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Abstract. We propose a computationally feasible inference method in finite games

of complete information. Galichon and Henry (2011) and Beresteanu, Molchanov,

and Molinari (2011) show that such models are equivalent to a collection of moment

inequalities that increases exponentially with the number of discrete outcomes. We

propose an equivalent characterization based on classical combinatorial optimiza-

tion methods that alleviates this computational burden and allows the construction

of confidence regions with an efficient combinatorial bootstrap procedure that runs

in linear computing time. The method can also be applied to the empirical analysis

of cooperative and noncooperative games, instrumental variable models of discrete

choice and revealed preference analysis. We propose an application to the determi-

nants of long term elderly care choices.
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Introduction

With the conjoined advent of powerful computing capabilities and rich data sets, the empirical

evaluation of complex structural models with equilibrium data is becoming prevalent, particularly in

the analysis of social networks and industrial organization. However, in such models, multiple equi-

libria are the norm rather than the exception. Though multiplicity of equilibria and identifiability of

the model’s structural parameters are conceptually distinct, the former often leads to a failure of the

latter, thereby invalidating traditional inference methods. This is generally remedied by imposing

additional assumptions to achieve identification, such as imposing an equilibrium selection mecha-

nism or a refinement of the equilibrium concept. Manski (1993) and Jovanovic (1989) were among

the first to advocate a new inference approach that dispenses with identification assumptions and

delivers confidence regions for partially identified structural parameters. A large literature has de-

veloped on the general problem of inference on partially identified parameters defined as minimizers

of objective functions or more specifically as solutions to moment inequality restrictions, following

the seminal work of Chernozhukov, Hong, and Tamer (2007).

In structural estimation using equilibrium conditions, the partial identification approach was ini-

tially applied, as in Haile and Tamer (2003), to achieve simple and robust inference from implications

of the model in the form of a small number of moment inequalities. This partial identification ap-

proach was applied to inference in games by Andrews, Berry, and Jia (2003), Pakes, Porter, Ho, and

Ishii (2004), Ciliberto and Tamer (2009), Jia (2008) among others. However, this approach brings

only part of the empirical content of the model to bear on the estimation, resulting in unnecessary

loss of informativeness. In models with multiple equilibria and no additional prior information,

nothing is known of the equilibrium selection mechanism. If a particular equilibrium selection mech-

anism is posited, the model likelihood can be derived and inference based on it. Jovanovic (1989)

characterizes compatibility of an economic structure with the true data generating process as the

existence of some (unknown) equilibrium selection mechanism, for which the likelihood is equal to

the true data generating mechanism. Berry and Tamer (2006) define the identified set as the collec-

tion of structural parameter values for which the structure is compatible with the data generating

mechanism in the sense of Jovanovic (1989). This definition of the identified set is not directly

conducive to inference, as it involves an infinite dimensional (nuisance) parameter (the equilibrium

selection mechanism). However, in the case of finite non cooperative games of complete information,

Galichon and Henry (2011) and Beresteanu, Molchanov, and Molinari (2011) show equivalence of

the Jovanovic (1989) definition with a system of inequalities. Hence, they show that the empirical

content of such models is characterized by a finite collection of moment inequalities.
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A large literature has developed on inference in moment inequality models since the seminal

contribution of Chernozhukov, Hong, and Tamer (2007). We discuss and review it in Section 3.

However, a major challenge in the framework of this paper is that the number of inequalities char-

acterizing the empirical content of the model grows exponentially with the number of equilibrium

strategy profiles. Hence the combinatorial optimization approach that we propose in this paper is

to the best of our knowledge the only computationally feasible inference procedure for empirically

relevant incomplete economic structures. The growing literature on “inference with many moment

inequalities” addresses theoretical issues relating to the case, where the number of inequalities grows

with sample size and does not alleviate the computational burden mentioned here. This problem

of exponential complexity goes a long way towards explaining the dearth of empirical studies us-

ing partial identification in such models. However, abandoning this partial identification approach

would mean abandoning robust inference not only in non cooperative games of perfect information

but also in large classes of models that share exactly the same feature, and fall into the framework of

this paper. They include cooperative games, such as matching games and network formation games,

revealed preference analysis of spacial preferences and matching markets and instrumental variable

models of discrete choice.

The objective of this paper is to propose a combinatorial solution to this problem, where the

number of inequality restrictions grows exponentially with the number of strategy profiles or dis-

crete outcomes. Ekeland, Galichon, and Henry (2010) have shown that generic partial identification

problems can be formulated as optimal transportation problems. Developing ideas in Galichon and

Henry (2011), we exploit the special structure of discrete choice problems and show that correct

specification can be formulated as a problem of maximizing flow through a network, and that the

identified set can be obtained from the Max-Flow Min-Cut Theorem. The dual problems of max-

imizing flow through a network and finding a minimum capacity cut are classics in combinatorial

optimization and operations research, with applications in many areas such as traffic, communi-

cations, routing and scheduling; see, for example Schrijver (2004) for the theory and history, and

Ahuja, Magnanti, and Orlin (1993) for numerous applications. To our knowledge this is the first

application of the Max-Flow Min-Cut Theorem to statistical inference for equilibrium models. We

apply this powerful combinatorial method to the problem of constructing confidence regions for

structural parameters. We construct a functional quantile for the bootstrap process using a linear

computing time algorithm and replace the unknown empirical process by this quantile in the system

of moment inequalities to obtain the least relaxation of the moment inequalities, hence maximum

informativeness, while controlling the confidence level of the covering region. Since the procedure

involves bootstrapping the empirical process only, it does not suffer from the problems of boot-

strap validity in partially identified models described in Chernozhukov, Hong, and Tamer (2007)
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and Bugni (2010). We illustrate and assess our procedure on a very simple full information game

with 2 players and 3 strategies, easily derived equilibria and yet a large number of inequalities to

characterize its empirical content (namely 127). We simulate the game under a variety of parameter

values and assumptions on the data generating process and with explanatory variables. Finally,

we illustrate the approach, the procedure and the interpretation of results on an application to the

determinants of long term elderly care choices of American families.

In summary, the main contributions of this paper are as follows:

1. We present a unified approach to inference in incomplete structural models.

2. We provide a simplified and insightful new proof for a characterization of the identified set.

3. We present a computationally efficient, combinatorial procedure that allows feasible infer-

ence in empirically relevant incomplete structural models. We demonstrate its practical

efficiency in extensive simulations of a simple game.

4. We apply this methodology to an empirical example and demonstrate the type of econo-

metric analysis and insights that it allows.

The paper is organized as follows. The next section introduces the general framework and the ob-

ject of study. Section 2 derives the characterization of the identified set with the Min-Cut Max-Flow

Theorem. Section 3 describes the combinatorial procedure to efficiently construct the confidence

region. Section 4 contains the simulation evidence and Section 5 the empirical application. The last

section concludes. Proofs are collected in an appendix.

1. Analytical framework

1.1. Model specification. We consider the following model specification.

Y ∈ G(X, ε; θ), (1.1)

where Y is an observable outcome variable, which takes values in a finite set Y = {y1, . . . , yK},
X is a vector of exogenous explanatory variables with domain X , ε is a vector of unobservable

heterogeneity variables with domain Ξ ⊂ Rl and θ ∈ Θ ⊂ Rd is a vector of unknown parameters.

Finally, G : (X, ε) ⇒ G(X, ε; θ) is a multi-valued mapping. The random elements X, Y and ε

are defined on a common probability space (Ω,F ,P). The sample consists in n observational units

i = 1, . . . , n, which are independent and identical in distribution. To each unit i is attached a vector

(Yi, Xi, εi), only the first two elements of which shall be observed. For each potential outcome

y ∈ Y, we denote by P (y|X) the conditional probability P(Y = y|X). If Z is a subset of Y, P (Z|X)

will denote
∑

y∈Z P (y|X). It is important to emphasize here the fact that P (.|X) denotes the true

outcome data generating process, which is unknown, but can be estimated from the data. It is not
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a function of the structural parameter vector and cannot be construed as the likelihood from the

model. The vector of unobservable variables ε in the economic structure has conditional cumulative

distribution function F (ε|X; θ) for some known function F parameterized by θ (the same notation is

used for the parameters of the model correspondence and for the parameters of the error distribution

to indicate that they may have common components). The economic structure is summarized by the

multi-valued mapping G. A special case of specification (1.1) arises when G is a function, in which

case model (1.1) is a nonlinear non separable single equation discrete choice model as in Chesher

(2010). Here, however, we entertain the possibility of G having multiple values arising from multiple

equilibria, data censoring or endogeneity. G is entirely given by the economic structural model, up

to an unknown parameter vector θ.

The analytical framework, concepts and procedures proposed throughout the paper will be illus-

trated and discussed with the following simple example.

Example 1 (Partnership game). Our example is a simple non cooperative full information game of

complementarities.

• Strategies: There are two players, who simultaneously decide, whether to invest strongly

(strategy H), weakly (strategy L) or not at all (strategy O) in a partnership.

• Payoffs: Players pay a cost c ≥ 0 (respectively 2c) for a weak (respectively strong) in-

vestment. Benefits that accrue to players depend on the overall level of investment in the

partnership and explanatory variables Ji, i = 1, 2, where Ji = 1 if player i is female, and

zero otherwise. The benefits for player i are 3c(1+βJi) in case both players invest strongly,

2c(1 + βJi) in case one player invests weakly and the other strongly and c(1 + βJi) in case

both players invest weakly. Finally player i also experiences an idiosyncratic random par-

ticipation payoff εi, i = 1, 2 with a density with respect to Lebesgue measure. The payoff

matrix for the game is given in Table 1.

• Equilibrium concept: We assume that outcomes are Nash equilibria in pure strategies.

Other equilibrium concepts could be entertained, in particular with mixed strategies, as will

be discussed in Section 3.1 and illustrated in the empirical application.

The strategies, payoffs and equilibrium concept together define the economic structure. Y is an ob-

served equilibrium strategy profile. J = (J1, J2) is also observed by the analyst. The idiosyncratic

participation benefit ε = (ε1, ε2) is not, but it is common knowledge to the players. The structural

parameter vector is θ = (c, β). The equilibrium correspondence, i.e., the set of equilibria for each

value of ε, J and θ, can be easily derived, and defines the multi-valued mapping G in model spec-

ification (1.1), which is represented in the (ε1, ε2) space in Figure 1 for the case β = 0. Since we
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Table 1. Payoff matrix for the partnership game. In each cell, the top expression is

player 1’s payoff and the bottom term is player 2’s payoff.

Player 1:

Player 2 :

H L O

H 3c(1 + βJi)− 2c + ε1 2c(1 + βJi)− 2c + ε1 −2c + ε1

3c(1 + βJi)− 2c + ε2 2c(1 + βJi)− c + ε2 0

L 2c(1 + βJi)− c + ε1 c(1 + βJi)− c + ε1 −c + ε1

2c(1 + βJi)− 2c + ε2 c(1 + βJi)− c + ε2 0

O 0 0 0

−2c + ε2 −c + ε2 0

assume that ε has absolutely continuous distribution with respect to Lebesgue measure, we do not

include zero probability predictions, such as {OO,OL} when ε2 = c and ε1 < −c for instance.

1.2. Object of inference. Model (1.1) has the fundamental feature that G is multi-valued (because

of multiple equilibria in the example above for instance). For a given value of (X, ε, θ), the model

predicts a set of possible outcomes G(X, ε; θ). Only one of them, namely Y , is actually realized, but

the economic structure is silent about how that particular Y was selected among G(X, ε; θ). In other

words, the economic structure holds no information about the equilibrium selection mechanism. If

the true (unknown) equilibrium selection mechanism is denoted π0(y|ε, X), which is a probability

on G(X, ε; θ), then the likelihood of observation y can be written

L(θ|y, X) =
∫

Ξ

π0(y|ε,X)dF (ε|X; θ),

and the true parameter θ0 satisfies

P (y|X) =
∫

Ξ

π0(y|ε,X)dF (ε|X; θ0), X-a.s., for all y. (1.2)

Jovanovic (1989) points out that the incomplete model (incomplete because the equilibrium selection

is not modeled) is compatible with the true data generating process P (.|X) if and only if there exists

a (generally non unique) equilibrium selection mechanism π0 such that (1.2) holds. The identified

set is then defined as the set ΘI of parameter values θ such that model (1.1) is compatible in the

sense of Jovanovic (1989).

Definition 1 (Identified set). The identified set ΘI is the set of parameter values θ ∈ Θ such that

there exists a probability kernel π(.|ε,X) with support G(X, ε; θ) for which (1.2) holds.
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ε2

{OO}

{HH, OO}

{HH, LH, OO}

{HH, HL, OO}

{LO}

{HH, LH, OL}{OL}

{HH, HL, LH,

LL, OO}

{HH, HL, LO}

{HH, HL, LH, LL}

c

0

−c

ε1−c c

Figure 1. Representation of the equilibrium correspondence G(J, ε; θ) in the (ε1, ε2)

space, when β = 0.

The identified set is empty if no value of the parameter can rationalize the data generating process,

in which case the structural model is misspecified. The identified set is a singleton in case of point

identification, which occurs if G happens to be single valued under the true parameter values (in

case c = β = 0 in Example 1) or in very special cases under large support assumptions on X, as in

Tamer (2003). The identified set is totally uninformative, i.e., ΘI = Θ, in case the model has no

empirical content (if for instance G(X, ε; θ0) contains all selected outcome values for almost all ε at

the true value θ0).

1.3. Applications of the framework. Specification (1.1), hence the inference procedure presented

in this paper, has a wide range of applications. Some of the most compelling ones are the empirical

analysis of games, instrumental variable models of discrete choice with endogeneity and revealed

preference analysis.
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• Empirical analysis of games: As illustrated in Example 1, Model (1.1) applies to the

empirical analysis of noncooperative games of perfect information (normal form games).

They include the classic entry game of Bresnahan and Reiss (1990) and Berry (1992) as

well as the social interaction game of Soetevent and Kooreman (2007). Noncooperative

games of private information make for a less compelling application of this framework as

point identification conditions are more easily derived and justified than in their perfect

information counterparts (see for instance Aradillas-Lopez (2010) and Bajari, Hahn, Hong,

and Ridder (2011) for a discussion). Finally, some cooperative games can be analyzed and

estimated within the present framework, in particular matching and social network for-

mation games, where the equilibrium correspondence is characterized by pairwise stability.

Uetake and Watanabe (2011) present an empirical analysis of entry by merger, where the

present inference procedure can be applied.

• Discrete choice models with endogeneity: Chesher, Rosen, and Smolinski (2011)

show that instrumental variable models of discrete choice fall under model (1.1) and they

use Theorem 1 of Galichon and Henry (2011) or equivalently Theorem 3.2 of Beresteanu,

Molchanov, and Molinari (2011) to characterize the identified set. The present work com-

plements Chesher, Rosen, and Smolinski (2011) in proposing the first feasible inference

procedure for such models.

• Revealed preference analysis: Henry and Mourifié (2011) apply the inference pro-

cedure proposed here to analyze voting behaviour from a revealed preference standpoint.

The same approach can be applied to revealed preference testing in matching markets as

in Echenique, Lee, Shum, and Yenmez (2011) or the revealed preference approach to games

taken in Pakes, Porter, Ho, and Ishii (2004).

2. Operational characterization of the identified set

As noted in Berry and Tamer (2006), Definition 1 is not an operational definition of the identified

set, as it includes the equilibrium selection mechanism as an infinite dimensional parameter. Galichon

and Henry (2011) and Beresteanu, Molchanov, and Molinari (2011) show a characterization of the

identified set with a finite collection of moment inequalities. In this section, we give an equivalent

characterization of the identified set, whose proof is much simpler and relies on the Min-Cut Max-

Flow Theorem, which brings classical efficient combinatorial optimization methods to bear on the

problem. This will prove crucial for the feasibility of the inference procedure in realistic and relevant

empirical examples.
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First, we set out the main heuristic for the operational characterization of the identified set.

Model specification (1.1) is a discrete choice model, hence the set Y of outcomes is finite and the

correspondence G takes only a finite number of values, which we label U = {u1, . . . , uJ}. Each u is

a set (possibly singleton) of outcomes in Y. Because the model is incomplete, it does not predict

the probabilities of individual outcomes in Y, but it predicts the probability of each combination

of equilibria listed in U . We denote these probabilities Q(u|X; θ) as they depend on the structural

parameter value.

Definition 2 (Predicted probabilities). For each u ∈ U , we define Q(u|X; θ) := P(G(X, ε; θ) =

u|X, θ). If V is a subset of U , we write Q(V |X; θ) =
∑

u∈V Q(u|X; θ).

In most applications, it will be difficult to obtain closed forms for Q(u|X; θ). However, ε can

be randomly generated. Given a sample (εr)r=1,...,R of simulated values, Q(u|X; θ) can be approx-

imated by
∑R

r=1 1{u = G(X, εr; θ)}/R. Bajari, Hong, and Ryan (2010) propose an importance

sampling procedure that greatly reduces the computational burden of this stage of the inference.

The simulation procedure is now standard and cannot be avoided if one wishes, as we do here, to

exhaust the empirical content of the structural model.

Example 1 continued: In the partnership example with β = 0, the model predicts the following

values for the equilibrium correspondence: U = { {OL}, {LH, OL, HH}, {HH, LH,OO}, {OO},
{HH, OO}, {HH, LL,HL,LH}, {HH,LL, OO,HL,LH}, {HH,OO, HL}, {HH, HL, LO}, {LO}}.
The set Y of equilibrium strategy profiles (that may be observed) is {HH, HL, LH, LL, LO, OL,

OO} with 7 elements, while the set of predicted collections of equilibria (possible values of the equilib-

rium correspondence) U has 10 elements. The predicted probabilities can be computed in the following

way. For instance, Q({OL}|c) = P(ε1 ≤ −c and ε2 ≤ c) and Q({HH, LH, OL}|c) = P(−c ≤ ε1 ≤
0 and ε2 ≤ c) and the remaining 8 probabilities are determined similarly from Figure 1.

The model structure imposes a set of restrictions on the relation between the predicted prob-

abilities of equilibrium combinations and the true probabilities of outcomes. For instance, the

predicted probability Q({HH, LH,OL}|X; θ) in the above example cannot be larger than the sum

P (HH) + P (LH) + P (OL) of probabilities of occurrence of each individual equilibrium in u, since

Y is either HH, LH or OL, when u = {HH,LH, OL} is predicted. More generally, since P and Q

are the marginals of the joint distribution of (Y, U) given X, we must have for all u ∈ U :

Q(u|X; θ) =
∑
y∈u

P(Y = y and U = u|X; θ) ≤
∑
y∈u

P(Y = y|X; θ) =
∑
y∈u

P (y|X). (2.1)
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Note that Q(u|X; θ) may be strictly smaller than
∑

y∈u P (y|X) when some outcome y ∈ u also

belongs to other combinations u′ that may arise under different values of ε, as its (marginal) prob-

ability P (y|X) must then be split between Q(u|X; θ) and the probabilities Q(u′|X; θ) of such other

combinations u′ ∈ U containing y. However, inequalities (2.1) do not exhaust the information in

the structure. They may all be satisfied and yet the structure may be incompatible with the data

generating process as the following example shows. Hence more inequalities will be needed as derived

below.

Example 1 continued: In the partnership example with β = 0, suppose that the true equilibrium

selection mechanism is such that Q({OL}|θ) = P (OL) > 0 and Q({HH, LH, OL}|θ) = P (HH) +

P (LH) + P (OL). Then Q({OL} ∪ {HH, LH, OL}|θ) = Q({OL}|θ) + Q({HH,LH, OL}|θ) >

P (HH) + P (LH) + P (OL) so that θ /∈ ΘI .

Extending this observation, consider a subset V ⊆ U and define

V ∪ := {y ∈ Y : y ∈ u for some u ∈ V } =
⋃

u∈V

u.

Then we must have

Q(V |X; θ) =
∑

u∈V

∑
y∈u

P(Y = y and U = u|X; θ)

=
∑

y∈V ∪

∑

u∈V :y∈u

P(Y = y and U = u|X; θ)

≤
∑

y∈V ∪

∑

u∈U
P(Y = y and U = u|X; θ)

=
∑

y∈V ∪
P (y|X)

where the inequality is again due to the fact that some y ∈ V ∪ may also belong to some u′ 6∈ V .

Since this inequality holds for every V ⊆ U , we must have

max
V⊆U


∑

u∈V

Q(u|X; θ)−
∑

y∈V ∪
P (y|X)


 ≤ 0.

This inequality must also hold for every realization x of X in the domain X of the explanatory

variables, implying that every θ in the identified set ΘI(P ) must satisfy

sup
x⊆X

max
V⊆U


∑

u∈V

Q(u|x; θ)−
∑

y∈V ∪
P (y|x)


 ≤ 0.

So far, we have shown implications of the model. It is far more difficult to show that these implication

actually exhaust all the empirical content of the model, i.e., that they involve no loss of information

and constitute sharp bounds. In Theorem 1 below, we will show this with an appeal to the classical
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Max-Flow Min-Cut Theorem of combinatorial optimization, providing our characterization (2.2)

of the identified set. We thereby provide, for the case of a finite set of possible outcomes, a new

and simpler proof of the characterization of the identified set with a finite collection of inequalities,

without the complicated apparatus of the theory of random sets. This allows us to emphasize the

combinatorial optimization formulation of our inference problem, which is key to its tractable solution

in empirically relevant instances. Theorem 1 below also provides an alternative characterization

(2.3) of the identified set from the “dual” perspective of outcome subsets Z ⊆ Y, in addition to the

preceding characterization (2.2) based on combination subsets V ⊆ U , with the notation

Z∩ := {u ∈ U : u ⊆ Z} and Z−1 := {u ∈ U : u ∩ Z 6= ∅}.

This alternative characterization may be useful in situations where the number of possible outcomes

is much smaller than the number of possible combinations (as is the case in Example 1, where the

number of equilibrium outcomes (cardinality of Y) is 7, so the corresponding number of inequalities

to be checked is 27−1 = 127, whereas the number of predicted equilibrium combinations (cardinality

of U) is 10, so the corresponding number of inequalities to check would be 210 − 1 = 1023). Finally,

it is also equivalent to the characterization of the identified set first derived in Galichon and Henry

(2011) and Beresteanu, Molchanov, and Molinari (2011), which we give in (2.4) in our notation.

Theorem 1. The identified set is

ΘI(P ) =
{

θ ∈ Θ : sup
x∈X

max
V⊆U

(
Q(V |x; θ)− P (V ∪|x)

)
≤ 0

}
(2.2)

=
{

θ ∈ Θ : sup
x∈X

max
Z⊆Y

(
Q(Z∩|x; θ)− P (Z|x; θ)

)
≤ 0

}
(2.3)

=
{

θ ∈ Θ : sup
x∈X

max
Z⊆Y

(
P (Z|x; θ)−Q(Z−1|x; θ)

)
≤ 0

}
. (2.4)

Theorem 1 gives three characterizations of the identified set ΘI(P ), sometimes called sharp iden-

tified region in the literature. ΘI(P ) contains all the values of the parameter such that (1.1) holds

and only such values. Moreover, all elements of ΘI(P ) are observationally equivalent. Hence no

value of the parameter vector θ contained in ΘI(P ) can be rejected on the basis of the information

available to the analyst. Thus, ΘI(P ) completely characterizes the empirical content of the model.

Example 1 continued: To illustrate the computation of the identified set, consider the case, where

it is known that β = 0. Assume that the true parameter value is c0 = 1/4 and the idiosyn-

cratic shocks are independent and uniformly distributed over [−1/2, 1/2]. Suppose further that the

true data generating process is equal to the distribution implied by a uniform equilibrium selection

rule, whereby all equilibrium strategy profiles within the equilibrium correspondence are selected with
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equal probability. For example, when ε1 ≥ c0 = 1/4 and −1/4 = −c0 ≤ ε2 ≤ 0, each strat-

egy profile within the equilibrium correspondence {HH, HL, LO} is equally likely. The probabil-

ity distribution of the true data generating process in this case is defined by P (HH) = 167/960,

P (OO) = 191/480, P (OL) = P (LO) = 1/12, P (LL) = 19/320 and P (HL) = P (LH) = 97/960.

The identified set is derived as the set of values of c such that the 27 − 1 = 127 inequalities of the

form P (Z) ≥ Q(Z∩|c), all Z ⊆ {HH, HL,LH, LL, LO, OL,OO}, are satisfied. For instance, one

of those inequalities is 59/320 = P (LO or HL) ≥ Q({LO}|c) = (1/2 − c)2 if c ≤ 1/2 and zero

otherwise. The identified set can be computed using a Min-Cut Max-Flow algorithm, which yields

[1/2−1/
√

12, 1/3] ' [0.2113, 0.3333] where the lower bound of the interval happens to be the smallest

value of c > 0 for which the inequality in (2.3) with Z = {LO, OL} is satisfied, and the upper bound

happens to be the largest value for which that with Z = {HH, HL, LH, LL, OO} is satisfied.

As illustrated in Example 1, even in simple examples, where the equilibria are very easy to compute,

the exponential size of the characterization of the identified set is a severe computational burden that

is best approached with combinatorial optimization techniques, as developed in the next section.

3. Confidence region

3.1. Objective. We now turn to the problem of inference on ΘI(P ) based on a sample of obser-

vations ((Y1, X1), . . ., (Yn, Xn)). We seek coverage of the identified set with prescribed probability

1 − α, for some α ∈ (0, 1). It would be tempting to appeal to the large literature on inference

in moment inequality models. This includes several proposals for the construction of confidence

regions covering each point in the identified set, which are generally preferred on account of the fact

that they may be more informative (although this may sometimes be misleading as pointed out in

Henry and Onatski (2011)). Such proposals include Section 5 of Chernozhukov, Hong, and Tamer

(2007), Romano and Shaikh (2008), Rosen (2008), Galichon and Henry (2009) and Andrews and

Soares (2010) among others. All of the above propose to construct confidence regions by inverting

specification tests. Hence, the confidence region is constructed through a search in the parameter

space, with a computationally demanding testing procedure at each parameter value visited in the

search. This becomes computationally infeasible for realistic parameter vector dimensions. With a

reasonably precise grid search and 5 parameters (for example), the number of points to be visited is

in the tens of billions. If the identified set is known to be convex, the search can be conducted from

a central point with a dichotomy in polar coordinates, yet it remains computationally impractical

to conduct a statistical procedure for each point in the search.

Hence, each parameter value in the search must be accepted or rejected based on a deterministic

criterion. This means the significance of the confidence region must be controlled independently of
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the parameter value. This will automatically produce a confidence region that covers the identified

set. Proposals for the construction of confidence regions covering the identified set include Cher-

nozhukov, Hong, and Tamer (2007), Romano and Shaikh (2010), Galichon and Henry (2006) and

Bugni (2010) among others. These can be applied to realistic models defined by a small number of

moment inequality restrictions. However, a major challenge in the framework of this paper is that

the number of inequalities characterizing the empirical content of the model in Theorem 1 grows

exponentially with the cardinality of Y, which in the case of games is the number of equilibrium

strategy profiles (in the very simple partnership game of Example 1, the number of inequalities

is 127). Hence the combinatorial optimization approach that we propose in this paper is to the

best of our knowledge the only computationally feasible inference procedure for empirically relevant

economic structures defined by finite games and other models of discrete choice with endogeneity.

Definition 3 (Confidence region). A confidence region of asymptotic level 1 − α for the identified

set ΘI is defined as a sequence of regions Θn, n ∈ N, satisfying lim infn P(ΘI ⊆ Θn) ≥ 1− α.

We seek coverage of the set of values of the parameter θ such that Q(V |x, θ) ≤ P (V ∪|x) for all

values of x and all subset V of U . Q is determined from the model, but P is unknown. However,

if we can construct random functions Pn(A|x) that dominate the probabilities P (A|x) for all values

of x and all subsets A of Y with high probability, then in particular, Pn(V ∪|x) ≥ P (V ∪|x) for

each x and each subset V of U . Hence any θ satisfying Q(V |x, θ) ≤ P (V ∪|x) for all values of x

and all subsets V of U also satisfies Q(V |x, θ) ≤ Pn(V ∪|x) for all values of x and all subsets V

of U . There remains to control the level of confidence of the covering region, which is achieved by

requiring that Pn dominate P with probability asymptotically no less than the desired confidence

level. Equivalently, when working from characterization (2.4), we impose the same requirement for

dominated functions Pn. Hence the following assumption.

Assumption 1. Let the random functions A 7→ Pn(A|x), A ⊆ Y, satisfy

lim inf
n

P
(

sup
x∈X

max
A⊆Y

[
P (A|x)− Pn(A|x)

] ≤ 0
)
≥ 1− α. (3.1)

Suppose now a value θ0 of the parameter vector belongs to the identified set ΘI . Then, by

Theorem 1, for all x and V ⊆ U , Q(V |x; θ0) ≤ P (V ∪|x), so that with probability tending to no less

than 1− α, Q(V |x; θ0) ≤ Pn(V ∪|x), hence Theorem 2.

Theorem 2 (Confidence region). Under Assumption 1, the sets

ΘI(Pn) =
{

θ ∈ Θ : sup
x∈X

max
V⊆U

(Q(V |x; θ)− Pn(V ∪|x)) ≤ 0
}

(3.2)

define a confidence region of asymptotic level 1− α for ΘI (according to Definition 3).
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Theorem 2 has the fundamental feature that it dissociates search in the parameter space (or

even possibly search over a class of models) from the statistical procedure necessary to control the

confidence level. The upper probabilities Pn can be determined independently of θ in a procedure

that is performed once and for all using only sample information, i.e. fully nonparametrically.

Once the upper probabilities are determined, probabilities Q over predicted sets of outcomes are

computed for particular chosen specifications of the structure and values of the parameter, and

such specifications and values are tested with inequalities defining Θn(Pn). This dissociation of the

statistical procedure to control confidence level from the search in the parameter space is crucial to

the computational feasibility of the proposed inference procedure in realistic examples (i.e. sample

sizes in the thousands, two-digit dimension of the parameter space and two-digit cardinality of the

set of observed outcomes, as in the application to teen behavior in Soetevent and Kooreman (2007),

or to entry in the airline market in Ciliberto and Tamer (2009)). The latter consider only equilibria

in pure strategies, as we have until now. If equilibria in mixed strategies are also considered, as in

Bajari, Hong, and Ryan (2010) and in the family bargaining application below, we can appeal to

results in Beresteanu, Molchanov, and Molinari (2011) and Galichon and Henry (2011). In particular,

Galichon and Henry (2011) show that if the game has a Shapley regular core (which is the case in

the family bargaining application, by Lemma 2 of Galichon and Henry (2011)), then the identified

set is characterized by (2.3) of Theorem 1 with the caveat that the set function Z 7→ Q(Z∩|x) is

replaced by

L(Z|x) =
∫

min
σ∈G(ε|X;θ)

σ(Z)dν(ε), (3.3)

where G(ε|X; θ) is now a set of mixed strategies, i.e. a set of probabilities on the set of outcomes,

as opposed to a subset of the set of outcomes. Hence the methodology is be easily adapted, as in

the application of Section 5.

3.2. Control of confidence level. We now turn to the determination of random functions satis-

fying Assumption 1. First, for each y ∈ Y, let P̂n(y|x) be the empirical analog (or more generally a

nonparametric estimator) of P (y|x) and P̂n(A|x) =
∑

y∈A P̂n(y|x) for each A ⊆ Y. A simple way of

achieving (3.1) is by considering the random variable

Mn := sup
x∈X

max
A⊆Y

[P (A|x)− P̂n(A|x)].

Denoting by cα
n the (1 − α)-quantile of the distribution of Mn, we have P(Mn ≤ cα

n) = 1 − α by

construction, hence

P
(

sup
x∈X

max
A⊆Y

[P (A|x)− P̂n(A|x)− cα
n] ≤ 0

)
≥ 1− α, (3.4)
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and the desired result with P (A|x) = P̂n(A|x) + cα
n. However, by construction, cα

n is independent of

A and x, so that the region obtained by plugging P (A|x) = P̂n(A|x) + cα
n into (3.2) of Theorem 2

will be unnecessarily conservative. We propose, instead, to replace cα
n by a function βn(A|x) of

A and x, which we interpret as a functional quantile of the distribution of the random function

P (A|x)− P̂n(A|x). Analogously to (3.4), we require it to satisfy

P
(

sup
x∈X

max
A⊆Y

[P (A|x)− P̂n(A|x)− βn(A|x)] ≤ 0
)
≥ 1− α. (3.5)

We first give a heuristic description of our proposed functional quantile before precisely spelling out

the bootstrap procedure involved in approximating it. If X is finite, the random matrix P (A|x) −
P̂n(A|x), with A ⊆ Y and x ∈ X has a finite population of possible realizations, at most one for each

possible sample draw. These realizations can be ordered according to the maximum entry in the

matrix maxx∈X maxA⊆Y [P (A|x)− P̂n(A|x)]. Now take all realizations that never exceed the (1−α)-

quantile cα
n of maxx∈X maxA⊆Y [P (A|x)− P̂n(A|x)] and define Pn(A|x) = P̂n(A|x)+βn(A|x), where

βn(A|x) is the pointwise maximum over all realizations that never exceed cα
n. This guarantees that

the resulting confidence region obtained in (3.2) of Theorem 2 with Pn(A|x) = P̂n(A|x) + βn(A|x)

will be valid and will be contained in the region obtained with Pn(A|x) = P̂n(A|x) + cα
n (hence

more informative than the latter). In case the conditioning variables are finitely supported, it is well

known (see Singh (1981) and Bickel and Freedman (1981)) that the nonparametric bootstrap version

of cα
n is a valid approximation, which in turns guarantees the validity of the bootstrap procedure

described below. In case X has continuous components, Chernozhukov, Lee, and Rosen (2009)

derive the asymptotic distribution of the supremum (over X ) of the conditional empirical process,

but nothing is known of its nonparametric bootstrap approximation.

Definition 4 (Nonparametric Bootstrap). Let P∗n denote probability statements relative to the boot-

strap distribution and conditional on the original sample ((Y1, X1), . . . , (Yn, Xn)). A bootstrap sample

takes the form ((Y ∗
1 , X1), . . . , (Y ∗

n , Xn)), where the explanatory variable is not resampled and for each

i, Y ∗
i is drawn from distribution P̂n(.|Xi). Let ((Y b

1 , X1), . . . , (Y b
n , Xn)), b = 1, . . . , B be a sequence

of B bootstrapped samples. Denote by P̂ ∗n(.|.) the bootstrap version (i.e., constructed identically from

a bootstrap sample) of P̂n(.|.) and P̂ b
n, b = 1, . . . , B its values taken on the B realized bootstrap

samples. Finally, for each A ⊆ Y and 1 ≤ j ≤ n, denote ζ∗n(A|Xj) =
∑

y∈A[P̂n(y|Xj) − P̂ ∗n(y|Xj)]

and define ζb
n(A|Xj) analogously.

In the bootstrap version of the problem, we are seeking functions βn satisfying

P∗n
(

max
1≤j≤n

max
A⊆Y

[P̂n(A|Xj)− P̂ ∗n(A|Xj)− βn(A|Xj)] ≤ 0
)
≥ 1− α ∗ -a.s.
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If there was a total order on the space of realizations of ζ∗n, we could choose βn as the quantile

of level 1 − α of the distribution of ζ∗n. However, the ζ∗n(·, Xj)’s are random functions defined on

2Y ×{X1, . . . , Xn}, hence there is no such total order. We propose to determine βn from a subset of

dB(1− α)e bootstrap realizations determined as follows (where bxc is the largest integer below x).

Step 1: Draw bootstrap samples ((Y b
1 , X1), . . . , (Y b

n , Xn)), for b = 1, . . . , B.

Step 2: For each b ≤ B, j ≤ n and A ⊆ Y, compute ζb
n(A|Xj) = P̂n(A|Xj)− P̂ b

n(A|Xj).

Step 3: Discard at most a proportion α of the bootstrap indices, and compute βn(A|Xj)

as the maximum over the remaining bootstrap realizations ζb
n(A|Xj).

Discarding at most Bα among the bootstrap realizations guarantees the control of the level of

confidence, and we wish to choose the set D ⊆ {1, . . . , B} of discarded indices so as to make βn as

small as possible, to maximize informativeness of the resulting confidence region. Again, if there was

a total order, we would be similarly discarding the Bα largest realizations of ζb
n, effectively choosing

βn as the quantile of the distribution of ζb
n, b = 1 . . . , B. Instead, we discard all realizations

of the matrix ζb
n(A|Xj) that have at least one entry that strictly exceeds the (1 − α)-quantile of

wb = max1≤j≤n maxA⊆Y ζb
n(A|Xj). Hence, we choose D solving the optimization problem

min
{

max
b/∈D

wb : D ⊆ {1, . . . , B}, |D| ≤ Bα

}
. (3.6)

The procedure is explained graphically in Figure 2.

ζk
n

YA

βn

∅

ζd
n

Figure 2. Stylized representation of the determination of the functional quantile βn in

a case without explanatory variables. The subsets A of Y are represented on the horizontal

axis, ranging from ∅ to Y. ζd
n is one of two discarded realization of the empirical process

(dotted lines), whereas ζk
n is one of three realizations that are not discarded (solid lines).

βn is the pointwise maximum over the realizations that were not discarded (thick line).
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Problem (3.6) can be solved by the following Bootstrap Realization Selection (BRS) algorithm:

BRS Step 1: For each b ≤ B, set w′b = max1≤j≤n

∑
y∈Y max{0, P̂n(y|Xj)− P̂ b

n(y|Xj)}.
BRS Step 2: Let D be the set of indices b of the bBαc largest w′b.

Proposition 1. The BRS algorithm determines an optimal solution to problem (3.6) in O(nB|Y|)
time.

Remark 1. Problem (3.6) may have alternate optimum solutions. As observed by a referee, this may

arise when the sample size n is small, since P̂n(y|Xj) and P̂ b
n(y|Xj) are multiples of 1/n and thus

distinct wb’s are more likely to have the same value when the sample size n is small. In case of ties,

any optimum solution D to Problem (3.6) may be used to discard bootstrap realizations and determine

functions βn. If one desires a specific tie-breaking rule, e.g., for robustness or reproducibility, then

we suggest the following lexicographic selection rule as a refinement to BRS Step 2: let wb be the

vector with components wb
j =

∑
y∈Y max{0, P̂n(y|Xj) − P̂ b

n(y|Xj)} for j = 1, . . . , n; and let [w]b be

the vector wb with its components sorted in nonincreasing order, i.e., with [w]b1 = wb ≥ [w]b2 ≥ · · · ≥
[w]bn = minj wb

j ; then discard the bBαc bootstrap realizations b with the lexicographically largest vector

[w]b. In other words, we refine problem (3.6) as lexmin
{
lexmax b6∈D[w]b : D ⊆ {1, . . . , B}, |D| ≤ Bα

}

where lexmin and lexmax denote the minimum and maximum relative to the lexicographic total order

of vectors with n components. This rule aims at simultaneously minimizing all the values β(A|Xj)

without going through extensive additional computations.

In problem (3.6), we chose to minimize the maximum, over all j ∈ {1, . . . , n} and A ⊆ Y, of

the non-discarded bootstrap realizations ζb
n(A|Xj). Other objectives are possible, for example the

L1 objective
∑

b/∈D wb. The main justification for the L∞ norm objective maxd/∈D wb in (3.6) is

that it leads to a problem solvable in linear time. In contrast, the problem with an L1 objective is

computationally difficult, namely NP-hard in the strong sense, as shown in the next result.

Proposition 2. Minimization of
{∑

b/∈D wb : |D| ≤ bBαc, D ⊆ {1, . . . , B}} is NP-hard in the

strong sense.

This result implies that unless P = NP , there exists no algorithm for this problem that runs

in polynomial time. This is a severe computational drawback relative to the linear-time algorithm

achieved with with BRS.

3.3. Search in the parameter space. Once the functional quantile has been computed, there

remains to search in the parameter space for the values of θ that satisfy (3.2). As shown in the

Lemma 1, the function to be optimized in characterization (2.2) of the identified set is supermodular.
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Definition 5 (Supermodular function). A set function ρ : A 7→ ρ(A) ∈ R is called supermodular

(resp. submodular) if for all pairs of sets (A,B), ρ(A ∪B) + ρ(A ∩B) ≥ (resp. ≤) ρ(A) + ρ(B).

Lemma 1. The function V 7→ P (V ∪|x) is submodular for all x ∈ X .

In the computation of Θn(Pn), it may be desirable to require Pn(V ∪|x) to also be submodular

as a function of V ⊆ U , so that the function to be maximized in (3.2) can be maximized using

submodular optimization techniques. This can be achieved by adding the following additional linear

constraints (see Schrijver (2004)): ∀u 6= v ∈ U , ∀V ⊆ U\{u, v}, j = 1, . . . , n,

Pn([V ∪ {u} ∪ {v}]∪|Xj)− Pn([V ∪ {u}]∪|Xj)− Pn([V ∪ {v}]∪|Xj) + Pn([V ]∪|Xj) ≤ 0. (3.7)

The problem of checking whether θ is in the confidence regions can then be solved in polynomial

time. Moreover, since submodular optimization has far ranging applications in all areas of operations

research, many extremely efficient algorithms and implementations are readily available.

4. Simulation based on Example 1

We now illustrate and assess the performance of our procedure on the game described in Exam-

ple 1. Throughout the experiment, we assume that (ε1, ε2) is uniformly distributed on [−1/2, 1/2]2

and J = (J1, J2) is a vector of independent Bernoulli(1/2) random variables. True values for the

parameters are indicated with a 0 subscript. We consider the following true parameter specifications:

(β0, c0) = (0, 0) (point identified case) and (β0, c0) = (0, 1/4) (which corresponds in some sense to

the greatest possible indeterminacy). For the true data generating process, we consider two distinct

equilibrium selection rules (which, like the true parameter values, are of course supposed unknown in

the inference procedure). The first rule specifies that in case of multiplicity, all equilibrium strategy

profiles in the equilibrium correspondence are selected with equal probability: we call this case “uni-

form selection”. The second selection rule specifies that in case of multiplicity, the equilibrium with

largest aggregate investment is selected; suppose for instance that the equilibrium correspondence

takes the value {HH, HL,LO}, then equilibrium strategy profile HH is realized: we call this case

“maximal selection”. In the case of maximal selection with c0 = 0.25, β0 = 0 is assumed known a

priori by the analyst performing inference (to avoid an unbounded identified set in the simulations).

In the remaining 3 cases, β0 is unknown a priori. The experiment is run as follows. We calculate

in each of the 4 cases above the distribution of the true data generating process. With the latter,

we compute the identified set. In the point identified case, the identified set is equal to the true

value. In the case c0 = 0.25, with β = 0 known a priori and maximal selection, the identified set

is [0.2113, 0.3333] as explained in the example at the end of Section 2. In case (c0 = 0.25, β0 = 0)

with uniform selection, the identified set projects to [0, 0.375] on the c coordinate and to [0, 0.320]



INFERENCE IN GAMES 19

on the β coordinate. We then simulate 5000 samples of sizes n = 100, n = 500 and n = 1000 from

this distribution and construct confidence regions for the identified set using lower probabilities Pn

(based on characterization 2.4), which turned out to have better coverage properties. We use 999

bootstrap replications for the first two sample sizes, and 399 bootstrap replications for n = 1000.

We consider confidence levels 90%, 95% and 99%. Coverage probabilities of the true value and of

the identified set by the confidence region, as computed from the 5000 samples, are displayed in

Table 2 for the data generating process obtained with maximal selection and Table 3 for the data

generating process obtained with uniform selection. Alongside coverage of the identified set and of

the true value, we report the effective level at which Condition (3.5) is satisfied to directly assess

the bootstrap functional quantile approximation. Monte Carlo coverage of the identified set is close

to the theoretical level in the case of maximal selection and tends to be very high in case of uniform

selection. In cases of maximal and uniform selection alike, coverage of Condition (3.5) is almost

identical to point coverage in the point identified case (c0 = 0), but lower in the set identified case

(c0 = 0.25). Overall the procedure over rejects in all but 13 out of a possible 90 cases. Improvements

with sample size occur only in 21 cases (out of a possible 60). These improvements tend to occur

when going from n = 500 to n = 1000 and given the nonparametric procedure, there are doubt as

to the accuracy of the procedure for n = 100. Finally, the coverage of the true value (as opposed to

the whole identified set) is only marginally greater than the coverage of the whole identified set.

5. Application to long term elderly care decisions

We estimate the determinants of long term care option choices for elderly parents in American

families. The model we use closely follows the one proposed by Engers and Stern (2002) who present

these choices as the result of a non family participation game. The family members decide simultane-

ously whether to participate in a family reunion where the care option maximizing the participants’

utility is chosen. Profits are then split among these participants according to some benefit-sharing

rule. The data consists of a sample of 1, 212 elderly Americans with two children drawn from the

National Long Term Care Survey, sponsored by the National Institute of Aging and conducted by

the Duke University Center for Demographic Studies under Grant number U01-AG007198, Duke

(1999). Elderly people were interviewed in 1984 about their living and care arrangements. The

survey questions include gender and age of the children, the distance between homes of the elderly

parent and each of the children, the disability status of the elderly parent (where disability is referred

to as problems with “Activities of Daily Living or Instrumental Activities of Daily Living (ADL)”)

and the number of days per week each of the children devotes to the care of the elderly parent.

The dependent variable is the care provision for the parent. The parent is asked to list children
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Table 2. Coverage probabilities of (α0, β0) and of the identified set by the confidence

region, as computed from 5000 samples. The last column shows the level at which Con-

dition (3.5) is satisfied. Case, where the data generating process obtained with maximal

selection.

(α0, β0) n Level Point Coverage Set Coverage Condition (3.5)

(0, 0) 100 0.99 - 0.9826 0.9792

0.95 - 0.9574 0.9564

0.90 - 0.9324 0.9392

500 0.99 - 0.9894 0.9894

0.95 - 0.9770 0.9760

0.90 - 0.9592 0.9584

1000 0.99 - 0.9714 0.9712

0.95 - 0.9564 0.9554

0.90 - 0.9362 0.9352

(0.5, 0) 100 0.99 0.9364 0.9364 0.9286

0.95 0.9356 0.9354 0.9122

0.90 0.9232 0.9220 0.8830

500 0.99 0.9906 0.9902 0.9656

0.95 0.9810 0.9804 0.9518

0.90 0.9640 0.9632 0.9330

1000 0.99 0.9878 0.9870 0.9772

0.95 0.9746 0.9730 0.9532

0.90 0.9594 0.9570 0.9210

(either at home or away from home) and how much each provides help. If only one child is listed as

providing significant help, that child is designated the primary care giver. If more than one child is

listed, the one providing the most time is designated the primary care giver. If the elderly parent

lives in a nursing home, then the nursing home is the primary care giver. If no child is listed and

the parent does not live in a nursing home, then the parent is designated as “living alone”. Table 4

presents the list of variables used in the analysis. They include parent characteristics, characteristics
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Table 3. Coverage probabilities of (α0, β0) and of the identified set by the confidence

region, as computed from 5000 samples. The last column shows the level at which condition

(3.5) is satisfied. Case where the data generating process is obtained with uniform selection.

(α0, β0) n Level Point Coverage Set Coverage Condition (3.5)

(0, 0) 100 0.99 - 0.9872 0.9846

0.95 - 0.9784 0.9746

0.90 - 0.9680 0.9652

500 0.99 - 0.9950 0.9944

0.95 - 0.9886 0.9872

0.90 - 0.9814 0.9794

1000 0.99 - 0.9790 0.9738

0.95 - 0.9706 0.9640

0.90 - 0.9628 0.9548

(0.5, 0) 100 0.99 0.9998 0.9986 0.9850

0.95 0.9998 0.9984 0.9792

0.90 0.9998 0.9978 0.9704

500 0.99 1.0000 0.9996 0.9850

0.95 1.0000 0.9974 0.9664

0.90 1.0000 0.9980 0.9382

1000 0.99 1.0000 0.9964 0.9792

0.95 1.0000 0.9956 0.9694

0.90 1.0000 0.9938 0.9578

of the children and the care option chosen. A more detailed discussion and summary statistics and

additional results can be found in the supplementary material.

5.1. The game. The observable choice of care option is modeled as in Engers and Stern (2002) as

the outcome of a family bargaining game. We index family members as follows. Parent: 0, Firstborn

child: 1 and Second born child: 2. The payoff to family member i, i = 0, 1, 2, is the sum of three

terms. The first term Vij is the value to parent 0 and to child i of care option j, where j ∈ 1, 2

means child j becomes the primary care giver, j = 0 means the parent remains self-reliant and j = 3,

the parent is moved to a nursing home. The matrix V = (Vij)ij is known to both children and the
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Variables Equal to 1 if: Percentage of sample

Care Option

Living with child 1 26.81

Living with child 2 6.75

Living in nursing home 19.92

Living home alone 46.54

Parent Variables

DA Highly disabled 33.81

DM Living with the spouse 40.36

Children Variables

DD Living with parent 11.55

DD1 Distance from parent: 31 min and more 49.45

DS Female 49.26

Table 4. List of variables.

parent. We suppose it takes the form

Vij = γij + Wβij + Zjψij

where W indicates the characteristics of the parents (DA and DM), and Zj indicates the character-

istics of care option j (DS, DD1 and DD2) and X = (W,Z). θ = (γij , βij , ψij)′ is unknown to the

analyst and the object of inference.

Example 2. Consider the following family, in which the matrix where given value of X and θ result

in V that takes the form:

V =




0 0 0 −1

0 4 −1 1

0 −1 4 1




Rows indicate family member i = 0, 1, 2, and columns represents care giving options j = 0, 1, 2, 3,

in that order. In this example, the parent is indifferent between all the care options, except the one

where she has to move to the Nursing home. Each child prefers to be the primary care giver to any

other care option, followed by the parent living in a nursing home, living at home and being taken

care of by the other child, in that order.
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The second term in the payoff results from the family bargaining process as follows. We assume

that it is always in the interest of the parent to attend the family reunion. However, child i (i = 1, 2)

can refrain from participating in the meeting. By choosing not to participate, a member of the family

agrees on whatever is decided but can neither assume the role of primary care giver, nor can he be

involved in any side payment. Both children simultaneously decide whether or not to participate in

the long term care decision. Suppose M is the set of children who participate. The option chosen

is option j ∈ M ∪ {0, 3} which maximizes the participants’s total utility
∑

i∈M Vij . It is assumed

that participants abide by the decision and that benefits are then shared equally among parent and

children participating in the decision through a monetary transfer si, which is the second term in

the children’s payoff. The third term εi in the payoff is a random benefit from participation, which

is 0 for children who decide not to participate and distributed according to absolutely continuous

distribution ν(.|θ) for each child who participates. All children observe the realizations of ε, whereas

the analyst only knows its distribution. The Payoff matrix is given in Table 5, where overall benefit

shares wIJ
i , i = 1, 2, I, J = N, P are defined and derived in the supplementary appendix. Multiple

Nash equilibria in pure and mixed strategies are also derived in the appendix. Each equilibrium

action profile results in a (almost surely) unique care option choice, hence for each participation

shock ε, we can derive G(ε|X; θ) as the set of probability measures on the set of care options

{0, 1, 2, 3} induced by mixed strategy profiles, which are probabilities on the set of participation

profiles {NN,NP, PN, PP}.

Child 2

Child 1 N P

N wNN
1 , wNN

2 wNP
1 , ε2 + wNP

2

P ε1 + wPN
1 , wPN

2 ε1 + wPP , ε2 + wPP

Table 5. Payoffs for the family participation game.
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5.2. Specification. We provide estimates for the following utility specification (an alternative with

altruistic utility specification was estimated and results are reported in the supplementary material).

V (X; θ) =







β00

+βmDM

+βahDA





 α

+ψsDS1


 ψsDS2 0


 βmDM

+βahDA







β11

+ψ1DD1

+βacDA


 0 0


 βmDM

+βahDA


 0




β11

+ψ1DD2

+βacDA


 0




Recall that the columns indicate the options, in the following order {0, 1, 2, 3}, and the rows represent

each member of the family, in the following order Parent, Child 1, Child 2. For example, the value

the first born child (family member 1) living less than 30 minutes away from the parent’s home

attaches to the fact that she takes care of a non disabled, non-married parent is measured by β11,

whereas for a disabled parent, it is β11 + βac.

5.3. Estimation methodology. The methodology proposed in the paper allows the construction

of the identified set based on the hypothetical knowledge of the true distribution of the data. As

described in Section 3, we account for sampling uncertainty and control the level of confidence by

constructing set functions A 7→ P (A|X), which dominate P (A|X) (uniformly over A ⊆ {0, 1, 2, 3}
and X) with probability 1 − α (the chosen level of confidence, here 0.95). We implement the

method detailed in Section 3 (except that the pairs or cases bootstrap was used instead of the

nonparametric bootstrap advocated above) with a number of bootstrap replications B = 2500.

Second, we obtain the model likelihood by simulating the valuation matrix and computing the

Equilibrium correspondence from the payoff matrix, for given values of X and θ. The procedure is

as follow. For a given X and θ,

• We generate and store R draws of ε from the distribution νθ. Here, R = 5000 and νθ is

normally distributed with mean µ and variance σ2
ε , where (µ, σ2

ε) belong to the parameter θ.

• For each value εr, we compute the valuation matrix V (X, εr, θ) and the corresponding payoff

matrix.

• Then, we determine the equilibrium correspondence G (X, ε; θ) from the analytical results

derived in the preceding section. The Gambit software provides an alternative for computing

numerically the set NE for more complex games.
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• The last step of the simulation is to compute an estimator of the model likelihood L defined

in (3.3) as follows: L̂ (A |X; θ ) = 1
R

R∑
r=1

min{σ (A) : σ ∈ G(X, εr; θ)}.

Having constructed those two elements, the identified set comprises all values of θ such that for

all observed values of the explanatory variables, the minimum over A ⊆ {0, 1, 2, 3} of the function

P (A|X; θ) − L̂(A|X; θ) is non negative, as explained in Section 3. We construct an n-dimensional

grid to conduct the search over the parameter space. Each value of the parameter can be tested

in a fraction of a second on a standard laptop, and a region of small dimensionality (1 to 4) can

be constructed in a few hours, again on a standard laptop without parallel processing. However,

estimation time grows exponentially with the number of parameters induced by the model. In our

case, each specification involves a 12-dimensional parameter space. Parallel processing becomes

therefore necessary. We use an Open-MP procedure for parallel processing, which is perfectly suited

to the method we propose. The computation resources have been provided by the Réseau Québécois

de Calcul de Haute Performance (RQCHP). All computation where made under the system “Cottos”

which provides up to 128 computation nodes (1024 CPU cores) equipped with two Intel Xeon E5462

quad-core processors at 3 GHz. Under 1 node, approximately 107 parameters points can be tested

in 24 hours.

5.4. Results. We perform the estimation under different values of the mean and variance of the

error term. To alleviate the computational burden, we first test the significance of some of the

individual parameters by checking whether the hyper planes defined by θi = 0 - where θi is a

component of θ - intersect the 95% confidence region. We fail to reject the Null Hypothesis if the

estimation procedure returns a non-empty set. We then obtain a constrained confidence region for

the remaining parameters. For each value of mean and variance of the error term, we find a non

empty intersection between the confidence region and the hyperplane defined by β11 = 0. This

means we fail to reject (at the 5% level) the null hypothesis that there is no additional constant

disutility for a child to take care of an elderly parent. Since, this hypothesis is not rejected, we

obtain a constrained confidence region for the remaining parameters. We then obtain confidence

regions for different values of β11 and discuss the latter’s effect on the regions. We note that the

Null hypothesis H0 : β00 = 0 is always rejected. Hence, when we control for all other effects, parents

are not indifferent between the first two options. They show a clear preference in favor of living

in their own home (option called “living alone”) instead of living in a nursing home (β00 is always

positive). The results we present are then for given values of β00. We provide an insight of how

different values of this parameter change the results. We report the range for each parameters in

Table 6. Note that the identified set is not a compact set. In particular, βac, βah, βm and ψ are

allowed to diverge to −∞. Results are generally consistent with expectations and previous results
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Parameters Min Max Min Max Min Max Min Max

β00 2 2 3 3 1 1 1 1

β11 0 0 0 0 0 0 0 0

βah −∞ -3.57 −∞ -3.57 −∞ -2.86 −∞ -2.14

βac = −βm −∞ -2.86 −∞ -2.86 −∞ -3.57 −∞ -3.57

α 0.00 8.00 0.00 8.00 1.00 5.00 0.00 4.00

ψs 0.00 5.00 0.00 4.00 1.00 4.00 0.00 2.00

ψd −∞ -2.86 −∞ -2.14 −∞ -1.43 −∞ -3.57

µ -1 -1 0 0 -1 -1 0 0

σε 1 1 1 1 1 1 1 1

σ2
u 1 1 1 1 0.25 0.25 0.25 0.25

pξ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Table 6. Parameters Range for estimation of Specification 1 at β11 =

0, βac = −βm and for different values of the error terms and of β00.

on the subject. Namely:

(1) The existence of several problems with the parent’s functional ability is a key determinant

of the decision to enter a nursing home. βah and βac are both negative and can both be

(very) large. The negative sign of βah captures the fact that a parent’s disability increases

the value of care provided by the family or a specialized institution. In addition, βac < 0

means that the disability entails a utility cost for the child if he is chosen as primary care

giver.

(2) Parameter βm associated with the parent living with a spouse is positive and large. This

implies that married parents are more likely to remain self-reliant. In families where the

parent is disabled, the effect of living with the spouse compensates the disutility of disability

and preserves the incentive for parents to live at home.

(3) While we cannot rule out parents being indifferent to the gender or birth order of their

primary care giver, estimation shows a tilt of the confidence interval toward positive values

for both parameters, with a possible positive and large magnitude of the parameter α. In

case µ = −1 and σ2
u = 0.25, the data reveal that parents exhibit a preference for an older

and for a female care giver.
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(4) Children living more than 30 minutes from the parents are less likely to provide care than

those living closer to the parents. Distance has a (possibly strong) disutility effect on

children’s incentives to participate in the care decision.

The shape of the confidence region also conveys a considerable amount of information. Figure 3

shows two dimensional dimensional projections and cuts of the confidence region for column 2 of

Table 6, i.e µε = 0, σ2
ε = 1, σ2

u = 1. Of great interest is the projection of the identified set in the

plan βah, βm. Figure 3(a) reveals an almost linear relation between the two parameters of the type

βah = −βm. The estimation rejects models for which the absolute value of the two parameters are

significatively different. The data suggest therefore that the disutility induced by the disability of

the parent can be entirely compensated by the presence of a spouse in the same household. Notice

the triangular shape of the region plotted in Figure 3(b) which entails that simultaneous large values

of ψs and α are rejected. This finding means that only one of the effects (gender or birth order)

can be large, not both. In other words, firstborn daughter are not the only possible care givers.

Note also that both effects can be very small, though not jointly insignificant. We observe similar

types of constraints for the pairs (α, βah), (α, βac), (α, ψd), (ψs, βac), (ψs, ψd) as large values of

parameters α or ψs are only permitted when the other parameters are jointly large (see Figure 3(c)

to 3(f)). For example, we obtain a constrained confidence region at βac = −3.5. The ranges for

the two parameters, α and ψs, are tighter, as α ∈ [1, 2] and ψ ∈ [0, 1]. Figure 4 shows the effect of

the variation of parameter β11 on ψs and α. Recall that β11 represents a fixed cost or benefit for

the child chosen as care giver. We observe negative relations between β11 and ψs, and β11 and α.

Negative values of ψs and α are only admissible for positive values of β11. Hence a model where

parents exhibit no favoritism for a daughter and/or a firstborn, or favoritism for a son and/or a

second born, will be consistent with our data if and only if there exist a strictly positive constant

benefit for a child to be caregiver.

Conclusion

We have considered the problem of statistical inference in incomplete partially identified struc-

tural models, such as models of discrete choice with interactions and other forms of endogeneity.

A characterization of the identified set for structural parameters was given, with an appeal to a

classical theorem in combinatorial optimization, the Max-Flow Min-Cut Theorem, thereby empha-

sizing the optimization formulation of the problem of inference in such models. Finally, we have

shown how to apply combinatorial optimization methods within a bootstrap procedure in order to

compute informative confidence regions very efficiently, hence feasibly in empirically relevant appli-

cations. An application of the methodology was carried out on a family bargaining example and
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it was shown that most findings in the literature on the determinants of long term elderly care by

American families were supported in this more robust framework, where the effects of interaction

are accounted for. This procedure applies to very general classes of models and its efficiency and

coverage properties could no doubt be improved, when tailored to more specific applications. In

particular, the application to matching games and revealed preference testing of stability in match-

ing still poses considerable challenges. Other perspectives for further work include the application

of Max-Flow Min-Cut algorithms to the detection of redundant inequalities at the identification

stage, to improve the performance at the inference stage, possibly by appealing to other existing

procedures if the number of non redundant inequalities is small enough.

Appendix A. Proofs of results in the main text

Proof of Theorem 1. By Proposition 1 of Galichon and Henry (2011), a value θ of the parameter

vector belongs to ΘI(P ) if and only if P(Y ∈ G(X, ε; θ)) = 1, X-a.s. (which we drop from the

notation from this point on). Hence if there exists a pair (Y, U) of random vectors on Y × U
such that Y has probability mass P (y|X), y ∈ Y, U has probability mass Q(u|X; θ), u ∈ U , and

P(Y ∈ U |X) = 1. This is equivalent to the existence of non negative weights πu
y , (y, u) ∈ Y×U , such

that
∑

u∈U πu
y = P (y|X),

∑
y∈Y πu

y = Q(u|X), and πu
y = 0 when y /∈ u. The latter is equivalent to

the following programming problem with auxiliary variables ay, y ∈ Y and au, u ∈ U having zero

as a solution. The programming problem is the following: min(
∑

y∈Y ay +
∑

u∈U au) subject to the

constraints
∑

u∈U πu
y + ay ≤ P (y|X),

∑
y∈Y πu

y + au ≤ Q(u|X; θ), ay, au, πu
y ≥ 0, and πu

y = 0 when

y /∈ u. Since
∑

y∈Y ay +
∑

u∈U au ≤ ∑
y∈Y P (y|X) +

∑
u∈U Q(u|X; θ) − 2

∑
y∈Y

∑
u∈U πu

y = 2 −
2

∑
y∈Y

∑
u∈U πu

y , the latter is also equivalent to max
∑

y∈Y
∑

u∈U πu
y ≥ 1 subject to the constraints

∑
u∈U πu

y ≤ P (y|X),
∑

y∈Y πu
y ≤ Q(u|X), πu

y ≥ 0 and πu
y = 0 when y /∈ u. This is called a maximum

flow problem, i.e. the problem of maximizing quantity flowing through a network under capacity

constraints. A network is a collection of nodes, including a source S and a sink T , and directed edges

between the nodes. For instance, (N1, N2) is an edge leading from node N1 to node N2. Here the

network involved in the maximum flow problem is comprised of a source S, K nodes corresponding

to the K elements of Y, J nodes corresponding to the J elements of U and a sink T . The source

S is connected to each of the nodes y1, . . . , yk in Y. A node y ∈ Y is connected to a node u ∈ U if

and only if y ∈ u. All nodes u1, . . . , uJ in U are connected to the sink T . To each edge is attached a

capacity, which is the maximum amount that can flow through it. Capacity is constrained to P (y|X)

between S and node y. Capacity is unconstrained (i.e. infinite) between node y and node u such

that y ∈ u. The capacity of edges between a node u and the sink T is constrained to Q(u|X; θ).
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We have shown that θ ∈ ΘI if and only if the maximum flow in the network described above is

equal to 1. We now appeal to a classical result in combinatorial optimization called the Max-Flow

Min-Cut Theorem, see for instance Theorem 10.3 page 150 of Schrijver (2004). A cut through a

network is partition of the nodes into two sets separating the source from the sink. The capacity

of a cut is defined as the sum of the capacities of edges in the network that cross the cut from

the source side to the sink side. Let a cut be defined by the set V of elements of U and the

set Z of elements of Y on the sink side of the cut. Since the capacity of an edge from y to u

such that y ∈ u is infinite, the cut defined by V and Z has finite capacity if and only if y ∈ u and

u ∈ V jointly imply y ∈ Z. Such a cut has capacity C(Z, V ) =
∑

y∈Z P (y|X)+
∑

u∈U\V Q(u|X; θ) =
∑

y∈Z P (y|X)+1−∑
u∈V Q(u|X; θ). A cut has minimum capacity if no node can be moved between

the source side of the cut and the sink side of the cut without increasing capacity, hence if y /∈ u and

u ∈ V jointly imply y /∈ Z, hence if Z = V ∪ =
⋃{u : u ∈ V }. Therefore, the capacity of a minimum

cut is C(V ∪, V ) =
∑

y∈V ∪ P (y|X)+1−∑
u∈V Q(u|X; θ) = P (V ∪|X)+1−Q(V |X; θ). By the Max-

Flow Min-Cut Theorem, the capacity of any minimum cut is equal to the maximum flow through

the network, hence θ ∈ ΘI(P ) if and only if for all subset V of U , P (V ∪|X) + 1 − Q(V |X; θ) ≥ 1,

i.e. Q(V |X; θ) ≤ P (V ∪|X), and the result follows. ¤

Proof of Lemma 1. Take an x ∈ X . Take any u ∈ U and V ⊆ U\{u}. We have P ([V ∪ {u}]∪|x) −
P (V ∪|x) =

∑
y∈⋃

v∈V∪{u} v P (y|x) −∑
y∈⋃

v∈V v P (y|x) =
∑

y∈u\V ∪ P (y|x) = P (u\V ∪|x), which is

non-increasing in V , hence the result. ¤

Proof of Theorem 2. Given a value θ ∈ ΘI , by Theorem 1, we have supx∈X maxV⊆U (Q(V |x; θ) −
P (V ∪|x)) ≤ 0. Under Assumption 1, supx∈X maxV⊆U (P (V ∪|x)) − Pn(V ∪|x)) ≤ 0, with limiting

probability larger than 1− α. Hence, with probability at least 1− α, supx∈X maxV⊆U (Q(V |x; θ)−
Pn(V ∪|x)) ≤ 0, and thus θ ∈ ΘI(Pn). ¤

Proof of Proposition 1. We first justify the BRS Step 1 by showing that wb = w′b for all b. Indeed

observe that for any j ∈ {1, . . . , n} and A ⊆ Y, we have

ζb
n(A|Xj) =

∑

y∈A

P̂n(y|Xj)−
∑

y∈A

P̂ b
n(y|Xj) =

∑

y∈A

[P̂n(y|Xj)− P̂ b
n(y|Xj)]

and thus maxA⊆Y ζb
n(A|Xj) is attained by selecting all the elements y ∈ Y with P̂n(y|Xj) −

P̂ b
n(y|Xj) > 0. It follows that w′b = max1≤j≤n maxA⊆Y [

∑
y∈Y P̂n(y|Xj) −

∑
y∈A P̂ b

n(y|Xj)] and

therefore wb = w′b. To justify BRS Step 2, let wopt denote the optimum objective value of prob-

lem (3.6). If D fails to include any b such that wb > wopt then maxb/∈D wb > wopt, therefore an

optimal D must include all b such that wb > wopt. On the other hand, if D is any optimal subset

and some b′ ∈ D satisfies wb′ ≤ wopt then discarding b′ from D yields a feasible subset D\{b′}
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(since |D\{b′}| < |D| ≤ d) such that maxb∈D\{b′} wb ≤ maxb∈D wb hence D\{b′} is an alternate

optimal solution. Therefore an optimal D consists of all indices b such that wb > wopt. Concerning

the running time, BRS Step 1 requires O(nB|Y|) time, and BRS Step 2 requires O(B) time using

a linear time selection (or median-finding) algorithm (see Blum, Floyd, Pratt, Rivest, and Tarjan

(1973)). ¤

Proof of Proposition 2. The problem corresponds to the following decision problem: given an n×m

matrix H, an integer k and a target value t, can one find a subset S ⊆ {1, . . . , n} such that |S| ≥ k

and
∑m

i=1 maxj∈S Hij ≤ t? Denote (H, k, t) an instance of the latter problem. Consider the well-

known NP-hard decision problem CLIQUE (see for instance section 4.8 page 43 of Schrijver (2004)):

given a graph G = (V,E) and an integer q satisfying 2 ≤ q ≤ |V |, does there exist a subset Q ⊆ V

such that |Q| ≥ q and for all i, j ∈ V , ij ∈ E (i.e. Q is a clique). To any instance (G, q) of

the problem CLIQUE, we associate an instance (H, k, t) of our decision problem, where lines of H

corresponds to vertices of G (elements of V ), columns of H corresponds to edges in G (elements of

E) and Hij = 1 if vertex i belongs to edge j, and 0 otherwise. For any subset S ⊆ E of edges in

G, we have for all i ∈ E, maxj∈S Hij = 1 if i belongs to at least one element of S, and 0 otherwise.

Hence,
∑

i∈E maxj∈S Hij is the number of vertices that belong to at least one edge in S. Define

k = q(q− 1)/2 and t = q. Then, a set S of k edges involves at least (hence exactly) q vertices if and

only if S is the set of edges of a CLIQUE. Hence the answer to the decision problem (H, k, t) thus

defined is YES if and only if G contains a CLIQUE with q vertices. Since CLIQUE is NP-complete,

it follows that our decision problem is NP-hard. Since k = O(|V |2) and t = O(|V |), the input size

(in unitary notation) of such instances of our problem is polynomially bounded by the input size (in

unitary or binary notation) Ω(|V |) of the corresponding instance of CLIQUE. Hence our decision

problem is NP-hard in the strong sense. ¤
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Figure 3. Two dimensional representations of the confidence region

at β00 = 3, β11 = 0, µ = 0, σε = 1, σu = 1, pξ = 0.1
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Figure 4. Parameter β11 in relation with other parameters: β00 = 3,

µ = 0, σε = 1, σu = 1, pξ = 0.1


