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Abstract

This paper studies decision theoretic properties of benchmarked estimators which
are of some importance in small area estimation problems. Benchmarking is in-
tended to improve certain aggregate properties (such as study-wide averages) when
model based estimates have been applied to individual small areas. We study ad-
missibility and minimaxity properties of such estimators by reducing the problem
to one of studying these problems in a related derived problem. For certain such
problems we show that unconstrained solutions in the original (unbenchmarked)
problem give unconstrained Bayes, minimax or admissible estimators which auto-
matically satisfy the benchmark constraint. We illustrate the results with several
examples. Also, minimaxity of a benchmarked empirical Bayes estimator is shown
in the Fay-Herriot model, a frequently used model in small area estimation.
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1 Introduction

This paper studies decision theoretic properties of benchmarked estimators which are
of some importance in small area estimation problems. Benchmarking is intended to
improve certain aggregate properties (such as study-wide averages) when model based
estimates have been applied to individual small areas. For example, model based small
area estimates are often such that the average of a particular estimate over all areas
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may differ substantially from the average derived from a direct estimate. The reader
is referred to the articles of Datta, Ghosh, Steorts and Maples (2011) for an extended
discussion of the background and desirability of benchmarking. Also see Frey and Cressie
(2003), Ghosh (1992) and Pfeffermann and Tiller (2006) for the related issues. For good
accounts of small area estimation, see Battese, Harter and Fuller (1988), Prasad and Rao
(1990), Ghosh and Rao (1994), Rao (2003) and Datta, Rao and Smith (2005)

We study admissibility and minimaxity properties of benchmarked estimators in the
context of a multivariate normal population by reducing the problem to one of study-
ing these properties in a related derived problem. For certain benchmark constraints we
develop estimators that improve on the benchmarked version of the usual (UMVUE or
Generalized Bayes with respect to the uniform prior) estimator and are minimax and/or
admissible in the benchmark problem. Also, for certain such problems we show that un-
constrained solutions in the original (unbenchmarked) problem give unconstrained Bayes,
minimax or admissible estimators which automatically satisfy the benchmark constraint.
We illustrate the results with several examples.

Section 2 gives the general setup of the problem and presents the benchmarked version
of a general estimator, as well as a decomposition of the risk of such an estimator into
two pieces; one which depends on the risk of the unbenchmarked estimator in a related
problem and one which depends on the parameter and the benchmark constraint but
not the estimator in question. Admissibility considerations and sometimes minimaxity
are then reduced to study of these properties in a related problem. Some preliminary
admissibility and minimax results are also given in this section.

Section 3 is devoted to developing improved shrinkage benchmark estimators in the
multivariate normal case. We present a canonical form useful for studying the problem
and give two alternate decompositions which lead to several different classes of shrinkage
benchmarked estimators. We give conditions under which these classes are minimax
and/or admissible in the benchmarked problem by studying the related derived problem
in the canonical setting.

Section 4 studies prior distributions in the original problem that result in estimators
which automatically satisfy the benchmark constraint. The development is motivated by
a simple example that illustrates the utility of placing a uniform prior on a portion of the
parameter space so that the resulting generalized Bayes shrinkage estimators satisfy the
constraint. A more general development is also given for certain benchmark constraints.

As indicated above, benchmarking is useful in the framework of small area estimation.
The Fay-Herriot model is one that is often utilized in small area estimation problems. In
Section 5, we consider this model and investigate minimaxity of a constrained emprical
Bayes estimator. Since the Fay-Herriot model has heteroscedastic variances and employs
covariates as regressors, establishing minimaxity of the constrained empirical Bayes esti-
mator, while somewhat challenging, seems to be potentially useful. We also consider a
prior distribution which results in an unconstrained empirical Bayes estimator satisfying
the constraint and minimaxity.

Finally, some concluding remarks are given in Section 6.
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2 General Setup of the Constrained Problem

Let X = (X1, . . . , Xk)
′ be a k × 1 random vector and consider estimation of µ =

(µ1, . . . , µk)
′ by an estimator µ̂ = µ̂(X) = (µ̂1, . . . , µ̂k)

′. Let W be a k × m matrix
with rank m, m < k, and let t = t(X) be a function from Rk to Rm.The constraint we
consider is to restrict the estimator µ̂ to satisfy the benchmark condition W ′µ̂ = t(X),
namely, µ̂ ∈ Γ0 for

Γ0 = {µ̂ ∈ Γ |W ′µ̂ = t(X)}.

We will restrict attention throughout to estimators in Γ, the class of estimators with
second moments, i.e.,

Γ = {µ̂ |E[µ̂′µ̂] < ∞].

Typical examples of t(X) are t(X) = X for X = k−1
∑k

j=1 Xj and t(X) = t0, a constant,
both of which are cases where t(X) are scalar valued functions.

Let the quadratic loss function be given by L(µ, µ̂; Q) = (µ̂ − µ)′Q(µ̂ − µ) for a
known k × k positive definite matrix Q. The risk function of µ̂ is denoted by

R(µ, µ̂) = E[(µ̂ − µ)′Q(µ̂ − µ)].

A benchmarked Bayes estimator µ̂BM is defined as the estimator µ̂ which minimizes the
posterior risk function E[(µ̂−µ)′Q(µ̂−µ)|X] subject to µ̂ ∈ Γ0, where E[·|X] denotes
a posterior expectation given X. Noting that

E[(µ̂ − µ)′Q(µ̂ − µ)|X] = E[(µ̂B − µ)′Q(µ̂B − µ)|X] + (µ̂ − µ̂B)′Q(µ̂ − µ̂B)

for the Bayes estimator µ̂B = E[µ|X], Datta, Ghosh, Steort and Maples (2011, Test)
showed that the constrained Bayes estimator is given by

µ̂B + Q−1W (W ′Q−1W )−1{t(X) − W ′µ̂B}, (2.1)

which can be expressed as

(I − P W )µ̂B + Q−1W (W ′Q−1W )−1t(X),

where
P W = Q−1W (W ′Q−1W )−1W ′.

Motivated by the constrained Bayes estimator, we can construct the following constrained
estimator based on any given estimator µ̂:

µ̂C(µ̂, t) = (I − P W )µ̂ + Q−1W (W ′Q−1W )−1t(X), (2.2)

and denote the class by
Γ1 = {µ̂C(µ̂, t) | µ̂ ∈ Γ}.

It is seen that
Γ1 ⊂ Γ0 ⊂ Γ.
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To evaluate the risk of the estimator µ̂C(µ̂, t), note that

µ̂C(µ̂, t) − µ = (I − P W )(µ̂ − µ) + Q−1W (W ′Q−1W )−1{t(X) − W ′µ}.

Also note that W ′(I − P W ) = 0 and

(I − P W )′Q(I − P W ) = Q − W (W ′Q−1W )−1W ′ = Q(I − P W ).

Then the risk function of µ̂C(µ̂, t) relative to the loss L(µ, µ̂; Q) can be decomposed into
two parts as given in the following lemma:

Lemma 2.1 Assume that µ̂ ∈ Γ. It follows that the risk function of µ̂C(µ̂, t) relative to
the loss L(µ, µ̂; Q) is expressed as

R(µ, µ̂C(µ̂, t)) = R1(µ, µ̂) + R2(µ, t), (2.3)

where

R1(µ, µ̂) =E[(µ̂ − µ)′Q(I − P W )(µ̂ − µ)],

R2(µ, t) =E[(t(X) − W ′µ)′(W ′Q−1W )−1(t(X) − W ′µ)].
(2.4)

Since t(X) is a given function and R2(µ, t) does not depend on the estimator µ̂,
the problem of finding improved estimators (in the original benchmark problem) can be
reduced to that of finding superior estimators µ̂ in terms of the risk function R1(µ, µ̂)
relative to the loss function L(µ, µ̂; Q(I − P W )).

Proposition 2.1 For two estimators µ̂1 and µ̂2 in Γ, and the corresponding benchmarked
estimators µ̂C(µ̂1, t) and µ̂C(µ̂2, t) in Γ1, µ̂C(µ̂1, t) dominates µ̂C(µ̂2, t) relative to the
loss L(µ, µ̂; Q) if and only if µ̂1 dominates µ̂2 relative to the loss L(µ, µ̂; Q(I − P W )).

This proposition implies the following proposition concerning admissibility.

Proposition 2.2 Assume that µ̂ ∈ Γ. Then the estimator µ̂C(µ̂, t) is admissible in Γ1

in terms of the risk R(µ, µ̂C) if and only if µ̂ is admissible in Γ in terms of the risk
R1(µ, µ̂).

The above propositions show that dominance properties and admissibility of an esti-
mator µ̂C(µ̂, t) can be reduced to those of the estimator µ̂ in terrms of the risk R1(µ, µ̂).

Concerning minimaxity, on the other hand, it is seen that the estimator µ̂C(µ̂∗, t) is
minimax if and only if

inf
b—∈Γ1

sup
—

R(µ, µ̂) = inf
b—∈Γ

sup
—

{
R1(µ, µ̂) + R2(µ, t)

}
= sup

—

{
R1(µ, µ̂∗) + R2(µ, t)

}
.

This equality holds if there exists a sequence {µn}n=1,2,··· such that

lim inf
n→∞

{
R1(µn, µ̂

∗) + R2(µn, t)
}

= sup
—

{
R1(µ, µ̂∗) + R2(µ, t)

}
. (2.5)
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Proposition 2.3 If µ̂∗ satisfies the condition (2.5), then the estimator µ̂C(µ̂∗, t) is min-
imax within Γ1.

In particular, under the following condition, the minimaxity problem for the risk
R(µ, µ̂) reduces to that of the risk R1(µ, µ̂).

(A1) Assume that R2(µ, µ̂) does not depend on the unknown parameters.

Proposition 2.4 Assume the condition (A1). Then the estimator µ̂C(µ̂∗, t) is minimax
within Γ1 if and only if µ̂∗ is minimax in terms of the risk R1(µ, µ̂) in Γ.

Condition (A1) is often satisfied for two typical examples of t(X):
(Case 1) t(X) = W ′X. In this case, it typically happens that R2(µ, t) is independent

of µ under the distributional assumption of a location family, and the condition (A1)
holds.

(Case 2) t(X) = t0, a constant. In this case we need to restrict the parameter space
to {µ|W ′µ = t0}. Then it is clear that R2(µ, t0) = 0 on the restricted space.

3 Constrained Shrinkage Estimators under Normal-

ity

In this section, we restrict the estimators to the constrained estimators (2.2) or the class
Γ1, and investigate the admissibility within the class (2.2) when the underlying distribu-
tion is normal.

3.1 A canonical form of the problem

We hereafter assume that X has a multivariate normal distribution

X ∼ Nk(µ,Σ) (3.1)

for a known k × k matrix Σ. Under this normality assumption, we study admissibility
and minimaxity in the simultaneous estimation of µ subject to the benchmark constraint
W ′µ̂ = t(X).

Assuming the uniform prior for µ, namely, π(µ) = 1, the benchmarked generalized
Bayes estimator within the class Γ0 is

µ̂Cm(t) = µ̂C(X, t) = (I − P W )X + Q−1W (W ′Q−1W )−1t(X), (3.2)

since the generalized Bayes estimator of µ in Γ is just X. Propositions 2.2 and 2.3 imply
that the decision-theoretic properties of the benchmarked generalized Bayes estimator
come from those of X in terms of the risk R1(µ, µ̂). Let H be a k× k orthogonal matrix
such that

HQ−1/2W (W ′Q−1W )−1W ′Q−1/2H ′ =

(
0k−m 0

0 Im

)
.

5



Let H ′ = (H ′
1,H

′
2) for the k×(k−m) matrix H1. Also, let Y = HQ1/2X, ξ = HQ1/2µ,

Y i = H iQ
1/2X and ξi = H iQ

1/2µ

for i = 1, 2. Then, µ is expressed as

µ = Q−1/2H ′
1ξ1 + Q−1/2H ′

2ξ2, (3.3)

and the distributions of Y is written as(
Y 1

Y 2

)
∼ Nk

((
ξ1

ξ2

)
,

(
V 11 V 12

V 21 V 22

))
, (3.4)

where
V ij = H iQ

1/2ΣQ1/2H ′
j

for i, j = 1, 2. The problem of finding a benchmarked generalized Bayes estimator may
be expressed as the minimization of E[(ξ̂1 − ξ1)

′(ξ̂1 − ξ1)|Y ] subject to W ′Q−1/2H ′
2ξ̂2 =

t(X), since W ′Q−1/2H ′
1 = 0. Note that

W ′µ = W ′Q−1/2H ′
2ξ2.

The estimators µ̂C(µ̂, t) and µ̂Cm(t) can be rewritten as

µ̂C(µ̂, t) =Q−1/2H ′
1ξ̂1 + Q−1W (W ′Q−1W )−1t(X) ≡ µ̂C∗(ξ̂1, t),

µ̂Cm(t) =Q−1/2H ′
1Y 1 + Q−1W (W ′Q−1W )−1t(X) ≡ µ̂C∗(Y 1, t).

(3.5)

for ξ̂1 = H1Q
1/2µ̂, and the risks R1(µ, µ̂) and R1(µ,X) can be expressed as

R1(µ, µ̂) =E[(ξ̂1 − ξ1)
′(ξ̂1 − ξ1)],

R1(µ, X) =E[(Y 1 − ξ1)
′(Y 1 − ξ1)].

(3.6)

3.2 Admissibility and inadmissibility results

To investigate admissibility of the constrained estimator µ̂C(µ̂, t) within the constrained
class Γ1, the following decomposition from (3.4) is helpful:(

Y 1

Y 2 − V 21V
−1
11 Y 1

)
∼ N

((
ξ1

ξ2 − V 21V
−1
11 ξ1

)
,

(
V 11 0
0 V 22.1

))
. (3.7)

Let ξ3 = ξ2 − V 21V
−1
11 ξ1. As long as a proper prior is taken for ξ3, the admissibility of

µ̂C(µ̂, t) depends on that of ξ̂1 = H1Q
1/2µ̂ in terms of the risk R1(µ, µ̂).

Proposition 3.1 If ξ̂1 is admissible in terms of R1(µ, µ̂), then µ̂ is admissible within

the class Γ1. In particular, if ξ̂1 is the Bayes estimator for a proper prior on ξ1, then

µ̂ is admissible within Γ1. If ξ̂1 is inadmissible in terms of the risk R1(µ, µ̂), then µ̂ is
inadmissible.
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This proposition along with well known results of James and Stein (1961), Brown
(1971) and others implies the following result on the admissibility of Y 1.

Proposition 3.2 The benchmarked generalized Bayes estimator µ̂Cm(t) under the uni-
form prior has the following decision-theoretic properties:

(1) µ̂Cm(t) is minimax within Γ1 under the condition (2.5) or (A1).

(2) µ̂Cm(t) is admissible within Γ1 when k − m is one or two.

(3) µ̂Cm(t) is inadmissible within Γ1 when k − m ≥ 3.

The part (2) and (3) of Proposition 3.2 follows from James and Stein (1961), Brown
(1971) and others.

When k − m ≥ 3, the Stein effect leads to shrinkage estimators improving on the
benchmarked generalized Bayes estimator µ̂Cm(t) under the uniform prior. ¿From (3.7),
we can derive improved estimators by shrinking Y 1. For example, Berger (1976) proposed
the shrinkage estimator

ξ̂
B

1 = Y 1 − c(Y ′
1V

−2
11 Y 1)

−1V −1
11 Y 1 ≡ g(Y 1,V 11), (3.8)

which dominates Y 1 for 0 < c ≤ 2(k − m − 2). Shinozaki (1974) and Bock (1975) also
gave other forms of improved estimators.

An admissible estimator for k−m ≥ 3 can be derived from the result of Berger (1976).
Assume the following prior distribution for ξ1:

ξ1|γ ∼Nk−m(0, {(V 11 − γI)−1 − V −1
11 }−1),

γ ∼γa/2−2, 0 < γ < chmin(V 11),
(3.9)

where a is a constant and chmin(V 11) denotes the smallest eigenvalue of V 11. This is an
extension of the prior suggested in Strawderman (1971). For ξ3, it is possible to assume
any proper prior distribution. Then, the generalized Bayes estimator of ξ1 is

ξ̂
GB

1 (Y 1,V 11) = Y 1 −
1

Y ′
1V

−2
11 Y 1

ψSW
a (Y ′

1V
−2
11 Y 1)V

−1
11 Y 1,

where

ψSW
a,k−m(w) =

∫ w

0

y(a+k−m)/2−1e−y/2dy/

∫ w

0

y(a+k−m)/2−2e−y/2dy. (3.10)

Since the admissibility of ξ̂
GB

1 was shown in Berger (1976), we have the following propo-
sition.

Proposition 3.3 The constrained generalized Bayes estimator

µ̂C(µ̂GB, t) = Q−1/2H ′
1ξ̂

GB

1 (Y 1,V 11) + Q−1W (W ′Q−1W )−1t(X)

is admissible and dominates µ̂Cm(t) within the class Γ1 when k − m ≥ 3 and 0 ≤ a ≤
k − m − 2.
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We can also provide other improved estimators through the following alternative de-
composition:

(
Y 1 − V 12V

−1
22 Y 2

Y 2

)
∼ N

((
ξ1 − V 12V

−1
22 ξ2

ξ2

)
,

(
V 11.2 0

0 V 22

))
. (3.11)

Note that Y 1 = (Y 1−V 12V
−1
22 Y 2)+V 12V

−1
22 Y 2 and that Y 1−V 12V

−1
22 Y 2 is independent

of V 12V
−1
22 Y 2. For k − m ≥ 3, another improved shrinkage estimator given by

ξ̂
(2)

1 = g(Y 1 − V 12V
−1
22 Y 2, V 11.2) + V 12V

−1
22 Y 2,

where g(·, ·) is defined in (3.8), since the risk function in terms of the loss ∥ξ̂1 − ξ1∥2 =

(ξ̂1 − ξ1)
′(ξ̂1 − ξ1) is

E[∥ξ̂
(2)

1 − ξ1∥2] =E[∥g(Y 1 − V 12V
−1
22 Y 2, V 11.2) − (ξ1 − V 12V

−1
22 ξ2)∥2]

+ E∥V 12V
−1
22 Y 2 − V 12V

−1
22 ξ2∥2].

When m − k ≥ 3 and m ≥ 3, we also consider the shrinkage estimators

ξ̂
(3)

1 =(Y 1 − V 12V
−1
22 Y 2) + g(V 12V

−1
22 Y 2,V 12V

−1
22 V 21),

ξ̂
(4)

1 =εξ̂
(2)

1 + (1 − ε)ξ̂
(3)

1 ,

where ε is a constant satifying 0 < ε < 1.

Proposition 3.4 The benchmarked generalized Bayes estimator µ̂Cm(t) under the uni-
form prior can be improved by shrinkage estimators as follows:

(1) When k − m ≥ 3, the shrinkage estimators ξ̂
(1)

1 = g(Y 1, V 11) and ξ̂
(2)

1 = g(Y 1 −
V 12V

−1
22 Y 2, V 11.2) + V 12V

−1
22 Y 2 dominate Y 1 relative to the loss ∥ξ̂1 − ξ1∥2.

(2) When k−m ≥ 3 and m ≥ 3, the shrinkage estimators ξ̂
(3)

1 = (Y 1−V 12V
−1
22 Y 2)+

g(V 12V
−1
22 Y 2, V 12V

−1
22 V 21) and ξ̂

(4)

1 = εξ̂
(2)

1 + (1 − ε)ξ̂
(3)

1 for 0 < ε < 1 dominate Y 1

relative to the loss ∥ξ̂1 − ξ1∥2.

4 Unconstrained generalized Bayes and minimax es-

timators satisfying the constraints

In the previous sections, we studied shrinkage estimators induced from the constrained
Bayes estimator and investigated their decision-theoretic properties within the class of
constrained estimators. In some cases, however, we can derive constrained Bayes esti-
mators without direct consideration of the constraint. In this sub-section we find prior
distributions such that the resulting unconstrained generalized Bayes estimators satisfy
the constraints automatically and hence are also, therefore, the benchmarked generalized
Bayes estimators.
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4.1 An example

We begin with an illustrative example. Assume that random variables X1, . . . , Xk are
mutually independently distributed as Xi ∼ N (µi, 1). Let X = (X1, . . . , Xk)

′ and
µ = (µ1, . . . , µk)

′. Assume that an estimator µ̂ = (µ̂1, . . . , µ̂k)
′ satisfies the constraint∑k

i=1 µ̂i =
∑k

i=1 Xi, namely, j ′µ̂ = j ′X for j = (1, . . . , 1)′ ∈ Rk. Then, we consider
estimation of µ relative to the loss ∥µ̂ − µ∥2. In the setting of Section 3.1, the model is
X ∼ Nk(µ, Ik), where Q = Σ = Ik.

Note that µ may be expressed as

µ =(I − k−1jj ′)µ + (j ′µ/k)j

=H ′
1ξ1 + h′

2ξ2,

where ξ1 = H1µ, ξ2 = h2µ, H1j = 0 and h2j =
√

k for a k × k orthogonal matrix
H ′ = (H ′

1,h
′
2), H1 being (k − 1) × k. Let Y 1 = H1X and y2 = h2X. Then,(

Y 1

y2

)
∼ N

((
ξ1

ξ2

)
,

(
Ik−1 0
0′ 1

))
.

Assume the following prior distribution:

ξ1|γ ∼Nk−1(0, γ/(1 − γ)Ik−1),

γ ∼γa/2−2, 0 < γ < 1,

ξ2 ∼1.

This type of prior distribution was suggested in Strawderman (1971). Then, the general-

ized Bayes estimator ξ̂
GB

1 and ξ̂GB
2 of ξ1 and ξ2 are given by

ξ̂
GB

1 =Y 1 − ∥Y 1∥−2ψSW
a,k−1(∥Y 1∥2)Y 1,

ξ̂GB
2 =y2,

where ψSW
a,k−1(·) is defined in (3.10).

Note that

H ′
1Y 1 =(I − k−1jj ′)X = X − Xj,

h′
2y2 =Xj.

We thus get the generalized Bayes estimator

µ̂GB =H ′
1ξ̂

GB

1 + h′
2ξ̂

GB
2

=(X − Xj) − 1∑k
i=1(Xi − X)2

ψSW
a,k−1(

k∑
i=1

(Xi − X)2)(X − Xj) + Xj

=X − 1∑k
i=1(Xi − X)2

ψSW
a,k−1(

k∑
i=1

(Xi − X)2)(X − Xj).
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This estimator shrinks Xi toward X, and is often called a Lindley type estimator (Lindley,
1962).

It is clear that this estimator satisfies the constraint, namely,

j ′µ̂GB = j ′X.

Hence, although not derived as a constrained Bayes estimator, it satisfies the constraint
automatically as shown above. The key to this phenomenon is that the prior distribution
of ξ2 is uniform.

4.2 Which priors automatically produce the constrained Bayes
estimator?

In the previous subsection, we gave an example of unconstrained Bayes estimator which
automatically satisfies the constraint. Now we give a general condition on the prior
distribution such that the resulting generalized Bayes estimator possesses such a property.
Suppose that the constraint is W ′µ̂ = t(X). Note that from (3.3), µ may be expressed
as

µ = Q−1/2H ′
1ξ1 + Q−1/2H ′

2ξ2,

so that the (unconstrained) Bayes or generalized Bayes estimator of µ is decomposed as

µ̂B = Q−1/2H ′
1E[ξ1|X] + Q−1/2H ′

2E[ξ2|X],

where E[·|X] denotes the posterior expectation. On the other hand, from (3.5), the
constrained Bayes estimator must have the form

µ̂C(µ̂, t) = Q−1/2H ′
1ξ̂1 + Q−1W (W ′Q−1W )−1t(X).

Hence, the unconstrained Bayes estimator µ̂B satisfies the constraint if the prior distri-
bution satisfies the equation

Q−1/2H ′
2E[ξ2|X] = Q−1W (W ′Q−1W )−1t(X),

or
E[ξ2|X] = H2Q

−1/2W (W ′Q−1W )−1t(X). (4.1)

For example, consider the case that the constraint is given t(X) = W ′Q−1/2s(X) for a
k-variate vector s(X) of functions of X. In this case, we have that

H2Q
−1/2W (W ′Q−1W )−1W ′Q−1/2H ′Hs(X) = H2s(X),

so that the condition (4.1) may be simplified as

E[ξ2|X] = H2s(X). (4.2)

Proposition 4.1 The unconstrained generalized Bayes estimators satisfy the constraint
W ′µ̂ = t(X) if the posterior expectation E[ξ2|X] satisfies the equation (4.1) or (4.2).

10



When t(X) = W ′X, the condition (4.2) is E[ξ2|X] = H2Q
1/2X = Y 2, for which

it suffices that we assume the uniform prior for ξ2. When t(X) = t0, a constant, the
condition (4.1) is E[ξ2|X] = H2Q

−1/2W (W ′Q−1W )−1t0, which suggests that ξ2 should
take a point mass at ξ2 = H2Q

−1/2W (W ′Q−1W )−1t0. Since W ′Q−1/2H ′
1 = 0, this

restriction is rewritten as

W ′µ =W ′Q−1/2H ′
2ξ2 = W ′Q−1/2H ′

2H2Q
−1/2W (W ′Q−1W )−1t0

=W ′Q−1/2(H ′
1H1 + H ′

2H2)Q
−1/2W (W ′Q−1W )−1t0 = t0.

These two cases are explained in the following subsections.

4.3 Case of t(X) = W ′X

Consider the decomposition (3.11) and put ξ4 = ξ1 − V 12V
−1
22 ξ2. Then,

µ =Q−1/2H ′
1ξ1 + Q−1/2H ′

2ξ2

=Q−1/2H ′
1ξ4 + Q−1/2(H ′

2 + H ′
1V 12V

−1
22 )ξ2.

Assume the following prior distribution for (ξ4, ξ2):

ξ4|γ ∼Nk−m(0, {(V 11.2 − γI)−1 − V −1
11.2}−1),

γ ∼γa/2−2, 0 < γ < chmin(V 11.2),

ξ2 ∼1,

(4.3)

where chmin(V 11.2) denotes the smallest eigenvalue of V 11.2. The prior for ξ4 was treated
by Berger (1976) (and was already utilized in section (3.2)) and the prior for ξ2 is uniform.
The resulting generalized Bayes estimator is

µ̂GB1 =Q−1/2H ′
1ξ̂

GB

4 (Y 4) + Q−1/2(H ′
2 + H ′

1V 12V
−1
22 )Y 2

=Q−1/2H ′
1{ξ̂

GB

4 (Y 4) + V 12V
−1
22 Y 2} + Q−1/2H ′

2Y 2, (4.4)

where Y 4 = Y 1 − V 12V
−1
22 Y 2 and

ξ̂
GB

4 (Y 4) = Y 4 −
1

Y ′
4V

−2
11.2Y 4

ψSW
a (Y ′

4V
−2
11.2Y 4)V

−1
11.2Y 4,

for ψSW
a,k−m(w) given in (3.10). Note that

E[∥µ̂GB1 − µ∥2] =E[(ξ̂
GB

4 + V 12V
−1
22 Y 2 − ξ4)

′H1Q
−1H ′

1(ξ̂
GB

4 + V 12V
−1
22 Y 2 − ξ4)]

+ E[(Y 2 − ξ2)
′H2Q

−1H ′
2(Y 2 − ξ2)]

=E[(ξ̂
GB

4 − ξ1)
′H1Q

−1H ′
1(ξ̂

GB

4 − ξ1)]

+ E[(Y 2 − ξ2)
′V −1

22 V 21H1Q
−1H ′

1V 12V
−1
22 (Y 2 − ξ2)]

+ E[(Y 2 − ξ2)
′H2Q

−1H ′
2(Y 2 − ξ2)].
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Note also (as in section (3.2)) that, provided 0 ≤ a ≤ k − m − 2, ξ̂
GB

4 is admissible in

terms of the risk E[(ξ̂
GB

4 − ξ1)
′H1Q

−1H ′
1(ξ̂

GB

4 − ξ1)]. When m ≥ 3, however, µ̂GB1 is
not admissible in the unconstrained problem. Combining Propositions 2.3 and 3.4 and
the result of Berger (1976), we get the following proposition.

Proposition 4.2 The generalized Bayes estimator µ̂GB1 satisfies the constraint, namely
µ̂GB1 ∈ Γ0. If k − m ≥ 3 and 0 ≤ a ≤ k − m − 2, then µ̂GB1 is admissible and minimax
within the constrained class Γ1. When m ≥ 3, it is not admissible in the unconstrained
problem.

4.4 Case of t(X) = t0 or W ′µ = t0

Since W ′µ = W ′Q−1/2H ′
2ξ2 = t0, a constant, and W ′Q−1/2H ′

2 is non-singular, we
can define ξ0 by ξ0 = (W ′Q−1/2H ′

2)
−1t0. In the decomposition (3.11), we assume the

following prior distribution:

ξ1|γ ∼Nk−m(0, {(V 11.2 − γI)−1 − V −1
11.2}−1),

γ ∼γa/2−2, 0 < γ < chmin(V 11.2),

ξ2 =ξ0 with probability one.

(4.5)

Let Y 5 = Y 1 − V 12V
−1
22 (Y 2 − ξ0). Since the decomposition (3.11) under the constraint

ξ2 = ξ0 is expressed as(
Y 5

Y 2

)
∼ N

((
ξ1

ξ0

)
,

(
V 11.2 0

0 V 22

))
, (4.6)

the generalized Bayes estimator is given by

µ̂GB2 = Q−1/2H ′
1ξ̂

GB

1 (Y 5) + Q−1/2H ′
2ξ0,

where ξ̂
GB

1 (Y 5) has the same form as ξ̂
GB

4 (Y 4) except replacing Y 4 with Y 5, namely,

ξ̂
GB

1 (Y 5) = ξ̂
GB

4 (Y 5). Clearly, µ̂GB2 satisfies the constraint W ′µ̂GB2 = t0. Also the risk
is expressed as

E[∥µ̂GB2 − µ∥2] =E[(ξ̂
GB

1 − ξ1)
′H1Q

−1H ′
1(ξ̂

GB

1 − ξ1)]

+ (ξ0 − ξ2)
′H2Q

−1H ′
2(ξ0 − ξ2),

so that the admissibility of µ̂GB2 is inherited from that of ξ̂
GB

1 .

Proposition 4.3 The generalized Bayes estimator µ̂GB2 satisfies the constraint, namely
µ̂GB2 ∈ Γ0. If k − m ≥ 3 and 0 ≤ a ≤ k − m − 2, then µ̂GB2 is admissible and improves
on µ̂Cm(t0) within the whole class Γ (and also Γ1).
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Alternatively, we may consider the constrained parameter space problem where ξ2 =
ξ0. In this case the above development gives the same generalized Bayes estimator, but
the risk function simplifies to

E[∥µ̂GB2 − µ∥2] = E[(ξ̂
GB

1 − ξ1)
′H1Q

−1H ′
1(ξ̂

GB

1 − ξ1)]

Additionally, the above proposition remains true but in addition both estimators are
minimax.

5 Benchmarking in the Fay-Herriot Model

As mentioned in the introduction and as explained in Datta et al . (2011) benchmarking is
useful in the framework of small area estimation. The Fay-Herriot model is often utilized
in such problems. In this section we develop a constrained empirical Bayes estimator for
this model and investigate its minimaxity. The Fay-Herriot model has heteroscedastic
variances and covariates as regressors, so that establishing minimaxity of the constrained
empirical Bayes estimator, while somewhat challenging, seems to be potentially useful.

5.1 Constrained empirical Bayes estimator

The Fay-Herriot model which we study is described as

X|µ ∼Nk(µ, D), D = diag (d1, . . . , dk),

µ ∼Nk(Zβ, λI),
(5.1)

where Z is a k×p matrix of explanatory variables with rank p, β is a p×1 unknown vector
of regression coefficients and λ is unknown scalar. Suppose that d1 ≥ · · · ≥ dk without any
loss of generality. Consider estimation of µ relative to the loss ∥µ̂−µ∥2 = (µ̂−µ)′(µ̂−µ).
Note that

(X − µ)′D−1(X − µ) + (µ − Zβ)′(µ − Zβ)/λ

=(µ − µ̂B)′(λ−1I + D−1)(µ − µ̂B) + (X − Zβ)′(D + λI)−1(X − Zβ),

where µ̂B is the Bayes estimator (under the assumption of known β and λ ) given by

µ̂B = Zβ + (D/λ + I)−1(X − Zβ) = X − D(D + λI)−1(X − Zβ).

For estimation of λ, several estimators are known including the Prasad-Rao estimator
given by Prasad and Rao (1990), the Fay-Herriot estimator suggested by Fay and Herriot
(1979), the maximum likelihood estimator (MLE) and the restricted maximum likelihood
estimator (REML). For the MLE and REML, see Searle, Casella and McCulloch (1992)
and Kubokawa (2011) for example. Denoting an estimator of λ by λ̂, we get the empirical
Bayes estimator

µ̂EB(λ̂) = X − D(D + λ̂I)−1(X − Zβ̂(λ̂)),

where
β̂(λ̂) = {Z ′V (λ̂)−1Z}−1Z ′V (λ̂)−1X,
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for V (λ) = D + λI. Define A(λ) by

A(λ) = V (λ)−1 − V (λ)−1Z(Z ′V (λ)−1Z)−1Z ′V (λ)−1. (5.2)

Then, the empirical Bayes estimator can be rewritten as

µ̂EB(λ̂) = X − DA(λ̂)X. (5.3)

Now consider the benchmark constraint W ′µ̂ = t(X) for a k × m matrix W and a
function t(X). Then the constrained empirical Bayes estimator (CEB) based on µ̂EB(λ̂)
(as constructed in 2.2 ) is given by

µ̂CEB(λ̂, t) =µ̂C(µ̂EB(λ̂), t) = µ̂EB(λ̂) + W (W ′W )−1{t(X) − W ′µ̂EB(λ̂)}
={I − W (W ′W )−1W ′}µ̂EB(λ̂) + W (W ′W )−1t(X). (5.4)

5.2 Conditions for improvement

We now derive a condition under which the constrained empirical Bayes estimator µ̂CEB(λ̂, t)
improves on the constrained uniform-prior generalized Bayes estimator µ̂Cm(t) = {I −
W (W ′W )−1W ′}X + W (W ′W )−1t(X). The risk difference of the two estimators is
written as

∆ =E[(µ̂CEB(λ̂, t) − µ)′(µ̂CEB(λ̂, t) − µ)] − E[(µ̂Cm(t) − µ)′(µ̂Cm(t) − µ)]

=E[(µ̂EB(λ̂) − µ)′QW (µ̂EB(λ̂) − µ)] − E[(X − µ)′QW (X − µ)],

where QW = I − W (W ′W )−1W ′. It is noted that QW is of rank k − m and that
E[E[(X − µ)′QW (X − µ)] = tr [DQW ] = tr [D] − tr [W ′DW (W ′W )−1].

Lemma 5.1 The risk difference ∆ is expressed as ∆ = E[∆̂], where

∆̂(λ̂) = − 2tr [DQW DA(λ̂)] + 2X ′A2(λ̂)DQW D(∇λ̂)

+ X ′A(λ̂)DQW DA(λ̂)X, (5.5)

for ∇ = (∂/∂X1, . . . , ∂/∂Xk)
′.

Proof. The risk difference is written as

∆ = −2E[(X − µ)′QW DA(λ̂)X] + E[X ′A(λ̂)DQW DA(λ̂)X].

Using the Stein identity given in Stein (1973, 81), we can rewrite the cross product term
as

E[(X − µ)′QW DA(λ̂)X] = E[∇′{DQW DA(λ̂)X}].
Let G(λ̂) = (gij(λ̂)) = DQW DA(λ̂). Then,

∇′{G(λ̂)X} =
∑
i,j

∂

∂Xi

{gij(λ̂)Xj}

=
∑

i

gii(λ̂) +
∑
i,j

Xj

{ d

dλ
gij(λ)

∣∣∣
λ=λ̂

} ∂λ̂

∂Xi

=tr [DQW DA(λ̂)] + X ′
{ d

dλ
A(λ)

∣∣∣
λ=λ̂

}
DQW D(∇λ̂),
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since gij(λ̂) depends on X through λ̂. Differentiating A(λ) with respect to λ for A(λ)
given in (5.2), we can see that

d

dλ
A(λ) = −A2(λ), (5.6)

which can be used to get the expression in (5.5).

To establish improvement of µ̂CEB(λ̂, t) over µ̂Cm(t), we need to find an estimator λ̂

such that ∆̂(λ̂) ≤ 0 for all X. We here treat the estimator λ̂ given by λ̂ = max{λ0, 0}
where λ0 is the solution of the equation

X ′A(λ0)X = c, (5.7)

for a positive constant c. When c = k−p, this estimator was suggested by Fay and Herriot
(1979). Differentiating X ′A(λ̂)X = c with respect to X and using the implicit function
theorem, we get the equation 2A(λ̂)X − X ′A2(λ̂)X∇λ̂ = 0 in the case of λ̂ > 0, or

∇λ̂ =
2

X ′A2(λ̂)X
A(λ̂)XI(λ̂ > 0).

Thus, ∆̂ given in (5.5) is expressed as

∆̂(λ̂) = − 2tr [DQW DA(λ̂)] + 4
X ′A2(λ̂)DQW DA(λ̂)X

X ′A2(λ̂)X
I(λ̂ > 0)

+ X ′A(λ̂)DQW DA(λ̂)X, (5.8)

where I(A) is the indicator function such that I(A) = 1 if A is true, and otherwise,

I(A) = 0. Evaluating each term in (5.8), we get a condition for ∆̂(λ̂) ≤ 0, which is given
in the following proposition.

Proposition 5.1 The constrained empirical Bayes estimator µ̂CEB(λ̂, t) with λ̂ given in
(5.7) improves on µ̂Cm(t) if c satisfies the condition

0 < c ≤ 2
{

d−2
1 tr [D2QW ] − tr [(Z ′Z)−1Z ′QW Z] − 2

}
. (5.9)

If the constrant is given by t(X) = W ′X, then the estimator µ̂CEB(λ̂, t) is minimax
under the condition (5.9).

Since tr [(Z ′Z)−1Z ′QW Z] ≤ p, we get another sufficient condition

0 < c ≤ 2
{

d−2
1 tr [D2QW ] − p − 2

}
, (5.10)

which is given as 0 < c ≤ 2{k−m− p− 2} when D = I. Since the Fay-Herriot estimator
corresponds to the case of c = k − p in (5.7), the condition (5.9) for the Fay-Herriot
estimator is

k − p ≤ 2
{

d−2
1 tr [D2QW ] − tr [(Z ′Z)−1Z ′QW Z] − 2

}
,
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so that the improvement depends on D, W and Z.

Proposition 5.1 is proved below by using the same arguments as in Shinozaki and
Chang (1996) who treated slightly different empirical Bayes estimators and derived dif-
ferent conditions on their minimaxity in the case of QW = I. In the case of QW = I and
Z = 0, the condition (5.10) is identical to that of Shinozaki and Chang (1993).

Proof of Proposition 5.1. We shall evaluate each term in (5.8) above. It is observed
that

X ′A(λ̂)DQW DA(λ̂)X ≤X ′A(λ̂)D2A(λ̂)X

≤X ′A(λ̂)X sup
x

{x′A(λ̂)D2A(λ̂)x

x′A(λ̂)x

}
=c × chmax(A(λ̂)D2) ≤ c

d2
1

d1 + λ̂
.

Also,

X ′A2(λ̂)DQW DA(λ̂)X

X ′A2(λ̂)X
I(λ̂ > 0) ≤ sup

x

{x′A2(λ̂)D2A(λ̂)x

x′A2(λ̂)x

}
=chmax(A(λ̂)D2) =

d2
1

d1 + λ̂
.

For the first term, it can be seen that

tr [DQW DA(λ̂)] =tr [DQW D(D + λ̂I)−1]

− tr [{Z ′(D + λ̂I)−1Z}−1Z ′(D + λ̂I)−1DQW D(D + λ̂I)−1Z]

≥ 1

d1 + λ̂
tr [D2QW ] − (d1 + λ̂)

d2
1

(d1 + λ̂)2
tr [(Z ′Z)−1Z ′QW Z].

Hence,

∆̂(λ̂) ≤− 2
{ 1

d1 + λ̂
tr [D2QW ] − d2

1

d1 + λ̂
tr [(Z ′Z)−1Z ′QW Z] − 2

d2
1

d1 + λ̂

}
+ c

d2
1

d1 + λ̂
,

which is not positive if c satisfies the condition (5.10).

5.3 Unconstrained empirical Bayes estimator

In this subsection we set up a prior distribution which results in an unconstrained empirical
Bayes and minimax estimator satisfying the constraint in the above Fay-Herriot model
with heteroscedastic variances and covariates as regressors.
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[1] Case of t(X) = W ′X. In this case, let Y 4 = Y 1 − V 12V
−1
22 Y 2 and ξ4 =

ξ1 − V 12V
−1
22 ξ2. Then we use the same arguments as in Section 4.3. Consider the

decomposition (3.11) and note that Y 4 is independent of Y 2 and that

µ =H ′
1ξ1 + H ′

2ξ2

=H ′
1ξ4 + (H ′

2 + H ′
1V 12V

−1
22 )ξ2.

We set up the linear regression structure Zβ for µ. Since ξ4 = (H1 − V 12V
−1
22 H2)µ, it

may be reasonable to assume the following prior distribution:

ξ4|λ ∼Nk−m(Z4β, λIk−m),

ξ2 ∼1,
(5.11)

for Z4 = (H1 − V 12V
−1
22 H2)Z.

Combining the contents in Sections 4.3, 5.1 and 5.2, we get the empirical Bayes esti-
mator given by

µ̂EB1 =H ′
1ξ̂

EB

4 (Y 4) + (H ′
2 + H ′

1V 12V
−1
22 )Y 2

=H ′
1{ξ̂

EB

4 (Y 4) + V 12V
−1
22 Y 2} + H ′

2Y 2.

Here the empirical Bayes estimator ξ̂
EB

4 (Y 4) is given as follows: Note that Y 4|ξ4 ∼
Nk−m(ξ4,V 11.2) and ξ4 ∼ Nk−m(Z4β, λI). According to the arguments in Sections 5.1
and 5.2, we estimate λ by λ̂ = max{λ0, 0}, where λ0 is the solution of the equation
Y ′

4A4(λ0)Y 4 = c for

A4(λ) = V −1
4 − Z4(Z

′
4V

−1
4 Z4)

−1Z ′
4V

−1
4 ,

for V 4 = V 11.2 + λI. Then, the empirical Bayes estimator is written by

ξ̂
EB

4 (Y 4) = Y 4 − V 11.2(V 11.2 + λ̂Ik−m)−1
{
Y 4 − Z4β̂4(λ̂)

}
, (5.12)

for
β̂4(λ) = (Z ′

4V
−1
4 Z4)

−1Z ′
4V

−1
4 Y 4.

Clearly, µ̂EB1 satisfies the constraint, namely, W ′µ̂EB1 = W ′X. The minimaxity of
µ̂EB1 follows from Proposition 5.1.

Proposition 5.2 The unconstrained empirical Bayes estimator µ̂EB1 satisfies the con-
straint W ′µ̂EB1 = W ′X. It is also minimax if

0 < c ≤ 2
{
{chmax(V 11.2)}−2tr [V 2

11.2QW ] − tr [(Z ′
4Z4)

−1Z ′
4QW Z4] − 2

}
. (5.13)

[2] Case of t(X) = t0 or W ′µ = t0. In this case, we can derive a desired result
by combining the arguments given above in the case of t(X) = W ′X and the contents
given in Subsection 4.4. Assume the prior distribution

ξ1|λ ∼Nk−m(H1Zβ, λIk−m),

ξ2 =ξ0 with probability one,
(5.14)
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where ξ0 = (W ′H ′
2)

−1t0. For Y 5 = Y 1 − V 12V
−1
22 (Y 2 − ξ0), the joint distribution of

(Y 5, Y 2) is given in (4.6), so that the empirical Bayes estimator is

µ̂EB2 = H ′
1ξ̂

EB

1 (Y 5) + H ′
2ξ0,

where ξ̂
EB

1 (Y 5) has the same form as ξ̂
EB

4 (Y 4) given in (5.12) except replacing Y 4 and
Z4 with Y 5 and H1Z, respectively.

Clearly, µ̂EB2 satisfies the constraint, namely, W ′µ̂EB2 = t0. The improvement of
µ̂EB2 follows from Propositions 5.1 and 5.2. When the parameter space is restricted on
W ′µ = t0 or ξ2 = ξ0, µ̂EB1 is minimax.

Proposition 5.3 The unconstrained empirical Bayes estimator µ̂EB2 satisfies the con-
straint W ′µ̂EB2 = t0. µ̂EB2 dominates the estimator H ′

1Y 5 + H ′
2ξ0 if

0 < c ≤ 2
{
{chmax(V 11.2)}−2tr [V 2

11.2QW ] − tr [(Z ′H ′
1H1Z)−1Z ′H ′

1QW H1Z] − 2
}

.

(5.15)
When the parameter space is restricted on W ′µ = t0, µ̂EB2 is minimax under the condi-
tion (5.15).

6 Concluding remarks

Benchmarking has been recognized as important in small area problems, and constrained
Bayesian estimators have been studied in the literature. ¿From a decision-theoretic point
of view, however, little has been known about admissibility and minimaxity properties of
constrained generalized Bayes estimators. In this paper, we have clarified admissibility,
minimaxity and dominance properties of benchmarked estimators by decomposing the
risk function into two pieces: one depends on the estimator, but the other does not
depend on the estimator. In the context of a multivariate normal population, we have
provided a canonical form, which allows us to establish admissibility and inadmissibility
of the constrained uniform-prior generalized Bayes estimator, and to provide admissible
and minimax estimators in the constrained problem. We have also derived a condition on
the prior distribution such that the resulting unconstrained generalized Bayes estimator
automatically satisfies the constraint. Finally, we have provided a constrained empirical
Bayes and minimax estimator in the Fay-Herriot model.

An interesting, but unresolved problem is admissibility or inadmissibility of the gener-
alized Bayes estimator µ̂GB1 given in (4.4). As shown in Proposition 4.2, µ̂GB1 is admis-
sible and minimax within the constrained class Γ1 if k − m ≥ 3 and 0 ≤ a ≤ k − m − 2.
When we consider admissibility in the unconstrained problem, however, this estimator is
not admissible if m ≥ 3. We conjecture that the estimator µ̂GB1 is admissible (in the
unconstrained problem) in the case of k − m ≥ 3 and m = 1, 2.

Although a constrained empirical Bayes estimator is treated in Section 5, it is not
admissible. To develop admissible and minimax estimators, we would need to consider
hierarchical prior distributions and to investigate admissibility and minimaxity of the re-
sulting hierarchical generalized Bayes estimators. Berger and Robert (1990), Berger and
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Strawderman (1996) and Kubokawa and Strawderman (2007) have studied the admissi-
bility and minimaxity of hierarchical Bayes estimators. The extension of their results to
the setup of this paper seems a reasonable goal and is one that we plan to study.
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