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Abstract

Empirical Bayes (EB) estimates in general linear mixed models are useful for
the small area estimation in the sense of increasing precision of estimation of small
area means. However, one potential difficulty of EB is that the overall estimate
for a larger geographical area based on a (weighted) sum of EB estimates is not
necessarily identical to the corresponding direct estimate like the overall sample
mean. Another difficulty is that EB estimates yield over-shrinking, which results
in the sampling variance smaller than the posterior variance. One way to fix these
problems is the benchmarking approach based on the constrained empirical Bayes
(CEB) estimators, which satisfy the constraints that the aggregated mean and vari-
ance are identical to the requested values of mean and variance. In this paper,
we treat the general mixed models, derive asymptotic approximations of the mean
squared error (MSE) of CEB and provide second-order unbiased estimators of MSE
based on the parametric bootstrap method. These results are applied to natural
exponential families with quadratic variance functions (NEF-QVF). As a specific
example, the Poisson-gamma model is dealt with, and it is illustrated that the CEB
estimates and their MSE estimates work well through real mortality data.
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1 Introduction

The usefulness of the empirical Bayes (EB) estimators in various mixed models has been
recognized in the literature. Of these, EB in Poisson-gamma models has been used for
disease mapping and estimation of mortality rates by Tsutakawa (1985, 88), Tsutakawa,
Shoop and Marienfeld (1985), Clayton and Kaldor (1987), Tango (1988) and Manton
et al . (1989), and their extensions to generalized linear mixed models have been studied
by Breslow and Clayton (1993), Breslow and Lin (1995), Sarkar and Ghosh (1998) and
others. To measure uncertainty of EB, Ghosh and Maiti (2004) and Crescenzi, Ghosh and
Maiti (2005) obtained asymptotic approximations of mean squared error (MSE) of EB and
their asymptotically unbiased estimators in natural exponential families with quadratic
variance functions (NEF-QVF). The confidence intervals based on EB were constructed
by Ghosh and Maiti (2008) in NEF-QVF.

A good application of EB is the small area estimation, where direct estimates like
sample means for small areas have unacceptable estimation errors because sample sizes of
small areas are small. The empirical Bayes procedures, which is called the empirical best
linear unbiased predictor (EBLUP) in the context of linear mixed models, are alternative
methods to provide stable estimates with higher precisions by borrowing data in the
surrounding areas. However, one potential difficulty of EB is that the overall estimate for
a larger geographical area, which is constructed by a (weighted) sum of EB estimates of
individual small areas, is not necessarily equal to the corresponding direct estimate like
the overall sample mean. Another difficulty is that EB estimates yield over-shrinking as
illustrated in figures in Section 5.2. In fact, Louis (1984) and Ghosh (1992) pointed out
and showed that the sampling variance of EB is smaller than the posterior variance. One
way to solve these problems is the benchmarking approach, which modifies EB so that
one gets the same (weighted) aggregate mean and/or variance for the larger geographical
area. Ghosh (1992) suggested the constrained Bayes (CB) estimator and the constrained
empirical Bayes (CEB) estimator which satisfy the constraints that the aggregated mean
and variance are identical to the mean and variance of the posterior distribution, and
Datta, Ghosh, Steorts and Maples (2011) and Kubokawa (2012) gave some extensions.
Frey and Cressie (2003) derived CEB in Poisson-gamma models.

Since the sample variance of EB is smaller than the posterior variance, CEB modi-
fies EB so that its sample variance is identical to the posterior variance. However, the
usefulness and purpose of EB is that EB gives stable estimates with higher precision of
estimation. Then we have a concern whether CEB may be against this purpose. Thus, it
is quite interesting and important to assess the mean squared error (MSE) of CEB. In this
paper, we address this issue for the general mixed models with applications to estimation
of mortality rates.

In Section 2, we first give unified results about MSE of EB and estimation of MSE
in general mixed models. Extensions to the benchmarking problems in general mixed
models are developed in Section 3. Asymptotic approximations of MSE for CEB are
derived and second-order unbiased estimators of MSE for CEB are provided by the para-
metric bootstrap method from Butar and Lahiri (2003). When the variance constraint
is the posterior variance, it is shown that MSE of CEB is larger than MSE of EB in the
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first order approximation. To modify this property, we suggest some modification of the
variance constraint. In Section 4, we apply the general results in Section 3 to natural
exponential families with quadratic variance functions (NEF-QVF). NEF-QVF distribu-
tions were discussed by Morris (1982, 83), and MSE and estimation of MSE for EB were
studied by Ghosh and Maiti (2004). We make use of their tools and results to construct
estimation of MSE of CEB. Applications to Poisson-gamma and binomial-beta mixture
models are given in Section 5, and benchmarking SMR in estimation of mortality rates
is investigated in Section 5.2 through real data of the mortality from stomach cancer of
females in 92 cities or towns in Saitama prefecture, which is next to Tokyo, for five years
from 1995 to 1999. Finally, the concluding remarks are given in Section 6.

2 Unified Results in General Mixed Model

2.1 MSE of empirical Byes estimator

Let y be an N dimensional vector of observable random variables, and let θ be a p
dimensional vector of unobservable random variables. Let η be a q dimensional vector
of unknown parameters. In this paper, we treat continuous or discrete cases for y and
θ. The conditional probability density (or mass) function of y given (θ,η) is denoted
by f(y|θ,η), and the conditional probability density (or mass) function of θ given η is
denoted by π(θ|η), namely,

y|(θ,η) ∼f(y|θ,η),
θ|η ∼π(θ|η).

(2.1)

This expresses general parametric mixed models. Since it can be interpreted as a Bayesian
model, we here use the terminology used in Bayes statistics. In the continuous case, the
marginal density function of y for given η and the conditional (or posterior) density
function of θ given (y,η) are given by

mπ(y|η) =
∫
f(y|θ,η)π(θ|η)dθ,

π(θ|y,η) =f(y|θ,η)π(θ|η)/mπ(y|η),
(2.2)

and we use the same notations in the discrete case. Then, we consider the problem of
predicting the scalar quantity ξ(θ,η) where a predictor ξ̂(y) is evaluated in terms of

the mean squared error MSE(η, ξ̂) = E[(ξ̂(y) − ξ(θ,η))2]. When η is known, the best
predictor of ξ(θ,η) in the sense of minimizing the MSE is the conditional expectation
given by

ξ̂(y,η) = E[ξ(θ,η)|y],
which is the Bayes estimator in the Bayesian context. Since η is unknown in this paper,
we need to estimate η from the marginal density function mπ(y|η). Substituting an

estimator η̂ into ξ̂(y,η), we get the empirical Bayes estimator (EB) ξ̂(y, η̂).

We next derive a second-order approximation of MSE of ξ̂(y, η̂) and to provide a
second-order unbiased estimator of MSE based on the parametric bootstrap method. We
assume that there exists a consistent estimator η̂ of η satisfying the following condition:
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(A1) The dimension q of η is bounded. Estimator η̂ satisfies that η̂−η = Op(N
−1/2)

and E[η̂ − η] = O(N−1).

(A2) The Bayes estimator ξ̂(y,η) is continuously differentiable with respect to η, and

∂ξ̂(y,η)/∂ηi = Op(1) for large N and i = 1, . . . , q.

Under conditions (A1) and (A2), we get a second-order approximation of MSE of

ξ̂(y, η̂). Let

g1(η) =E[V ar(ξ(θ,η)|y)], (2.3)

g2(η) =E
[{

(η̂ − η)t
∂ξ̂(y,η)

∂η

}2
]
. (2.4)

Theorem 2.1 Assume conditions (A1) and (A2) with g1(η) = O(1). Then, the MSE of

ξ̂(y, η̂) is approximated as

MSE(η, ξ̂(y, η̂)) = g1(η) + g2(η) + o(N−1), (2.5)

where g2(η) = O(N−1).

Proof. Since E[ξ(θ,η)− ξ̂(y,η)|y] = 0, it is observed that

MSE(η, ξ̂(y, η̂)) =E[{ξ(θ,η)− ξ̂(y,η) + ξ̂(y,η)− ξ̂(y, η̂)}2]
=E[{ξ(θ,η)− ξ̂(y,η)}2] + E[{ξ̂(y, η̂)− ξ̂(y,η)}2], (2.6)

and that E[{ξ(θ,η)− ξ̂(y,η)}2] = E[V ar(ξ(θ,η)|y)] = g1(η). It is noted that

ξ̂(y, η̂) = ξ̂(y,η) +
(∂ξ̂(y,η∗)

∂η

)t
(η̂ − η), (2.7)

where η∗ is between η and η̂. Thus,

E[{ξ̂(y, η̂)− ξ̂(y,η)}2] = E
[{

(η̂ − η)t
∂ξ̂(y,η)

∂η

}2
]
+ o(N−1),

which shows Theorem 2.1.

Remark 2.1 The moment conditions stated in (A1) are conditions that we have to im-
pose at least for η̂. If η̂ were expanded as

η̂ = η + η† + η†† +Op(N
−3/2),

where η† = Op(N
−1/2), E[η†] = 0 and η†† = Op(N

−1), one could establish higher order
accuracy for the approximations of MSE. As shown in Kubokawa (2011), such expansions
are available for ML, REML and some specific estimators in normal linear mixed models.
It may be, however, harder to get such an expansion in non-normal mixed models.
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2.2 Estimation of MSE of EB

We now derive two kinds of second-order unbiased estimators of MSE for EB from The-
orem 2.1; One is based on the Taylor series expansion and the other is based on the
parametric bootstrap method. Assume the following condition:

(A3) g1(η) is twice continuously differentiable, and g1(η) = O(1), ∂g1(η)/∂ηi = Op(1)
and ∂2g1(η)/∂ηi∂ηj = Op(1) for large N and i, j = 1, . . . , q.

Under condition (A3), it is noted that

g1(η̂) = g1(η) +
(∂g1(η)

∂η

)t
(η̂ − η) +

1

2
(η̂ − η)t

∂2g1(η
∗)

∂η∂ηt
(η̂ − η).

This implies that E[g1(η̂)] = g1(η) + g11(η) + g12(η) + o(N−1), where

g11(η) =E
[(∂g1(η)

∂η

)t
(η̂ − η)

]
, (2.8)

g12(η) =
1

2
E
[
(η̂ − η)t

∂2g1(η)

∂η∂ηt
(η̂ − η)

]
. (2.9)

Noting that g11(η) = O(N−1), g12(η) = O(N−1) and g2(η) = O(N−1), and that these
functions are continuous with respect to η, we can see that E[g1(η̂)− g11(η̂)− g12(η̂)] =
g1(η) + o(N−1) and E[g2(η̂)] = g2(η) + o(N−1).

Theorem 2.2 Assume conditions (A1), (A2) and (A3). Then, a second-order unbiased

estimator of MSE(η, ξ̂(y, η̂)) is given by

mse(y, ξ̂(y, η̂)) = g1(η̂)− g11(η̂)− g12(η̂) + g2(η̂), (2.10)

namely, E[mse(y, ξ̂(y, η̂))] =MSE(η, ξ̂(y, η̂)) + o(N−1).

For more complicated models with large q, it may be harder to compute the moments
E[(η̂−η)t(η̂−η)], E[η̂−η] and differentiations of ξ̂(y,η) and g1(η). Instead of Theorem
2.2, we use the parametric bootstrap method using the same arguments as in Butar and
Lahiri (2003). Consider the following model based on the parametric bootstrap:

y∗|(θ∗, η̂) ∼f(y∗|θ∗, η̂),

θ∗|η̂ ∼π(θ∗|η̂).
(2.11)

Let η̂∗ be an estimator based on y∗, where the calculation of η̂∗ is the same as that of η̂
except that η̂∗ is calculated based on y∗ instead of y. Since E[g1(η̂)] = g1(η) + g11(η) +
g12(η) + o(N−1), it is seen that

E∗[g1(η̂
∗)] = g1(η̂) + g11(η̂) + g12(η̂) + op(N

−1),

where E∗[·] denotes expectation with respect to y∗. Thus, we have

E[E∗[g1(η̂
∗)]] = E[2g1(η̂)]− g1(η) + o(N−1),
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or
g1(η) = E[2g1(η̂)− E∗[g1(η̂

∗)]] + o(N−1).

To estimate the second term in the r.h.s. of (2.6), let

g∗2(η̂) = E∗[{ξ̂(y∗, η̂∗)− ξ̂(y∗, η̂)}2].

Since g2(η) = O(N−1), it is seen that E[g∗2(η̂)] = E[g2(η̂) + op(N
−1)] = g2(η) + o(N−1),

and we get the following estimator.

Theorem 2.3 Assume conditions (A1), (A2) and (A3). Then, a second-order unbiased

estimator of MSE(η, ξ̂(y, η̂)) is given by

mse∗(y, ξ̂(y, η̂)) = 2g1(η̂)− E∗[g1(η̂
∗)] + g∗2(η̂), (2.12)

namely, E[mse∗(y, ξ̂(y, η̂))] =MSE(η, ξ̂(y, η̂)) + o(N−1).

3 Extensions to Benchmarking Problems

3.1 Benchmarking problems

Consider the case that the total population is divided into K small areas or small domains
in the model (2.1). For i = 1, . . . , K, let ξi = ξi(θ,η) be a quantity we want to predict.

The best predictor of ξi(θ,η) relative to the squared error loss is given by ξ̂i(y,η) =
E[ξi(θ,η)|y]. Let wi’s be nonnegative constants such that

∑K
i=1wi = 1. Then, Louis

(1984) showed that

(1)
K∑
i=1

wiξ̂i(y,η) =
K∑
i=1

wiE[ξi(θ,η)|y],

(2)
K∑
i=1

wi{ξ̂i(y,η)− ξ̂w(y,η)}2 ≤
K∑
i=1

wiE[{ξi(θ,η)− ξw(θ,η)}2|y],

where ξ̂w(y,η) =
∑K

i=1wiξ̂i(y,η) and ξw(θ,η) =
∑K

i=1wiξi(θ,η). In fact, the inequality
(2) follows from the fact that

K∑
i=1

wiE[{ξi(θ,η)− ξw(θ,η)}2|y] =
K∑
i=1

wi{ξ̂i(y,η)− ξ̂w(y,η)}2

+
K∑
i=1

wiV ar(ξi(θ,η)− ξw(θ,η)|y). (3.1)

Louis (1984) pointed out that the inequality was due to over-shrinking, and Louis (1984)

and Ghosh (1992) derived constrained Bayes estimators ξ̂CB(y,η)’s which satisfy the
constraint (1) and

K∑
i=1

wi

{
ξ̂CB
i (y,η)−

K∑
j=1

wj ξ̂
CB
j (y,η)

}2

=
K∑
i=1

wiE[{ξi(θ,η)− ξw(θ,η)}2|y].
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It is interesting to investigate whether such constrained estimators have still smaller MSE.
For the purpose, we assume the following condition:

(A4) K/N → γ, 0 < γ ≤ 1,
∑K

i=1w
2
i = O(N−1),

∑K
i=1wi{ξ̂i(y,η) − E[ξ̂i(y,η)]} =

Op(N
−1/2) and V ar(ξi(θ,η)|y) = Op(1).

In typical applications, we consider the case that N = K = p, wi = ni/
∑K

j=1 nj for sample

sizes ni, ξi(θ,η) = ξi(θi,η) for θ = (θ1, . . . , θK)
t, ξ̂i(y,η) = ξ̂i(yi,η) for y = (y1, . . . , yK)

t,
and y1, . . . , yK are mutually independently distributed. In this case, condition (A4) is
satisfied.

In this section, we consider the following constraints for predictors δi(y) of ξi(θ,η)
and estimator η̂:

(C1)
∑K

i=1wiδi(y) =
∑K

i=1wiξ̂i(y, η̂) + ∆m(y), where ∆m(y) = Op(N
−1/2).

(C2)
∑K

i=1wi{δi(y)−δw(y)}2 =
∑K

i=1wi{ξ̂i(y, η̂)− ξ̂w(y, η̂)}2+∆v(y), where δw(y) =∑K
i=1wiδi(y) and ∆v(y) = Op(N

−r) for r ≥ 0.

We call (C1) and (C2) mean and variance constraints, respectively. For (C1), we

can treat the case that ∆m(y) = 0 and ∆m(y) =
∑K

i=1wi{ξ̂i(y,0) − ξ̂i(y, η̂)} with

E[ξ̂i(y,η)] − E[ξ̂i(y,0)] = O(N−1/2), both of which satisfy that ∆m(y) = Op(N
−1/2)

under (A4). For (C2), an example we treat is

∆v(y) = N−r

K∑
i=1

wiV ar(ξi(θ, η̂)− ξw(θ, η̂)|y). (3.2)

In the case of r = 0, it follows from (3.1) that ∆v(y) in (3.2) yields the constraint

K∑
i=1

wiE[{δi(y)− δw(y)}2|y] =
K∑
i=1

wiE[{ξi(θ, η̂)− ξw(θ, η̂)}2|y], (3.3)

which corresponds to the constraint treated by Ghosh (1992) and Datta et al . (2011).

For benchmarking under constraints (C1) and (C2), Ghosh (1992), Frey and Cressie
(2003) and Datta et al . (2011) derived the constrained Bayes estimator in the sense of
minimizing the conditional MSE E[{δi(y)− ξi(θ,η)}2|y] subject to constraints (C1) and
(C2). We call here it the constrained Bayes estimator (CB). Substituting an estimator η̂
into CB, we get the constrained empirical Bayes estimator (CEB) given by

δCEB
i (y, η̂) = ξ̂i(y, η̂) + {aB(y)− 1}{ξ̂i(y, η̂)− ξ̂w(y, η̂)}+∆m(y), (3.4)

where

{aB(y)}2 = 1 +
∆v(y)∑K

i=1wi{ξ̂i(y, η̂)− ξ̂w(y, η̂)}2
. (3.5)
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3.2 MSE of constrained empirical Bayes estimator (CEB)

We now evaluate MSE of CEB, which is decomposed as

MSE(η, δCEB
i ) =E[{ξ̂i(y, η̂)− ξi}2]

+ E[{(aB(y)− 1)(ξ̂i(y, η̂)− ξ̂w(y, η̂)) + ∆m(y)}2]

+ 2E[{ξ̂i(y, η̂)− ξi}{(aB(y)− 1)(ξ̂i(y, η̂)− ξ̂w(y, η̂)) + ∆m(y)}]
=I1(η) + I2(η) + 2I3(η). (say) (3.6)

Since I1(η) = MSE(η, ξ̂i), the second order approximation of I1(η) is I1(η) = g1(η) +
g2(η) + o(N−1) as shown in Theorem 2.1. To evaluate I2 and I3, we treat the mean
constraint and the mean-variance constraint separately.

[1] Mean Constraint. The mean constraint (C1) corresponds to the case of aB(y) =
1 in (3.4), namely, CEB is written as

δCEB
i (y, η̂) = ξ̂i(y, η̂) + ∆m(y), (3.7)

which implies that I2(η) = E[{∆m(y)}2] and I3(η) = E[{ξ̂i(y, η̂) − ξi(y,η)}∆m(y)].
Since ∆m(y) = Op(N

−1/2), it is seen that I2(η) = O(N−1), and from (2.7) it is observed
that I3(η) = I3(η) +O(N−3/2), where

I3(η) = E
[(∂ξ̂i(y,η)

∂η

)t

(η̂ − η)∆m(y)
]
= O(N−1).

Proposition 3.1 Assume conditions (A1)-(A4). Then, CEB subject to the mean con-
straint (C1) is given by (3.7), and the MSE is approximated as

MSE(η, δCEB
i (y, η̂)) =MSE(η, ξ̂i(y, η̂)) + E[{∆m(y)}2]

+ 2E
[(∂ξ̂i(y,η)

∂η

)t

(η̂ − η)∆m(y)
]
+ o(N−1).

This proposition implies that in the mean constraint, the difference in MSE between
CEB δCEB

i (y, η̂) and the non-constrained EB ξ̂i(y, η̂) appears in the second-order term.

[2] Mean-Variance Constraint. In this case, the asymptotic property of MSE of
CEB given in (3.4) depends on r, the order of ∆v(y). We first evaluate aB(y). For the
purpose, we assume the following condition:

(A5)
∑K

i=1wi{(ξ̂i(y,η)− ξ̂w(y,η))
2 − E[(ξ̂i(y,η)− ξ̂w(y,η))

2]} = Op(N
−1/2).

Lemma 3.1 Assume conditions (A1)-(A5). Then,

K∑
i=1

wi{ξ̂i(y, η̂)− ξ̂w(y, η̂)}2 = ν0 + ν1, (3.8)
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where

ν0 =
K∑
i=1

wiE
[{
ξ̂i(y,η)− ξ̂w(y,η)

}2]
,

and ν1 is a function with Op(N
−1/2). Also,

aB(y)− 1 = AB(y,η)− 1 +Op(N
−1/2−r), (3.9)

where AB(y,η)− 1 = Op(N
−r) for AB(y,η) defined by

AB(y,η) = [1 + ∆v(y)/ν0]
1/2.

Proof. It follows from (2.7) and condition (A5) that

K∑
i=1

wi{ξ̂i(y, η̂)− ξ̂w(y, η̂)}2 =
K∑
i=1

wi{ξ̂i(y,η)− ξ̂w(y,η)}2 +Op(N
−1/2)

=
K∑
i=1

wiE[{ξ̂i(y,η)− ξ̂w(y,η)}2] +Op(N
−1/2),

which shows (3.8). Using the approximation (3.8), we can estimate aB(y)− 1 as

aB(y)− 1 =
{aB(y)}2 − 1

aB(y) + 1
=

∆v(y)/ν0
1 + [1 + ∆v(y)/ν0]1/2

+Op(N
−r−1/2)

=
∆v(y)/ν0{1− [1 + ∆v(y)/ν0]

1/2}
1− [1 + ∆v(y)/ν0]

+Op(N
−r−1/2)

=[1 + ∆v(y)/ν0]
1/2 − 1 +Op(N

−r−1/2).

This shows that aB(y)− 1 = Op(N
−r) as well as (3.9).

Using Lemma 3.1, we can see that I2(η) is estimated as I2(η) = E[{h(y,η)}2], where

h(y,η) =
[
AB(y,η)− 1 +Op(N

−1/2−r)
][
ξ̂i(y,η)−

K∑
j=1

wjE[ξ̂j(y,η)]

−
K∑
j=1

wj

{
ξ̂j(y,η)− E[ξ̂j(y,η)]

}
+ (

∂ξ̂i(y,η)

∂η
)t(η̂ − η)

−
K∑
j=1

wj(
∂ξ̂j(y,η)

∂η
)t(η̂ − η) +Op(N

−1)
]
+∆m(y). (3.10)

Since ξ̂i(y,η) = E[ξi|y], it is also noted that I3(η) is evaluated as

I3(η) =E[
{
ξ̂i(y, η̂)− ξ̂i(y,η)

}{
(aB(y)− 1)(ξ̂i(y, η̂)− ξ̂w(y, η̂)) + ∆m(y)

}
]

=E[(
∂ξ̂i(y,η)

∂η
)t(η̂ − η)h(y,η)] +O(N−1−r) + o(N−1). (3.11)
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We handle asymptotic properties of I2(η) and I3(η) for the cases of r = 0, r = 1/2 and
r = 1 separately.

(Scenario 1: r = 0) In this case, it can be seen that I2(η) = O(1), and I2(η) is
approximated as

I2(η) = E
[{
AB(y,η)− 1

}2{
ξ̂i(y,η)−

K∑
j=1

wjE[ξ̂j(y,η)]
}2
]
+O(N−1/2).

Since I3(η) = O(N−1/2), we get the following proposition.

Proposition 3.2 Assume conditions (A1)-(A5). Then, CEB subject to the mean-variance
constraints (C1) and (C2) with r = 0 is given by (3.4), and

lim
N→∞

{MSE(η, δCEB
i (y, η̂))−MSE(η, ξ̂i(y, η̂))}

= lim
N→∞

E
[{
AB(y,η)− 1

}2{
ξ̂i(y,η)−

K∑
j=1

wjE[ξ̂j(y,η)]
}2
]
.

This proposition means that in the mean-variance constraints with r = 0, the difference
in MSE between δCEB

i (y, η̂) and EB ξ̂i(y, η̂) appears in the first-order term.

(Scenario 2: r = 1/2) In this case, it can be seen from (3.10) that I2(η) = O(N−1),
and I2(η) is approximated as I2(η) = E[{AB(y,η)− 1}2{h(y,η)}2] + o(N−1), where

h(y,η) =
[
AB(y,η)− 1

][
ξ̂i(y,η)−

K∑
j=1

wjE[ξ̂j(y,η)]
]
+∆m(y). (3.12)

Similarly,

I3(η) = E[(
∂ξ̂i(y,η)

∂η
)t(η̂ − η)h(y,η)] + o(N−1).

Proposition 3.3 Assume conditions (A1)-(A5). Then, CEB subject to the mean-variance
constraints (C1) and (C2) with r = 1/2 is given by (3.4), and

MSE(η, δCEB
i (y, η̂)) =MSE(η, ξ̂i(y, η̂)) + E[{AB(y,η)− 1}2{h(y,η)}2]

+ 2E[(
∂ξ̂i(y,η)

∂η
)t(η̂ − η)h(y,η)] + o(N−1).

This proposition means that in the mean-variance constraints with r = 1/2, the dif-

ference in MSE between δCEB
i (y, η̂) and EB ξ̂i(y, η̂) appears in the second-order term.

(Scenario 3: r = 1) In this case, from (3.10), we get the same approximation as in
Proposition 3.1.
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Proposition 3.4 Assume conditions (A1)-(A5). Then, CEB subject to the mean-variance
constraints (C1) and (C2) with r = 1 is given by (3.4), and

MSE(η, δCEB
i (y, η̂)) =MSE(η, ξ̂i(y, η̂)) + E[{∆m(y)}2]

+ 2E
[(∂ξ̂i(y,η)

∂η

)t

(η̂ − η)∆m(y)
]
+ o(N−1).

3.3 Estimation of MSE of CEB

Finally, we provide a second-order unbiased estimator of MSE for CEB subject to the
mean-variance constraints (C1) and (C2). Since the second-order unbiased estimator

of MSE(η, ξ̂i(y, η̂)) is given in (2.10), second-order unbiased estimators can be derived
based on the Taylor series expansion from Propositions 3.1, 3.3 and 3.4. However, it may
be hard to derive a second-order unbiased estimator for r = 0. Instead of them, we here
suggest a procedure using the parametric bootstrap method for all r ≥ 0. To this end,
we assume the following condition:

(A6) ∆v(y) − E[∆v(y)] = Op(N
−r−1/2), E[{ξ̂i(y, η̂) − ξ̂i(y,η)}ξ̂i(y,η)] = O(N−1)

and E[ξ̂i(y, η̂)− ξ̂i(y,η)] = O(N−1).

As an estimator of I3(η) in (3.6), we consider I∗3 (y) given by

I∗3 (y) = E∗[
{
ξ̂i(y

∗, η̂∗)− ξ̂i(y
∗, η̂)

}{
(aB(y

∗)− 1)(ξ̂i(y
∗, η̂∗)− ξ̂w(y

∗, η̂∗)) + ∆m(y
∗)
}
].

An exact unbiased estimator of I2(η) in (3.6) is Î2(y) given by

Î2(y) = {(aB(y)− 1)(ξ̂i(y, η̂)− ξ̂w(y, η̂)) + ∆m(y)}2.

Theorem 3.1 Assume conditions (A1)-(A6). Then, CEB subject to the mean-variance
constraints (C1) and (C2) with r ≥ 0 is given by (3.4), and a second-order unbiased
estimator of MSE(η, δCEB

i (y, η̂)) based on the parametric bootstrap method is

mse(y, δCEB
i (y, η̂)) = mse∗(y, ξ̂(y, η̂)) + Î2(y) + 2I∗3 (y), (3.13)

namely, E[mse(y, δCEB
i (y, η̂))] =MSE(η, δCEB

i (y, η̂))+ o(N−1), where mse∗(y, ξ̂(y, η̂))
is given in (2.12).

Proof. Theorem 2.3 implies that E[mse∗(y, ξ̂(y, η̂))] = I1(η) + o(N−1). Clearly,

E[Î2(y)] = I2(η). If I3(η) = O(N−1), we can verify that E[I∗3 (y)] = I3(η) + o(N−1).
Thus, we need to show that I3(η) = O(N−1). It follows from (3.10) and (3.11) that

I3(η) =E[
{
ξ̂i(y, η̂)− ξ̂i(y,η)

}{
(aB(y)− 1)(ξ̂i(y, η̂)− ξ̂w(y, η̂)) + ∆m(y)

}
]

=E[
{
ξ̂i(y, η̂)− ξ̂i(y,η)

}{
AB(y,η)− 1

}{
ξ̂i(y,η)−

K∑
j=1

wjE[ξ̂j(y,η)]
}
] +O(N−1).
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As seen from the proof of Lemma 3.1, it is noted that

AB(y,η)− 1 =
∆v(y)/ν0

1 + [1 + ∆v(y)/ν0]1/2
,

so that

AB(y,η)− 1− E[∆v(y)]/ν0
1 + [1 + E[∆v(y)]/ν0]1/2

= Op(N
−1/2),

from condition (A6). Hence,

I3(η) =
E[∆v(y)]/ν0

1 + [1 + E[∆v(y)]/ν0]1/2

{
E[

{
ξ̂i(y, η̂)− ξ̂i(y,η)

}
ξ̂i(y,η)]

− E[ξ̂i(y, η̂)− ξ̂i(y,η)]
K∑
j=1

wjE[ξ̂j(y,η)]
]}

+O(N−1),

which is of order O(N−1) under condition (A6). Therefore, we get the result of the
theorem.

4 Applications to NEF-QVF

4.1 CEB in NEF-QVF and previous results on MSE

We now apply the results in the previous section to natural exponential families with
quadratic variance functions (NEF-QVF). The small-area estimation based on NEF-QVF
was studied by Ghosh and Maiti (2004), who treated the unit level model with individual
observation having NEF-QVF. In this section, we handle an area level model with a
survey estimate from each small area having NEF-QVF, and try to apply the results
in the previous section to the benchmarking problem in NEF-QVF using the results of
Ghosh and Maiti (2004).

Let y1, . . . , yK be mutually independent random variables where the conditional dis-
tribution of yi given θi and the marginal distribution of θi belong to the the following
natural exponential families:

yi|θi ∼f(yi|θi) = exp[ni(θiyi − ψ(θi)) + c(yi, ni)],

θi|ν,mi ∼π(θi|ν,mi) = exp[ν(miθi − ψ(θi))]C(ν,mi),
(4.1)

where ni is a known scalar and ν is an unknown scalar. Let y = (y1, . . . , yK)
t and

θ = (θ1, . . . , θK)
t. The function f(yi|θi) is the regular one-parameter exponential family

and the function π(θi|ν,mi) is the conjugate prior distribution. Define µi by

µi = E[yi|θi] = ψ′(θi).

Then, we assume that ψ′′(θi) = Qi(µi), namely,

V ar(yi|θi) =
ψ′′(θi)

ni

=
Qi(µi)

ni

,
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where Qi(x) = v0,i+v1,ix+v2,ix
2 for known constants v0,i, v1,i and v2,i which are not simul-

taneously zero. This is the natural exponential family with the quadratic variance function
(NEF-QVF) treated by Morris (1982, 83). The binomial distribution Bin(ni, µi/ni) for
µi = nipi corresponds to v0,i = 0, v1,i = ni and v2,i = −1. The Poisson distribution Po(µi)
for µi = niλi corresponds to v0,i = v2,i = 0 and v1,i = ni. For the normal distribution
N (µi, σ

2/ni) with known variance σ2, we have v0,i = σ2 and v1,i = v2,i = 0. Similarly, the
mean and variance of the prior distribution are given by

E[µi|mi, ν] = mi, V ar(µi|mi, ν) =
Qi(mi)

ν − v2,i
. (4.2)

In this section, we consider the canonical link, namely

mi = ψ′(xt
iβ), i = 1, . . . , K.

The unknown parameters η in the previous sections correspond to ηt = (βt, ν).

The joint probability density (or mass) function of (yi, θi) can be expressed as

f(yi|θi)π(θi|ν,mi) = π(θi|yi, ν)fπ(yi|ν,mi),

where π(θi|yi, ν) is the conditional (or posterior) density function of θi given yi, and
fπ(yi|ν,mi) is the marginal density function of yi. These density (or mass) functions are
written as

π(θi|yi, ν,mi) = exp[(ni + ν)(µ̂iθi − ψ(θi))]C(ni + ν, µ̂i),

fπ(yi|ν,mi) =
C(ν,mi)

C(ni + ν, µ̂i)
exp[c(yi, ni)],

(4.3)

where µ̂i is the conditional expectation of µi given yi, namely, µ̂i = E[µi|yi,η], given by

µ̂i = µ̂i(yi,η) =
niyi + νmi

ni + ν
.

In the binomial and Poisson distributions, the parameters one want to estimate are
pi = µi/ni and λi = µi/ni, respectively. Thus, in this section, we shall estimate

ξi = qiµi, (4.4)

for known positive constant qi. When ν and mi are known, the Bayes estimator of ξi in
the Bayesian context is

ξ̂i(yi,η) = qiµ̂i(yi,η) = qi
niyi + νmi

ni + ν
. (4.5)

As shown by Ghosh and Maiti (2004),

E[yi] =E[ψ
′(θi)] = mi,

V ar(yi) =V ar(E[yi|θi]) + E[V ar(yi|θi)] = V ar(µi) + E[Qi(µi)/ni] = Qi(mi)ϕi,

Cov(yi, µi) =E[Cov(yi, µi)|θi] + Cov(E[yi|θi], µi) = Qi(mi)/(ν − v2,i),
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for ϕi = (1 + ν/ni)/(ν − v2,i). Using these observations, Ghosh and Maiti (2004) showed

that the Bayes estimator ξ̂i given in (4.5) is the best linear unbiased predictor (BLUP) of
ξi in terms of MSE.

Following Godambe and Thompson (1989), Ghosh and Maiti (2004) proposed the
estimators of β and ν through the estimating equations. Let gi = (g1i, g2i)

t for g1i = yi−mi

and g2i = (yi −mi)
2 − ϕiQi(mi). Let

Dt
i =Qi(mi)

(
xi Q′

i(mi)ϕixi

0 −(1 + v2,i/ni)(ν − v2,i)
−2

)
,

Σi =Cov (gi) =

(
µ2i µ3i

µ3i µ4i − µ2
2i

)
,

and |Σi| = µ4iµ2i−µ3
2i−µ2

3i, where µri = E[(yi−mi)
r], r = 1, 2, . . ., and exact expressions

of µ2i, µ3i and µ4i are given below. Then, the optimal estimating equations given by∑K
i=1D

t
iΣ

−1
i gi = 0 are written as

K∑
i=1

1

|Σi|

[
{µ4i − µ2

2i − µ3iϕiQ
′
i(mi)}g1i + {µ2iϕiQ

′
i(mi)− µ3i}g2i

]
Qi(mi)xi = 0,

K∑
i=1

1

|Σi|
{µ2ig2i − µ3ig1i}Qi(mi)(1 + v2,i/ni)(ν − v2,i)

−2 = 0.

(4.6)

Solving the equations on ηt = (βt, ν̂) simultaneously, we obtain estimator η̂t = (β̂
t
, ν̂).

Letting m̂i = ψ′(xt
iβ̂) and substituting m̂i and ν̂ into (4.5), we get EB

ξ̂i(yi, η̂) = qi
niyi + ν̂m̂i

ni + ν̂
. (4.7)

As shown in the appendix of Ghosh and Maiti (2004),

η̂ − η = U−1
K sk(η) + op(K

−1/2),

E[(η̂ − η)(η̂ − η)t] = U−1
K + o(K−1), E[η̂ − η] = O(K−1),

(4.8)

where sk(η) =
∑K

i=1 D
t
iΣ

−1
i gi and UK = Cov (sK(η)) =

∑K
i=1D

t
iΣ

−1
i Di, which is of

order O(K). These show condition (A1). Clearly, condition (A2) is satisfied. Since
V ar(µi|yi) = Qi(µi)/(ni + ν − v2,i), it is observed that

g1(η) =
E[Qi(µi)]

ni + ν − v2,i
= q2i

ν

(ni + ν)(ν − v2,i)
Qi(mi),

so that condition (A3) is satisfied. Thus, Theorems 2.1, 2.2 and 2.3 hold, where a detailed
expression of g2(η) is given in Ghosh and Maiti (2004).

Finally, we give the exact moments of µri following Ghosh and Maiti (2004). The
proof is given in the Appendix.
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Proposition 4.1 The moments µri = E[(yi −mi)
r], r = 2, 3, 4, are written as

µ2i =
Qi(mi)(ν/ni + 1)

ν − v2,i
, µ3i =

Qi(mi)Q
′
i(mi)(ν/ni + 1)(ν/ni + 2)

(ν − v2,i)(ν − 2v2,i)
,

µ4i =(di + 1)(2di + 1)(3di + 1)E[(µi −mi)
4] +

6

ni

Q′
i(mi)(di + 1)(2di + 1)E[(µi −mi)

3]

+
di + 1

n2
i

[
7{Q′

i(mi)}2 + 2ni(4di + 3)Qi(mi)
]
E[(µi −mi)

2]

+
1

n3
i

Qi(mi)
[
ni(2di + 3)Qi(mi) + {Q′

i(mi)}2
]
,

for di = v2,i/ni. These are identical to the same quantities given in Theorem 1 of Ghosh
and Maiti (2004), where δi, ξi and νi in their paper correspond to n−1

i , n−2
i and n−3

i .
Further, according to Morris (1983) and Ghosh and Maiti (2004), it is seen that E[(µi −
mi)

2] = Qi(mi)/(ν − v2,i), E[(µi −mi)
3] = 2Qi(mi)Q

′
i(mi)/{(ν − v2,i)(ν − 2v2,i)} and

E[(µi −mi)
4] =

3Qi(mi)[(ν − 2v2,i)Qi(mi) + 2{Q′
i(mi)}2]

(ν − v2,i)(ν − 2v2,i)(ν − 3v2,i)
.

4.2 MSE and estimation of MSE for CEB

We now apply the results in Section 3 to the NEF-QVF distributions. As specific con-
straints of (C1) and (C2), we here consider the following for estimator δi(y) of ξi = qiµi:

(C1′)
∑K

i=1wiδi(y) =
∑K

i=1wiqiyi,

(C2′)
∑K

i=1wi{δi(y)− δw(y)}2 =
∑K

i=1wi{ξ̂i(yi, η̂)− ξ̂w(y, η̂)}2 +∆†
v(y), where

∆†
v(y) = K−r

K∑
i=1

wi(1− wi)q
2
i

Qi(µ̂i(yi, η̂))

ni + ν̂ − v2,i
, (4.9)

where δw(y) =
∑K

i=1wiδi(y) and ξ̂w(y, η̂) =
∑K

i=1wiξ̂i(y, η̂) =
∑K

i=1wiqiµ̂i(y, η̂).

It is noted that ∆m(y) in (C1) is expressed as

∆†
m(y) =

K∑
i=1

wiqi
ni + ν̂

ν̂(yi − m̂i), (4.10)

which can be seen to be of order Op(K
−1/2). Also, it is noted that N r∆v(y) is an estimator

of the second term in the r.h.s. of (3.1). In fact,

K∑
i=1

wiV ar(ξi − ξ̂w|y) =
K∑
i=1

wi

{
q2i (1− 2wi)V ar(µi|yi) +

K∑
j=1

w2
j q

2
jV ar(µj|yj)

}
=

K∑
i=1

(wiq
2
i − 2w2

i q
2
i + w2

i q
2
i )V ar(µi|yi)

=
K∑
i=1

wi(1− wi)q
2
iQi(µ)/(ni + ν − v2,i),

15



which is of order Op(1). Under constraints (C1
′) and (C2′), it follows from (3.4) and (3.5)

that CEB is

δCEB
i (y, η̂) = ξ̂i(y, η̂) + {aB(y)− 1}{ξ̂i(y, η̂)− ξ̂w(y, η̂)}+∆†

m(y), (4.11)

where

{aB(y)}2 = 1 +
∆†

v(y)∑K
i=1wi{ξ̂i(y, η̂)− ξ̂w(y, η̂)}2

, (4.12)

for ∆†
m(y) and ∆†

v(y) given in (4.10) and (4.9).

Lemma 4.1 Assume that maxi{ni}, maxi{mi} and maxi{qi} are bounded, and that
∑K

i=1wi =

1 and
∑K

i=1w
2
i = O(K−1). Then conditions (A4), (A5) and (A6) are satisfied.

Proof. We first check conditions (A4) and (A5). For notational simplicity, let µ̂i =

µ̂i(yi,η) and ξ̂i = ξ̂i(yi,η). It is noted that µ̂i −mi = ni(yi −mi)/(ni + ν), so that

K∑
i=1

wi{ξ̂i − E[ξ̂i]} =
K∑
i=1

wiqi
ni

ni + ν
(yi −m),

which is of order Op(K
−1/2). Thus, condition (A4) is satisfied. For (A5), it is noted that

K∑
i=1

wi(ξ̂i − ξ̂w)
2 =

K∑
i=1

wi

{
qi(µ̂i −mi)−

K∑
j=1

wjqj(µ̂j −mj) + (qimi −
K∑
j=1

wjqjmj)
}2

=
K∑
i=1

wiq
2
i (µ̂i −mi)

2 −
{ K∑

i=1

wiqi(µ̂i −mi)
}2

+
{ K∑

i=1

(
qimi −

K∑
j=1

wjqjmj

)}2

+ 2
K∑
i=1

wiqi(µ̂i −mi)(qimi −
K∑
j=1

wjqjmj)

− 2{
K∑
i=1

wi(qimi −
K∑
j=1

wjqjmj)}{
K∑
i=1

wiqi(µ̂i −mi)}.

so that we have

K∑
i=1

wi(ξ̂i − ξ̂w)
2 −

K∑
i=1

wiE[(ξ̂i − ξ̂w)
2] =

K∑
i=1

wiq
2
i

{
(µ̂i −mi)

2 − E[(µ̂i −mi)
2]
}

−
{{ K∑

i=1

wiqi(µ̂i −mi)
}2 − E[

{ K∑
i=1

wiqi(µ̂i −mi)
}2
]
}

+ 2
K∑
i=1

wiqi(µ̂i −mi)(qimi −
K∑
j=1

wjqjmj)

− 2{
K∑
i=1

wi(qimi −
K∑
j=1

wjqjmj)}{
K∑
i=1

wiqi(µ̂i −mi)}

=I1 − I2 + 2I3 − 2I4. (say)
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Since
∑K

i=1wi = 1 and
∑K

i=1w
2
i = O(K−1), it can be seen that I3 = Op(K

−1/2) and
I4 = Op(K

−1/2). For I1, it is noted that

E[
{ K∑

i=1

wiqi
n2
i

(ni + ν)2
{(yi −mi)

2 − E[(yi −mi)
2]}

}2
] =

K∑
i=1

w2
i q

2
i

n4
i

(ni + ν)4
(µ4i − µ2

2i),

which is of O(K−1), where µ4i and µ2i are given in Proposition 4.1. Thus, I1 = Op(K
−1/2).

Further, I2 is rewritten as I2 = I21 + 2I22, where

I21 =
K∑
i=1

w2
i q

2
i

n2
i

(ni + ν)2
{(yi −mi)

2 − E[(yi −mi)
2]},

I22 =
K∑
i=1

∑
j>i

wiqini

ni + ν

wjqjnj

nj + ν
(yi −mi)(yj −mj).

Similarly to I1, it can be seen that I21 = Op(K
−1/2). For I22, it is noted that for ci =

wiqini/(ni + ν),

E[{I22}2] =
∑
i

∑
j>i

∑
k

∑
ℓ>k

E[ci(yi −mi)cj(yj −mj)ck(yk −mk)cℓ(yℓ −mℓ)]

=
∑
i

∑
j>i

∑
ℓ>i

E[c2i (yi −mi)
2]E[cj(yj −mj)cℓ(yℓ −mℓ)]

+ 2
∑
i

∑
j>i

∑
k>i

∑
ℓ>k

E[ci(yi −mi)cj(yj −mj)ck(yk −mk)cℓ(yℓ −mℓ)]

=
∑
i

∑
j>i

∑
ℓ>i

E[c2i (yi −mi)
2]E[cj(yj −mj)cℓ(yℓ −mℓ)]

=
∑
i

∑
j>i

E[c2i (yi −mi)
2]E[c2j(yj −mj)

2]

+
∑
i

∑
j>i

∑
ℓ>i,ℓ ̸=j

E[c2i (yi −mi)
2]E[cj(yj −mj)]E[cℓ(yℓ −mℓ)]

=2−1
∑
i

∑
j ̸=i

E[c2i (yi −mi)
2]E[c2j(yj −mj)

2]

≤2−1
{ K∑

i=1

w2
i q

2
i n

2
i

(ni + ν)2
Qi(mi)ϕi

}2

,

which is of order O(K−1). Thus, these observations show that condition (A5) is satisfied.

Finally, we shall check condition (A6). Note that

µ̂i(yi, η̂)− µ̂i(yi,η) =
niyi + ν̂m̂i

ni + ν̂
− niyi + νmi

ni + ν

=− ni(ν̂ − ν)(yi −mi)

(ni + ν̂)(ni + ν)
+ nimi(ν − ν̂)

(ν̂m̂i − νmi)ni + (m̂i −mi)ν̂ν

(ni + ν̂)(ni + ν)

=− ni(ν̂ − ν)(yi −mi)

(ni + ν̂)(ni + ν)
+Op(K

−1), (4.13)
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where the approximation in the last equality follows from (4.8). Since ∆†
v(y) given in

(4.9) can be approximated as ∆†
v(y) = K−r

∑K
i=1wi(1 − wi)q

2
iQi(µ̂i(yi,η))/(ni + ν −

v2,i) +Op(K
−r−1/2), it is observed that

∆v(y)− E[∆v(y)] =K
−r

K∑
i=1

wi(1− wi)q
2
i

ni + ν − v2,i

{
(v1 + 2v2,imi)

ni(yi −mi)

ni + ν

+ v2,i
n2
i

(ni + ν)2
{(yi −mi)

2 − E[(yi −mi)
2]}

}
+Op(K

−r−1/2),

which can be verified to be of order Op(K
−r−1/2). It follows from (4.13) that

E[ξ̂i(yi, η̂)− ξ̂i(yi,η)] = −qiniE[(ν̂ − ν)(yi −mi)]

(ni + ν)2
+O(K−1).

Similarly,

E[{ξ̂i(yi, η̂)− ξ̂i(yi,η)}ξ̂i(yi,η)]

=− q2i n
2
iE[(ν̂ − ν)(yi −mi)

2]

(ni + ν)3
− q2i nimiE[(ν̂ − ν)(yi −mi)]

(ni + ν)2
+O(K−1).

Thus, it is sufficient to show that E[(ν̂−ν)(yi−mi)] = O(K−1) and E[(ν̂−ν)(yi−mi)
2] =

O(K−1). Recall the facts given in (4.8). Note that U−1
K = O(K−1) and(

β̂ − β
ν̂ − ν

)
= U−1

K

K∑
j=1

Dt
jΣ

−1
j

(
yj −mj

(yj −mj)
2 − ϕjQi(mj)

)
.

Let e0 = (0, . . . , 0, 1)t be a vector with the last component one and the others zeros. Since
E[{(yj −mj)

2 − ϕjQi(mj)}(yi −mi)] = 0 for i ̸= j, it is seen that

E[(ν̂ − ν)(yi −mi)] =et
0U

−1
K

K∑
j=1

Dt
jΣ

−1
j

(
E[(yj −mj)(yi −mi)]

E[{(yj −mj)
2 − ϕjQi(mj)}(yi −mi)]

)
=et

0U
−1
K Dt

iΣ
−1
i

(
E[(yi −mi)

2]
E[{(yi −mj)

2 − ϕiQi(mi)}(yi −mi)]

)
,

which is of order O(K−1). Similarly, we can verify that E[(ν̂ − ν)(yi −mi)
2] = O(K−1).

Therefore, Lemma 4.1 is proved.

Thus, from Lemma 4.1, all the results given in Propositions 3.1, 3.2, 3.3 and 3.4 and
Theorem 3.1 hold for the estimator δCEB

i (y, η̂). Especialy, we can estimate MSE of CEB
using the following parametric bootstrap samples:

y∗i |θ∗i ∼f(y∗i |θ∗i ) = exp[ni(θ
∗
i y

∗
i − ψ(θ∗i )) + c(y∗i , ni)],

θ∗i |ν̂, m̂i ∼π(θ∗i |ν̂, m̂i) = exp[ν̂(m̂iθ
∗
i − ψ(θ∗i ))]C(ν̂, m̂i),

(4.14)

Then, a second-order unbiased estimator of MSE for CEB δCEB
i (y, η̂) is given by

mse(y, δCEB
i (y, η̂)) = mse∗(y, ξ̂(y, η̂)) + Î2(y) + 2I∗3 (y), (4.15)
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where mse∗(y, ξ̂(y, η̂)) = 2g1(η̂)−E∗[g1(η̂
∗)]+g∗2(η̂), g

∗
2(η̂) = E∗[{ξ̂(y∗, η̂∗)− ξ̂(y∗, η̂)}2],

Î2(y) = {(aB(y)− 1)(ξ̂i(y, η̂)− ξ̂w(y, η̂)) + ∆m(y)}2 and

I∗3 (y) = E∗[
{
ξ̂i(y

∗, η̂∗)− ξ̂i(y
∗, η̂)

}{
(aB(y

∗)− 1)(ξ̂i(y
∗, η̂∗)− ξ̂w(y

∗, η̂∗)) + ∆m(y
∗)
}
],

for g1(η̂) = q2i ν̂[(ni+ ν̂)(ν̂−v2,i)]−1Qi(m̂i) and g1(η̂
∗) = q2i ν̂

∗[(ni+ ν̂
∗)(ν̂∗−v2,i)]−1Qi(m̂

∗
i ).

5 Specific mixed models and an Application to Mor-

tality Rates Estimate

5.1 Poisson-gamma mixture model

As an example of mixed models (4.1), we first treat the Poisson-gamma mixture model
which are useful for estimation of relative risk in spatial epidemiology. Suppose that a
whole region consists of K areas. For i = 1, . . . , K, let yi be the number of deaths of
a specific disease in the i-th area. Let ni be the expected number of deaths adjusted
by age and sex in the i-th area. Assume that y1, . . . , yK are random variables mutually
independently distributed as yi has a Poisson distribution with mean λini, Po(λini),
where λi is an unknown parameter corresponding to disease risk in the i-th area. Then,
an unbiased estimator of λi is

λ̂SMR
i = yi/ni, (5.1)

which is called the Standardized Mortality Ratio (SMR).

Since the variance of λ̂SMR
i is V ar(λ̂SMR

i ) = λi/ni, the variance gets larger for smaller
ni, namely, SMR has a large fluctuation in an area with small ni. Thus, the following
Poisson-gamma model is suggested to fix this undesirable property:

yi|λi ∼Po(niλi),

λi ∼Ga(miν/ni, 1/ν),
(5.2)

where Ga(α, β) is a Gamma distribution with mean αβ and variance αβ2, and mi and
ν are positive hyper-parameters. Expressing these distributions in a natural exponential
family, we have

yi|λi ∼ exp[ni(yin
−1
i log λi − λi) + (yi log ni − log yi!)],

λi|ν,mi ∼ exp[{(mi/ni)ν − 1} log λi − νλi + (mi/ni)ν log ν]{Γ(miν/ni)}−1dλi.
(5.3)

Let θi = n−1
i log λi with dλi = ni exp[niθi]dθi. Let ψ(θi) = exp[niθi] = λi. Then, the

mixed distribution (5.3) is rewritten as

yi|λi ∼ exp[ni(yiθi − ψ(θi)) + (yi log ni − log yi!)],

θi|ν,mi ∼ exp[ν(miθi − ψ(θi))]n
−1
i (ν/ni)

miν/ni{Γ(miν/ni)}−1dθi,
(5.4)

so that this model is in the framework of (4.1) in Section 4 with v0,i = v2,i = 0 and
v1,i = ni for Qi(mi). It is noted that µi = ψ′(θi) = niλi and qi = 1/ni in this case. The
Bayes estimators of µi and λi are

µ̂B
i (yi,mi, ν) =

niyi + νmi

ni + ν
and λ̂Bi (yi,mi, ν) =

yi + νmi/ni

ni + ν
. (5.5)
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We now consider the benchmarking problems for mortality rates. Let L =
∑K

i=1 ni

and y = (y1, . . . , yK)
t. Consider the case of wi = ni/

∑K
j=1 nj. Let yw = L−1

∑K
i=1 yi,

which is the average number of patients with the disease in the whole reagion. Note that
E[yw] = L−1

∑K
i=1E[yi] = L−1

∑K
i=1 λini. This suggests that it is reasonable to consider

estimators λ̂Ci ’s satisfying the mean constraint

(MC)
∑K

i=1wiλ̂
C
i = L−1

∑K
i=1 yi, for L =

∑K
i=1 ni,

which is the constraint (C1′). It is clear that the SMR λ̂SMR
i = yi/ni satisfies the con-

straint. However, the Bayes estimator λ̂Bi (yi,mi, ν) does not satisfy the constraint (MC),
namely,

L−1

K∑
i=1

niyi + νmi

ni + ν
̸= L−1

K∑
i=1

yi.

Then from (4.11) and (4.6), CEB of λi under (MC) is

λ̂CEBm
i = λ̂EB

i +
K∑
j=1

wj

nj

ν̂(yj − m̂j)

nj + ν̂
, (5.6)

where λ̂EB
i is EB λ̂EB

i = (yi + ν̂m̂i/ni)/(ni + ν̂).

The variance constraint (C2′) is described as

(VC)
K∑
i=1

wi(λ̂
C
i − λ̂

C

w)
2 =

K∑
i=1

wi(λ̂
EB
i − λ̂

EB

w )2 +
1

Kr

K∑
i=1

wi(1− wi)
λ̂EB
i

ni + ν̂
,

where λ̂
C

w =
∑K

j=1wjλ̂
C
j and λ̂

EB

w =
∑K

j=1wjλ̂
EB
j .

It is noted that Frey and Cressie (2003) treated a similar variance constraint with the
same weights wi, where their prior distribution of λi is different from ours. Under (VC),
from (4.11), CEB is

λ̂CEBv
i = λ̂EB

i + {aB(y)− 1}{λ̂EB
i − λ̂

EB

w }, (5.7)

where

{aB(y)}2 = 1 +
1

Kr

∑K
j=1wj(1− wj)λ̂

EB
j /(nj + ν̂)∑K

j=1wj(λ̂EB
j − λ̂

EB

w )2
.

When both constraints (MC) and (VC) are imposed, it follows from (4.11) that CEB
under the mean-variance constraints is

λ̂CEBmv
i = λ̂EB

i + {aB(y)− 1}{λ̂EB
i − λ̂

EB

w }+
K∑
j=1

wj

nj

ν(yj − m̂j)

nj + ν̂
. (5.8)

Since mi = ψ′(xt
iβ) and ψ(θi) = exp[niθi] = λi, it is seen that mi = ni exp[nixiβ].

The unknown parameters are ηt = (βt, ν), and are estimated by the estimating equations
(4.6). In this model, Qi(mi) = nimi, ϕi = 1/ν + 1/ni, v2,i = 0, g1i = yi − mi and
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g2i = (yi − mi)
2 − mi(1 + τi) for τi = ni/ν. For µri = E[(yi − mi)

r], i = 2, 3, 4, from
Proposition 4.1, it is observed that

µ2i =mi(1 + τi), µ3i = mi(1 + 3τi + 2τ 2i ),

µ4i =mi

{
1 + 3mi + (6mi + 7)τi + 3(mi + 4)τ 2i + 6τ 3i

}
.

Hence, (β, ν) can be estimated by solving the estimating equations

K∑
i=1

1

|Σi|

[
{µ4i − µ2

2i − µ3i(1 + τi)}g1i + {µ2i(1 + τi)− µ3i}g2i
]
nimixi = 0,

K∑
i=1

1

|Σi|
{µ2ig2i − µ3ig1i}nimi = 0.

The asymptotically unbiased estimators of MSE of CEB λ̂CEBm
i , λ̂CEBv

i and λ̂CEBmv
i are

provided by (4.15), where g1(η) in mse
∗(y, λ̂i) is given by g1(η) = mi/{ni(ni + ν)}.

5.2 An example for benchmarking SMR in mortality rates esti-
mates

We now apply the procedures given in Section 5.1 to real mortality data, and we investigate
how CEB works.

The dataset consists of observed number of mortality yi and its expected number ni

of stomach cancer for females lived in the i-th city or town in Saitama prefecture, Japan,
for five years from 1995 to 1999. Saitama is the prefecture next to Tokyo. Such area
level data are available for K = 92 cities and towns, and the total number of mortality in
the whole region is L = 3, 953. The expected numbers are adjusted by age based on the
population so that L =

∑K
i=1 yi =

∑K
i=1 ni. We apply the Poisson-gamma model (5.2) to

this dataset and estimate the stomach cancer mortality risk λi for each municipality. For
the regression part xt

iβ, we here consider the case that xi is one-dimensional and xi = 1,
namely, mi = ni exp[niβ0] for β = β0.

Using the package SolveNLE in the programming language Ox for solving non-linear
equations, we can solve the estimating equations (4.6) and get the estimates β0 = 1.53249×
10−4 and ν = 174.472. It is observed that L =

∑K
i=1 ni = 3, 953, and that for wi = ni/L,∑K

i=1wiλ̂
SMR
i = 1 and

∑K
i=1wiλ̂

EB
i = 1.0086, which means that their difference is quite

small. On the other hand, the weighted sample variance of SMR is
∑K

i=1wi(λ̂
SMR
i −1)2 =

0.0302, while the weighted sample variance of the empirical Bayes estimates (EB) is
0.0014. However, the right hand side in (VC) with r = 0 in Section 5.1 is

K∑
i=1

wi(λ̂
EB
i − λ̂

EB

w )2 +
K∑
i=1

wi(1− wi)
λ̂EB
i

ni + ν̂
= 0.0051,

this implies that EB yields over-shrinking. Thus, we investigate the behavior of CEB
under the mean-variance constraints with r = 0 and aB(y) = 1.9242, and we can confirm
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Figure 1: Plots of SMR for stomach cancer mortality incidence of females in Saitama prefecture
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Figure 2: Plots of EB for stomach cancer mortality incidence of females in Saitama prefecture
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Figure 3: Plots of CEB under mean-variance constraints with r = 0 for stomach cancer mortality
incidence of females in Saitama prefecture

that the weighted sample variance of CEB is identical to 0.0051. Plots of estimates by
SMR, EB and CEB are illustrated in Figures 1, 2 and 3,respectively. These figures show
that EB shrinks SMR too much and that CEB expands slightly shrunken EB.

For 92 municipalities in Saitama prefecture, Table 1 reports the values of SMR λ̂SMR
i ,

EB λ̂EB
i and two kinds of CEB under mean-variance constraints with r = 0 and r = 0.5,

denoted by CEB0 and CEB0.5, and estimates of their MSEs by the parametric bootstrap
method, where the estimates are constructed based on 1,000 bootstrap samples. It is
noted that the columns ‘estimates’ and ‘estimated MSE’ report the values of 100× λ̂i and
100×mse(λ̂i), where mse(λ̂i) is an estimate of MSE of λ̂i. It is noted that an estimator
of MSE of SMR, yi/ni, is provided by the parametric bootstrap method. In fact, note
that E[(yi/ni − λi)

2] = n−2
i E[(yi − niλi)

2] = n−1
i E[λi] = mi/n

2
i = n−1

i exp{niβ0}. Then,
the second order unbiased estimator of MSE of SMR is given as

mse(λ̂SMR
i ) = 2n−1

i exp{niβ̂0} − n−1
i E∗[exp{niβ̂

∗
0}].

For smaller ni, SMR has larger mse, while EB, CEB0 and CEB0.5 have smaller mse.
EB shrinks SMR very much, and CEB0 and CEB0.5 expand shrunken EB slightly. For
larger ni, on the other hand, EB, CEB0 and CEB0.5 do not shrink SMR so much, but
expand shrunken EB slightly. For most cities and towns, SMR has larger mse, while
EB, CEB0 and CEB0.5 have smaller mse. For Kawagoe, Kawaguchi, Urawa, Oomiya and
Tokorozawa, which have ni’s larger than 179, their mse values of EB, CEB0 and CEB0.5

are slightly larger than those of SMR. For Kumagaya with ni = 102.7, mse of CEB0 is
not good, while mse of EB0.5 is close to mse of EB. Also for Kasukabe with ni = 105.5,
mse of CEB0 is close to mse of SMR. For CEB0.5, the values of the estimates and the
estimated MSE are very close to the values for SMR. Taking into account the motivation
of Louis (1984) and Ghosh (1992), we suggest the use of CEB0, but we need to care the
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values of estimates in the cases of large mse (estimated MSE). For example, the estimate
1.23 for Kumagaya should be noted because it has the large mse.

5.3 Binomial-beta mixture and logistic regression

Finally, we give a breif explanation of the beta-binomial model with logistic regression.
For i = 1, . . . , K, let yi be the number of counts of a specific event in ni trials for the i-th
point. Assume that y1, . . . , yK are random variables mutually independently distributed
as niyi has a binomial distribution Bin(ni, pi), and pi is a probability of occurrence of the
event having the beta distribution. Then, the binomial-beta mixture is given by

yi|pi ∼Bin(ni, pi),

pi ∼beta(min
−1
i ν, (1−min

−1
i )ν),

(5.9)

wheremi and ν are positive hyper-parameters. Expressing these distributions in a natural
exponential family, we have

yi|pi ∼ exp
[
ni

{
yin

−1
i log

( pi
1− pi

)
+ log(1− pi)

}]( ni

yi

)
,

pi|ν,mi ∼ exp
[
min

−1
i ν log

( pi
1− pi

)
+ ν log(1− pi)

] p−1
i (1− pi)

−1Γ(ν)

Γ(min
−1
i ν)Γ((1−min

−1
i )ν)

dpi.

(5.10)

Let θi = n−1
i log(pi/(1−pi)) with p−1

i (1−pi)−1dpi = nidθi. Let ψ(θi) = log(1+exp[niθi]) =
− log(1− pi). Then, the mixed distribution (5.10) is rewritten as

yi|pi ∼ exp
[
ni(yiθi − ψ(θi))

]( ni

yi

)
,

θi|ν,mi ∼ exp
[
ν(miθi − ψ(θi))

] Γ(ν)ni

Γ(min
−1
i ν)Γ((1−min

−1
i )ν)

dθi,

(5.11)

so that this model is in the framework of (4.1) in Section 4 with v0,i = 0, v1,i = ni and
v2,i = −1 for Qi(·). Since µi = ψ′(θi) = nipi, the Bayes estimators of µi and pi are

µ̂i(yi,mi, ν) =
niyi + νmi

ni + ν
and p̂i(yi,mi, ν) =

yi + νmi/ni

ni + ν
.

Since mi = ψ′(xt
iβ) and ψ(θi) = log(1 + exp[niθi]) = − log(1 − pi), it is seen that

mi = ni exp[nix
t
iβ]/(1 + exp[nix

t
iβ]). The unknown parameters are ηt = (βt, ν), and

are estimated by the estimating equations (4.6). In this model, Qi(mi) = nimi − m2
i ,

ϕi = (1 + ν/ni)/(ν + 1), v2,i = −1, g1i = yi −mi and g2i = (yi −mi)
2 −mi(ni −mi)ϕi.
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For µri = E[(yi −mi)
r], i = 2, 3, 4, from Proposition 4.1, it is observed that

µ2i =
ν/ni + 1

ν + 1
mi(ni −mi), µ3i =

(ν/ni + 1)(ν/ni + 2)

(ν + 1)(ν + 2)
mi(ni −mi)(ni − 2mi),

µ4i =m
2
i (ni −mi)

2
[
3
(di + 1)(2di + 1)(3di + 1)

(ν + 1)(ν + 2)(ν + 3)

{
ν + 2 + 2

(ni − 2mi)
2

mi(ni −mi)

}
+

12

ni

(di + 1)(2di + 1)

(ν + 1)(ν + 2)

(ni − 2mi)
2

mi(ni −mi)
+

1

n2
i

di + 1

ν + 1

{
7
(ni − 2mi)

2

mi(ni −mi)
+ 2ni(4di + 3)

}
+

2di + 3

n2
i

+
1

n3
i

(ni − 2mi)
2

mi(ni −mi)

]
.

Thus, (β, ν) can be estimated by the estimating equations (4.6).

We can treat the benchmarking problems which have been studied in Section 5.1.
Although the details are omitted here, CEB is provided for the mean constraint (MC)
and/or the variance constraint (VC), and second-order unbiased estimators of their MSE
are provided.

6 Concluding Remarks

In this paper, we have considered the constrained empirical Bayes (CEB) estimators under
the mean and/or variance constriants and derived asymptotic approximations of MSE of
CEB in the general mixed models. As pointed out by Louis (1984), the sample variance
in the empirical Bayes (EB) estimates is smaller than the posterior variance, and Ghosh
(1992) suggested CEB so that the sample variance in CEB is identical to the posterior
variance. Then, it has been shown that MSE of CEB is larger than MSE of EB in the
first order approximation. Thus, it is important to assess uncertainty of CEB, namely,
estimation of MSE of CEB. We have provided a second-order unbiased estimator for MSE
of CEB.

These general results have been applied to natural exponential families with quadratic
variance functions (NEF-QVF) based on the study made by Morris (1982, 83) and Ghosh
and Maiti (2004). The application includes Poisson-gamma and binomial-beta mixture
models, and we have analized real mortality data of stomach cancer for female in cities
or towns in Saitama prefecture. Through this example, it is found that EB yields over-
shrinking, while CEB under the mean-variance constraints expands EB slightly. It is also
found that the estimated MSEs of CEB are larger than those of SMR for cities with larger
expected numbers of mortality, while the estimated MSE of CEB are much smaller for
most cities and towns. This is an interesting phenomenon and tells us the importance of
estimate of MSE for CEB.

Acknowledgments.
The research of the first author was supported in part by Grant-in-Aid for Scientific

Research Nos. 21540114 and 23243039 from Japan Society for the Promotion of Science.

25



References

[1] Breslow, N.E., and Clayton, D.G. (1993). Approximate inference in generalized
linear mixed models. J. American Statist. Assoc., 88, 9-25.

[2] Breslow, N.E., and Lin, X. (1995). Bias correction in generalized linear mixed models
with a single component of dispersion. Biometrika, 82, 81-91.

[3] Butar, F.B. and Lahiri, P. (2003). On measures of uncertainty of empirical Bayes
small-area estimators. J. Statist. Plan. Inf., 112, 63-76.

[4] Clayton, D. and Kaldor, J.(1987). Empirical Bayes estimates of age-standardized
relative risks for use in disease mapping. Biometrics, 43, 671-681.

[5] Crescenzi, M., Ghosh, M. and Maiti, T. (2005). Empirical Bayes estimators with
uncertainty measures for NEF-QVF populations. JIRSS, 4, 1-19.

[6] Datta, G.S., Ghosh, M., Steorts, R., and Maples, J. (2011). Bayesian benchmarking
with applications to small area estimation. Test, 20, 574-588.

[7] Frey, J., and Cressie, N. (2003). Some results on constrained Bayes estimators.
Statist. Probab. Letters, 65, 389-399.

[8] Ghosh, M. (1992). Constrained Bayes estimation with applications. J. American
Statist. Assoc., 87, 533-540.

[9] Ghosh, M. and Maiti, T. (2004). Small-area estimation based on natural exponential
family quadratic variance function models and survey weights. Biometrika, 91, 95-
112.

[10] Ghosh, M. and Maiti, T. (2008). Empirical Bayes confidence intervals for means of
natural exponential family-quadratic variance function distributions with applica-
tion to small area estimation. Scandinavian J. Statist., 35, 484-495.

[11] Godambe, V.P. and Thompson, M.E. (1989). An extension of quasi-likelihood esti-
mation (with Discussion). J. Statist. Plan. Infer., 22, 137-152.

[12] Kubokawa, T. (2011). On measuring uncertainty of small area estimators with
higher order accuracy. J. Japan Statist. Soc., 41, 93-119.

[13] Kubokawa, T. (2012) Mixed effects prediction under benchmarking and applications
to small area estimation. Discussion Paper Series, CIRJE-F-832.

[14] Louis, T.A. (1984). Estimating a population of parameter values using Bayes and
empirical Bayes methods. J. Amer. Statist. Assoc., 79, 393-398.

[15] Manton, K.G., Woodbury, M.A., Stallard, E., Riggan, W.B., Creason, J.P. and
Pellom, A.C.(1989). Empirical Bayes procedures for stabilizing maps of U.S. cancer
mortality rates. J. American Statist. Assoc., 84, 637-649.

26



[16] Morris, C. (1982). Natural exponential families with quadratic variance functions.
Ann. Statist., 10, 65-80.

[17] Morris, C. (1983). Natural exponential families with quadratic variance functions:
statistical theory. Ann. Statist., 11, 515-529.

[18] Sarkar, S. and Ghosh, M. (1998). Empirical Bayes estimation of local area means
for NEF-QVF superpopulations. Sankhya, B 60, 464-487.

[19] Tango, T. (1988). Empirical Bayes estimation for mortality indices ; application to
disease mapping. Japanese J. Applied Statist., 17, 81-96 (in Japanese).

[20] Tsutakawa, R.K. (1985). Estimation of cancer mortality rates: A Bayesian analysis
of small frequencies. Biometrics, 41, 69-79.

[21] Tsutakawa, R.K. (1988). Mixed model for analyzing geographic variability in mor-
tality rates. J. American Statist. Assoc., 83, 37-42.

[22] Tsutakawa, R.K., Shoop, G.L. and Marienfeld, C.J. (1985). Empirical Bayes esti-
mation of cancer mortality rates. Statist. Medicine, 4, 201-212.

A Appendix

We here provide the proof of Proposition 4.1. Throughout the appendix, we omit the
index i in yi, µi, θi and others. Note that E[y − µ] = 0 for µ = ψ′(θ). It follows that
E[(y− µ)2|θ] = n−1ψ′′(θ), E[(y− µ)3|θ] = n−2ψ′′′(θ) and E[(y− µ)4|θ] = 3n−2{ψ′′(θ)}2 +
n−3ψ(4)(θ). Also, note that ψ′(θ) = µ, ψ′′(θ) = Q(µ) = v0+v1µ+v2µ

2, ψ′′′(θ) = Q(µ)Q′(µ)
and ψ(4)(θ) = Q(µ){Q′(µ)}2 + 2v2{Q(µ)}2. Thus, we have

E[(y − µ)2|θ] =n−1Q(µ),

E[(y − µ)3|θ] =n−2Q(µ)Q′(µ),

E[(y − µ)4|θ] =(3n−2 + 2v2n
−3){Q(µ)}2 + n−3Q(µ){Q′(µ)}2.

(A.1)

Letting T = µ −m, we can express Q(µ) and Q′(µ) as Q(µ) = Q(m) + Q′(m)T + v2T
2

and Q′(µ) = Q′(m) + 2v2T , which are used to rewrite (A.1) as

E[(y − µ)2|θ] =n−1{Q(m) +Q′(m)T + v2T
2},

E[(y − µ)3|θ] =n−2{Q(m) +Q′(m)T + v2T
2}{Q′(m) + 2v2T},

E[(y − µ)4|θ] =(3n−2 + 2v2n
−3){Q(m) +Q′(m)T + v2T

2}2

+ n−3{Q(m) +Q′(m)T + v2T
2}{Q′(m) + 2v2T}2.

(A.2)

By integration by parts, we have the equations E[T 2] = Q(m)/ν + (v2/ν)E[T
2], E[T 3] =

(2/ν)Q′(m)E[T 2] + (2/ν)v2E[T
3] and E[T 4] = (3/ν)Q(m)E[T 2] + (3/ν)Q′(m)E[T 3] +
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(3/ν)v2E[T
4], which imply that

E[T 2] =
Q(m)

ν − v2
,

E[T 3] =
2Q(m)Q′(m)

(ν − v2)(ν − 2v2)
,

E[T 4] =
3Q(m){(ν − 2v2)Q(m) + 2{Q′(m)}2}

(ν − v2)(ν − 2v2)(ν − 3v2)
.

(A.3)

Based on these observations, we can derive the moments given in Proposition 4.1. Since
E[µ − m] = 0, it is clear that E[y − m] = 0. Since E[(y − m)2] = E[{(y − µ) + (µ −
m)}2] = E[(y−µ)2] +E[(µ−m)2], it is seen that E[(y−m)2] = n−1E[Q(m) +Q′(m)T +
v2T

2] +Q(m)/(ν − v2), which yields that E[(y −m)2] = Q(m)(1 + ν/n)/(ν − v2). Since
E[(y −m)3] = E[(y − µ)3 + 3(y − µ)2(µ−m) + (µ−m)3], it is seen that

E[(y −m)3] =n−2E[{Q(m) +Q′(m)T + v2T
2}{Q′(m) + 2v2T}]

+ 3n−1E[{Q(m) +Q′(m)T + v2T
2}T ] + E[T 3]

=(1 + 3d+ 2d2)E[T 3] +
3

n
(1 + d)Q′(m)E[T 2] + n−2Q(m)Q′(m)

=
Q(m)Q′(m)

(ν − v2)(ν − 2v2)

{
2 + 6d+ 4d2 + 3(1 + d)(

ν

n
− 2d) + (

ν

n
− d)(

ν

n
− 2d)

}
,

for d = v2/n. This is summarized as

E[(y −m)3] =
Q(m)Q′(m)

(ν − v2)(ν − 2v2)
(
ν

n
+ 1)(

ν

n
+ 2).

Similarly, E[(y−m)4] = E[(y− µ)4 + 4(y− µ)3(µ−m) + 6(y− µ)2(µ−m)2 + (µ−m)4],
so that

E[(y −m)4] =(3n−2 + 2v2n
−3)E[{Q(m) +Q′(m)T + v2T

2}2]
+ n−3E[{Q(m) +Q′(m)T + v2T

2}{Q′(m) + 2v2T}2]
+ 4n−2E[{Q(m) +Q′(m)T + v2T

2}{Q′(m) + 2v2T}T ]
+ 6n−1E[{Q(m) +Q′(m)T + v2T

2}T 2] + E[T 4]

={6d3 + 1d2 + 6d+ 1}E[T 4] +
6

n
{2d2 + 3d+ 1}Q′(m)E[T 3]

+
{ 7

n2
(d+ 1){Q′(m)}2 + 2

n
(4d2 + 7d+ 3)Q(m)

}
E[T 2]

+
1

n3
Q(m){n(3 + 2d)Q(m) + {Q′(m)}2},

which is summarized as

E[(y −m)4] =(d+ 1)(2d+ 1)(3d+ 1)E[T 4] +
6

n
(d+ 1)(2d+ 1)Q′(m)E[T 3]

+
1

n2
(d+ 1)

{
7{Q′(m)}2 + 2n(4d+ 3)Q(m)

}
E[T 2]

+
1

n3
Q(m){n(3 + 2d)Q(m) + {Q′(m)}2}.

Hence, we get the expression given in Proposition 4.1.
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Table 1: Estimates by SMR, EB and CEB under mean-variance constraints, and estimates
of their MSE for 92 cities and towns in Saitama prefecture (ni is the expected number
of female mortality by stomach cancer, CEB0 and CEB0.5 correspond the cases of r = 0
and r = 0.5, respectively. 100× λ̂i and 100×mse(λ̂i) are given as estimates and estimated
MSE.)

estimates estimated MSE

city, town ni SMR EB CEB0 CEB0.5 SMR EB CEB0 CEB0.5

Kawagoe 192.1 107 105 108 105 0.536 0.561 0.678 0.562

Kumagaya 102.7 132 112 123 113 0.989 0.732 1.804 0.738

Kawaguchi 242.8 104 104 106 103 0.427 0.497 0.549 0.499

Urawa 256.7 95 98 95 97 0.405 0.482 0.565 0.495

Oomiya 264.8 92 97 93 96 0.393 0.474 0.641 0.491

Gyouda 61.2 112 103 105 103 1.647 0.855 0.896 0.857

Chichibu 50.5 94 99 97 98 1.993 0.895 0.941 0.906

Tokorozawa 179.6 97 100 99 99 0.572 0.580 0.597 0.589

Hannou 58.2 97 100 98 99 1.733 0.866 0.889 0.875

Kazo 44.3 105 101 101 100 2.268 0.919 0.919 0.925

Honjyo 45.9 84 97 93 96 2.192 0.913 1.076 0.930

Higashimatsuyama 52.7 77 95 89 93 1.911 0.886 1.228 0.911

Iwatsuki 65.6 105 102 102 101 1.538 0.840 0.841 0.845

Kasukabe 105.5 115 106 111 106 0.963 0.725 0.949 0.725

Sayama 91.5 87 96 91 95 1.108 0.762 0.992 0.782

Hanyu 42.4 77 96 90 94 2.371 0.927 1.196 0.949

Kounosu 45.5 107 102 102 101 2.210 0.914 0.915 0.919

Fukaya 69.4 90 98 94 96 1.456 0.828 0.942 0.843

Ageo 109.9 99 100 99 99 0.925 0.714 0.725 0.722

Yono 48.3 120 104 107 104 2.084 0.903 0.987 0.904

Souka 107.5 99 100 99 99 0.945 0.720 0.728 0.728

Koshigaya 153.1 85 94 87 92 0.668 0.624 1.077 0.653

Warabi 45.9 100 100 99 99 2.194 0.913 0.925 0.921

Toda 44.9 93 99 96 98 2.242 0.917 0.973 0.928

Iruma 77.1 104 102 102 101 1.311 0.803 0.806 0.808

Hatogaya 35.2 130 105 109 105 2.856 0.958 1.082 0.958

Asaka 52.4 112 103 105 102 1.920 0.887 0.912 0.890

Shiki 32.4 116 103 104 102 3.093 0.970 0.984 0.973

Wakou 30.1 92 99 97 98 3.329 0.981 1.032 0.992

Niiza 78.3 102 101 101 100 1.291 0.800 0.801 0.806

Okegawa 43.0 104 101 101 100 2.337 0.924 0.926 0.931
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estimates estimated MSE

city, town ni SMR EB CEB0 CEB0.5 SMR EB CEB0 CEB0.5

Kuki 39.5 118 103 105 103 2.541 0.939 0.979 0.941

Kitamoto 37.2 107 101 101 101 2.700 0.949 0.949 0.954

Yashio 37.4 82 97 93 96 2.685 0.948 1.110 0.965

Fujimi 52.5 108 102 103 101 1.917 0.887 0.892 0.891

Kamifukuoka 34.2 73 96 90 94 2.935 0.962 1.247 0.985

Misato-shi 60.8 98 100 99 99 1.659 0.857 0.875 0.866

Hasuda 37.8 84 97 93 96 2.657 0.946 1.087 0.962

Sakado 51.6 129 107 112 107 1.952 0.891 1.161 0.891

Satte 34.9 125 104 107 104 2.876 0.959 1.035 0.960

Tsurugashima 30.8 74 96 91 95 3.254 0.977 1.210 0.998

Hidaka 34.6 92 99 96 98 2.903 0.961 1.018 0.972

Yoshikawa 27.9 64 95 89 93 3.591 0.991 1.334 1.016

Ina 15.6 95 99 98 98 6.412 1.053 1.084 1.063

Fukiage 17.0 117 101 101 101 5.890 1.046 1.046 1.051

Ooi 20.7 86 98 96 97 4.830 1.026 1.099 1.039

Miyoshi 20.6 82 98 95 97 4.851 1.027 1.125 1.041

Moroyama 23.7 75 97 93 96 4.231 1.012 1.173 1.029

Ogose 10.8 138 102 102 101 9.229 1.080 1.083 1.084

Naguri 3.5 139 100 99 99 27.898 1.122 1.130 1.130

Namekawa 8.9 66 98 95 97 11.161 1.090 1.182 1.104

Arashiyama 14.1 92 99 97 98 7.096 1.061 1.102 1.072

Ogawa 27.0 70 96 91 94 3.711 0.995 1.246 1.016

Tokigawa 6.7 59 98 95 97 14.830 1.103 1.191 1.117

Tamakawa 4.1 48 98 96 97 24.257 1.119 1.191 1.132

Kawashima 16.5 126 102 103 101 6.053 1.048 1.053 1.052

Yoshimi 15.3 182 106 111 106 6.517 1.055 1.275 1.055

Hatoyama 13.5 73 98 95 97 7.371 1.064 1.169 1.079

Yokose 7.7 64 98 95 97 12.870 1.097 1.184 1.111

Minano 11.5 69 98 94 97 8.642 1.075 1.183 1.090

Nagatoro 8.0 124 101 100 100 12.480 1.096 1.099 1.102

Yoshida 6.4 77 99 96 98 15.434 1.105 1.159 1.116
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estimates estimated MSE

city, town ni SMR EB CEB0 CEB0.5 SMR EB CEB0 CEB0.5

Okano 11.7 33 95 90 94 8.491 1.074 1.361 1.097

ryoujin 3.2 30 98 96 97 30.852 1.125 1.201 1.137

Ootaki 2.4 83 99 97 98 41.626 1.130 1.163 1.140

Arakawa 6.0 98 100 98 99 16.440 1.107 1.133 1.117

Higashichichibu 4.4 135 100 100 100 22.678 1.117 1.123 1.124

Misato-machi 11.0 117 101 100 100 9.075 1.079 1.081 1.085

Kodama 16.4 121 102 102 101 6.108 1.049 1.050 1.054

Kamikawa 10.0 59 97 94 96 9.923 1.084 1.211 1.099

Kamiizumi 1.5 328 101 102 101 65.719 1.135 1.136 1.140

Kamisato 18.3 136 103 105 103 5.473 1.039 1.071 1.041

Oosoto 6.3 174 102 103 102 15.864 1.106 1.113 1.110

Kounan 9.3 96 99 98 98 10.707 1.088 1.117 1.098

Menuma 20.8 81 98 95 97 4.807 1.026 1.129 1.040

Okabe 13.9 121 101 101 101 7.184 1.062 1.062 1.068

Kawamoto 9.1 163 103 104 102 10.913 1.089 1.109 1.092

Hanazono 8.7 79 99 96 98 11.440 1.092 1.150 1.103

Yorii 27.3 106 101 100 100 3.673 0.994 0.997 1.001

Kisai 14.6 68 97 94 96 6.851 1.059 1.197 1.075

Minamikawara 3.2 62 99 97 98 31.038 1.125 1.175 1.136

Kawazato 7.0 99 100 98 99 14.253 1.102 1.126 1.111

Kitakawabe 8.9 78 99 96 97 11.227 1.091 1.153 1.103

Ootone 11.6 77 98 95 97 8.622 1.075 1.153 1.088

Miyashiro 20.0 119 102 102 101 4.992 1.030 1.032 1.034

Shiraoka 26.1 76 97 93 95 3.837 1.000 1.173 1.017

Shoubu 15.8 113 101 100 100 6.321 1.052 1.054 1.058

Kurihashi 15.8 100 100 98 99 6.325 1.052 1.071 1.061

Washimiya 16.7 119 101 102 101 5.983 1.047 1.047 1.052

Sugito 27.0 84 98 95 97 3.710 0.995 1.096 1.009

Matsubushi 16.4 109 101 100 100 6.078 1.049 1.054 1.056

Shouwa 24.4 85 98 95 97 4.098 1.008 1.096 1.021
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