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When conducting inference on partially identified parameters, Imbens and Manski (2004) pointed

out that confidence regions may cover the whole identified set with a prescribed probability, to which

we shall refer as set coverage, or they may cover each of its points with a prescribed probability, to

which we shall refer as point coverage. Since set coverage implies point coverage, confidence regions

satisfying point coverage are generally preferred on the grounds that they may be more informative.

The object of this note is to describe a decision problem in which, contrary to received wisdom,

point coverage is clearly undesirable.

Consider a random vector s = (X, ε) on {1, . . . , N}. Call realizations si, i = 1, . . . , N, of this

random vector states of the world, and call their collection S = {s1, . . . , sN}. Suppose states of

the world are partially observable, by which we mean that the realizations {x1, . . . , xN} of X can

be observed over repeated experiments, but not the realizations {ε1, . . . , εN} of ε. Call PX the

probability mass function of random vector X. Let Θ be a set of models for the states, defined by

the fact that for each θ ∈ Θ, Pθ denotes a probability mass function for the random vector (X, ε).

The identified set ΘI is defined in the following way:

ΘI =



θ ∈ Θ :

N∑

j=1

Pθ(xi, εj) = PX(xi) for i = 1, . . . , N



 .

More generally, any additional a priori restriction on the joint distribution of (X, ε) can be incorpo-

rated in the definition of the identified set.

Suppose a decision maker may choose among actions in a set A = {a1, . . . , aK}. The actions

may be treatments, as in Manski (2004), or policy controls as in Brainard (1967). Actions in A
are defined as functions from S to real valued outcomes. Call U(a, θ) the ex-ante utility of the

decision maker, when she knows Pθ to be the true data generating process for (X, ε). Typically, this

will be von Neumann-Morgenstern expected utility U(a, θ) =
∫

a(s)dPθ(s). We shall consider two

robust decision making procedures based on the identified set: (i) maxmin, where the decision maker

maximizes the functional evaluation V (a) = minΘI U(a, θ) over A and (ii) minmax regret, where

the decision maker maximizes V (a) = minΘI
[U(a, θ)−maxa∈A U(a, θ)] over A. The arguments we

make do not depend on which of the two options (i) or (ii) is chosen, so we shall concentrate on a

maxmin decision maker.

The decision maker is supposed to have access to two types of confidence regions for ΘI based

on repeated sampling in the state space. A region covering the identified set called ΘSC such that

P(ΘI ∈ ΘSC) = 1 − α and a region covering each point of the identified set called ΘPC such that

minθ∈ΘI
P(θ ∈ ΘPC) = 1−α. Without necessarily subscribing to the learning model of Epstein and
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Schneider (2007), we appeal to Anderson, Hansen, and Sargent (2003) and “assume that our decision

maker worries about alternative models that available data cannot readily dispose of”. Hence, the

decision maker considers two decision rules based on the two respective confidence regions. The

decision rule based on ΘSC consists in choosing âSC in A to maximize minθ∈ΘSC
U(a, θ) and the

decision rule based on ΘPC consists in choosing âPC in A that maximizes minθ∈ΘP C
U(a, θ). The

decision rule based on ΘSC is robust in the sense that

P
(

min
θ∈ΘI

U(âSC , θ) ≥ min
θ∈ΘSC

U(âSC , θ)
)
≥ 1− α,

so that minθ∈ΘSC
U(a, θ) provides a lower bound for the actual utility functional V (âSC) with

probability at least as large as 1−α. The decision rule based on ΘPC , however, is not robust as will

be shown with the following example that we contrived in the simplest possible way for expositional

purposes.

Let {1, . . . , N} be a population of individuals and let X ∈ {F,M} be their gender and ε ∈ {T,NT}
be their talent (T for talented and NT for not so talented). Half the population is male and half the

population is talented, but the correlation θ between talent and gender is unknown. The decision

maker is a social planner who can offer an education opportunity to women only (action a1), to men

only (action a2) or to everyone (action a3). The net benefit of offering the education opportunity to

a talented person is B. The net benefit of offering the education opportunity to a not so talented

person is −B (wasted resources). The net benefit of failing to offer the education opportunity to a not

so talented person is zero. Finally, the net benefit of failing to offer the education opportunity to a

talented person is −B (wasted talent). Assume that the parameter set is equal to Θ = {θ1, θ2, θ3, θ4},
where under θ1 all talent is male, and under θ2 all talent is female, under θ3 everyone is talented and

under θ4 no one is talented. Given the a priori constraints on the joint distribution of gender and

talent, the identified set is ΘI = {θ1, θ2}. Now, with von Neumann-Morgenstern expected utility,

we have:

U(a, θ1) =
1
2
U(a(F, NT )) +

1
2
U(a(M,T )) =





−B if a = a1

B/2 if a = a2

0 if a = a3

and

U(a, θ2) =
1
2
U(a(F, T )) +

1
2
U(a(M, NT )) =





B/2 if a = a1

−B if a = a2

0 if a = a3
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Note that P(θ1 /∈ ΘSC or θ2 /∈ ΘSC) = α, whereas for ΘPC we only require that either P(θ1 /∈
ΘPC) ≤ α and P(θ2 /∈ ΘPC) = α, or P(θ1 /∈ ΘPC) = α and P(θ2 /∈ ΘPC) ≤ α. If ΘPC is more

informative than ΘSC , then 2α ≥ P(θ1 /∈ ΘPC or θ2 /∈ ΘPC) > α. Take the case θ1 /∈ ΘPC and

suppose for clarity that ΘPC = {θ2}, then minθ∈ΘP C
U(a, θ) = B/2 if a = a1, −B if a = a2 and

0 if a = a3; and symmetrically if θ2 /∈ ΘPC . Hence, when θj /∈ ΘPC , the action that maximizes

minθ∈ΘP C
U(a, θ) is âPC = aj and minθ∈ΘI

U(âPC , θ) = minθ∈ΘI
U(aj , θ) = −B which can be

much smaller than minΘP C
U(aj , θ) = B/2. Hence the action taken on the basis of the region with

point coverage yields a utility that may be much smaller than it appears with a probability strictly

larger than α. In contrast âSC = a3 with probability at least 1 − α so minΘSC
U(âSC , θ) = 0 and

minΘI
U(âSC , θ) = 0 with probability at least 1− α, so that decision based on the region providing

set coverage does not suffer from the same lack of robustness.
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