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LOCAL UTILITY AND MULTIVARIATE RISK AVERSION

ARTHUR CHARPENTIER, ALFRED GALICHON, AND MARC HENRY

Abstract. We revisit Machina’s local utility as a tool to analyze attitudes to

multivariate risks. Using martingale embedding techniques, we show that for non-

expected utility maximizers choosing between multivariate prospects, aversion to

multivariate mean preserving increases in risk is equivalent to the concavity of the

local utility functions, thereby generalizing Machina’s result in [18]. To analyze

comparative risk attitudes within the multivariate extension of rank dependent ex-

pected utility of [10], we extend Quiggin’s monotone mean and utility preserving

increases in risk and show that the useful characterization given in [17] still holds

in the multivariate case.

Keywords: local utility, multivariate risk aversion, multivariate rank dependent utility, pes-

simism, multivariate Bickel-Lehmann dispersion.
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Introduction

One of the many appealing features of expected utility theory is the characterization

of attitudes towards risk through the shape of the utility function. Following extensive

evidence of violations of the independence axiom which delivers linearity in probabil-

ities of the functional characterizing preferences over risky prospects, most notably

the celebrated Allais paradox [1], Machina showed in [18], [19] that smoothness of

the preference functional was sufficient to recover representability of risk attitudes

through a local approximation, which he called local utility function. Parallel to the

study of risk attitudes in generalized expected utility theories, [28] and [16] analyzed

attitudes to the combination of income risk and price risk in preferences over mul-

tiple commodities within the expected utility framework. This paper is concerned

with non expected utility analysis of attitudes to multivariate risks. So far, three
1
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approaches have emerged to analyze attitudes to multivariate risks without the in-

dependence axiom in [31], [24] and [12]. All three apply dimension reduction devices

to preferences over multivariate prospects. [31] considers rank dependent utility over

multivariate prospects with stochastically independent components only; [24] show

additive separability of the local utility function under a property they call dominance

(equivalent to the notion of correlation neutrality in [9]) and [12] show that under a

property they call degenerate independence, preferences over uncertain multivariate

prospects can be fully recovered from preferences over uncertain income and prefer-

ences over deterministic multivariate outcomes. We consider the general case, where

attitudes to income risk and price risk cannot be separated in this way and show that

in general smooth preferences over multivariate prospects, the main result of [18] still

holds, and aversion to increases in risk is equivalent to concavity of the local utility

function. The proof relies on the martingale characterization of increasing risk in

[10] and martingale embedding theory, specifically [14]. A special case of this result

appears in [10], who derive the family of local utility functions in a multivariate rank

dependent utility model under aversion to multivariate mean preserving increases in

risk. Machina also showed in [18] that interpersonal comparisons of risk aversion can

be characterized by properties of the local utility function. Karni generalizes in [15]

the equivalence between decreasing certainty equivalents and concave transformations

of the local utility functions to smooth preferences over multivariate prospects. To

complement this result, we extend the notion of compensated spread to multivariate

prospects and generalize the characterization of Quiggin’s monotone increases in risk

[21] as mean preserving comonotonic spreads in [17]. We also generalize Quiggin’s

notion of pessimism and characterize pessimistic decision functionals by the shape of

their local utility function. We apply these notions to interpersonal comparison of

risk aversion within the multivariate rank dependent model of [10] and we show that

pessimism is equivalent to weak risk aversion in that framework.

The rest of the paper is organized as follows. Section 1 defines local utility. Section 2

shows that aversion to mean preserving increases in risk is equivalent to concavity of

the local utility functions and Section 3 extends Quiggin’s monotone mean preserving
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increases in risk and applies it to interpersonal comparisons of risk aversion within

the multivariate rank dependent utility model. The last section concludes.

Notation and basic definitions. Let (S,F ,P) be a non-atomic probability space.

Let X : S → Rd be a random vector. We denote the cumulative distribution function

of X by FX . E is the expectation operator with respect to P. For x and y in Rd, let

x ·y be the standard scalar product of x and y, and ‖x‖2 the Euclidian norm of x. We

denote by X =d µ the fact that the distribution of X is µ and by X =d Y the fact that

X and Y have the same distribution. QX denotes the quantile function of distribution

X. In dimension 1, this is defined for all t ∈ [0, 1] by QX(t) = infx∈R{Pr(X ≤ x) > t}.
In larger dimensions, it is defined in Definition 5 of Section 3.2 below. We call L2

d the

set of random vectors X in dimension d such that E ‖X‖2 < ∞. We denote by D the

subset of L2
d containing random vectors with a density relative to Lebesgue measure.

A functional Φ on L2
d is called upper semi-continuous (denoted u.s.c.) if for any real

number α, {X ∈ L2
d : Φ(X) > α} is open. A functional Φ is lower semi-continuous

(l.s.c.) if −Φ is upper semi-continuous. Φ is called law-invariant if Φ(X) = Φ(X̃)

whenever X̃ =d X. By a slight abuse of notation, when Φ is law invariant, Φ(FX) will

be used to denote Φ(X). For a convex lower semi-continuous function V : Rd 7→ R,

we denote by ∇V its gradient (equal to the vector of partial derivatives).

1. Local Utility

We consider decision makers choosing among multivariate uncertain prospects X ∈
D. We assume that the decision makers’ preferences over D are given as a complete,

reflexive and transitive binary relation represented by a real valued functional Φ,

which is continuous relative to the topology of convergence in distribution. We further

assume that Φ is law-invariant. For a given prospect distribution F , if there exists a

function U(x; F ) such that

Φ(F ∗)− Φ(F )−
∫

U(x; F )[dF ∗(x)− dF (x)] → 0
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when F ∗ converges to F in distribution, then U(x; F ) is called local utility function

relative to Φ at F . Since expected utility preferences are linear in probabilities, the

local utility of an expected utility decision maker is constant and equal to her utility

function. Theorem 1 in [18] shows that smooth preference functionals are monotonic

if and only if their local utility functions are increasing. This can be extended to the

case of multivariate prospects.

Definition 1. A prospect X ∈ D is said to dominate stochastically a prospect Y

(denoted X %SD Y ) if there exist X̃ =d X and Ỹ =d Y such that X̃ ≥ Ỹ almost

surely, where ≥ denotes componentwise order in Rn.

A preference functional is said to preserve stochastic dominance if stochastically

dominant prospects are always preferred. If the preference functional Φ is law invari-

ant and monotonic, in the sense that Φ(X) ≥ Φ(Y ) when X yields larger outcomes

than Y in almost all states, then it preserves stochastic dominance. Then we have the

rather straightforward multivariate generalization of Theorem 1 of [18] (mentioned

without proof in [24]).

Proposition 1 (Monotonicity). Let Φ be a law invariant preference functional, which

admits a local utility U(x; F ) for all F . Then the following statements are equivalent.

(i) Φ is monotone, i.e., Φ(X) ≥ Φ(Y ) when X ≥ Y a.s., (ii) Φ preserves stochastic

dominance and (iii) U(x; F ) is nondecreasing in x for all F .

Proof of Proposition 1. Take any two multivariate prospects X1 and X0 such that

X0 ≤ X1 almost surely, where the inequality is component-wise. Define Xt = tX1 +

(1−t)X0. A law invariant preference functional is increasing with respect to first order

stochastic dominance if and only if it is monotone, i.e., if Φ(Xt) is a non decreasing

function of t. Denote by UΦ(·; FX) the local utility function of Φ at FX . We have the
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following:

d

dt
Φ(Xt) =

d

dt
Φ(tX1 + (1− t)X0)

= E
[
∇UΦ(Xt, FXt) ·

dXt

dt

]

= E[∇UΦ(Xt, FXt) · (X1 −X0)].

Hence Φ is monotone if and only if ∇UΦ(·; FX) ≥ 0 for all FX , which completes the

proof. ¤

If in addition, the decision maker is indifferent to correlation increasing transfers,

or correlation neutral according to the terminology of [9], then Safra and Segal show

in [24] that the local utility functions are additively separable, namely that U(x; F ) =
∑n

j=1 Uj(xj; F ), where xj is the j-th component of the outcome x ∈ Rn. Yaari’s rank

dependent utility maximizers over stochastically independent d-dimensional risks in

[31] are represented by

Φ(X) =
d∑

i=1

αi

∫ 1

0

φi(u)QXi
(t)dt, (1.1)

where QXi
is the quantile function of component Xi of the risk X, the φi’s, i = 1, . . . , d,

are non-negative functions on [0, 1] (quantile weights interpreted as probability dis-

tortions) and the αi’s, i = 1, . . . , d, are positive weights. The local utility of decision

maker Φ is given by

U(x; F ) =
d∑

i=1

αi

∫ xi

φi(Fi(z))dz, (1.2)

where Fi is the i-th marginal of distribution F (see for instance Section 4 of [26]).

2. Risk aversion

We now show that attitude to risk with smooth preference over multivariate prospects

can be characterized by the shape of local utilities, as was proved in the case of uni-

variate risks in Theorem 2 of [18]. The latter shows that aversion to mean preserving

increases in risk is equivalent to concavity of local utility functions. Extending this
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result to preferences over multivariate prospects calls for a generalization of the notion

of mean preserving increase in risk proposed in [23].

Definition 2 (Mean preserving increase in risk). A prospect Y ∈ D is called a mean

preserving increase in risk (hereafter MPIR) of a prospect X ∈ D, denoted X %MPIR

Y , if any of the following equivalent statements hold.

(a) For all bounded concave functions f on Rn, Ef(X) ≥ Ef(Y ).

(b) There exists Ỹ =d Y such that (X, Ỹ ) is a martingale, i.e., E[Ỹ |X] = X.

(c) For all u.s.c. law invariant concave functionals Ψ on D, Ψ(X) ≥ Ψ(Y ).

The equivalence between (a) and (b) is due to [29] and the interpretation as an

increase in risk is the same as in [23] for the univariate case. An immediate corollary

of (c) (shown to be equivalent to (a) and (b) in [10]) is that cardinal risk aversion, i.e.,

concavity of the functional Φ representing preferences, implies ordinal risk aversion,

in the sense of aversion to mean preserving increases in risk. We can now state the

main result of this section, which is a direct generalization of Theorems 2 and 3 of

[18].

Theorem 1 (Risk aversion and local utility). Let Φ be a law invariant preference

functional, which admits a local utility U(x; F ) for all F in D. Then the following

statements are equivalent. (i) Φ is risk averse, i.e., Φ(X) ≥ Φ(Y ) when Y is an

MPIR of X, (ii) U(x; F ) is a concave function of x for all F and (iii) For arbitrary

distributions F and F ∗∗ in D and arbitrary probability p, Φ((1 − p)F ∗∗ + pGµF
) ≥

Φ((1− p)F ∗∗+ pF ), where µF is the mean of F and Gµ is the degenerate distribution

at µ.

Proof of Theorem 1. In the following, we use the two alternative notations, Φ(X) =

Φ(F ) where X =d F , and the equivalent expression of the local utility equivalently,

using the equivalence between the Gâteaux and the Fréchet derivative, when the

latter exists: for all H,

U(·, F ) =
∂

∂ε
Φ((1− ε)F + εH)

∣∣∣∣
ε=0

.
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We denote F ∗ = (1− ε)F + εH.

(ii) =⇒ (i): Suppose that x 7→ U(x; F ) is a concave function, for any distribution

F . Let X be a random variable with distribution F , and consider Y such that

Y is a MPIR of X, i.e., there exists Ỹ =d Y such that (X, Ỹ ) is a martingale, i.e.,

E[Ỹ |X] = X. Then, following [14], there exists a continuous martingale (Ỹt, t ∈ [0, 1])

such that Ỹ1 = Ỹ and Ỹ0 = X. More precisely, from Corollary 4.1.25 and Proposition

5.3.2 in [22], there exists (σt) such that dỸt = σtdBt where (Bt) is a standard d-

dimensional Brownian motion, and σt = [σi,j,t]i,j=1,··· ,d. Let Ft denote the distribution

of Ỹt. From (i), since (Ỹt, t ∈ [0, 1]) is a martingale, Φ(Ỹs) ≥ Φ(Ỹt) if 0 ≤ s ≤ t ≤ 1,

or equivalently t 7→ Φ(Ft) is decreasing. Further, if dt > 0,

Φ(Ft+dt)− Φ(Ft) = E
(
U(Ỹt+dt; Ft+dt)− U(Ỹt; Ft)

)

i.e.,

Φ(Ft+dt)−Φ(Ft) = E
([

U(Ỹt+dt; Ft+dt)− U(Ỹt+dt; Ft)
]

+
[
U(Ỹt+dt; Ft)− U(Ỹt; Ft)

])
.

For the second part, from Itô’s Lemma,

U(Ỹt+dt; Ft)−U(Ỹt; Ft) =

∫ t+dt

t

d∑
i=1

∂U(Ỹs; Ft)

∂yi

dỸ i
s +

1

2

d∑
i,j=1

∫ t+dt

t

∂2U(Ỹs; Ft)

∂yiyj

d < Ỹ i
s , Ỹ j

s >

where dỸ i
s =

∑d
j=1 σi,j,sdBj

s , while d < Ỹ i
s , Ỹ j

s >= σi′
s δi,jσ

j
sds. If we take the expected

value, the first part is zero, and therefore

E [U(Xt+dt; Ft)− U(Xt; Ft)] =
1

2

d∑
i,j=1

∫ t+dt

t

∂2U(Ỹs; Ft)

∂yiyj

dσi′
s δi,jσ

j
sds

Thus, if dt ↓ 0,

E [U(Xt+dt; Ft)− U(Xt; Ft)] =
1

2
E

[
trace(D2U(Xt; Ft))σtσ

∗
t

]
dt.

and since x 7→ U(x; F ) is a concave function, it follows that for all t, Φ(Ft+dt)−Φ(Ft) ≤
0, i.e. t 7→ Φ(Ft) is decreasing. And therefore Φ(F1) ≤ Φ(F0), or equivalently

Φ(Y ) = Φ(Ỹ ) ≤ Φ(X).

(i) =⇒ (ii): let Y be MPIR of X, so that there exists Ỹ =d Y such that (X, Ỹ )

is a martingale, i.e., E[Ỹ |X] = X (from Definition 2). As before, it is possible to
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interpolate from X to Ỹ with a continuous martingale (Ỹt) on [0, 1] with increments

dỸt = σtdBt. Using the same expressions we used earlier, we can derive that

Φ(Ft+dt)− Φ(Ft) =
1

2
E

[
trace(D2U(Xt; Ft))σtσ

∗
t

]
dt.

Hence, since t 7→ Φ(Ft) is decreasing, it means that E [trace(D2U(Xt; Ft))σtσ
∗
t ] ≤ 0.

It follows that D2U(Xt; Ft) is a symmetric non-positive matrix, and so, x 7→ U(x; Ft)

is a concave function for all Ft. In particular for t = 0.

(i) ⇔ (iii): Two distributions G and H in D satisfy G = (1 − p)F ∗∗ + pGµF

and H = (1 − p)F ∗∗ + pF for arbitrary distribution F ∗∗ if and only if for each x,

H(x) − G(x) = p(LµF (x) − 1{x ≥ µF}), for some distribution LµF centered at µF .

Call mixture ordering the binary relation so defined between G and H. By (b) of

Definition 2, H %MPIR G if and only if there exist Y =d H and X =d G such that

E[Y |X] = X. So for each z, H(z) − G(z) =
∫ (

FY |X(z|µ)− 1{z ≥ µ}) dG(µ) with

FY |X(z|µ) centered at x. Hence, the transitive closure of the mixture ordering is the

ordering of mean preserving increases in risk and the equivalence between (i) and (iii)

follows. ¤

Using the local utility, we can define a full insurance premium for preferences over

multivariate prospects. Let X ∈ D be a prospect evaluated by a decision maker with

smooth preferences as Φ(X). A full insurance premium can be defined as an element

of the set of vectors π ∈ Rd satisfying Φ(X) = U(EX − π; FX), where FX is the

distribution function of the random vector X.

3. Increasing risk aversion in multivariate rank dependent utility

3.1. Aversion to monotone mean preserving increases in risk. In [21], Quiggin

shows that the notion of mean preserving increases in risk is too weak to coherently

order rank dependent utility maximizers according to increasing risk aversion. [21]

shows that the notion of monotone mean preserving increases in risk (Monotone

MPIR) is the weakest stochastic ordering that achieves a coherent ranking of risk
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aversion in the rank dependent utility framework. Monotone MPIR is the mean

preserving version of Bickel-Lehmann dispersion ([2],[3]), which we now define.

Definition 3 (Bickel-Lehmann Dispersion and Monotone Mean Preserving Increase

in Risk). Let QX and QY be the quantile functions of the random variables X and Y .

X is said to be Bickel-Lehmann less dispersed, denoted X %BL Y , if QY (u)−QX(u)

is a nondecreasing function of u on (0, 1). The mean preserving version is called

monotone mean preserving increase in risk (hereafter MMPIR) and denoted -MMPIR.

MMPIR is a stronger ordering than MPIR in the sense that X %MMPIR Y implies

X %MPIR Y since it is shown in [7] that an MPIR can be obtained as the limit of

a sequence of simple mean preserving spreads Y of X, defined by QY (u) − QX(u)

non-positive below some u0 ∈ [0, 1] and non-negative above u0. [21] relates MMPIR

aversion of a rank dependent utility decision maker to a notion he calls pessimism.

Aversion to MMPIR is defined in the usual way as follows.

Definition 4. A preference functional Φ over random prospects is called averse to

monotone mean preserving increases in risk if and only if X -MMPIR Y implies

Φ(X) ≥ Φ(Y ).

Consider a decision maker with preference relation characterized by the functional

defined for each prospect X by

Φ(X) =

∫ ∞

−∞
f(1− FX(x))dx (3.1)

with f(0) = 0, f(1) = 1 and f non decreasing. Then Theorem 3 of [6] shows

that aversion to MMPIR is equivalent to f(u) ≤ u for each u ∈ [0, 1]. Since the

local utility associated with Φ is x 7→ UΦ(x; FX) =
∫ x

f ′(1 − FX(z))dz, aversion

to MMPIR can be characterized with the local utility. We now generalize this local

utility characterization of MMPIR aversion beyond rank dependent utility functionals

to all preference functionals that admit a local utility.

Theorem 2 (Local utility of MMPIR averse decision makers). Let Φ be a preference

functional with local utility at X denoted x 7→ UΦ(x; FX). Φ is MMPIR averse if and
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only if

E
[

U ′(X; FX)

E[U ′(X; FX)]
1{X > x}

]
≤ E [1{X > x}]

for all X ∈ L2, almost all x ∈ R.

Remark 1. Note that in the special case of rank dependent utility functional (3.1),

the characterization above is equivalent to f(1 − FX(x)) ≤ 1 − FX(x) for all x and

X, which is equivalent to f(u) ≤ u for all u ∈ [0, 1] as mentioned previously.

In Proposition 2 of [17], Landsberger and Meilijson give a characterization of Bickel-

Lehmann dispersion in the spirit of the characterization of MPIR given in the equiv-

alence between (a) and (b) of Proposition 2. In the latter, MPIR increases are char-

acterized by the addition of noise, whereas in the former MMPIR are characterized

by the addition of a zero mean comonotonic variable.

Proposition 2 (Landsberger-Meilijson). A random variable X has Bickel-Lehmann

less dispersed distribution than a random variable Y if and only iff there exists Z

comonotonic with X such that Y =d X + Z.

Using Proposition 2, we can prove Theorem 2.

Proof of Theorem 2. From Proposition 2, Φ is MMPIR averse if and only if Φ(X +

Z)− Φ(X) ≤ 0 for any (X, Z) comonotonic and EZ = 0. Now for Z small enough,

Φ(X + Z)− Φ(X) =

∫ 1

0

U ′
Φ(QX(u); FX)[QX+Z(u)−QX(u)]du

=

∫ 1

0

U ′
Φ(QX(u); FX)QZ(u)du

since the quantile function is comonotonic additive. Therefore we have
∫ 1

0

U ′
Φ(QX(u); FX)QZ(u)du ≤ 0

for any Z with mean zero. After changing variables, this yields
∫ ∞

−∞
U ′

Φ(y; FX)∆(y)dFX(y) ≤ 0
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for any function ∆ increasing and such that
∫∞
−∞ ∆(y)dFX(y) = 0. Choosing ∆(y) =

1{y > x} − [1− FX(x)] yields the result. ¤

We now show how this notion of Bickel-Lehmann dispersion and the Landsberger-

Meilijson characterization can be extended to multivariate prospects and how it can

be applied to the ranking of risk aversion of multivariate rank dependent utility

maximizers. To that end, we appeal to the multivariate notions of quantiles and

comonotonicity developed in [10], [8] and [20].

3.2. Multivariate quantiles and comonotonicity. [10] and [8] define multivariate

quantiles by extending the variational characterization of univariate quantiles based

on rearrangement inequalities of Hardy, Littlewood and Pólya [13]. The following

well known equality
∫ 1

0

QX(u)u du = max
{
E[XŨ ] : Ũ uniformly distributed on [0, 1]

}
, (3.2)

is extended to the multivariate case to define the quantile QX of a random vector X ∈
D with the the following, where µ is a reference absolutely continuous distribution

on Rd with finite second moment.

E[QX(U) · U ] = max
{
E[X · Ũ ] : Ũ =d µ

}
. (3.3)

It follows from the theory of optimal transportation (see Theorem 2.12(ii), p. 66 of

[30]) that there exists an essentially unique convex lower semi-continuous function

V : Rd → R such that QX = ∇V satisfies Equation 3.3. Hence the definition of

multivariate quantiles due to [10] and [8].

Definition 5 (µ-quantile). The µ-quantile function of a random vector X in D with

respect to an absolutely continuous distribution µ on Rd is defined by QX in Equa-

tion 3.3.

This concept of a multivariate quantile is the counterpart of the definition of mul-

tivariate comonotonicity in [10] and [8], motivated by the fact that two univariate

prospects X and Y are comonotonic if there is a prospect U and non-decreasing
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maps TX and TY such that Y = TY (U) and X = TX(U) almost surely or, equiva-

lently, E[UX] = max
{
E[ŨX] : Ũ =d U

}
and E[UY ] = max

{
E[ŨY ] : Ũ =d U

}
.

Definition 6 (µ-comonotonicity). Random vectors X and Y in D are called µ-

comonotonic if there exists U =d µ such that E[X · U ] = max
{
E[X̃ · U ] : X̃ =d X

}

and E[Y · U ] = max
{
E[Ỹ · U ] : Ỹ =d Y

}
.

Two random vectors are µ-comonotonic if they can be rearranged simultaneously

so that they are both equal to their µ-quantile. Another variational notion of multi-

variate comonotonicity, called c-comonotonicity, is proposed in [20].

Definition 7 (c-comonotonicity). Random vectors X and Y in D are called c-

comonotonic if there exists a convex function V such that Y = ∇V (X).

Both µ-comonotonicity and c-comonotonicity will feature in the extension of Bickel-

Lehmann dispersion in the following section.

3.3. Multivariate Bickel-Lehmann dispersion. The Bickel-Lehmann dispersion

order and its mean-preserving version in [21], monotone MPIR, rely on the notion of

monotone single crossings, hence on the monotonicity of the function QY − QX . A

natural extension of the class of non-decreasing functions to functions on Rd is the

class of gradients of convex functions, whose definition doesn’t rely on the ordering on

the real line. Hence the following definition of µ-Bickel-Lehmann dispersion, which

depends on the baseline distribution µ relative to which multivariate quantiles are

defined.

Definition 8 (µ-Bickel-Lehmann dispersion). A random vector X ∈ D is called µ-

Bickel-Lehmann less dispersed than a random vector Y ∈ D, denoted X %µBL Y , if

there exists a convex function V : Rd → R such that the µ-quantiles QX and QY of

X and Y satisfy QY (u)−QX(u) = ∇V (u) for µ-almost all u ∈ [0, 1]d.

As defined above, µ-Bickel-Lehmann dispersion defines a transitive binary relation,

and therefore an order on D. Indeed, if X %µBL Y and Y %µBL Z, then QY (u) −
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QX(u) = ∇V (u) and QZ(u) − QY (u) = ∇W (u). Therefore, QZ(u) − QX(u) =

∇(V (u) + W (u)) so that X %µBL Z. When d = 1, this definition simplifies to

definition 3.

3.3.1. Characterization. We have the following generalization of the Landsberger-

Meilijson characterization of Proposition 2.

Theorem 3. A random vector X ∈ D is µ-Bickel-Lehmann less dispersed than a

random vector Y ∈ D if and only if there exists a random vector Z ∈ D such that (i)

X and Z are µ-comonotonic and (ii) Y =d X + Z.

Proof of Theorem 3. Assume X %µBL Y and call QX and QY the µ-quantiles of X

and Y . Let U be a random vector with distribution µ such that X = QX(U). By

assumption, ∇V (U) is equal to QY (U) − QX(U) = QY (U) − X. Call Z = ∇V (U).

By Theorem 2.12(ii), p. 66 of [30], ∇V is the µ-quantile QZ of Z. Hence we have

X = QX(U) and Z = QZ(U) and X and Z are therefore µ-comonotonic and we have

Y =d QY (U) = X + Z as required. Conversely, take X and Z µ-comonotonic. Then

X = QX(U) and Z = QZ(U) for some U =d µ, where QX and QZ are the µ-quantiles

of X and Z respectively. Call Y = X + Z and QY = QX+Z the µ-quantile of Y . In

the proof of Theorem 1 of [10], it is shown that QX+Z = QX + QZ when X and Z

are µ-comonotonic. Hence, we have QY = QX + QZ , i.e., QY −QX = QZ , and QZ is

the gradient of a convex function by Definition 5. The result follows. ¤

The characterization given in Theorem 3 now allows us to generalize our charac-

terization of MMPIR aversion to the multivariate case.

Proposition 3 (Local utility of multivariate MMPIR averse decision makers). A de-

cision functional Φ is µ-MMPIR averse if and only if its local utility function satisfies

Eµ [∇V (U) · ∇UΦ(∇VX(U); FX)] ≤ 0

for all V convex with EµV (U) = 0.

Proof of Proposition 3. Let Y dominate X with respect to mean preserving µ-Bickel-

Lehmann dispersion, i.e., Y %µ−MMPIR X. This is equivalent to Y =d X + Z
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with X and Z µ-comonotonic, EZ = 0. For each ε > 0, define Yε = X + εZ,

which also dominates X with respect to µ-Bickel-Lehmann dispersion. Φ is µ-

MMPIR averse if and only if for all ε > 0, Φ(X + εZ) − Φ(X) ≤ 0. Denoting

QX+εZ and QX the µ-quantiles of Yε and X respectively and U =d µ, comono-

tonicity of X and Z implies QYε(U) = QX+εZ(U) = QX(U) + εQZ(U). Hence,

0 ≥ Φ(X + εZ)−Φ(X) = EUΦ(X + εZ; FX)−EUΦ(X; FX) = EUΦ(QX+εZ(U); FX)−
EUΦ(QX(U); FX) = EUΦ(QX(U) + εQZ(U); FX) − EUΦ(QX(U); FX) = E[εQZ(U) ·
∇UΦ(QX(U); FX)]+ o(ε). Hence, E[εQZ(U) ·∇UΦ(QX(U); FX)] ≤ 0, which completes

the proof. ¤

The characterization given in Theorem 3 is also crucial to the results in the next

section on comparative risk attitudes of multivariate rank dependent utility maximiz-

ers.

3.3.2. Relation to other multivariate dispersion orders. We now look at the relation

between µ-Bickel-Lehmann dispersion and other generalizations of Bickel-Lehmann

dispersion proposed in the statistical literature. The notion of strong dispersion was

proposed by [11].

Definition 9 (Strong dispersive order). Y is said to dominate X in the strong dis-

persive order, denoted Y %SD X if Y =d φ(X), where φ is an expansion, i.e., such

that ‖φ(x)− φ(x′)‖ ≥ ‖x− x′‖ for all pairs (x, x′).

The following Proposition gives conditions under which µ-Bickel-Lehmann implies

[11]’s strong dispersion.

Proposition 4. Let X and Y be two random vectors in D. The following propositions

hold.

1. Y is more dispersed than X in the strong dispersion order, i.e., Y %SD X, if

Y =d X + Z, where X and Z are c-comonotonic.

2. If Y %µBL X and the µ-quantiles of X and Y are gradients of strictly convex

functions, then Y %SD X.
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Proof of Proposition 4. If Y %µ−BL X, then by Theorem 3, Y =d X + Z, where X

and Z are µ-comonotonic. Hence

Y =d QX+Z(U) = QX(U) + QZ(U) =d X + QZ(Q−1
X (X)),

where QX = ∇VX and QZ = ∇VZ are gradients of convex functions. Therefore,

denoting φ(x) = x + ψ(x) = x +∇VZ ◦ (∇VX)−1(x), we need to show that φ satisfies

the JT
φ (x)Jφ(x) − I ≥ 0 for all x as in the characterization of the strong dispersive

order in Theorem 2 of [11]. This follows from the fact that the jacobian of a gradient

of a strictly convex function is symmetric positive definite and hence that

Jψ(x) =
[
J∇VX

(
(∇VX)−1(x)

)]−1 [
J∇VZ

(
(∇VX)−1(x)

)]

is diagonalizable with positive eigenvalues. This completes the proof of (ii). The

proof of (i) follows the same lines with Y =d X + QZ(X), where QZ is the gradient

of a convex function. ¤

3.4. Increasing risk aversion and multivariate rank dependent utility. To

make interpersonal comparisons of attitudes to multivariate risk, we define compen-

sated increases in risk in the spirit of [7].

Definition 10 (Compensated Increases in Risk). Let Φ be the functional representing

a decision maker’s preferences over multivariate prospects in D. A prospect Y ∈ D
is a compensated increase in risk from the point of view of Φ if X %µBL Y and

Φ(Y ) = Φ(X).

A ranking of risk aversion is then derived in the usual way, except that the ranking

of aversion to multivariate risks is predicated on the reference measure µ in the

definition of dispersion.

Definition 11 (Increasing risk aversion). A decision maker Φ̃ is more risk averse

than a decision maker Φ if Φ̃ is averse to a compensated increase in risk from the

point of view of Φ, i.e., if X %µBL Y and Φ(Y ) = Φ(X) imply Φ̃(Y ) ≤ Φ̃(X).
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In the special case of rank dependent utility maximizers, aversion to monotone

MPIR and increasing risk aversion take a very simple form. We consider here the

multivariate generalization of Yaari decision makers given in [10]. A multivariate

rank dependent utility maximizer is characterized by a functional Φ on multivariate

prospects X ∈ D, which is a weighted sum of µ-quantiles, i.e.,

Φ(X) = E[QX(U) · φ(U)], (3.4)

where QX is the µ-quantile of X, U =d µ and φ(U) ∈ D. As shown in Theorem 1 of

[10], Φ(X +Z) = Φ(X)+Φ(Z) when X and Z are µ-comonotonic. Hence we immedi-

ately find the following characterization of monotone MPIR aversion and increasing

risk aversion.

Theorem 4 (Rank dependent utility). Let Φ and Φ̃ be multivariate rank dependent

utility functionals, i.e., Φ and Φ̃ satisfy (3.4). Then the following hold.

(a) Φ is averse to a monotone MPIR (i.e., a mean preserving µ-Bickel-Lehmann

dispersion) if and only if for all Z ∈ D, Φ(Z) ≤ Φ(EZ).

(b) Φ̃ is more risk averse than Φ iff for all Z ∈ D, Φ(Z) = 0 ⇒ Φ̃(Z) ≤ 0.

It turns out, therefore, that aversion to MMPIR in the multivariate rank dependent

utility model is equivalent to weak risk aversion (EX preferred to X). Since Theorem 2

of [10] shows that aversion to MPIR in the multivariate RDU model is equivalent to

φ(u) = −αu + u0, with α > 0 and u0 ∈ Rd, we recover the fact that MPIR averters

are also monotone MPIR averters as in the univariate case.

Corollary 1. If Φ is averse to mean preserving increases in risk, than it is also

averse to monotone mean preserving increases in risk.

Yaari’s rank dependent utility maximizers over stochastically independent multi-

variate risks in [31] are special cases of (3.4) where the reference distribution µ has

independent marginals. In that special case, (a) of Theorem 4 is equivalent to con-

cavity of the local utility function in (1.2) (i.e., non-increasing φi for each i) and (b)
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of Theorem 4 is equivalent to φ̃i being a decreasing transformation of φi for each i,

so that we recover the classical results of [31].

Conclusion

Attitudes to multivariate risks were characterized using Machina’s local utility in a

framework, where objects of choice are multidimensional prospects. Aversion to mean

preserving increases in multivariate risk is characterized by concavity of the local

utility function as in the univariate case. Comparative attitudes are characterized

within the multivariate extension in [10] of rank dependent utility with the help of a

multivariate extension of Quiggin’s monotone mean preserving increase in risk notion

and a generalization of its characterization in [17]. Characterization and derivation of

risk premia within the multivariate rank dependent utility model is the natural next

step in this research agenda.
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