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Abstract

When the coefficient of variation, namely the ratio of the standard de-
viation over the mean approaches zero as the number of economic agents
becomes large, the system is called self-averaging. Otherwise, it is non-self-
averaging. Most economic models take it for granted that economic system
is self-averaging. However, they are based on extremely unrealistic assump-
tions that all the economic agents face the same probability distribution,
and that micro shocks are independent. Once these unrealistic assumptions
are dropped, non-self-averaging behavior naturally emerges. Using a simple
stochastic growth model, this paper demonstrates that the coefficient of vari-
ation of aggregate output or GDP does not go to zero even if the number of
sectors or economic agents goes to infinity. Non-self-averaging phenomena
imply that even if the number of economic agents is large, dispersion could re-
main significant, and we can not legitimately focus on the means of aggregate
variables. It, in turn, means that the standard microeconomic foundations
based on representative agents have little value for they are meant to provide
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us with accurate dynamics of the means of aggregate variables. Contrary to
the main stream view, micro-founded macroeconomics such as a dynamic
general equilibrium model does not provide solid micro foundations.

Key Words: Macroeconomics, Microeconomic foudnations, Non-self av-
eraging, Ewens distribution.
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1 Introduction

Modern micro-founded macroeconomics is built on optimization of repre-
sentative economic agent such as consumer and firm. The contribution of
endogenous growth ranging from Romer (1986) to Grossman and Helpman
(1991), and Aghion and Howitt (1992), was to endogenize the underlying
sources of sustained growth in per-capita income. The main analytical ex-
ercises in these papers are to consider explicitly the optimization by repre-
sentative agents in such activities as education, on-the-job training, basic
scientific research, and process/product innovations. This approach is not
confined to the study of economic growth, of course. It actually originated in
the theory of business cycles. Arguably, the rational expectations model by
Lucas (1972, 73) opened the door to modern micro-founded macroeconomic
theory. In the field of the theory of business cycles, it is now represented by
the real business cycle theory (Kydland and Prescott (1982)):

“Real business cycle models view aggregate economic vari-
ables as the outcomes of the decisions made by many individual
agents acting to maximize their utility subject to production pos-
sibilities and resource constraints. As such, the models have an
explicit and firm foundation in microeconomics. (Plosser, 1989,
p.53).”

This is the basic tenor which applies not only to the theory of business cycles,
but also to the endogenous growth literature, or for that matter to the whole
macroeconomic theory. Lucas (1987) made the following declaration against
the old macroeconomics.

“The most interesting recent developments in macroeconomic
theory seem to me describable as the reincorporation of aggrega-
tive problems such as inflation and the business cycle within the
general framework of “microeconomic” theory. If these develop-
ments succeed, the term ‘macroeconomic’ will simply disappear
from use and the modifier ‘micro’ will become superfluous. We
will simply speak, as did Smith, Ricardo, Marshall and Walras,
of economic theory (Lucas, (1987; p.107-108)).”

There are, of course, economists who are skeptical of this modern micro-
founded macroeconomics. Kirman (1992) is a seminal work in which he
advanced a forceful criticism of the representative agent model (See also
Hartley (1997)). Turnovsky (1995) in his basically standard textbook makes
the following remarks.

“Any model employed as widely as the representative agent
model begins to take on a life of its own and to be accepted
almost as an axiom. It is therefore useful to remind ourselves
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periodically of its limitations. · · · It [the representative agent
framfork] should be viewed as a step in the continuing develop-
ment and understanding of macroeconomic theory, · · · Over time,
models become superseded, and indeed the extension to heteroge-
neous agents seems like a promissing avenue for future research.
(Turnovsky, (1995; p.275)).”

More recently, Solow (2004), in his article entitled “the Tobin approach to
monetary economics,” states as follows:

“The other big difference you will notice between Tobin’s ap-
proach and today’s fashion is the absence of a representative
agent. That personage is not needed with the common-sense
approach to microfoundations. One can take it for granted that
agents are heterogeneous, because they are. They differ in their
preferences, their expectations, their access to information, their
beliefs about the way the economy works, and their notions of
“proper” behavior in the economic sphere. · · ·

It would cut no ice with Tobin or with me to say that the only
respectable microfoundations are those deduced from a model
with agents who optimize fully, conditional on the usual things.
That is just jive talk unless you can make a good case that real
agents can carry out a decent approximation to the suggested
optimization, and that the agents in the optimizimg model have
been endowed with preferences, information, beliefs, and physical
constraints that could reasonably be imputed to real consumers,
workers, and managers. And on top of it all, some reason would
have to be given why a reasonable person should believe that
a model with one agent or identical agents could possibly give
a decent representation of a world in which agents differ among
themselves in all those ways I just talked about, not to mention
that some of them are big and others small. (An argument about
robustness would be acceptable but I don’t recall one ever being
made and such an argument would be intrinsically very unlikely
to succeed if it were tried.) · · ·

In short, it is not the general appeal to “microfoundations”
that Tobin would have rejected in 1968 or 2002; it is rather the ex-
traordinarily limiting and implausible microfoundations that the
literature seems to be willing to accept. One could even question
whether a representative-agent model qualifies as microfounda-
tion at all. (Solow, 2004, pp.659-660).”

In this paper, we formalize Solow’s criticism with the help of the concept
of non-self-averaging, and argue that the research program based on rep-
resentative agents which prevails in modern macroeconomics is misguided.
Whether in growth or business cycle models, the fundamental cause for often
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complex optimization exercises is that they are expected to lead us to our
better understanding dynamics of the means of aggregate stochastic vari-
ables. The standard model thus begins with optimization of representative
agent, and translates it homothetically into the analysis of the economy as a
whole.

Economists doing these exercises are, of course, well aware that economic
agents differ, and that they are subject to idiosyncratic (or microeconomic)
shocks. As is well known, micro/idiosyncratic shocks are indeed the key
factor in Lucas (1972, 73)’s theory of business cycles which originates in the
Phelps (1970) ”island model”. Unlike real business cycle (RBC) model which
makes crude representative agent assumption, some of the modern micro-
founded macro models apparently presume heterogeneous agents. However,
these analyses are based on the extremely unrealistic assumptions that all
the economic agents share the same unchanged probability distribution, and
that those microeconomic shocks and differences cancel out each other. These
assumptions entail that the behaviors of aggregate variables are represented
by their means which, in turn, can be well captured by the analysis based
on a representative agent. The same assumption is commomly made in the
standard labor search models such as Mortensen and Pissarides (1994), Lucas
and Prescott (1994).

Though apparently heterogeneous agents, firms, or sectors are introduced
in these models, they are in essence homogenous in the sense that they face
the same unchanged probability that an “event” occurs to them. Microsoft
and small grocery store on the street face “idyosyncratic” or micro shocks
which come from the same probability distribution! We maintain that this
standard assumption does not correctly describe true micro or idyosyncratic
shocks in the real economy.

In the next section, we first explain the concept of non-self-averaging,
the crucial concept for our purpose in the present paper. After discussing
the fundamental problem of the standard micro-founded models in Section
3, Section 4 demonstrates that non-self-averaging emerges very naturally in
a simple model of economic growth.

In non-self-averaging models, even if the number of economic agents is
large, the behavior of the macroeconomy can not be generally well approxi-
mated by the means. The implication is that analyses based on representative
agent which generate the means of stochastic time paths of aggregate vari-
ables, have little value. Put it another way, the standard mico-foundations
are not true micro-foundations. The final section offers concluding remarks.

2 Non-self-averaging

In this section, we explain the concept of “non-self-averaging”, the crucial
concept for our present purpose. It is not known in economics. However, the
term ”non-self-averaging” is extensively used in the physics literature (see
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Sornette (2000, p.369)). Kadanoff (2000), for example, states as follows:

“In statistical physics we distinguish between two kinds of sta-
tistical behavior produced by events with many steps and parts.
The simpler kind of behavior is described by the phrase self-
averaging. A self-averaging behavior is one in which the effects of
the individual events add up to produce an almost deterministic
outcome. An example of this is the pressure on a macroscopic
surface. This pressure is produced by huge numbers of individ-
ual collisions, which produce a momentum transfer per unit time
which seems essentially without fluctuations. The larger the num-
ber of collisions, the less is the uncertainty in the pressure.

In contrast multiplicative random processes all have a sec-
ond behavior called non-self-averaging. When different markets
or different securities are described by any kind of multiplica-
tive random process, as we have described in this section, then
the different securities can have huge and (mostly) unpredictable
price swings. The larger the number of steps in the process, the
more the uncertainty in price. There are other examples of mea-
surements which do not self-average. For example the electrical
resistance of a disordered quantum system at low temperature is
determined in awful detail by the position of each atom. Change
one atomic position and you might change the resistance by a fac-
tor of two. Here too the large number of individual units does not
guarantee a certainly defined output(Kadanoff (2000, p.85-86).”

We consider the coefficient of variation (C.V.) of a size-dependent (i.e.
”extensive” in physics) random variable, Xn defined by

C.V.(Xn) =

√
variance(Xn)

mean(Xn)
=

√
E(Xn − E(Xn))2

E(Xn)
(1)

where n refers to the size of system such as the number of economic agents.
If E(Xn) does not vanish, and C.V.(Xn) converges to zero as model size n
goes to infinity, we say that the system is self-averaging. Otherwise, it is
non-self-averaging.

Because we have

C.V.(Xn) =

√
E(X2

n)

(E(Xn))2
− 1, (2)

the coefficient of variation goes to zero as n → ∞ if and only if

E(X2
n)

(E(Xn))2
→ 1, n → ∞. (3)
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This is equivalent to

E[(
Xn

(E(Xn)
− 1)2] → 0, n → ∞. (4)

Hence, Xn/E(Xn) converges to 1 in probability:

Pr((1−ε)E(Xn) < Xn < (1+ε)E(Xn)) → 1 for any ε > 0, n → ∞. (5)

Thus, as Kadanoff says, if the system is self-averaging, “the effects of the
individual events add up to produce an almost deterministic outcome.” In
other words, in the case of self-averaging, we can replace stochastic time
evolution by deterministic time evolution (Darling and Norris (2008)), and
legitimately focus on the means to understand behavior of macro system.

First of all, we have the following theorem on self-averaging. It is trivial,
but nontheless is very important.

Theorem: If a sequence of identically distributed random variables x1,
x2, · · ·, xi, · · · has finite second moment, and is uncorrelated for any pair,
i.e.

E(xi, xj) = E(xi)E(xj) for any i 6= j,

then, their sum Xn = x1 + x2 + · · · + xn is self-averaging.

In this case, C.V.(Xn) converges to zero as n → ∞ in the order of 1/
√

n.
As a corollary, if a sequence of random variables x1, x2, · · · with finite second
moment, is identically and independently distributed, then the sum is self-
averaging.

Virtually all the micro-founded macro models rest on the above theorem.
The point is best illustrated by the Poisson model which is so widely used
in economics ranging from labor search theory to endogenous growth models
(e.g. Aghion and Howitt (1992)). Suppose that the Poisson parameter is
λ which designates the instantaneous probability that an “event” such as
technical progress and job arrival occurs. This probability which pertains
to one economic agent is assumed to commonly apply to all the agents and
also exogenously given —— the crucial assumption! Then, given the same
Poisson process with parameter λ for each individual agent, we obtain the
Poisson process with the parameter λn for the economy as a whole where
there are n economic agents. The mean and the standard deviation of the
number of “events” in the macroeconomy are λn and

√
λn, respectively.

The coefficient of variation defined as the standard deviation divided by the
mean, is, therefore,

√
λn/λn = 1/

√
λn. Thus, in the Poisson model, when

the number of economic agents n becomes large (n → ∞), the coefficient of
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variation approaches zero in the order of 1/
√

n. This property known as self-
averaging provides us with justification for our concentrating on the means of
variables in macro models. Now, because the mean depends basically on λ,
it is natural to explore how λ is determined in models. Indeed, in standard
models, λ is endogenously determined as an outcome of economic agents’
optimization and market equilibrium. Exactly the same story holds for the
case of the normal distribution.

The above theorem implies that for a sequence of identically distributed
random variables, non-self-averaging may arise for at least two reasons. First
is that the second moment of the distribution is not finite. This is the case,
for example, for power distribution P (x) whose power is less than two:

P (x) =
C

xα
(C > 0, 0 < α ≤ 3). (6)

Because multiplicative processes often generate power distribution, as Kadanoff
(2000) states, multiplicative process can lead us to non-self-averaging.

Secondly, non-self-averaging may arise if random variables x1, x2, · · · are
correlated. In this case, the variance of Xn = x1 + x2 + · · · + xn, V (Xn) is

V (Xn) = nV (x) +
∑
i,j

Cov(xi, xj). (7)

Therefore, if there exists a positive number r such that all the Cov(xi, xj) is
greater than or equal to r, then the following inequality holds.

V (Xn) ≥ nV (x) + n(n − 1)r. (8)

Because E(Xn) is of the order of n, non-self-averaging obtains in this case.
Thus, the presence of correlations among random variables is plainly a source
of non-self-averaging.

Given these propositions, we can understand that non-self-averaging is
not a pathological phenomenon. It is instructive to see how non-self-averaging
emerges in natural phenomena with the help of a simple example (Sor-
nette(2000, p.370)).

Consider breaking a stick of size 1 into an infinite number of smaller pieces
of size Wn (n=1, 2, ...). We first break the stick into two pieces of sizes 1 - p
and p, respectively (0 < p < 1). Then, we do the same for the piece of size
p obtaining two pieces of sizes (1− p)p and p2. We repeat this procedure for
the pieces of sizes p2, p3, · · ·. In this way, we obtain a set of pieces of sizes

W1 = 1 − p

W2 = (1 − p)p

·
·
·

Wn = (1 − p)pn−1 (9)
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where Wn is the size of the piece kept at the n-th step.
Now, suppose that p is a random variable whose probability density func-

tion is f(p). The random variable p is drawn and fixed for each fragmentation
history. We will consider a variable Y defined by

Y =
∑

n

W 2
n =

∑
n

(1 − p)2p2(n−1) =
1 − p

1 + p
(10)

Note that unlike
∑
n

W 2
n ,

∑
n

Wn is always equal to 1. Y is a measure of the

degree of fragmentation (0 < Y < 1). Y close to one indicates the presence
of a large piece whereas Y close to zero means that all the pieces are minute.
Y is a random variable because p is random. It can be easily shown that Y ,
and consequently, the size of piece Wn is non-self-averaging. We note that
the process of fragmentation is path-dependent. As Kadanoff (2000) states,
there are many similar examples in natural sciences.

More generally, Garibaldi and Scalas (2010, p.101-102) explicitly show
how non-self-averaging emerges in the Pólya process. The Pólya process X1,
X2, · · · is characterized by the following conditional probability for Xn+1

given realizations of X1, X2, · · ·, Xn:

P (Xn+1 = j|X1 = x1, X2 = x2, . . . , Xn = xn) =
αj + nj

α + n
. (11)

Here, realizations of Xi’s take one of 1, 2, . . . , g ; That is, Xi belongs to
one of g different ”types”. nj is the number of Xi’s whose realizations are of
type j. nj’s sum up to n, namely

∑g
j=1 nj = n. α and αj are the positive

parameters which satisfy
∑g

j=1 αj = α.
For finite α(0 < α < ∞), Garibaldi and Scalas show that the coefficient

of variation of Sj
n = nj/n is non-self-averaging 1. Specifically, we obtain

lim
n→∞

C.V.(Sj
n) =

√
α − αj

αj

· 1

α + 1
. (12)

We note that the Pólya process is path-dependent, and, therefore, that ran-
dom variables are correlated. It is a generic model which accommodates wide
applications.

Any non-self-averaging phenomenon has very important implications be-
cause some degree of imprecision or dispersion remains about the time tra-
jectories in non-self-averaging models even when the number of economic
agents goes to infinity. This means that focus on the mean path behavior
of macroeconomic variables is not justified. It, in turn, means that sophisti-
cated optimization exercises which are meant to provide us with information
on the means have little value.

In Section 4, we will observe that non-self-averaging behavior very natu-
rally arises in macroeconomics as well. Before doing so, we will discuss the
fundamental problem of the standard micro-founded macroeconomics.

1If α is infinite, the coefficient of variation approaches zero when n goes to infinity.
Namely, the sequence is self-averaging. See Garibaldi and Scalas (2010, p.102).
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3 Standard Micro-founded Macroeconomics

Almost all the economic opportunities such as job offer, discoveries of new
technology, market, and resources are stochastic. The standard micro-founded
macroeconomics — Lucas’ rational expectations model, real business cycle
theory, labor search theory, and endogenous growth theory — rightly takes
into account stochastic events. However, in these micro-founded models, it
is taken for granted that as the number of agents goes to infinity, any micro
or “idyosyncratic” fluctuations vanish, and that well defined deterministic
macroeconomic relations prevail. That is, self-averaging is tacitly presumed.

Self-averaging emerges when all the agents are assumed to face the same
unchanged “well-behaved” probability distribution such as the normal and
Poisson distributions, and their respective stochastic events are assumed to
be independent. Lucas (1972, 73)’s famous model of business cycles is a
primary example. It is instructive to trace his model in detail. Lucas begins
to model a supplier’s behavior in each individual market as follows;

“Quantity supplied in each market will be viewed as the prod-
uct of a normal (or secular) component common to all markets
and a cyclical component which varies from market to market.
Letting z index markets, and using ynt and yct to denote the logs
of these components, supply in market z is:

(1) yt(z) = ynt + yct(z)

. . . . . . The cyclical component varies with perceived, relative prices
and with its own lagged value:

(3) yct(z) = γ [Pt(z) − E(Pt | It(z))] + λyc,t−1(z)

Where Pt(z) is the actual price in z at t and E(Pt | It(z)) is
the mean current, general price level, conditioned on information
available in z at t, It(z).”

Given this framework, he goes on to the information structure of the
economy.

“The information available to suppliers in z at t comes from
two sources. First, traders enter period t with knowledge of the
past course of demand shifts, of normal supply ynt, and of past
deviations yc,t−1, yc,t−2, · · ·. While this information does not per-
mit exact inference of the log of the current general price level,
Pt, it does determine a “prior” distribution on Pt, common to
traders in all markets. We assume that this distribution is knwon
to be normal, with mean P̄t (depending in a known way on the
above history) and a constant variance σ2. Second, we suppose
that the actual price deviates form the (geometric) economy-wide
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average by an amount which is distributed independently of Pt.
Specifically, let the percentage deviation of the price in z from the
average Pt be denoted by z (so that markets are indexed by their
price deviations from average) where z is normally distributed,
independent of Pt, with mean zero and variance τ 2. Then the
observed price in z, Pt(z) (in logs) is the sum of independent,
normal variates

(4) Pt(z) = Pt + z

The information It(z) relevant for estimation of the unobserved
(by suppliers in z at t), Pt consists then of the observed price
Pt(z) and the history summarized in P̄t (Lucas(1973; p.328))”.

It is extremely important to note that though z varies from market to
market, the distribution of z is uniquely given and shared by all the markets.
We also note that in this model, markets are indexed not by intrinsic identity
such as steel industry but by their price deviations from average. Each
market finds a realization of z each period given the same distribution of z.
The assumption of rational expectations then permits suppliers in individual
markets to make efficient inferences on the relative prices. This leads to
micro supply functions. Given micro supply functions, the aggregate supply
function, is trivially derived.

“To utilize this information, suppliers use (4) to calculate the
distribution of Pt, conditional on Pt(z) and P̄t. This distribution
is (by straightforward calculation) normal with mean:

(5) E(Pt | It(z)) = E(Pt | Pt(z), P̄t) = (1− θ)Pt(z) + θP̄t

where θ = γ2/(σ2 + γ2), and variance θσ2. Combining (1), (3),
and (5) yields the supply function for market z:

(6) yt(z) = ynt + θγ[Pt(z) − P̄t] + λyc,t−1(z)

Averaging over markets (integrating with respect to the distribu-
tion of z) gives the aggregate supply function:

(7) yt = ynt + θγ(Pt − P̄t) + λ[yt−1 − yn,t−1]

(Lucas(1973; p.328))”

The aggregate supply function is the core of Lucas’ rational expectations
model of business cycles. In this model, the crucial assumption is his equation
(4) above. More specifically, the random variable z is assumed to be normally
distribution with mean zero and variance τ 2. As pointed out earlier, each
supplier faces the same probability distribution of micro shock although a
realization of such a shock, of course, differs across suppliers.
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The same assumption is routinely made, and taken by most economists as
innocuous. It is as if there were no other way of defining the micro or idyosyn-
cratic shocks. However, the standard assumption means that Microsoft and
small grocery store on the street face micro shocks drawn from the same
unchanged probability distribution! It presumes homogeneity with respect
to the probability distribution of micro shocks. Though it is routinely made
in standard micro-founded models, this assumption is extremely unrealistic,
and as Solow (2004) notes, almost absurd.

Lucas’ model emphasizes the role of micro shocks which by definition
differ across sectors or agents. In this sense, it apparently rejects represen-
tative agent. However, like other micro-founded macro models, it is built on
the crucial premise that every agent faces the same unchanged probability
distribution of micro shocks. This assumption entails self-averaging. Specif-
ically, in his model, one can easily obtain the aggregate supply function by
“averaging over markets (integrating with respect to the distribution of z.)”
Note that his aggregate output yt (his equation (7)) is nothing but the mean
of stochastic aggregate output.

The fundamental problem is not confined to Lucas (1972,73) rational
expectations model but also applies to search theory. Lucas and Prescott
(1974)’s model of equilibrium search and unemployment is a primary exam-
ple. The model, in the authors’ own description, is as follows:

“We think of an economy in which production and sale of
goods occur in a large number of spatially distinct markets. Prod-
uct demand in each market shifts stochastically, driven by shocks
which are independent over markets (so that aggregate demand is
constant) but autocorrelated within a single market. Output to
satisfy current period demand is produced in the current period,
with labor as the only input. Each product market is competitive.

There is a constant workforce which at the beginning of a pe-
riod is distributed in some way over markets. In each market, la-
bor is allocated over firms competitively with actual money wages
being market clearing. Each worker may either work at this wage
rate, in which case he will remain in this market into the next
period, or leave. If he leaves, he earns nothing this period but
enters a ”pool” of unemployed workers which are distributed in
some way over markets for the next period. In this way, a new
workforce distribution is determined, new demands are ”drawn”,
and the process continues.

In this process, all agents are assumed to behave optimally
in light of their objectives and the information available to them.
For firms, this means simply that labor is employed to the point at
which its marginal value product equals the wage rate. For work-
ers, the decision to work or to search is taken so as to maximize
the expected, discounted present value of the earnings stream. In
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carrying out this calculation, workers are assumed to be aware
of the values of the variables affecting the market where they
currently are (i.e., demand and workforce) and of the true proba-
bility distributions governing the future state of this market and
the present and future states of all others. That is, expectations
are taken to be rational. (Lucas and Prescott, 1974; p.190) ”

Markets are all competitive, so that the marginal value product of labor
equals the wage in every market. However, the state of demand represented
by a realization of a stochastic variable s differs across markets while at
the same time, mobility of labor is not instantaneous. As a consequence, the
marginal value products of labor and wages differ across markets. In contrast
to the standard general equilibrium model, productivity dispersion exists in
equilibrium as actually observed in the economy. Once again, the problem is
the nature of stochastic equilibrium in their model.

The stochastic disturbances in Lucas and Prescott (1974) are the demand
shifts s. They are assumed to be independent across markets and the number
of markets is large.

“By large, we mean either a continuum of markets or a count-
able infinity. Economically, then, the assumption of independent
demand shifts means that aggregate demand is taken to be con-
stant through time. (Lucas and Prescott, 1974; Footnote 8 on
p.192) ”

The micro disturbances are assumed to cancel each other. Self-averaging
ensues. In this way, Lucas and Prescott can describe the determination of
the stationary distribution of employment, workforce, and wages or marginal
value products in a representative market. On their own assumption, they
state as follows:

“The distribution of the workforce over locations (indexed by
(s, y)) would in this case be the same as the stationary distribu-
tion of (s, y) in any one market. (This follows from our assump-
tions that the number of markets is large and that demand shifts
are independent across markets.) (Lucas and Prescott, 1974;
p.202)”

The same assumption allows Lucas and Prescott to focus on the means
characteristics of which are described in a representative market. Specifically,
worker’s search depends on the expected present value of search, λ. The
maximization exercises (Section 3 of their paper) are done on the assumption
that λ is common to all the markets, and that “the search process eliminate
rents on average.”

Modern micro-founded macroeconomics emphasizing the role of micro /
idiosyncratic shocks is built on Phelps (1970) island-paradigm. We can use-
fully interpret Phelps island model in terms of ultrametric trees (see chapter 5
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of Aoki and Yoshikawa (2007)). Ultrametric trees measure the “distance” be-
tween markets or agents. What the “distance” measures depends on model,
of course. For example, the distance between two states a and b may indicate
transition rate from a to b in Markov model. Now, in general, the distance
between two markets/agents differs depending on a pair. In Figure 1 (a), an
example of three-level tree is shown. In this example, the distance between
markets/agents 1 and 2 is much closer than that between 1 and 3; Grocery
(agent1) and laundry on the same street (agent 2) are “closer” to each other
than to Microsoft (agent 3). Or GM(agent 1) and Ford (agent 2) are closer
to each other than to grocery (agent 3).

In contrast, in the one-level tree shown in Figure 1 (b), all the mar-
kets/agents are symmetric. One may think of N markets in the standard
micro-founded models discussed in the present section as leaves of a one-
level tree with N branches from the root. This organization is a very special
case of multi-level trees. In the one-level tree arrangement of N markets,
each branch is the same as any other branch because markets are identical
by assumption. Then, every one of the N markets can serve as a represen-
tative market. Mixing these markets randomly by introducing a probability
distribution, as Lucas and Prescott do in their paper (to be specific, their
probability distribution Φ on p.198) does nothing to the model. The mix-
ture is identical to any one of the branches; that is, the mixture is again a
representative market. This is the essence of Phelps (1970) island-paradigm
on which modern micro-founded macroeconomics is built.

To sum up, standard micro-founded models other than real business cy-
cle models all introduce apparent heterogeneity of agents and markets, and
emphasize the role of micro or idiosyncratic shocks. However, contrary to
the impression they give, the tacit assumption of self-averaging effectively
makes such frameworks models of a representative agent or market.

4 Non-self-averaging in a Growth Model

In this section, we present a simple innovation driven growth model in which
aggregate output or GDP is non-self-averaging. The main purpose of this
exercise is not to advance a realistic model of economic growth, but rather to
demonstrate how naturally non-self-averaging emerges in economic model.

The Model

Following the literature on endogenous growth, we assume that the economy
grows by innovations. Innovations are shochastic events. There are two kinds
of innovations in our model. Namely, an innovation, when it occurs, either
raises productivity of one of the existing sectors, or creates a new sector.
Thus, the number of sectors is not given, but increases over time.

By the time nth innovation occurs, the total of Kn sectors are formed
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in the economy wherein the i-th sector has experienced ni innovations (i =
1, 2, . . . , Kn). By definition, the following equality holds:

n1 + n2 + · · · + nk = n (13)

when Kn = k. If n-th innovation creates a new sector (secotor k), then
nk = 1.

The aggregate output or GDP when n innovations have occured is denoted
by Yn. Yn is simply the sum of outputs in all the sectors, yi.

Yn =
Kn∑
i

yi. (14)

Output in secotr i grows thanks to innovations which stochastically occur
in that sector. Specifically, we assume

yi = ηγni . (η > 0, γ > 1) (15)

For our purpose, it is convenient to rewrite equation (13) as follows.

n =
n∑
j

jaj(n) (16)

In equation (16), aj(n) is the number of sectors where j innovations have
occurred. The vector a(n) consisting of aj(n), is called partition vector 2.
With this partition vector, a(n), Kn can be expressed as

Kn =
n∑
j

aj(n). (17)

Using the following approximation

γni = exp(ni ln γ) ≈ 1 + ln(γ)ni,

we can rewrite equation (15) as

yi = η + η ln(γ)ni. (18)

Thus, from equations (13), (14), (16), (17) and (18), we obtain

Yn ≈ Kn + β

n∑
j

jaj(n). (19)

where β = ln(γ) > 0. Here, without loss of generality, we assume that η is
one. Obviously, the behavior of the aggregate output, Yn depends on how
innovations occur.

2See chapter 2 of Aoki and Yoshikawa (2007) for partition vector.
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The Ewens Distribution of Innovations

We now describe how innovations stochastically occur in the model. An
innovation follows Ewens (E) distribution or the Chinese restaurant process
due to Hansen and Pitman (2000)3; See also Capter 9 of Garibaldi and Scalas
(2010).

Given the two-parameter E (α, θ) distribution, when there are k clusters
of sizes ni, (i = 1, 2, . . . , k), and n = n1 + n2 + · · ·+ nk, an innovation occurs
in one of the existing sectors of “size” ni with probability rate pi:

pi =
ni − α

n + θ
. (20)

The “size” of sector i, ni is equal to the number of innovations that have
already occurred in sector i. The two parameters α and θ satisfy the following
conditions:

θ + α > 0, and 0 < α < 1.

With α = 0 there is a single parameter θ, and the distribution boils down to
the one-parameter E distribution, E (θ).

pi is the probability that an innovation occurs in one of the existing
sectors. Now, a new sector emerges with probability rate4 p:

p = 1 −
k∑
1

ni − α

n + θ
=

θ + kα

n + θ
. (21)

In the two-parameter E(α, θ) distribution, the probabilitiy that the num-
ber of sectors increases by one from n to n + 1 conditional on Kn = k, is
given by5

3Kingman invented the one-parameter Poisson-Dirichlet distribution to describe ran-
dom partitions of populations of heterogeneous agents into distinct clusters. The one-
parameter Poisson-Dirichlet model is also known as Ewens model, (Ewens (1972)); See
Aoki (2000a, 2000b) for further explanation. The one-parameter model was then ex-
tended to the two-parameter Poisson-Dirichlet distributions by Pitman; See Kingman
(1978, 1993), Carlton (1999), Feng and Hoppe (1998), Pitman (2006), Feng (2010), among
others. Aoki (2006) has shown that the two-parameter Poisson-Dirichlet models are qual-
itatively different from the one-parameter version because the former is not self-averaging
while the latter is. These models are therefore not exponential growth models familiar to
economists but they belong to a broader class of models without steady state constant ex-
ponential growth rate. None of the previous works, however, have comparatively examined
the asymptotic behavior of the coefficient of variation of these two classes of models.

4Probabilities of new types entering Ewens model, are discussed in Aoki (2002, Sec.10.8,
App. A.5).

5Because the following inequality holds:

θ + kα

n + θ
>

θ

n + θ
,

we observe that the probability that a new sector emerges is higher in the two-parameter
PD model than in the one-parameter PD model.
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Pr(Kn+1 = k + 1|K1, . . . , Kn = k) = p =
θ + kα

n + θ
. (22)

On the other hand, the corresponditing probability that the number of sectors
remains unchanged is

Pr(Kn+1 = k|K1, . . . , Kn = k) =
∑

i

pi =
n − kα

n + θ
. (23)

It is important to note that in this model, sectors are not homogeneous
with respect to the probability that an innovation occurs. The larger sector i
is, the greater the probability that an innovation occurs in sector i becomes.
Moreover, these probabilities change endogenously as ni changes over time.
In this respect, the Ewens distribution is in marked contrast to the common
assumption on micro shocks routinely made in modern micro-founded models.

Given the model, we are interested in the behavior of GDP, namely Yn.
We obtain the following proposition.

Proposition
In the two-parameter Ewens model, the aggregate output Yn is non-self av-
eraging.

The proof is given in the Appendix.
The two-parameter Ewens model is non-self averaging. Interestingly, the

one parameter Ewens model (α = 0) is self-averaging. It is, therefore, worth
inquiring why the two-parameter E model is non-self averaging. The answer
lies in (22) and (23). In this model, innovations occur in one of the two
different types of sectors, one, the new type and the other, known or pre-
existing types. The probability that an innovation generates a new sector
is (θ + Knα)/(n + θ), and the probability that an innovation occurs in one
of the existing sectors is (n − Knα)/(n + θ). Here, Kn is the number of
types of sectors in the model by the time n innovations occurred. These
probabilities and their ratio vary endogenously, depending on the histories
of how innovations occured. In other words, the mix of old and new sectors
evolve endogenously, and is path-dependent. This is the reason why non-self
averaging emerges in the two parameter E model. In one parameter E model
in which α = 0, two probabilities (22) and (23) become independent of Kn,
and that the model becomes self-averaging. The two-parameter Ewens model
is fundamentally different from standard micro-founded models we discussed
in the previous section.

5 Conclusion

Macroeconomics is meant to analyze the real economy. Keynesian macroeco-
nomics was indeed born amid the Great Depression in the serious endeavor
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to meet the grave challenges facing the world economy. After the financial
crisis and global recession during 2008-10, modern micro-founded macroeco-
nomics has been justifyably subject to serious criticisms. For example, Paul
Krugman in his Lionel Robbins Lecture held at London School of Economics
in June, 2009 said that “most macroeconomics of the past 30 years was spec-
tacularly useless at best, and positively harmful at worst.”6 Stiglitz (2010)
also criticizes micro-founded macroeconomics as follows:

“The blame game continues over who is responsible for the
worst recession since the Great Depression — the financiers who
did such a bad job of managing risk or the regulators who failed
to stop them. But the economics profession bears more than a
little culpability. · · ·

It is hard for non-economists to understand how peculiar the
predominant macroeconomic models were. Many assumed de-
mand had to equal supply — and that meant there could be no
unemployment. (Right now a lot of people are just enjoying an
extra dose of leisure; why they are unhappy is a matter for psychi-
atry, not economics.) Many used “representative agent models”
— all individuals were assumed to be identical, and this meant
there could be no meaningful financial markets (who would be
lending money to whom?). · · ·

Changing paradigms is not easy. Too many have invested
too much in the wrong models. Like the Ptolemaic attempts to
preserve earth-centric views of the universe, there will be heroic
efforts to add complexities and refinements to standard paradigm.
The resulting models will be an improvement and policies based
on them may do better, but they too are likely to fail. Nothing
less than a paradigm shift will do. (Stiglitz, 2010).”

Certainly, changing paradigms is necessary. To achieve the goal, it is im-
perative to understand precisely what is the fundamental problem of modern
micro-founded macroeconomics. As Kirman (1992), Solow (2004) and oth-
ers all rightly point out, the assumption of representative agents is seriously
flawed: See Aoki and Yoshikawa (2007) for our own criticism.

The assumption of representative agents is crystal clear in such models
as real business cycle theory where literally the representative consumer and
firm are introduced. However, Lucas (1972, 73) rational expectations model,
labor search theory such as Lucas/Prescott (1974) and Mortensen/Pissarides
(1994), and some of the endogenous growth models such as Aghion and
Howitt (1992) all assume apparently heterogeneous economic agents and em-
phasize the role of micro/idyosyncratic shocks. In this paper, we showed
that despite apparent heterogeneity introduced, these models are based in

6See also “Modern Economic Theory — where it went wrong, and how the crisis is
changing it” The Economist, July 18-24, 2009.
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essence on a representative agent. Put it another way, the so-called mi-
cro/idyosynctratic shocks in the standard micro-founded models are not true
micro shocks.

The crucial concept for our thesis is non-self-averaging. Self-averaging
is tacitly assumed not only in crude representative agent models such as
real business cycle theory but also in Lucas rational expectations models
and labor search theory. It justifies us to focus on means. The standard
optimization exercises based on representative agents are meant to analyze
the behavior of means.

Self-averaging is, however, obtained only on the extremely unrealistic
assumptions that all the economic agents share the same probability distri-
bution, and that micro shocks are independent. As we discussed it in deatil,
in Lucas rational expectations models and labor search theory, a unique rep-
resentative probability distribution of micro/idyosyncratic shocks shared by
all the economic agents is assumed. In Section 4, we demonstrated that once
this unrealistic assumption is dropped out, non-self-averaging quite naturally
emerges in economic model. A model presented in Section 4 is meant to be
nothing but an example. Plainly, we can easily apply the same framework
to other economic models.

Non-self-averaging emerges in a wide class of stochastic models. Garibaldi
and Scalas (2010, p.101-102) demonstrate that non-self-averaging obtains in
the Pólya process. Based on their analyses, they make the following remarks:

“When considering large macroeconomic aggregates or a long
time evolution, fluctuations may become irrelevant and only the
deterministic dynamics of expected values is important. In other
words, stochastic processes may be replaced by difference equa-
tions or even by differential equations for empirical averages.· · ·
· · · (However), we have directed the attention of the reader to the
phenomenon of lack of self-averaging, which is often there in the
presence of correlations. In other words, when correlations are
there, it is not always possible to neglect fluctuations, and a de-
scription of economic systems in terms of random variables and
stochastic processes becomes necessary. (Garibaldi and Scalas
(2010, p.225)).”

The presence of correlations is an important reason why we obtain non-
self-averaging. We have, in fact, all the reasons why micro shocks are cor-
related. Power distribution is another factor generating non-self-averaging.
We might note that many economic variables such as income distribution
and firm sizes indeed follow power-laws.

Non-self-averaging deprives us of justification for our focusing on means.
It, in turn, means that such sophisticated microeconomic analyses as infi-
nite horizon stochastic dynamic programming so popular in macroeconomic
models have little value. Those analyses provide us with no foundations for
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macroeconomic analyses because time paths of macro variables are sample
dependent in any way.

Summing up, macroeconomics must seek different microeconomic foun-
dations from the standard optimization of representative agent. We believe
that the right track is the methods of statistical physics and combinational
stochastic processes (See Aoki and Yoshikawa (2007)). In any case, as Solow
(2004) argues, macroeconomics is better freed from too much of optimiza-
tion exercises. This is the fundamental implication of non-self-averaging for
macroeconomics.
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Appendix

In this appendix, we provide the proof of the proposition presented in Section
4. We show that Yn is non-self-averaging.

Toward this goal, we first normalize Yn by nα. Then, from equation (19)
in the main text, we obtain

Yn

nα
=

Kn

nα
+ βΣn

j

aj(n)

nα
. (24)

In what follows, we show that Yn is non-self-averaging. Toward this goal,
we first define partial sums of Kn and Yn up to l(< n), Kn(1, l) and Yn(1, l),
as follows:

Kn(1, l) = Σl
j=1aj(n) (25)

and

Yn(1, l) = Kn(1, l) + βŶn(1, l) (26)

where

Ŷn(1, l) = Σl
j=1jaj(n). (27)

Yamato and Sibuya (2000; p.7 their propositions 4.1 and 4.2) showed that
given l, Kn(1, l)/nα and Ŷn(1, l)/nα converge in distribution (−→ d) as n
approaches infinite as follows:

Kn(1, l)

nα
−→d C1(l)L (28)

and

Ŷn(1, l)

nα
−→d C2(l)L (29)

where

C1(l) = 1 − (1 − α)[l]

l!

C2(l) =
(2 − α)[l−1]

(l − 1)!
.

Here, [j] in C1(l) and C2(l) denotes an ascending factorial:

x[j] = x(x + 1) . . . (x + j − 1).
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The random variable L in (28) and (29) has the probability density function
gα,θ(x):

gαθ(x) =
Γ(θ + 1)

Γ(θ/α + 1)
x

θ
α gα(x) (30)

where gα is the density of the Mittag-Leffler distribution7 with parameter
α. Pitman (2006) also showd the a.s.convergence. See Yamato and Sibuya
(2000, p.8).

It is shown by Yamato and Sibuya and by Pitman that

Kn

nα
−→d L, (31)

Kn

nα
−→ L a.s. (32)

and

C.V.

(
Kn

nα

)
−→ C.V.(L) > 0. (33)

Because C1(l) and C2(l) are constant in (28) and (29), for each fixed l, and
α > 0, we obtain

C.V.

(
Kn(1, l)

nα

)
−→ C.V.(L) > 0, (34)

and

C.V.

(
(Ŷn(1, l)

nα

)
−→ C.V.(L) > 0. (35)

Therefore, given (26), we obtain

C.V.

(
(Yn(1, l)

nα

)
−→ C.V.(L) > 0 (36)

Thus, for sufficiently large l,

C.V.

(
Yn

nα

)
−→ C.V.(L). (37)

Mittag-Leffler function gα(x) has the property that its p th moment is
given by∫ ∞

0

xpgα(x)dx =
Γ(p + 1)

Γ(pα + 1)
(p > −1). (38)

7See Blumenfeld and Mandelbrot (1997), Erdely (1955), and Pitman (2006) on Mittag-
Leffler function.
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Thus, using (30) and (38), we can obtain the first and second moments of L,
Eα,θ(L) and Eα,θ(L

2) as follows:

Eα,θ(L) =
Γ(θ + 1)

αΓ(θ + α)
, (39)

and

Eα,θ(L
2) =

(θ + α)Γ(θ + 1)

α2Γ(θ + 2α)
. (40)

Moments of L in the large n limit can be also obtained by a different method;
See Pitman(2006).

The variance of L, var(L) is, then

var(L) = Eα,θ(L
2) − [Eα,θ(L)]2 = γα,θ

Γ(θ + 1)

α2
, (41)

where

γα,θ :=
θ + α

Γ(θ + 2α)
− Γ(θ + 1)

[Γ(θ + α)]2
. (42)

The coefficient of variation of L is given by

C.V.(L) =

√
var(L)

Eα,θ(L)
=

√
γα,θ

Γ(θ + 1)
Γ(θ + α). (43)

Note that γα,θ defined by (42) is zero when α = 0, but that it is positive
when α > 0. Therefore, C.V.(L) is zero in the one-parameter Ewens model
(α = 0), but is positive in the two-parameter Ewens model (α > 0).

Now, we have shown above that C.V.(Yn/nα) converges to C.V.(L). Thus,
thanks to (37) and (43), we finally obtain

C.V.

(
Yn

nα

)
→

√
γα,θ

Γ(θ + 1)
Γ(θ + α). (44)

The right-hand side of (44) does not approach zero even if n goes to infinity
in the two-parameter Ewens model (α > 0). Thus, we have established the
proposition.
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