the mixture

sampler approach for the stochastic volatility model with leverage, without using the realized

volatilities (Omori et al. (2007)). We can therefore perform the statistical inference even

with a small number of the iterations and the short burn-in period compared to previous

studies.

The estimation results are quite similar using logRVt and logRKt. The persistence pa-

rameter in the volatility is found to be high (ϕ = 0.965 (0.965)), and the negative ρ indicates

the existence of leverage e�ects (ρ = −0.534 (−0.539)). We note that the posterior prob-

ability of a negative bias, (ξ = −0.625 (−0.588)), in the realized volatility (or the realized

kernel) is greater than 0.975. This implies that the realized volatilities underestimate the

integrated volatilities because they do not account for the presence of non-trading hours and

microstructure noise. By introducing the term ξ, the bias can be estimated and eliminated.

Hansen and Lunde (2005), for example, propose to correct the bias by computing the

scaled realized volatility (SRV) and scaled realized kernel (SRK) as follows. De�ne the daily

return Rt = 100× (log pt− log pt−1) where pt is the closing price on day t, R̄ = n−1
∑n

t=1Rt,

and

SRVt = c1 ×RVt, SRKt = c2 ×RKt, (28)

where

c1 ≡
∑n

t=1(Rt − R̄)2∑n
t=1RVt

= 1.7873, c2 ≡
∑n

t=1(Rt − R̄)2∑n
t=1RKt

= 1.7184,

(and therefore log c1 = 0.5807, log c2 = 0.5414) in our sample period. This ensures that

the mean of the scaled realized volatilities (or the scaled realized kernels) is equal to the

variance of the daily returns. If we use these scaled realized volatilities (or the scaled realized

kernels) then the posterior mean of ξ is −0.045 (−0.047) and the 95% credible interval is

[−0.099, 0.007] ([−0.102, 0.003]). The estimated biases are small, and their 95% credible

intervals include zero. The simple adjustment method by Hansen and Lunde (2005) may

therefore be used to substantially reduce the bias owing to overnight price changes; however,

this is not necessary in our model because the bias itself is estimated and eliminated. This

result is consistent with the preceding empirical study by Takahashi et al. (2009).
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Table 4: RSV model (using log RV).

Param. Mean Stdev 95% interval IF

ϕ 0.965 0.004 [0.956, 0.973] 1.6

σ2η 0.043 0.003 [0.036, 0.051] 1.7

ρ -0.534 0.036 [-0.601, -0.461] 2.4

σ2u 0.183 0.006 [0.171, 0.196] 1.3

µ 0.105 0.096 [-0.079, 0.303] 1.6

ξ -0.625 0.027 [-0.679, -0.573] 6.0

Table 5: RSV model (using log RK).

Param. Mean Stdev 95% interval IF

ϕ 0.965 0.004 [0.957, 0.973] 1.6

σ2η 0.043 0.003 [0.037, 0.051] 1.6

ρ -0.539 0.035 [-0.607, -0.466] 2.4

σ2u 0.189 0.006 [0.176, 0.202] 1.4

µ 0.105 0.097 [-0.081, 0.305] 1.6

ξ -0.588 0.027 [-0.643, -0.538] 5.7

Estimation result. S&P500 returns.

(M = 60 is used in the state space representation (21)-(23))

For RSV-LM models, we use two di�erent types of representation such as AR and MA

representation. The estimation results for the RSV-LM models are shown in Tables 6∼11
for the MA model (21)-(23)) and Tables 12∼17 for the AR model (33)-(35)).4 The results

using the logarithm of RVt and RKt are very similar, as in the RSV models. The AR and

MA models also give similar results, although σ2η and ρ are slightly smaller and d and σ2u
are a slightly larger in the AR models.

The bias adjustment terms ξ are estimated to be negative, and the posterior probability

of negative bias is greater than 0.975 as in the RSV models. Furthermore, although the

absolute values of the posterior means of the correlation parameter, ρ, are slightly smaller

than those of the RSV models, they are nevertheless found to be negative in all models,

indicating the existence of leverage e�ects in the long memory process.

The posterior means of the fractional parameter d are greater than 0.5, which suggests

that log volatility process may have the long memory and nonstationary properties. On the

other hand, the RSV-LM models are found to have lower values of the persistence parameter

compared to the RSV models. For example, the posterior means of ϕ are 0.05 (AR models)

4For the truncation lag, M = 60 is used in the state space representations for (21)-(23) and (33)-(35).
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∼ 0.10 (MA models) in RSV-LM(1,d,0) models and those of θ in RSV-LM(0,d,1) models

are −0.10 (MA models) ∼ −0.05 (AR models). The high autoregressive impact (expressed

by ϕ) in the log volatility process in the RSV models therefore appears to be replaced by a

dependence on the long past disturbance terms (expressed by d) in the RSV-LM models.

Table 6: RSV-LM(0,d,0)-MA model (using log RV).

Param. Mean Stdev 95% interval IF

σ2η 0.127 0.010 [0.108, 0.148] 3.4

d 0.610 0.016 [0.577, 0.640] 2.0

ρ -0.385 0.030 [-0.443, -0.327] 2.3

σ2u 0.127 0.008 [0.109, 0.143] 3.3

µ 0.060 0.082 [-0.095, 0.222] 1.4

ξ -0.614 0.026 [-0.663, -0.561] 7.6

Table 7: RSV-LM(1,d,0)-MA model (using log RV).

Param. Mean Stdev 95% interval IF

ϕ 0.103 0.062 [-0.012, 0.225] 1.6

σ2η 0.111 0.012 [0.088, 0.138] 3.0

d 0.594 0.020 [0.556, 0.635] 1.4

ρ -0.402 0.031 [-0.468, -0.343] 1.7

σ2u 0.137 0.009 [0.116, 0.154] 2.5

µ 0.056 0.080 [-0.100, 0.216] 1.5

ξ -0.614 0.026 [-0.666, -0.565] 4.9

Table 8: RSV-LM(0,d,1)-MA model (using log RV).

Param. Mean Stdev 95% interval IF

θ -0.095 0.063 [-0.225, 0.019] 2.2

σ2η 0.112 0.012 [0.090, 0.139] 3.5

d 0.599 0.018 [0.564, 0.635] 1.0

ρ -0.398 0.029 [-0.460, -0.340] 2.0

σ2u 0.136 0.009 [0.117, 0.153] 3.0

µ 0.057 0.079 [-0.100, 0.214] 1.5

ξ -0.613 0.025 [-0.664, -0.565] 4.6

Estimation result. S&P500 returns.
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Table 9: RSV-LM(0,d,0)-MA model (using log RK).

Param. Mean Stdev 95% interval IF

σ2η 0.129 0.010 [0.110, 0.150] 3.5

d 0.610 0.016 [0.576, 0.640] 2.2

ρ -0.389 0.030 [-0.446, -0.332] 2.3

σ2u 0.132 0.008 [0.114, 0.149] 3.3

µ 0.058 0.082 [-0.097, 0.224] 1.5

ξ -0.578 0.026 [-0.628, -0.525] 8.2

Table 10: RSV-LM(1,d,0)-MA model (using log RK).

Param. Mean Stdev 95% interval IF

ϕ 0.100 0.062 [-0.017, 0.225] 1.7

σ2η 0.112 0.012 [0.089, 0.139] 3.3

d 0.594 0.020 [0.555, 0.636] 1.5

ρ -0.405 0.031 [-0.470, -0.345] 2.1

σ2u 0.141 0.009 [0.120, 0.158] 3.2

µ 0.055 0.079 [-0.098, 0.217] 1.4

ξ -0.578 0.026 [-0.630, -0.529] 4.9

Table 11: RSV-LM(0,d,1)-MA model (using log RK).

Param. Mean Stdev 95% interval IF

θ -0.093 0.063 [-0.224, 0.022] 2.6

σ2η 0.114 0.012 [0.090, 0.141] 4.2

d 0.599 0.018 [0.563, 0.638] 1.2

ρ -0.402 0.030 [-0.464, -0.344] 2.2

σ2u 0.140 0.009 [0.121, 0.157] 3.4

µ 0.055 0.080 [-0.100, 0.214] 1.5

ξ -0.577 0.026 [-0.628, -0.528] 4.6

Estimation result. S&P500 returns.
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Table 12: RSV-LM(0,d,0)-AR model (using log RV).

Param. Mean Stdev 95% interval IF

σ2η 0.107 0.009 [0.090, 0.127] 3.1

d 0.639 0.021 [0.599, 0.679] 2.9

ρ -0.433 0.033 [-0.499, -0.372] 2.4

σ2u 0.141 0.008 [0.124, 0.158] 2.9

µ 0.066 0.161 [-0.249, 0.385] 0.9

ξ -0.615 0.026 [-0.666, -0.562] 8.8

Table 13: RSV-LM(1,d,0)-AR model (using log RV).

Param. Mean Stdev 95% interval IF

ϕ 0.053 0.063 [-0.066, 0.178] 1.5

σ2η 0.100 0.011 [0.078, 0.123] 3.3

d 0.629 0.023 [0.583, 0.679] 1.8

ρ -0.440 0.033 [-0.505, -0.373] 2.4

σ2u 0.145 0.009 [0.126, 0.163] 3.2

µ 0.071 0.155 [-0.242, 0.375] 1.2

ξ -0.614 0.025 [-0.665, -0.566] 4.9

Table 14: RSV-LM(0,d,1)-AR model (using log RV).

Param. Mean Stdev 95% interval IF

θ -0.053 0.069 [-0.193, 0.068] 2.5

σ2η 0.101 0.012 [0.077, 0.126] 5.3

d 0.630 0.023 [0.586, 0.678] 2.7

ρ -0.438 0.033 [-0.503, -0.373] 4.5

σ2u 0.144 0.009 [0.126, 0.162] 4.9

µ 0.070 0.155 [-0.237, 0.377] 1.0

ξ -0.614 0.026 [-0.665, -0.566] 5.0

Estimation result. S&P500 returns.
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Table 15: RSV-LM(0,d,0)-AR model (using log RK).

Param. Mean Stdev 95% interval IF

σ2η 0.109 0.009 [0.090, 0.129] 3.8

d 0.638 0.020 [0.599, 0.679] 3.0

ρ -0.437 0.033 [-0.503, -0.376] 2.5

σ2u 0.146 0.008 [0.128, 0.163] 3.3

µ 0.064 0.160 [-0.253, 0.381] 1.0

ξ -0.579 0.026 [-0.629, -0.525] 8.6

Table 16: RSV-LM(1,d,0)-AR model (using log RK).

Param. Mean Stdev 95% interval IF

ϕ 0.056 0.064 [-0.063, 0.178] 1.7

σ2η 0.101 0.011 [0.079, 0.125] 3.6

d 0.628 0.023 [0.582, 0.677] 1.7

ρ -0.445 0.033 [-0.509, -0.377] 2.7

σ2u 0.150 0.009 [0.130, 0.168] 3.3

µ 0.068 0.155 [-0.245, 0.371] 1.1

ξ -0.578 0.025 [-0.631, -0.530] 5.4

Table 17: RSV-LM(0,d,1)-AR model (using log RK).

Param. Mean Stdev 95% interval IF

θ -0.057 0.068 [-0.193, 0.067] 2.9

σ2η 0.101 0.012 [0.078, 0.127] 6.1

d 0.629 0.023 [0.584, 0.678] 2.9

ρ -0.443 0.033 [-0.508, -0.375] 5.1

σ2u 0.150 0.009 [0.129, 0.168] 5.3

µ 0.068 0.155 [-0.245, 0.371] 1.1

ξ -0.578 0.026 [-0.630, -0.530] 5.8

Estimation result. S&P500 returns.
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5.3 Model comparison

In this section, we perform a model comparison of the RSV and RSV-LM models based on

the logarithm of the marginal likelihood. The marginal likelihood is de�ned as the integral of

the likelihood with respect to the prior density of the parameter(s). Following Chib (1995),

we estimate the logarithm of the marginal likelihood, logm(y), as

logm(y) = log f(y|ϑ) + log π(ϑ)− log π(ϑ|y), (29)

where ϑ = (ζ, φ) and log f(y|ϑ), log π(ϑ) and log π(ϑ|y) denote the likelihood, prior density
and posterior density. The prior density can be computed in a straightforward manner, but

we must evaluate the likelihood and posterior density using a Monte Carlo method for the

RSV and RSV-LM models. To compute the likelihood, we use the auxiliary particle �lter of

Pitt and Shephard (1999) with 8,000 particles. We repeat the computation of the particle

�lter 10 times to calculate the numerical standard errors of the estimated likelihood. The

posterior density at ϑ is evaluated using the MCMC method as in Chib (1995) and Chib

and Jeliazkov (2001), with the number of the reduced run is set to 1,000. The estimation

results are shown in Tables 18 and 19 for the logRVt and logRKt.

Similar results are obtained in both cases, using the logRVt and logRKt. Among the

RSV-LM models outperform the RSV model with respect to the marginal likelihood. This

suggests that the logarithm of the latent volatility process has long memory properties.

Among the RSV-LM models, the AR representation of RSV-LM models (RSV-LM-AR)

outperform the MA representation of RSV-LM models (RSV-LM-MA) overall. The RSV-

LM-AR models may be able to capture the long range dependence better than the RSV-

LM-MA models through their lagged log volatilities. On the other hand, the marginal

likelihoods for the three RSV-LM models (�.e., (0,d,0), (1,d,0), (0,d,1) models) are quite

similar accounting for the standard errors, for RSV-LM models using logRVt and RSV-

LM-AR models using logRKt. The RSV-LM-AR models appear to �t the data during this

period equally well, and we could not identify any clear di�erence among these models. We

therefore further compare the above models using another criterion based on the volatility

forecasting performance in the next subsection.

Remark 1. We also estimated the RSV model with a multiplicative coe�cient, λ, in front of

the log volatility ht (hence, y2t = ξ + λht + ut) using the logarithm of RVt. We found that

the posterior mean of λ (= 0.9516) is close to one and that the logarithm of its marginal

likelihood (= −7131.6) is not improved. The data, therefore, do not motivate an extension

of the RSV model to include such a multiplicative parameter.

Remark 2. When the number of observations is small, the RSV model may outperform the

RSV-LM models. To outperform the RSV models with respect to marginal likelihood, we

would need to take account of su�ciently large lags in the RSV-LM models.
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Table 18: Logarithm of marginal likelihood (using log RV).

Standard errors are in parentheses.

Model Likelihood Prior Posterior Marg. Lik. Ranking

RSV -7107.2 (0.4) -12.08 10.90 (0.1) -7130.3 (0.5) 7

RSV-LM-MA

(0,d,0) -7088.5 (0.6) -15.08 12.58 (0.1) -7116.1 (0.7) 6

(1,d,0) -7087.7 (0.7) -15.28 12.26 (0.1) -7115.2 (0.8) 5

(0,d,1) -7086.7 (0.8) -15.26 11.89 (0.1) -7113.9 (0.9) 4

RSV-LM-AR

(0,d,0) -7052.3 (0.6) -15.02 11.41 (0.1) -7078.7 (0.7) 1

(1,d,0) -7052.6 (0.7) -14.97 12.71 (0.1) -7080.2 (0.8) 3

(0,d,1) -7051.7 (0.7) -14.97 12.59 (0.1) -7079.2 (0.8) 2

Table 19: Logarithm of marginal likelihood (using log RK).

Model Likelihood Prior Posterior Marg. Lik. Ranking

RSV -7143.0 (0.4) -12.13 10.81 (0.1) -7165.9 (0.5) 7

RSV-LM-MA

(0,d,0) -7124.6 (0.5) -15.16 12.56 (0.1) -7152.3 (0.6) 6

(1,d,0) -7120.1 (0.5) -15.36 12.48 (0.1) -7147.9 (0.6) 5

(0,d,1) -7118.3 (0.7) -15.35 11.90 (0.1) -7145.6 (0.8) 4

RSV-LM-AR

(0,d,0) -7088.2 (0.4) -15.07 11.15 (0.1) -7114.4 (0.5) 3

(1,d,0) -7085.8 (0.5) -15.02 12.71 (0.1) -7113.5 (0.6) 2

(0,d,1) -7085.7 (0.5) -15.02 12.58 (0.1) -7113.3 (0.6) 1

Model comparison result. S&P500 returns.
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5.4 Volatility forecast performance

In addition to the above model comparison using marginal likelihoods which measures the

goodness of �t for the in-sample period, we investigate the predictive performance of our

models based on the volatility forecasting for the out-of-sample period. By generating the

volatilities from their posterior predictive distribution, we compare the performance of the

models with respect to several loss functions as described in Patton (2011) (see, e.g., Poon

and Granger (2003) and Andersen et al. (2006) for recent comprehensive reviews of the

volatility forecast).

Generation of volatilities from the posterior predictive distribution. LetN denote the number

of MCMC iterations used in the parameter estimation, and let (θ(i), {h(i)t }nt=1) denote the

posterior sample of (θ, {ht}nt=1) at the i-th iteration (i = 1, . . . , N). Then, the K-step-ahead

volatility forecast is obtained by adding several steps to each MCMC iteration:

1. For each MCMC iteration i = 1, . . . , N :

(a) Initialise k = 1.

(b) Generate h
(i)
n+k|{yt}

n
t=1, {h

(i)
t }

n+k−1
t=1 , {y(i)n+s}k−1

s=1 , θ
(i).

(c) Generate y
(i)
n+k|{yt}

n
t=1, {h

(i)
t }

n+k
t=1 , {y

(i)
n+s}k−1

s=1 , θ
(i).

(d) If k < K, let k + 1 → k and go to Step (b). Otherwise, save g
(i)
n+K ≡ exp(h

(i)
n+k)

as a random sample of the K-step-ahead variance from its posterior predictive

distribution.

2. The estimate of the conditional variance σ2n+K is obtained by

ḡn+K =
1

N

N∑
i=1

g
(i)
n+K .

Robust loss functions based on volatility proxies. Patton (2011) derived the functional form

of the loss function for comparing volatility forecasts using imperfect volatility proxies, such

that the forecasts are robust to the presence of noise in the proxies. A loss function, L, is

called �robust� if the ranking of any two (possibly imperfect) volatility forecasts, g1t, and

g2t, by expected loss is the same whether the ranking is performed using the true conditional

variance, σ2t , or some conditionally unbiased volatility proxy, σ̂2t . Patton (2011) showed that

MSE and QLIKE type loss functions,

MSE : L(σ̂2t , gt) =
1

2
(σ̂2t − gt)2, (30)

QLIKE : L(σ̂2t , gt) =
σ̂2t
gt
− log

σ̂2t
gt
− 1, (31)

are robust with respect to the forecast error, σ̂2t − gt, and standardized forecast error, σ̂2t /gt

respectively, where gt denotes a volatility forecast of the conditional variance σ2t . We note
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that these loss functions are also invariant with respect to a rescaling of the data. Therefore,

even if we use a conditionally unbiased volatility proxy (e.g., the realized variances computed

using 5 minute returns for liquid stocks and 30 minute returns for less liquid stocks), these

loss function can produce a correct ranking of the volatility forecasts.

We use the sum of the realized volatility (or the realized kernel), computed using 5

minute returns and squared overnight returns, as a conditionally unbiased volatility proxy.

Further sensitivity analysis using other types of realized measures may be interest because

microstructure noise could decrease the predictive accuracy (see, e.g., Andersen et al. (2011),

Ghysels and Sinko (2011), Asai et al. (2012), Koopman and Scharth (2011)), but we defer

this analysis to future work.

Volatility forecast comparisons. We consider seven models: RSV, RSV-LM-MA-(1,d,0),

RSV-LM-MA-(0,d,1), RSV-LM-MA-(0,d,0), RSV-LM-AR-(1,d,0), RSV-LM-AR-(0,d,1) and

RSV-LM-AR-(0,d,0) (using the truncation lag M = 40). Two prediction periods are consid-

ered: (I) April 30, 2007 � July 31, 2008 (the number of predictions, I, is 318) and (II) April

30, 2007 � February 27, 2009 (I = 462), where prediction period II includes the �nancial

crisis of September 2008 with high volatilities. Using a rolling window of n = 1, 500 (i.e.,

using the 1, 500 most recent observations for each estimation and forecast), we estimate the

model parameters and compute the K-step-ahead volatility forecasts (K = 1, 5, 10), with

the number of MCMC iterations set to N = 300.

For prediction period I, Tables 20 and 21 show the Root Mean Square Error (RMSE)
5 and the values of the QLIKE type loss function. For both the RMSE and the QLIKE

function, the RSV-LM models outperform the RSV model, suggesting that modelling the

long memory property may improve the accuracy of the volatility forecast. Among the

RSV-LM models, the RSV-LM-MA models outperform the RSV-LM-AR models in contrast

to the model comparison results in Section 5.3. The performances of the RSV-LM-MA

(0,d,1), (1,d,0) and (0,d,0) models are quite similar. For one-step-ahead volatility forecasts,

the RSV-LM-MA (0,d,1) model appears to perform lightly better than other RSV-LM-MA

models, whereas, for the longer forecast horizons (K = 5, 10), the RSV-LM-MA (1,d,0)

model outperforms the other RSV-LM-MA models.

For prediction period II, Tables 22 and 23 show the values for the RMSE and QLIKE

functions. The values for the RMSE are higher than those in period I because they are

sensitive to the volatile values of RVt
6. In the case of the QLIKE loss function, as in

prediction period I, the RSV-LM models outperform the RSV model, and, among the RSV-

LM models, the RSV-LM-MA (0,d,1) model performs better than the other RSV-LM models

for one-step-ahead volatility forecasts. However, for the longer forecast horizons (K = 5, 10),

5The RMSE is computed as
√

1/I
∑I

j=1(σ̂
2
n+K,j − ḡn+K,j)2 where σ̂2

n+K,j and ḡn+K,j are the K-step

ahead volatility proxy and the estimate of the conditional variance for the j-th prediction (j = 1, . . . , I).
6We omitted the value of RVt on October 10, 2008 (56.482, see Figure 1) because it is too large to evaluate

the loss functions.
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the RSV-LM-AR (1,d,0) model outperform the other models.

Table 20: RMSE of volatility forecasts (30/Apr/2007 � 31/Jul/2008)

Volatility proxy RV RK

Forecast horizon 1 5 10 1 5 10

Model

RSV 0.963 1.231 1.584 1.000 1.268 1.612

RSV-LM-MA

(0,d,0) 0.860 1.023 1.109 0.905 1.074 1.160

(1,d,0) 0.879 0.977 1.032 0.925 1.031 1.085

(0,d,1) 0.844 1.009 1.089 0.890 1.061 1.140

RSV-LM-AR

(0,d,0) 0.905 1.092 1.183 0.946 1.137 1.228

(1,d,0) 0.897 1.073 1.162 0.938 1.120 1.208

(0,d,1) 0.892 1.082 1.170 0.934 1.127 1.215

Table 21: QLIKE of volatility forecasts (30/Apr/2007 � 31/Jul/2008)

Volatility proxy RV RK

Forecast horizon 1 5 10 1 5 10

Model

RSV 0.231 0.333 0.441 0.237 0.342 0.449

RSV-LM-MA

(0,d,0) 0.202 0.294 0.354 0.209 0.305 0.367

(1,d,0) 0.204 0.284 0.329 0.211 0.295 0.340

(0,d,1) 0.200 0.291 0.348 0.207 0.301 0.359

RSV-LM-AR

(0,d,0) 0.211 0.302 0.357 0.217 0.311 0.367

(1,d,0) 0.209 0.300 0.351 0.216 0.309 0.362

(0,d,1) 0.211 0.303 0.355 0.217 0.312 0.365

23



Table 22: RMSE of volatility forecasts (30/Apr/2007 � 27/Feb/2009)

Volatility proxy RV RK

Forecast horizon 1 5 10 1 5 10

Model

RSV 2.973 4.190 7.578 2.991 4.197 7.526

RSV-LM-MA

(0,d,0) 2.695 2.898 3.373 2.735 3.007 3.491

(1,d,0) 2.686 2.903 3.408 2.730 3.018 3.527

(0,d,1) 2.640 2.867 3.390 2.686 2.979 3.510

RSV-LM-AR

(0,d,0) 3.189 3.472 3.598 3.185 3.350 3.491

(1,d,0) 3.142 3.368 3.539 3.142 3.398 3.564

(0,d,1) 3.176 3.438 3.647 3.177 3.464 3.672

Table 23: QLIKE of volatility forecasts (30/Apr/2007 � 27/Feb/2009)

Volatility proxy RV RK

Forecast horizon 1 5 10 1 5 10

Model

RSV 0.217 0.341 0.500 0.222 0.347 0.504

RSV-LM-MA

(0,d,0) 0.188 0.313 0.474 0.194 0.324 0.488

(1,d,0) 0.189 0.309 0.469 0.195 0.320 0.483

(0,d,1) 0.186 0.312 0.471 0.192 0.323 0.485

RSV-LM-AR

(0,d,0) 0.207 0.306 0.399 0.211 0.313 0.407

(1,d,0) 0.204 0.304 0.394 0.209 0.311 0.402

(0,d,1) 0.207 0.306 0.402 0.212 0.312 0.409

In the case of the RMSE loss function, the RSV-LM-MA (0,d,1) model performs better

than the other RSV-LM models for one-step-ahead forecasts, but the RSV model outper-

forms the RSV-LM-AR models. This result appears to be inconsistent with the result for

the QLIKE loss function. However, we must recall that a few outliers can severely deteri-

orate the values for the RMSE loss function. The result for the QLIKE loss function may

be more reliable because the QLIKE loss function is less sensitive to these volatile values.

For the longer forecast horizons, the values of the AR and MA representations become more

similar compared to those for the one-step-ahead forecast. Even for the RMSE results, we

can observe a similar tendency in the performance of the AR and MA representations as in
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the results for the QLIKE loss function.

Overall, for the prediction period with high volatilities, the volatility forecast perfor-

mances of the RSV-LM-AR models improve as the forecast horizon becomes longer. These

prediction performances are related to the performance of the RSV-LM-AR models in the

model comparison results of Section 5.3.

6 Conclusion

In this paper, we propose simultaneous modeling of the daily returns and realized volatility

(or realized kernel) including leverage and long memory. The state space representation

of the new model is described, and a highly e�cient sampling algorithm is proposed to

implement the MCMC estimation. We have shown that the biases in the realized variances

owing to both non-trading hours and market microstructure noise can be estimated within

our modeling framework. In empirical studies, the posterior distribution of the leverage

parameter, ρ, supports the presence of the leverage e�ect for the RSV and RSV-LM models.

The estimated fractional parameter, d, of the ARFIMA process suggests that the volatilities

have long memory and nonstationary properties. It corresponds to the long range persistence

of the realized volatilities and realized kernels.

The RSV-LM models and RSV model are compared based on the marginal likelihood

and their volatility forecasts. In the marginal likelihood comparison, if we adopt su�ciently

large lags and a high enough number of observations, the RSV-LM models outperform the

RSV models. Among the RSV-LM models, the RSV-LM-AR models provide a superior �t

to the data compared to the RSV-LM-MA models. In the volatility forecast comparison

based on RMSE and QLIKE type loss functions, the RSV-LM models again outperform the

RSV models. For the one-step-ahead forecast, the RSV-LM-MA (0,d,1) model outperforms

the other models, but for the longer forecast horizons, the performance appears to depend

on the prediction period.
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Appendix

A AR representation of RSV-LM model

Since

Θ(L)−1Φ(L)(1− L)d(ht+1 − µ) = ηt,

we let

ht+1 = µ+

∞∑
j=1

ψj(ht−j+1 − µ) + ηt

≈

1−
M∑
j=1

ψj

µ+
M∑
j=1

ψjht−j+1 + ηt, ψ ≡ (ψ1, . . . , ψM )′. (32)

Then the AR representation of the RSV-LM model is given by

y∗t = Xtβ + Ztαt +Gtu
∗
t , t = 1, 2, . . . , n, (33)

αt+1 =Wtβ + Ttαt +Htu
∗
t , t = 0, 1, . . . , n− 1, (34)

α0 ≡ 0, u∗t ∼ i.i.d. N(03, I3), (35)

where αt = (ht, ht−1, . . . , ht−M+1)
′ and

Xt =

(
mst 0 0

0 1 0

)
, β =

1

ξ

µ

 , Zt =

(
1 0′M−1

1 0′M−1

)
,

Wt =

 δtρσηastexp(mst/2)

0M−1

0M
1−

M∑
j=1

ψj

0M−1

 , Tt =

(
ψ′

IM−1 0M−1

)
,

Gt =

(
vt 0 0

0 σu 0

)
, Ht =

(
δtρσηbstvstexp(mst/2) 0 ση

√
1− ρ2

0M−1 0M−1 0M−1

)
.

For the initial latent log volatility, h1, we assume

W0 =
(
0M 0M 1M

)
, H0 =

(
0 0 ση

0M−1 0M−1 1M−1

)
.

for simplicity. If ht follows ARFIMA(1,d,0) process, the coe�cient ψj is given by

ψ1 = ϕ+ d, ψj+1 = γ̃j+1 − ϕγ̃j , j ≥ 0, (36)

where

γ̃1 = d, γ̃j+1 =
j − d
j + 1

γ̃j , j ≥ 0,
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or, using (1− L)d =

∞∑
k=0

Γ(d+ 1)

Γ(k + 1)Γ(d− k + 1)
(−L)k,

ψj = (−1)j+1

{
Γ(d+ 1)

Γ(j + 1)Γ(d− j + 1)
+ ϕ

Γ(d+ 1)

Γ(j)Γ(d− j + 2)

}
, j = 1, 2, . . . ,M.

B Augmented Kalman �lter

We �rst implement Kalman �lter to compute the logarithm of the likelihood given φ, ζ, y∗, s

and δ.

1. Set a1 =W0β, P1 = H0H
′
0.

2. For t = 1, 2, . . . , n, compute

at+1 =Wtβ + Ttat +Ktet, Pt+1 = TtPtL
′
t +HtJ

′
t (37)

and

et = y∗t −Xtβ − Ztat, Dt = ZtPtZ
′
t +GtG

′
t,

Kt = (TtPtZ
′
t +HtG

′
t)D

−1
t , Lt = Tt −KtZt, Jt = Ht −KtGt,

where et's are independent predictive errors and et ∼ N(0, Dt). Then the log likelihood is

given by

log f(y∗|φ, ζ, s, δ) = −n
2
log 2π − 1

2

n∑
t=1

log |Dt| −
1

2

n∑
t=1

e
′
tD

−1
t et. (38)

Next we apply the augmented Kalman Filter to compute the log likelihood marginalized

over φ (see de Jong (1991), Nakajima and Omori (2009)). Noting that β = b + Bφ where

φ = (ξ, µ)′ and

b =

1

0

0

 , B =

0, 0

1, 0

0, 1

 ,

we implement the augmented Kalman Filter as follows.

1. Set a∗1 =W0b, A∗
1 = −WtB.

2. For t = 1, 2, . . . , n, compute

ft = y∗t −Xtb− Zta
∗
t , a∗t+1 =Wtb+ Tta

∗
t +Ktft,

Ft = XtB − ZtA
∗
t , A∗

t+1 = −WtB + TtA
∗
t +KtFt. (39)
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Since the log likelihood given (φ, ζ) is given by

log f(y∗|φ, ζ, s, δ) =− n

2
log 2π − 1

2

n∑
t=1

log |Dt|

− 1

2

{ n∑
t=1

f
′
tD

−1
t ft − 2

( n∑
t=1

F
′
tD

−1
t ft

)′
φ+ φ

′
( n∑

t=1

F
′
tD

−1
t Ft

)
φ

}
,

the conditional posterior distribution of φ given ζ, s, δ, y∗ is φ|ζ, s, δ, y∗ ∼ N(φ1, C1),

where

C1 =

(
C−1
0 +

n∑
t=1

F
′
tD

−1
t Ft

)−1

φ1 = C1

(
C−1
0 φ0 +

n∑
t=1

F
′
tD

−1
t ft

)
.

Thus the log likelihood marginalized over φ is computed as

log f(y∗|ζ, s, δ) ≡ log f(y∗|φ, ζ, s, δ) + log π(φ|ζ, s, δ)− log π(φ|ζ, s, δ, y∗)

=− n

2
log 2π − 1

2

n∑
t=1

log |Dt| −
1

2
log |C0|+

1

2
log |C1|

− 1

2

{ n∑
t=1

f
′
tD

−1
t ft + φ

′
0C

−1
0 φ0 − φ

′
1C

−1
1 φ1

}
. (40)

C Auxiliary particle �lter

C.1 RSV model

We describe the auxiliary particle �lter (e.g. Pitt and Shephard (1999)) to calculate the log

likelihood for the RSV model:

y1,t = exp(ht/2)ϵt, t = 1, 2, . . . , n (41)

y2,t = ξ + ht + ut, t = 1, 2, . . . , n (42)

ht+1 = µ+ ϕ(ht − µ) + ηt, t = 0, 1, . . . , n (43)ϵtut
ηt

 ∼ i.i.d. N

(
0,Ω

)
, 0 =

0

0

0

 , Ω =

 1 0 ρση

0 σ2u 0

ρση 0 σ2η

 (44)

Let ϑ = (ϕ, σ2η, ρ, ξ, σ
2
u)

′. Then the conditional probability density functions of the observa-

tion equation and the state equation are

f(yt|ht, ϑ) =
1

2πσu
exp

{
−1

2
ht −

1

2
y21,texp(−ht)−

1

2σ2u
(y2,t − ξ − ht)2

}
, (45)

f(ht+1|yt, ht, µ, ϑ) =
1√

2π(1− ρ2)ση
exp

(
−(ht+1 − µt+1)

2

2(1− ρ2)σ2η

)
, (46)

where µt+1 = µ+ ϕ(ht − µ) + ρσηexp(−ht/2)yt.
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We generate i-th particle (i = 1, . . . , I) using an importance function given by

g(ht+1, h
i
t|yt+1, µ, ϑ) ∝ f(yt+1|µit+1, ϑ)f(ht+1|yt, hit, µ, ϑ)f̂(hit|yt, µ, ϑ)

∝ f(ht+1|yt, hit, µ, ϑ)g(hit|yt+1, µ, ϑ),

where

g(hit|yt+1, µ, ϑ) =
f(yt+1|µit+1, ϑ)f̂(h

i
t|yt, µ, ϑ)∑I

j=1 f(yt+1|µit+1, ϑ)f̂(h
i
t|yt, µ, ϑ)

,

f(yt+1|µit+1, ϑ) =
1

2πσu
exp

{
−1

2
µit+1 −

1

2
y21,t+1exp(−µit+1)−

1

2σ2u
(y2,t+1 − ξ − µit+1)

2

}
,

µit+1 = µ+ ϕ(hit − µ) + ρσηexp(−hit/2)yt.

To compute the likelihood via the auxiliary particle �lter,

1. For t = 1, generate hi1 ∼ N(µ, σ2/(1− ϕ2)), i = 1, 2, . . . , I.

(a) Calculate wi = f(y1|hi1, ϑ) and Wi = F (y1|hi1, ϑ), (where F is the distribution

function of ht given yt), and record

w̄1 =
1

I

I∑
i=1

wi, W̄1 =
1

I

I∑
i=1

Wi. (47)

(b) Let f̂(hi1|y1, µ, ϑ) = πi1 = wi/
∑I

j=1wj , i = 1, 2, . . . , I.

2. Generate (hit, h
i
t+1) (i = 1, . . . , I) using g(ht+1, ht|yt+1, µ, ϑ).

(a) Calculate

wi =
f(yt+1|hit+1, ϑ)f(h

i
t+1|yt, hit, µ, ϑ)f̂(hit|yt, µ, ϑ)

g(hit+1, h
i
t|yt+1, µ, ϑ)

=
f(yt+1|hit+1, ϑ)f̂(h

i
t|yt, µ, ϑ)

g(hit|yt+1, µ, ϑ)
,

(48)

Wi =
F (yt+1|hit+1, ϑ)f̂(h

i
t|yt, µ, ϑ)

g(hit|yt+1, µ, ϑ)
, i = 1, . . . , I, (49)

and record

w̄t =
1

I

I∑
i=1

wi, W̄t =
1

I

I∑
i=1

Wi. (50)

(b) Let f̂(hit+1|yt+1, µ, ϑ) = πit+1 = wi/
∑I

j=1wj , i = 1, 2, . . . , I.

3. If t < n, let t← t+ 1 and return to Step 2.

As I → ∞, w̄t+1
p→ f(yt+1|yt, µ, ϑ) and W̄t+1

p→ F (yt+1|yt, µ, ϑ). Thus
∑n

t=1 log w̄t is the

consistent estimator of
∑n

t=1 log f(yt|yt−1, µ, ϑ). The sequence of W̄t and its re�ected version

2|W̄t − 1/2| can be used to check for model �t as these are approximately i.i.d. standard

uniform if the model is correctly speci�ed.
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C.2 RSV-LM model

RSV-LM model given by

y1,t = exp(ht/2)ϵt, t = 1, 2, . . . , n (51)

y2,t = ξ + ht + ut, t = 1, 2, . . . , n (52)

Θ(L)−1Φ(L)(1− L)d(ht+1 − µ) = ηt, t = 0, 1, . . . , n (53)ϵtut
ηt

 ∼ i.i.d. N

(
0,Ω

)
, 0 =

0

0

0

 , Ω =

 1 0 ρση

0 σ2u 0

ρση 0 σ2η

 . (54)

For RSV-LM-MA model, we use an MA representation of the state equation:

ht+1 = µ+
M∑
j=0

ψjηt−j = µ+ ψ′νt + ηt, νt = (ηt−1, . . . , ηt−M )′. (55)

To implement the auxiliary particle �lter, we generate i-th particle given νit = (ηit−1, . . . , η
i
t−M )′

using the importance function as in the previous subsection where

µit+1 = µ+ ρσexp(−hit/2)yt + ψ′νit . (56)

We can calculate the weight (48) by using the conditional probability density functions of

the observation and the state equation (45), (46).

For RSV-LM-AR models, we use a AR representation of the state equation:

ht+1 =

1−
M∑
j=1

ψj

µ+

M∑
j=1

ψjht−j+1 + ηt =

1−
M∑
j=1

ψj

µ+ ψ′νt + ηt,

νt = (ht, . . . , ht−M+1)
′. (57)

We generate i-th particle given νit = (hit, . . . , h
i
t−M+1)

′ using the importance function in the

previous subsection where

µit+1 =

1−
M∑
j=1

ψj

µ+ ρσexp(−hit/2)yt + ψ′νit . (58)
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