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Abstract

The empirical best linear unbiased predictor (EBLUP) in the linear mixed model
(LMM) is useful for the small area estimation, and the estimation of the mean
squared error (MSE) of EBLUP is important as a measure of uncertainty of EBLUP.
To obtain a second-order unbiased estimator of the MSE, the second-order bias cor-
rection has been derived mainly based on Taylor series expansions. However, this
approach is harder to implement in complicated models with more unknown param-
eters like variance components, since we need to compute asymptotic bias, variance
and covariance for estimators of unknown parameters as well as partial derivatives of
some quantities. The same difficulty occurs in construction of confidence intervals
based on EBLUP with second-order correction and in derivation of second-order
bias correction terms in the Akaike Information Criterion (AIC) and the condi-
tional AIC. To avoid such difficulty in derivation of second-order bias correction
in these problems, the parametric bootstrap methods are suggested in this paper,
and their second-order justifications are established. Finally, performances of the
suggested procedures are numerically investigated in comparison with some existing
procedures given in the literature.

Key words and phrases: Best linear unbiased predictor, confidence interval, em-
pirical Bayes procedure, Fay-Herriot model, second-order correction, linear mixed
model, maximum likelihood estimator, mean squared error, nested error regression
model, parametric bootstrap, restricted maximum likelihood estimator, small area
estimation.

1 Introduction

The linear mixed models (LMM) and the model-based estimates including empirical best
linear unbiased predictor (EBLUP) or the empirical Bayes estimator (EB) have been

∗Faculty of Economics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, JAPAN,
E-Mail: tatsuya@e.u-tokyo.ac.jp

†Graduate School in Economics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033,
JAPAN, E-Mail: bui-bui.miu-miu@kde.biglobe.ne.jp

1



recognized useful in small area estimation. The typical models used for the small area
estimation are the Fay-Herriot model and the nested error regression model (NERM), and
the usefulness of EBLUP is illustrated by Fay and Herriot (1979) and Battese, Harter and
Fuller (1988). For a good review and account on this topic, see Ghosh and Rao (1994),
Rao (2003) and Pfeffermann (2002).

When EBLUP is used to estimate a small area mean based on real data, it is important
to assess how much EBLUP is reliable. One method for the purpose is to estimate the
mean squared error (MSE) of EBLUP, and asymptotically unbiased estimators of the
MSE with the second-order bias correction have been derived based on the Taylor series
expansion by Prasad and Rao (1990), Datta and Lahiri (2000), Datta, Rao and Smith
(2005), Das, Jiang and Rao (2004), Kubokawa (2010b) and others. A drawback of this
method is that it is harder to compute the second-order bias, variance and covariance
of estimators of more unknown parameters including variance components, and that it
is troublesome to derive partial derivatives of some matrices with respect to unknown
parameters. To avoid this difficulty, Butar and Lahiri (2003) proposed the parametric
bootstrap method, which is easy to implement, since we do not need to compute the
second-order bias, variance and partial derivatives. For some recent results including
nonparametric methods, see Lahiri and Rao (1995), Hall and Maiti (2006a) and Chen
and Lahiri (2008).

We have other problems to be faced with the same difficulty as in the MSE estimation.
One is the problem of constructing a confidence interval based on EBLUP such that it
satisfies the nominal confidence level with the second-order accuracy. Datta, Ghosh, Smith
and Lahiri (2002), Basu, Ghosh and Mukerjee (2003) and Kubokawa (2010a) derived such
confidence intervals using the Taylor series expansion. To avoid the difficulty in derivation
of second-order moments, Hall and Maiti (2006b) and Chatterjee, Lahiri and Li (2008)
proposed the confidence intervals using the parametric bootstrap method.

A similar difficulty occurs in evaluating the bias terms of AIC and conditional AIC.
The Akaike Information Criterion (AIC) originated from Akaike (1973, 74) is recognized
very useful for selecting models in general situations, and it is also useful for selecting
variables in LMM. When unknown parameters in the model are estimated by the maxi-
mum likelihood estimator, the penalty term, which is a kind of bias, is known to be 2× p
for dimension p of unknown parameters. When the unknown parameters in LMM are
estimated by other estimators, however, Kubokawa (2011) showed that the penalty term
includes partial derivatives of the estimator and the covariance matrix. Concerning the
conditional AIC, on the other hand, Vaida and Blanchard (2005) and Liang, Wu and Zou
(2008) proposed the conditional AIC in LMM, but their derivations were limited to the
cases that the parameters in LMM are partly known. Recently, Kubokawa (2011) derived
the second-order bias correction term for the conditional AIC, but it is harder to com-
pute in more complicated models since the penalty term consists of the second-order bias,
variance and covariance of estimators and partial derivatives of the covariance matrix.

In this paper, we treat the problems mentioned above, and provide useful procedures
based on the parametric bootstrap method to avoid the computational difficulties. In Sec-
tion 2, we suggest the MSE estimator, the confidence interval, AIC and the conditional
AIC using the parametric bootstrap. Concerning the MSE estimation, Butar and Lahiri
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(2003) estimated the third term of the MSE, denoted by g3, based on the parametric
bootstrap, while in this paper, we consider to estimate the second-order approximation
of g3 using the parametric bootstrap method. A similar approach applies to the confi-
dence interval, and we estimate the second-order correction term based on the parametric
bootstrap method. This is different from the parametric bootstrap procedure suggested
by Chatterjee, et al . (2008) who obtained two end-points of a confidence interval based
on a distribution generated by the parametric bootstrap sampling. In Section 3, we give
the proofs for the second-order justifications of the procedures given in the paper under
several conditions.

In Section 4, we carry out simulation experiments in the Fay-Herriot model to compare
the proposed procedures with ones given in the literature. In Section 5, the nested error
regression models (NERM) are treated to analyze the posted land price data, and the
suggested information criteria are used for selecting regressors. For estimating the aver-
ages of land prices in small areas, we give values of EBLUPs, proposed estimates of their
MSE and proposed confidence intervals based on the NERM with the selected regressors.
These numerical investigations demonstrate that the proposed procedures based on the
parametric bootstrap methods work well and are useful.

2 MSE Estimation, Confidence Interval and AIC Based

on the Parametric Bootstrap Method

2.1 Linear mixed model and parametric bootstrap method

Consider the following two linear mixed models: One is a model which original data
follow, and the other is a model which generates simulated data through the parametric
bootstrap method.

[1] Model 1. An N×1 observation vector y of the response variable has the general
linear mixed model

y = Xβ +Zv + ϵ, (2.1)

where X and Z are N×p and N×M matrices, respectively, of the explanatory variables,
β is a p×1 unknown vector of the regression coefficients, v is anM×1 vector of the random
effects, and ϵ is an N × 1 vector of the random errors. Here, v and ϵ are mutually inde-
pendently distributed as v ∼ NM(0,G(θ)) and ϵ ∼ NN(0,R(θ)), where θ = (θ1, . . . , θq)

′

is a q-dimensional vector of unknown parameters, and G = G(θ) and R = R(θ) are
positive definite matrices. Then, y has a marginal distribution NN(Xβ,Σ(θ)) for

Σ = Σ(θ) = R(θ) +ZG(θ)Z ′.

Throughout the paper, for simplicity, it is assumed that X is of full rank. Also, we often
drop (θ) in G(θ), R(θ), Σ(θ) and others for notational convenience.

The unknown parameters in Model 1 are β and θ. When θ is known, the regression
coefficients vector β is estimated by the generalized least squares estimator given by

β̂(θ) = (X ′Σ(θ)−1X)−1X ′Σ(θ)−1y.
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The parameter θ consists of variance components and others, and it is estimated by
consistent estimator θ̂ based on y through various methods including maximum likelihood
and restricted maximum likelihood methods. Then, β is estimated by β̂ = β̂(θ̂).

[2] Model 2. An N × 1 random vector y∗ given y has the linear mixed model

y∗ = Xβ̂(θ̂) +Zv∗ + ϵ∗, (2.2)

where X and Z are the same matrices as given in (2.1), and given y, v∗ and ϵ∗ are

conditionally mutually independently distributed as v∗|y ∼ NM(0,G(θ̂)) and ϵ∗|y ∼
NN(0,R(θ̂)).

Before stating the main results, it may be instructive to explain the intuitive idea of
using the parametric bootstrap method based on Model 2. Let g(θ) be a differentiable

function with g(θ) = O(1). Although g(θ̂) is an asymptotically unbiased estimator of
g(θ), in general, there exists a second-order bias. Then, we need to approximate the

expectation E[g(θ̂)] up to O(N−1). It is supposed that the approximation is given by

E[g(θ̂)] = g(θ) + bg(θ) + O(N−3/2) where bg(θ) is a continuously differentiable function

with O(N−1). Thus, we can get the second-order unbiased estimator g(θ̂)−bg(θ̂), namely,

E[g(θ̂)− bg(θ̂)] = {g(θ) + bg(θ)} − bg(θ) +O(N−3/2) = g(θ) +O(N−3/2). (2.3)

Since, in general, the function bg(θ) can be derived using the Taylor series expansion, it is

based on partial derivatives with respect to θi, i = 1, . . . , q, and moments of estimator θ̂,
and we need to derive partial derivatives and moments for each model and each estimator
θ̂. This means that different calculations are requested for different models and differ-
ent estimators, so that those calculations must be harder for more complicated models.
Instead of this method, Butar and Lahiri (2003) and Chatterjee et al . (2008) proposed
an alternative approach through the parametric bootstrap method. The function bg(θ) is

estimated by E∗[g(θ̂
∗
)− g(θ̂)|y], where E∗[·|y] is the expectation with respect to Model

2 given y, and the calculation of θ̂
∗
is the same as that of θ̂ except that θ̂

∗
is calculated

based on y∗ instead of y. Since given y, the expectation E∗[g(θ̂
∗
)|y] can be approximated

as
E∗[g(θ̂

∗
)|y] = g(θ̂) + bg(θ̂) +Op(N

−3/2),

it is seen from (2.3) that

E
[
2g(θ̂)− E∗[g(θ̂

∗
)|y]

]
=E

[
g(θ̂)− E∗[g(θ̂

∗
)− g(θ̂)|y]

]
=E[g(θ̂)− bg(θ̂)] +O(N−3/2)

=g(θ) +O(N−3/2). (2.4)

Thus, we obtain the second-order unbiased estimator 2g(θ̂) − E∗[g(θ̂
∗
)|y] which is free

from differentiations or moments of θ̂. This idea can be used in this paper to provide
an estimator of MSE of EBLUP, a corrected confidence interval based on EBLUP and
conditional and unconditional Akaike Information Criteria.
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2.2 Estimation of MSE of EBLUP

Based on the parametric bootstrap method, we first derive an estimator of MSE of EBLUP
for the general scalar quantity

µ = a′β + b′v,

where a and b be p×1 and M×1 vectors of fixed constants. It is noted that the marginal
and the conditional distributions of y given v are, respectively,

y ∼NN(Xβ,Σ(θ)),

y|v ∼NN(Xβ +Zv,R(θ)).

Let µv = GZ ′Σ−1(y−Xβ) and Σv = G−GZ ′Σ−1ZG. Since the conditional distribu-
tion of v given y is

v|y ∼ NM(µv,Σv), (2.5)

the conditional expectation E[µ|y] is written as

µ̂B(β,θ) =E[µ|y] = a′β + b′G(θ)Z ′Σ(θ)−1(y −Xβ)

=a′β + s(θ)′(y −Xβ), (2.6)

where s(θ) = Σ(θ)−1ZG(θ)b. This can be interpreted as the Bayes estimator of µ in

the Bayesian context. The generalized least squares estimator β̂(θ) is substituted into
µ̂B(β,θ) to get the estimator

µ̂EB(θ) = µ̂B(β̂(θ),θ) = a′β̂(θ) + s(θ)′(y −Xβ̂(θ)), (2.7)

which is the best linear unbiased predictor (BLUP) of µ. When an estimator θ̂ is available
for θ, we can estimate µ by the empirical (or estimated) best linear unbiased predictor

(EBLUP) µ̂EB(θ̂), which is also called an empirical Bayes estimator in the Bayesian
context.

The MSE function of EBLUP µ̂EB(θ̂) is MSE(θ, µ̂EB(θ̂)) = E[{µ̂EB(θ̂)−µ}2], which
can be decomposed as MSE(θ, µ̂EB(θ̂)) = g1(θ) + g2(θ) + g3(θ) as shown in Prasad
and Rao (1990) and Datta and Lahiri (2000), where g1(θ) = E[{µ̂B(β,θ)−µ}2], g2(θ) =
E[{µ̂EB(θ)− µ̂B(β,θ)}2] and g3(θ) = E[{µ̂EB(θ̂)− µ̂EB(θ)}2]. The terms g1(θ) and g2(θ)
can be rewritten as

g1(θ) =b′(G(θ)−1 +Z ′R(θ)−1Z)−1b,

g2(θ) =(a−X ′s(θ))′(X ′Σ(θ)−1X)−1(a−X ′s(θ)).

Using the argument as in (2.4), we can estimate g1(θ) + g2(θ) by

2{g1(θ̂) + g2(θ̂)} − E∗[g1(θ̂
∗
) + g2(θ̂

∗
)|y].

For g3(θ), in this paper we use the estimator given by

g3
∗(θ̂) = E∗

[
{s(θ̂

∗
)− s(θ̂)}′Σ(θ̂){s(θ̂

∗
)− s(θ̂)}

∣∣y]. (2.8)

Thus, we get the estimator

mse∗(θ̂, µ̂EB(θ̂)) = 2{g1(θ̂) + g2(θ̂)} − E∗
[
g1(θ̂

∗
) + g2(θ̂

∗
)
∣∣y]+ g3

∗(θ̂). (2.9)

In Section 3.2, we shall show that E[mse∗(θ̂, µ̂EB(θ̂))] = MSE(θ, µ̂EB(θ̂)) + O(N−3/2)
under some conditions.
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2.3 Confidence interval based on EBLUP

We next construct a confidence interval of µ = a′β+b′v based on EBLUP which satisfies
the nominal confidence level with the second-order accuracy. Since mse∗(θ̂, µ̂EB(θ̂)) is an
asymptotically unbiased estimator of the MSE of EBLUP, it is reasonable to consider the
confidence interval of the form

IEB(θ̂) : µ̂EB(θ̂)± zα/2

√
max{mse∗(θ̂, µ̂EB(θ̂)), 0}, (2.10)

where zα/2 is the 100×α/2% upper quantile of the standard normal distribution. However,

the coverage probability P [µ ∈ IEB(θ̂)] cannot be guaranteed to be greater than or equal
to the nominal confidence coefficient 1 − α. To address the problem, we consider the
correction function given by

h∗
1(θ̂) =

1 + z2α/2

8g1(θ̂)2
E∗

[
{g1(θ̂

∗
)− g1(θ̂)}2

∣∣y], (2.11)

which is an asymptotically unbiased estimator of h1(θ) given in (3.14). Then, the corrected
confidence interval is provided by

ICEB∗
1 (θ̂) : µ̂EB(θ̂)± zα/2

[
1 + h∗

1(θ̂)
]√

max{mse∗(θ̂, µ̂EB(θ̂)), 0}. (2.12)

A drawback of ICEB∗
1 (θ̂) is that it cannot give an interval when mse∗(θ̂, µ̂EB(θ̂)) takes

a negative value. A simulation experiment given in Section 4.2 shows that such a short-
coming occurs in an extreme case. Thus, we suggest the alternative corrected confidence
interval

ICEB∗
2 (θ̂) : µ̂EB(θ̂)± zα/2

[
1 + h∗

2(θ̂)
]√

g1(θ̂) + g2(θ̂), (2.13)

where

h∗
2(θ̂) = h∗

1(θ̂) +
g1(θ̂)− E∗[g1(θ̂

∗
)|y] + g3

∗(θ̂)

2g1(θ̂)
. (2.14)

In Section 3.2, it can be shown that P [µ ∈ ICEB∗
i (θ̂)] = 1 − α + O(N−3/2) for i = 1, 2

under some conditions.

2.4 AIC and conditional AIC

In this section, we derive the Akaike Information Criterion (AIC) and conditional AIC
using the parametric bootstrap method.

[1] AIC∗
1 and AIC∗

2. Let us define the Akaike Information (AI) by

AI(θ) = −2

∫ ∫
{log fm(ỹ|β̂(y), θ̂(y))}fm(ỹ|β,θ)fm(y|β,θ)dỹdy, (2.15)

where β̂(y) = β̂(θ̂) and θ̂(y) are estimators based on y, and fm(y|β,θ) is a marginal
density function of y given by

−2 log fm(y|β,θ) = N log(2π) + log |Σ(θ)|+ (y −Xβ)′Σ(θ)−1(y −Xβ).
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Akaike’s AIC can be derived as an asymptotically unbiased estimator of AI(θ), namely,
E[AIC] = AI(θ) + o(1) as N → ∞. When AIC is an exact unbiased estimator of AI(θ),
it is called the exact AIC, which was suggested by Sugiura (1978), but in general, it is
difficult to get in LMM.

Define ∆∗
1(y) and ∆∗

2(y) by

∆∗
1(y) =− 2E∗

[
u∗′P (θ̂

∗
)u∗∣∣y],

∆∗
2(y) =E∗

[
u∗′Σ̂∗−1u∗ − tr [Σ̂Σ̂∗−1]

∣∣y], (2.16)

where u∗ = y∗ −Xβ̂(θ̂), Σ̂ = Σ(θ̂), Σ̂∗ = Σ(θ̂
∗
) and

P (θ) = Σ(θ)−1X(X ′Σ(θ)−1X)−1X ′Σ(θ)−1.

Then, we suggest two kinds of AIC given by

AIC∗
1 =− 2 log fm(y|β̂(θ̂), θ̂) + 2p−∆∗

2(y),

AIC∗
2 =− 2 log fm(y|β̂(θ̂), θ̂)−∆∗

1(y)−∆∗
2(y),

(2.17)

In Section 3.3, it can be shown that E[AIC∗
i ] = AI(θ) +O(N−1/2) for i = 1, 2.

[2] cAIC∗. AIC is derived from the marginal (or unconditional) distribution of y,
and it measures the prediction error of the predictor based on the marginal distribution.
This means that AIC is not appropriate for the focus on the prediction of specific areas
or specific random effects. For example, EBLUP is used for predicting the random effects
associated with a specific area in the context of the small area estimation. Taking this
point into account, Vaida and Blanchard (2005) proposed the conditional AIC which mea-
sures the prediction error of the predictor incorporating EBLUP based on the conditional
distribution given the random effects.

The conditional AIC is derived as an (asymptotically) unbiased estimator of the con-
ditional Akaike information (cAI) defined by

cAI(θ) = −2

∫ ∫ ∫
log{f(ỹ|v̂(y), β̂(y), θ̂(y))}f(ỹ|v,β,θ)f(y|v,β,θ)f(v|θ)dỹdydv,

where β̂(y) = β̂(θ̂) and v̂(y) = v̂(θ) = G(θ)Z ′Σ(θ)−1{y − Xβ̂(θ)} are estimators
based on y and f(v|θ), respectively, are a conditional density function of y given v and
a marginal density function of v. Note that

−2 log f(y|v,β,θ) =N log(2π) + log |R(θ)| (2.18)

+ (y −Xβ −Zv)′R(θ)−1(y −Xβ −Zv).

Define ∆∗
c1(y) and ∆∗

c2(y) by

∆∗
c1(y) =− 2

{
E∗

[
u∗′Σ̂−1R̂P (θ̂

∗
)u∗ + tr [R̂

∗
Σ̂∗−1]

∣∣y]+N − 2tr [R̂Σ̂−1]
}
,

∆∗
c2(y) =E∗

[
u∗′(2Σ̂−1R̂Σ̂∗−1 − Σ̂−1R̂R̂

∗−1
R̂Σ̂−1)u∗

− tr [R̂
∗−1

(2R̂− R̂Σ̂−1R̂)]
∣∣y]+ 2N − 2tr [Σ̂−1R̂],

(2.19)
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for R̂ = R(θ̂) and R̂
∗
= R(θ̂

∗
). Then, we propose the conditional AIC given by

cAIC∗ = −2 log f(y|v̂(θ̂), β̂(θ̂), θ̂)−∆∗
c1(y)−∆∗

c2(y). (2.20)

In Section 3.3, it can be shown that E[cAIC∗] = cAI(θ) + O(N−1/2) under some condi-
tions.

3 Proofs of Second-order Approximations

3.1 Notations and common assumptions

In this section, we verify that the procedures proposed in the previous section have second-
order approximations. We begin by introducing the notations used here. Let C[k]

θ denote
a set of k times continuously differentiable functions with respect to θ. For partial deriva-
tives with respect to θ, we utilize the notations

A(i)(θ) = ∂iA(θ) =
∂A(θ)

∂θi
, A(ij)(θ) = ∂ijA(θ) =

∂2A(θ)

∂θi∂θj
,

and

A(ijk)(θ) = ∂ijkA(θ) =
∂3A(θ)

∂θi∂θj∂θk
,

where A(θ) is a scalar, vector or matrix. For the first and second differential operators
with respect to y, we use the notations

∇y =
∂

∂y
, ∇y∇′

y =
∂

∂y

∂

∂y′ ,

namely, the i-th element of∇y and the (i, j)-th element of∇y∇′
y are ∂/∂yi and ∂2/∂yi∂yj,

respectively.
For 0 ≤ i, j, k ≤ q, let λ1(Σ) ≤ · · · ≤ λN(Σ) be the eigenvalues of Σ and let those of

Σ(i), Σ(ij) and Σ(ijk) be λi
a(Σ), λij

a (Σ) and λijk
a (Σ) for a = 1, . . . , N respectively, where

|λi
1(Σ)| ≤ · · · ≤ |λi

N(Σ)|, |λij
1 (Σ)| ≤ · · · ≤ |λij

N(Σ)| and |λijk
1 (Σ)| ≤ · · · ≤ |λijk

N (Σ)|.
Throughout the paper, assume the following conditions for large N and 0 ≤ i, j, k ≤ q:

(A1) The elements of X, Z, G(θ), R(θ), p, q and M are bounded, and X ′X is
positive definite and X ′X/N converges to a positive definite matrix;

(A2) Σ(θ) ∈ C[3]
θ , limN→∞ λ1(Σ) > 0, limN→∞ λN(Σ) < ∞, limN→∞ |λi

N(Σ)| < ∞,

limN→∞ |λij
N(Σ)| < ∞ and limN→∞ |λijk

N (Σ)| < ∞.

(A3) θ̂ = θ̂(y) is an estimator of θ which satisfies that θ̂(−y) = θ̂(y) and θ̂(y+Xα) =

θ̂(y) for any p-dimensional vector α.

(A4) It is assumed that θ̂ − θ is expanded as

θ̂ − θ = θ̂
†
+ θ̂

††
+Op(N

−3/2), (3.1)

where θ̂
†
= Op(N

−1/2), θ̂
††
= Op(N

−1) and E[θ̂
†
] = 0.
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Example 3.1 As well known, the ML estimator θ̂
M

and the REML estimator θ̂
R
, re-

spectively, are given as solutions of the following equations:

[ML] y′Π(θ)Σ(i)(θ)Π(θ)y = tr
[
Σ(θ)−1Σ(i)(θ)

]
,

[REML] y′Π(θ)Σ(i)(θ)Π(θ)y = tr
[
Π(θ)Σ(i)(θ)

]
,

(3.2)

for i = 1, . . . , q, where Π(θ) = Σ(θ)−1 −Σ(θ)−1X {X ′Σ(θ)−1X}−1
X ′Σ(θ)−1. For the

details, see Searle, Casella and McCulloch (1992). It is noted that both estimators are

location invariant, namely, θ̂(y+Xα) = θ̂(y) for any p-dimensional vector α. Thus, the
condition (A3) is satisfied.

Let A2 be a q× q matrix such that the (i, j)-th element of A2 is tr [Σ(i)Σ
−1Σ(j)Σ

−1].
Assume that A2 is positive definite and A2/N converges to a positive definite matrix.

Under this condition, (A1) and (A2), Kubokawa (2010b) showed that θ̂
M

and θ̂
R
satisfies

the condition (A4).

Other Estimators are also used in some specific models, and Kubokawa (2010b) showed
that the Prasad-Rao estimator and the Fay-Herriot estimator satisfy the conditions (A1)-
(A4) in the Fay-Herriot model and the nested error regression model.

3.2 MSE estimation and interval estimation

[1] Second-order unbiasedness of the MSE estimator. We first treat the estimation

of MSE of the EBLUP µ̂EB(θ̂), where µ̂EB(θ) = µ̂B(β̂(θ),θ) = a′β̂(θ)+s(θ)′(y−Xβ̂(θ))

for s(θ) = Σ(θ)−1ZG(θ)b, and show that the MSE estimator mse∗(θ̂, µ̂EB(θ̂)) given in
(2.9) has the second-order unbiasedness.

Let g3(θ) and g4(θ) be functions defined by

g3(θ) =tr
[(∂s(θ)′

∂θ

)
Σ(θ)

(∂s(θ)′
∂θ

)′
Cov (θ̂

†
)
]
,

g4(θ) =
(∂g1(θ)

∂θ

)′
E[θ̂

††
] +

1

2
tr
[
B(θ)Cov (θ̂

†
)
]
− g3(θ),

(3.3)

where Cov (θ̂
†
) = E[(θ̂

†
)(θ̂

†
)′], and the (i, j)-th element of B(θ) is given by

(B(θ))i,j = (b−Z ′s(θ))′(∂ijG(θ))(b−Z ′s(θ)) + s(θ)′(∂ijR(θ))s(θ).

It is noted that B(θ) = 0 when G and R are matrices of linear functions of θ.

To establish the second-order approximation, we assume the following conditions:

(B1) The elements of a and b are uniformly bounded, and s(θ) satisfies that s(θ) ∈
C[2]
θ , (y − Xβ)′s(θ) = Op(1), (y − Xβ)′s(i)(θ) = Op(1), (y − Xβ)′s(ij)(θ) = Op(1),

s(i)(θ)
′s(j)(θ) = O(1) and s(j)(θ)

′Σ(θ)∇yθ̂
†
i = Op(N

−1).

(B2) For 1 ≤ i, j, k ≤ q, (i) g1(θ) ∈ C [3]
θ and ∂ig1(θ) = O(1), ∂ijg1(θ) = O(1) and

∂ijkg1(θ) = O(1), (ii) g2(θ), g3(θ) and g4(θ) are continuously differentiable functions
satisfying that ∂ig2(θ) = O(N−1), ∂ig3(θ) = O(N−1) and ∂ig4(θ) = O(N−1).
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Theorem 3.1 Assume the conditions (A1)-(A4) and (B1)-(B2). Then, mse∗(θ̂, µ̂EB(θ̂))
is approximated as

mse∗(θ̂, µ̂EB(θ̂)) = mse(θ̂, µ̂EB(θ̂)) +Op(N
−3/2), (3.4)

where
mse(θ̂, µ̂EB(θ̂)) = g1(θ̂) + g2(θ̂) + g3(θ̂)− g4(θ̂). (3.5)

Thus,
E[mse∗(θ̂, µ̂EB(θ̂))] = MSE(θ, µ̂EB(θ̂)) +O(N−3/2). (3.6)

Proof. Kubokawa (2010b) proved in his theorems 2.1 and 2.2 that

g3(θ) =E[{µ̂EB(θ̂)− µ̂EB(θ)}2] = g3(θ) +O(N−3/2), (3.7)

E[g1(θ̂)] =g1(θ) + g4(θ) +O(N−3/2), (3.8)

which can be established under the conditions (A1)-(A4), (B1) and (B2)(i). Then from
(3.8), it follows that

E∗
[
g1(θ̂

∗
)
∣∣y] = g1(θ̂) + g4(θ̂) +Op(N

−3/2). (3.9)

Since g2(θ) = O(N−1), it is seen that under condition (B2)(ii),

E∗
[
g2(θ̂

∗
)
∣∣y] = g2(θ̂) +Op(N

−3/2). (3.10)

Hence from (3.9) and (3.10), it is seen that under condition (B2),

2{g1(θ̂) + g2(θ̂)} − E∗
[
g1(θ̂

∗
) + g2(θ̂

∗
)
∣∣y]

=g1(θ̂)− g4(θ̂) + g2(θ̂) +Op(N
−3/2). (3.11)

Since s(θ) = O(1), it is noted that

s(θ̂) =s(θ) +
∂s(θ)

∂θ′ (θ̂ − θ) +Op(N
−1)

=s(θ) +
∂s(θ)

∂θ′ θ̂
†
+Op(N

−1),

which implies that

E
[
{s(θ̂)− s(θ)}′Σ(θ){s(θ̂)− s(θ)}

]
= g3(θ) +O(N−3/2). (3.12)

Thus, we get

E∗
[
{s(θ̂

∗
)− s(θ̂)}′Σ(θ̂){s(θ̂

∗
)− s(θ̂)}

∣∣y] = g3(θ̂) +Op(N
−3/2), (3.13)

Combining (3.11) and (3.13) gives

mse∗(θ̂, µ̂EB(θ̂)) =2{g1(θ̂) + g2(θ̂)} − E∗
[
g1(θ̂

∗
) + g2(θ̂

∗
)
∣∣y]

+ E∗
[
{s(θ̂

∗
)− s(θ̂)}′Σ(θ̂){s(θ̂

∗
)− s(θ̂)}

∣∣y]
=
{
g1(θ̂)− g4(θ̂) + g2(θ̂)

}
+ g3(θ̂) +Op(N

−3/2)

=mse(θ̂, µ̂EB(θ̂)) +Op(N
−3/2).
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Finally, it follows from Kubokawa (2010b) that

E[mse∗(θ̂, µ̂EB(θ̂))] =E[mse(θ̂, µ̂EB(θ̂))] +O(N−3/2)

=MSE(θ, µ̂EB(θ̂)) +O(N−3/2),

which proves (3.6).

[2] Second-order corrected confidence interval. We next treat the interval esti-

mation of µ with the corrected confidence intervals ICEB∗
1 (θ̂) and ICEB∗

2 (θ̂) given in (2.12)
and (2.13), and show that the coverage probability can be approximated to the confidence
coefficient in the second-order accuracy.

For the purpose, let us define function h1(θ) by

h1(θ) =
z2α/2 + 1

8g1(θ)2
tr
[(∂g1(θ)

∂θ

)(∂g1(θ)
∂θ

)′
Cov (θ̂

∗
)
]
. (3.14)

Assume the following condition:

(B3) h1(θ) ∈ C[1]
θ and ∂ih1(θ) = O(N−1) for 1 ≤ i ≤ q.

Theorem 3.2 Assume the conditions (A1)-(A4) and (B1)-(B3). Then,

P [µ ∈ ICEB∗
1 (θ̂)] = 1− α +O(N−3/2). (3.15)

Proof. Let us define U and V ∗ by

U =
{
µ̂EB(θ̂)− µ̂B(β,θ)

}
/
√

g1(θ),

V ∗ =
{
[1 + h∗

1(θ̂)]

√
mse∗(θ̂)−

√
g1(θ)

}
/
√
g1(θ),

where µ̂B(β,θ) = a′β + s(θ)′(y − Xβ). Using the same arguments as in the proof of
theorem 2.3 of Kubokawa (2010b), we can verify that

P [µ ∈ ICEB∗
1 (θ̂)] = 1− α+ ϕ(zα)H

∗
1 (θ) +O(N−3/2), (3.16)

where

H∗
1 (θ) =zα/2E

[
2V ∗ −

{
U2 + z2α/2(V

∗)2
}]

=zα/2E
[{

2V ∗ + (V ∗)2
}
− U2 − (1 + z2α/2)(V

∗)2
]
. (3.17)

It is noted that mse∗(θ̂) = mse(θ̂) + Op(N
−3/2) and h∗

1(θ̂) = h1(θ̂) + Op(N
−3/2), where

mse(θ̂) is given in (3.5). Then, it can be seen that

2V ∗ + (V ∗)2 =(2 + V ∗)V ∗ = {1 + h∗
1(θ̂)}2

mse∗(θ̂)

g1(θ)
− 1

={1 + h1(θ̂)}2
mse(θ̂)

g1(θ)
− 1 +Op(N

−3/2)

=2V + V 2 +Op(N
−3/2),
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where V = [1+ h1(θ̂)]

√
mse(θ̂)/

√
g1(θ)− 1. Since V ∗ = V +Op(N

−1), it is verified that

(V ∗)2 = V 2 +Op(N
−3/2). Hence, from (3.17), it follows that

H∗
1 (θ) = H1(θ) +O(N−3/2),

where H1(θ) = zαE
[
(2V +V 2)−U2−(1+z2α/2)V

2
]
. This approximation is used to rewrite

(3.16) as

P [µ ∈ ICEB∗
1 (θ̂)] = 1− α + ϕ(zα/2)H1(θ) +O(N−3/2). (3.18)

Kubokawa (2010b) showed in the proof of his theorem 2.3 that H1(θ) = O(N−3/2), which
proves the theorem.

Theorem 3.3 Under the same conditions as in Theorem 3.2,

P [µ ∈ ICEB∗
2 (θ̂)] = 1− α +O(N−3/2). (3.19)

Proof. In the proof of Theorem 3.2, we need to replace mse∗(θ̂), V ∗ and h∗
1(θ̂) with

g1(θ̂) + g2(θ̂), W and h∗
2(θ̂), respectively, where W =

{
[1 + h∗

2(θ̂)]{g1(θ̂) + g2(θ̂)}1/2 −√
g1(θ)

}
/
√

g1(θ). Then,

P [µ ∈ ICEB∗
2 (θ̂)] = 1− α+ ϕ(zα)H

∗
2 (θ) +O(N−3/2),

where
H∗

2 (θ) = zα/2E
[{

2W +W 2
}
− U2 − (1 + z2α/2)W

2
]
.

Since 2W +W 2 = {1 + h∗
2(θ̂)}2{g1(θ̂) + g2(θ̂)}/g1(θ)− 1 = {g1(θ̂) + g2(θ̂)}/g1(θ)− 1 +

2h∗
2(θ̂)g1(θ̂)/g1(θ) +Op(N

−3/2), it is seen that

E[2W +W 2] =
E[g1(θ̂)]− g1(θ)

g1(θ)
+

g2(θ)

g1(θ)
+ 2E[h(θ̂)] +O(N−3/2).

It follows from the proof of theorem 2.3 of Kubokawa (2010b) that E[U2] = {g2(θ) +
g3(θ)}/g1(θ) + O(N−3/2) for g3(θ) given in (3.3) and (3.7). Also it can be shown that
E[(1 + z2α/2)W

2] = 2h1(θ) +O(N−3/2). Combining these approximations gives

H∗
2 (θ) = 2zα/2

{
h∗
2(θ̂) +

E[g1(θ̂)]− g1(θ)− g3(θ)

2g1(θ)
− h1(θ)

}
.

It is here noted that

E
[
E∗[g1(θ̂

∗
)|y]− g1(θ̂)

]
= E[g1(θ̂)]− g1(θ) +O(N−3/2),

which can be verified from (3.8) and (3.9). Also note that h∗
1(θ̂) = h1(θ̂) + Op(N

−3/2)

and g3
∗(θ̂) = g3(θ̂) + Op(N

−3/2). This implies that H∗
2 (θ) = O(N−3/2), and the proof is

complete.
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3.3 Derivation of AIC∗
1, AIC∗

2 and cAIC∗

We here show that the penalty terms of AIC∗
1, AIC

∗
2 and cAIC∗ given in (2.17) and (2.20)

are second-order approximations of unbiased estimators of the corresponding biases.

Concerning AIC∗
1 and AIC∗

2 given in (2.17), let us define

c(θ) = −
q∑

i=1

E
[
tr [Σ(i)∇y∇′

yθ̂
†
i ]
]
,

for θ̂
†
= (θ̂†1, . . . , θ̂

†
q)

′. Assume the following conditions:

(C1) θ̂
†
and θ̂

††
satisfy that E

[
tr [∇y∇′

yθ̂
††
i ]
]

= O(N−1), E
[
tr [(∇y∇′

yθ̂
†
i )θ̂

†
j ]
]

=

O(N−1) and E
[
tr [(∇yθ̂

†
i )(∇yθ̂

†
j)

′]
]
= O(N−1) for θ̂

††
= (θ̂††1 , . . . , θ̂

††
q )

′.

(C2) c(θ) ∈ C[1]
θ and ∂ic(θ) = O(N−1) for 1 ≤ i ≤ q.

Theorem 3.4 Assume the conditions (A1)-(A4) and (C1)-(C2). Then,

E
[
−2 log fm(y|β̂(θ̂), θ̂)−∆∗

1(y)−∆∗
2(y)

]
= AI(θ) +O(N−1/2)

for ∆∗
1(y) and ∆∗

2(y) given in (2.16). Also, E[∆∗
1(y)] = −2p+O(N−1/2) and E[∆∗

2(y)] =
c(θ) +O(N−1/2).

Proof. Define ∆1(θ) and ∆2(θ) by

∆1(θ) =− 2E[(y −Xβ)′P (θ̂)(y −Xβ)],

∆2(θ) =E
[
(y −Xβ)′Σ̂−1(y −Xβ)− tr [ΣΣ̂−1]

]
.

Kubokawa (2011) proved in the proof of his theorem 2.1 that

Ey

[
−2 log fm(y|β̂(θ̂), θ̂)

]
− AI(θ) = ∆1(θ) + ∆2(θ),

and that ∆1(θ) = −2p + O(N−1/2) and ∆2(θ) = c(θ) + O(N−1/2). Thus, it is observed
that

E∗

[
(y∗ −Xβ̂(θ̂))′P (θ̂

∗
)(y∗ −Xβ̂(θ̂))

∣∣y] = p+Op(N
−1/2),

E∗

[
(y∗ −Xβ̂(θ̂))′Σ(θ̂

∗
)−1(y∗ −Xβ̂(θ̂))− tr [Σ(θ̂)Σ(θ̂

∗
)−1]

∣∣y] = c(θ̂) +Op(N
−1/2),

Since c(θ) = O(1), this implies that E[∆∗
1(y)] = −2p+O(N−1/2) and E[∆∗

2(y)] = c(θ) +
O(N−1/2), and we get the theorem.
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Concerning the cAIC∗ given in (2.20), let us define c1(θ) and c2(θ) by

c1(θ) =

q∑
i=1

tr [(RΣ−1)(i)]E[θ̂††i ] +
1

2

q∑
i=1

q∑
j=1

tr [(RΣ−1)(ij)]E[θ̂†i θ̂
†
j ],

c2(θ) =2

q∑
i=1

tr
[
R{(Σ−1)(i) − (R−1)(i)}

]
E[θ̂††i ]

+

q∑
i=1

q∑
j=1

tr
[
R{(Σ−1)(ij) − (R−1)(ij)}

]
E[θ̂†i θ̂

†
j ]

+

q∑
i=1

tr
[
{2R(Σ−1)(i)Σ−R(R−1)(i)R}E[∇y∇′

yθ̂
†
i ]
]
.

Assume the following conditions:

(C3) R(θ) is continuously differentiable three times in θ, and limN→∞ λ1(R) > 0,
limN→∞ λN(R) < ∞, limN→∞ |λi

N(R)| < ∞, limN→∞ |λij
N(R)| < ∞ and limN→∞ |λijk

N (R)| <
∞, where λa(R), λi

a(R), λij
a (R) and λijk

a (R) are defined similarly to those for Σ.

(C4) c1(θ) and c2(θ) are continuously differentiable functions satisfying ∂ic1(θ) =
O(N−1) and ∂ic2(θ) = O(N−1) for 1 ≤ i ≤ q.

Theorem 3.5 Assume the conditions (A1)-(A4) and (C3)-(C4). Then,

E
[
−2 log f(y|v̂(θ̂), β̂(θ̂), θ̂)−∆∗

c1(y)−∆∗
c2(y)

]
= cAI(θ) +O(N−1/2),

for ∆∗
c1(y) and ∆∗

c2(y) given in (2.19). Also, E[∆∗
c1(y)] = −2ρ(θ) + O(N−1/2) and

E[∆∗
c2(y)] = c2(θ) + O(N−1/2), where ρ(θ) is the effective degrees of freedom defined

by
ρ(θ) = tr [(X ′Σ−1X)−1X ′Σ−1RΣ−1X] +N − tr [RΣ−1].

Proof. Define ∆c1(θ) and ∆c2(θ) by

∆c1(θ) =− 2
{
E
[
u′Σ−1RP (θ̂)u

]
+N − tr [RΣ−1]

}
,

∆c2(θ) =E
[
u′(2Σ−1RΣ̂−1 −Σ−1RR̂

−1
RΣ−1)u

]
− E

[
tr [R̂

−1
(2R−RΣ−1R)]

]
+ 2N − 2tr [Σ−1R].

Using the arguments as in the proof of the theorem 2.2 in Kubokawa (2011), we can show
that

Ey

[
−2 log f(y|v̂(θ̂), β̂(θ̂), θ̂)

]
− cAI(θ) = ∆c1(θ) + ∆c2(θ),

and that

∆c1(θ) = −2ρ(θ) +O(N−1/2) and ∆c2(θ) = c2(θ) +O(N−1/2),

since ∆c1(θ) and ∆c2(θ) can be expressed as ∆c1(θ) = −2J3 − 2N + 2tr [RΣ−1] and
∆c2(θ) = J1 − J2 + 2N − 2tr [Σ−1R] based on the notations J1, J2 and J3 in Kubokawa
(2011). This implies that

∆∗
c2(y) = c2(θ̂) +Op(N

−1/2),
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for ∆∗
c2(y) given in (2.19). Since c2(θ) = O(1), it is observed that

E
[
∆∗

c2(y)
]
= E[c2(θ̂)] +O(N−1/2) = c2(θ) +O(N−1/2) = ∆2(θ) +O(N−1/2). (3.20)

For ∆c1(θ), it is noted that ∆c1(θ) = O(N) since tr [RΣ−1] = O(N). Kubokawa (2010b)
showed in the proof of his theorem 2.3 that

E
[
tr [R̂Σ̂−1]

]
= tr [RΣ−1] + c1(θ) +O(N−1/2),

which leads to E∗
[
tr [R̂

∗
Σ̂∗−1]

∣∣y] = tr [R̂Σ̂−1] + c1(θ̂) +Op(N
−1/2). Then,

E
[
2tr [R̂Σ̂−1]− E∗

[
tr [R̂

∗
Σ̂∗−1]

∣∣y]] =E[tr [R̂Σ̂−1]− c1(θ̂)] +O(N−1/2)

=tr [RΣ−1] +O(N−1/2).

Since E[u′Σ−1RP (θ̂)u] = tr [(X ′Σ−1X)−1X ′Σ−1RΣ−1X] + O(N−1/2), it is seen that

E∗[u
∗′Σ̂−1R̂P (θ̂

∗
)u∗] = tr [(X ′Σ̂−1X)−1X ′Σ̂−1R̂Σ̂−1X] +Op(N

−1/2). Hence,

E
[
E∗

[
u∗′Σ̂−1R̂P (θ̂

∗
)u∗ + tr [R̂

∗
Σ̂∗−1]

∣∣y]+N − 2tr [R̂Σ̂−1]
]
= ρ(θ) +O(N−1/2),

that is,
E[∆∗

c1(y)] = −2ρ(θ) +O(N−1/2) = ∆c1(θ) +O(N−1/2). (3.21)

Combining (3.20) and (3.21) proves the theorem.

4 Simulation Studies in the Fay-Herriot Model

In this section, we investigate how the proposed procedures perform in comparison with
ones given in the literature in the Fay-Herriot model.

4.1 Fay-Herriot model and procedures used for comparison

The basic area level model proposed by Fay and Herriot (1979) is described by

ya = x′
aβ + va + εa, a = 1, . . . , k, (4.1)

where k is the number of small areas, xa is a p × 1 vector of explanatory variables, β is
a p× 1 unknown common vector of regression coefficients, and va’s and εa’s are mutually
independently distributed random errors such that va ∼ N (0, θ) and εa ∼ N (0, da) for
known da’s. Let X = (x1, . . . ,xk)

′, y = (y1, . . . , yk)
′, and let v and ϵ be similarly defined.

Then, the model is expressed in vector notations as y = Xβ+v+ϵ and y ∼ N (Xβ,Σ),
where Σ = Σ(θ) = θIk + D for D = diag (d1, . . . , dk). In this model, R = D and
G = θIk.

For estimating θ, the following procedures are known and their biases and variances
up to second order are summarized in Kubokawa (2010b).
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[ML] The MLE θ̂M is given as the solution of the equation LM(θ̂M) = 0, where
LM(θ) = y′(Σ(θ)−1−P (θ))2y−tr [Σ(θ)−1] for P (θ) = Σ(θ)−1X{X ′Σ(θ)−1X}−1X ′Σ(θ)−1.

[REML] The REML estimator θ̂R is given as the solution of the equation LR(θ̂R) = 0,
where LR(θ) = y′(Σ(θ)−1 − P (θ))2y − tr [Σ(θ)−1 − P (θ)].

[Fay-Herriot estimator] The Fay-Herriot estimator θ̂FH is the solution of the equa-
tion LFH(θ̂FH) = 0, where LFH(θ) = y′(Σ(θ)−1 − P (θ))y − (k − p).

[Modified Fay-Herriot estimator] The modified Fay-Herriot estimator θ̂m is the
solution of the equation Lm(θ̂

m) = 0, where Lm(θ) = y′(Σ(θ)−1 − P (θ))y − (k − p) −
m(θ) for m(θ) = 2ktr [Σ(θ)−2]/(tr [Σ(θ)−1])2 − 2. Although θ̂FH has a second-order bias,
the second-order bias of the modified Fay-Herriot estimator θ̂m vanishes by adding the
correction term m(θ).

[Prasad-Rao estimator] The unbiased estimator suggested by Prasad and Rao
(1990) is θ̂U = (k − p)−1(y′E0y − tr [DE0]) for E0 = Ik − X(X ′X)−1X ′. Since θ̂U

takes negative values with a positive probability, they proposed to use the truncated
estimator θ̂TR = max{θ̂U , 0}.

For estimator θ̂ given above, Model 2 in (2.2) is described as

y∗a = x′
aβ̂(θ̂) + v∗a + ε∗a, a = 1, . . . , k, (4.2)

where v∗a’s and ε∗a’s are mutually independently distributed random errors such that v∗a|y ∼
N (0, θ̂) and ε∗a ∼ N (0, da) for known da’s. The estimators θ̂∗ and β̂

∗
(θ̂∗) can be obtained

from y∗a, a = 1, . . . , k, by using the same techniques used to obtain θ̂ and β̂(θ̂).

[1] Estimation of MSE of EBLUP. It is supposed that we want to predict µs =
x′
sβ + vs for some index s among 1, . . . , k, namely, the vectors a and b used in Section

2.2 correspond to a = xs and b = js where js = (0, . . . , 0, 1, 0, . . . , 0)′, namely, the s-th
element is one, and the other elements are zero. EBLUP of µs is written as

µ̂EB
s = µ̂EB

s (ys; β̂(θ̂), θ̂) = x′
sβ̂(θ̂) + {1− γs(θ̂)}(ys − x′

sβ̂(θ̂)),

for γs(θ) = ds/(θ + ds), and the functions s(θ), g1(θ) and g2(θ) are expressed as

s(θ) = {1− γs(θ)}js, g1(θ) = ds{1− γs(θ)}, g2(θ) = γs(θ)
2x′

s(X
′Σ−1X)−1xs.

Concerning the estimation of the MSE of EBLUP µ̂EB
s (ys; β̂(θ̂), θ̂), we here handle the

following four estimators: One is the MSE estimator based on the parametric bootstrap
method given by

mse∗(θ̂, µ̂EB
s ) = 2{g1(θ̂) + g2(θ̂)} − E∗

[
g1(θ̂

∗) + g2(θ̂
∗)
∣∣y]+ g3

∗(θ̂), (4.3)

which is from (2.9), where g3
∗(θ̂) = E∗

[
{γs(θ̂∗) − γs(θ̂)}2(θ̂ + ds)|y

]
. Butar and Lahiri

(2003) suggested another MSE estimator based on the parametric bootstrap method given
by

mseBL(θ̂, µ̂EB
s ) =2{g1(θ̂) + g2(θ̂)} − E∗

[
g1(θ̂

∗) + g2(θ̂
∗)
∣∣y]

+ E∗
[
{µ̂EB

s (ys; β̂(θ̂
∗), θ̂∗)− µ̂EB

s (ys; β̂(θ̂), θ̂)}2|y
]
, (4.4)
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Prasad and Rao (1990) and Datta and Lahiri (2000) suggested the MSE estimator based
on the Taylor series expansion given by

mse(θ̂, µ̂EB
s ) = g1(θ̂) + g2(θ̂) + 2{γs(θ̂)3/ds}V (θ̂)− {γs(θ̂)}2B(θ̂), (4.5)

for B(θ) = E[θ̂††] and V (θ) = V ar(θ̂†). This can be also derived from (3.5). In this model,
an exact unbiased estimator of the MSE can be derived by using the Stein identity and
Datta, Kubokawa, Molina and Rao (2011) provided the unbiased estimator given by

mseE(θ̂, µ̂EB
s ) = ds − 2ds

∂

∂ys

[
γs(θ̂){ys − x′

sβ̂(θ̂)}
]
+ {γs(θ̂)}2{ys − x′

sβ̂(θ̂)}2, (4.6)

where

∂

∂ys

[
ds(θ̂ + ds)

−1{ys − x′
sβ̂(θ̂)}

]
=

ds

θ̂ + ds
− ds

(θ̂ + ds)2
{ys − x′

sβ̂(θ̂)}
∂θ̂

∂ys

− ds

θ̂ + ds
x′
s(X

′Σ̂(θ̂)−1X)−1
{ xs

θ̂ + ds
−

∑
j

xj{yj − x′
jβ̂(θ̂)}

(θ̂ + dj)2
∂θ̂

∂ys

}
.

[2] Corrected confidence interval. We here treat the following four confidence
intervals based on EBLUP: The confidence intervals (2.12) and (2.13) with the correction
terms using the parametric bootstrap method written by

ICEB∗
1 (θ̂) : µ̂EB(θ̂)± zα/2

[
1 + h∗

1(θ̂)
]√

max{mse∗(θ̂, µ̂EB), 0}, (4.7)

ICEB∗
2 (θ̂) : µ̂EB(θ̂)± zα/2

[
1 + h∗

2(θ̂)
]√

g1(θ̂) + g2(θ̂), (4.8)

where mse∗(θ̂, µ̂EB) is given in (4.3) and

h∗
1(θ̂) =

1 + z2α/2

8g1(θ̂)2
E∗

[
{g1(θ̂∗)− g1(θ̂)}2

∣∣y],
h∗
2(θ̂) =h∗

1(θ̂) +
g1(θ̂)− E∗[g1(θ̂

∗)|y] + g3
∗(θ̂)

2g1(θ̂)
.

As a confidence interval based on the Taylor series expansion, we treat the confidence
interval with the correction term, given by

ICEB(θ̂) : µ̂EB(θ̂)± zα/2

[
1 + h(θ̂)

]√
mse(θ̂, µ̂EB), (4.9)

where mse(θ̂, µ̂EB) is given in (4.5) and

h(θ) =
z2α/2 + 1

8θ2(θ + ds)2
d2sV ar(θ̂†).
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The confidence interval proposed by Chatterjee, et al . (2008) is different from ours. As
seen from (2.5), the conditional distribution of µs given y is

µs|y ∼ N (µ̂s(ys, θ,β), σ
2
s(θ)),

where µs = x′
sβ + vs, µ̂s(ys, θ,β) = x′

sβ + θ(θ + ds)
−1(ys − x′

sβ) and σ2
s(θ) = dsθ(θ +

ds)
−1. Thus, σs(θ)

−1{µs − µ̂s(ys, θ,β)} ∼ N (0, 1). Although this suggests to construct a

confidence interval from the distribution of σs(θ̂)
−1{µs − µ̂s(ys, θ̂, β̂(θ̂))}, the distribution

is not normal. Define L(z) and L∗(z) by

L(z) =P
[
σs(θ̂)

−1{µs − µ̂s(ys, θ̂, β̂(θ̂))} ≤ z
]
,

L∗(z) =P
[
σs(θ̂

∗)−1{µ∗
s − µ̂s(y

∗
s , θ̂

∗, β̂
∗
(θ̂∗))} ≤ z

]
,

where µ∗
s = x′

sβ̂(θ̂) + v∗s . Chatterjee, et al . (2008) proved that L(z) can be approximated
by L∗(z) with the second-order accuracy, and proposed the confidence interval of µs given
by

ICLL =
[
µ̂s(ys, θ̂, β̂(θ̂))− q1σs(θ̂), µ̂s(ys, θ̂, β̂(θ̂))− q2σs(θ̂)

]
, (4.10)

where q1 and q2 satisfies that

L∗(q2)− L∗(q1) = 1− α.

[3] AIC. Two kinds of Akaike Information Criteria based on the parametric bootstrap
method are given by

AIC∗
1 =− 2 log fm(y|β̂(θ̂), θ̂) + 2p−∆∗

2(y),

AIC∗
2 =− 2 log fm(y|β̂(θ̂), θ̂)−∆∗

1(y)−∆∗
2(y),

(4.11)

where for Σ̂ = Σ(θ̂) and Σ̂∗ = Σ(θ̂
∗
),

∆∗
1(y) =− 2E∗

[
u∗′P (θ̂∗)u∗∣∣y],

∆∗
2(y) =E∗

[
u∗′Σ̂∗−1u∗ − tr [Σ̂Σ̂∗−1]

∣∣y],
for u∗ = y∗−Xβ̂(θ̂). On the other hand, AIC based on the Taylor expansion is described
as

AIC = −2 log fm(y|β̂(θ̂), θ̂)−∆(θ̂), (4.12)

where ∆(θ) = −2p− E
[
tr [∇y∇′

yθ̂
†]
]
. This was derived by Kubokawa (2011).

[4] Conditional AIC. The conditional AIC based on the parametric bootstrap
method is given by

cAIC∗ = −2 log f(y|v̂(θ̂), β̂(θ̂), θ̂)−∆∗
c1(y)−∆∗

c2(y), (4.13)
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where

∆∗
c1(y) =− 2

{
E∗

[
u∗′Σ̂−1DP (θ̂∗)u∗ + tr [DΣ̂∗−1]

∣∣y]+ k − 2tr [DΣ̂−1]
}
,

∆∗
c2(y) =2E∗

[
u∗′Σ̂−1DΣ̂∗−1u∗∣∣y]− 2tr [DΣ̂−1].

Kubokawa (2011) derived the conditional AIC based on the Taylor series expansion given
as

cAIC = −2 log f(y|v̂(θ̂), β̂(θ̂), θ̂)−∆c(θ̂), (4.14)

where ∆c(θ) = −2ρ(θ)− 2tr [DΣ−1E[∇y∇′
yθ̂

†]].

4.2 Simulation results

We now investigate the performances of the proposed procedures by simulation and com-
pare them with some existing procedures given in the literature. For the purpose, we
adopt part of the simulation framework of Datta, et al . (2005) for our study. We consider
the Fay-Herriot model (4.1) with k = 15, θ = 1 and two di-patterns: (a) 0.7, 0.6, 0.5, 0.4,
0.3; (b) 4.0, 0.6, 0.5, 0.4, 0.1, which correspond to patterns (a) and (c) of Datta, et al .
(2005). Pattern (a) is less variable in di-values, while pattern (b) has larger variability.
There are five groups G1, . . . , G5 and three small areas in each group. The sampling
variances di are the same for area within the same group. For the sake of computational
simplicity, we mainly employ the Prasad-Rao estimator θ̂ = θ̂TR with the truncation as
θ̂TR = max(θ̂U , k−1/2). As shown in Kubokawa (2010b, 11), we observe that B(θ) and
V (θ) in (4.5) are B(θ) = 0 and V (θ) = 2k−2trΣ2, and that ∇yθ̂ = 2E0yI(θ̂ > 1/

√
k)

for the indicator function I(·). Since ∇y∇′
yθ̂ = 2E0/(k − p)I(θ̂ > 1/

√
k), it is seen

that ∆(θ) = −2(p + 1) and ∆c(θ) = −2ρ(θ) − 2tr [Σ−1D]/k. For pattern (b), we also
investigate the performances for the Fay-Herriot estimator with the truncation at k−1.
For the truncated Fay-Herriot estimator, B(θ) = 2{ktr [Σ−2] − (tr [Σ−1])2}/(tr [Σ−1])3,
V (θ) = 2k/(tr [Σ−1])2, ∇yθ̂ = 2Σ−1y/y′Σ−2yI(θ̂ > k−1), ∆(θ) = −2(p + 1) and
∆c(θ) = −2ρ(θ)− 2tr [Σ−2D]/tr [Σ−1].

[Simulation experiment I] Let us consider the case that x′
aβ = 0 for simplic-

ity as handled in Chatterjee, et al . (2008). Then, µs = vs, µ̂
EB
s = {1 − γs(θ̂)}ys and

MSE(θ, µ̂s(θ̂)) = ds−dsγs(θ)+E[{γs(θ̂)−γs(θ)}2y2s ] for γs(θ) = ds/(θ+ds). We prepare
the true values of MSE(θ, µ̂s(θ̂)) in advance, which can be computed based on 100,000
simulated data. The relative bias and the risk functions of MSE estimator mses are given
by

Bs(θ,mses) =100× E
[
mses −MSE(θ, µ̂s(θ̂))

]
/MSE(θ, µ̂s(θ̂)),

Rs(θ,mses) =100× E
[{

mses −MSE(θ, µ̂s(θ̂))
}2
]
/{MSE(θ, µ̂s(θ̂))}2.

For confidence interval CIs of µs = vs, the coverage probability and the length of CIs are
given by

CPs(θ, CIs) =P
[
µs ∈ CIs

]
,

ELs(θ, CIs) =E
[
Length of CIs

]
.
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These values are computed as average values based on 10,000 simulation runs where the
size of the bootstrap sample is 1,000. Further, those values are averaged over areas within
groups Gi, i = 1, . . . , 5.

Concerning the MSE estimation, we handle the four estimators mse, mse∗, mseBL

and mseE given in (4.5), (4.3), (4.4) and (4.6), which are referred as TLap, PBap, PBbl
and ExactU, respectively, since TLap is based on the Taylor approximation, PBap uses
the parametric bootstrap procedure based on the approximation, PBbl is the parametric
bootstrap method of Butar and Lahiri (2003) and ExactU is an exact unbiased estima-
tor. The values of their relative biases 102 × Bs(θ,mses) and risks 102 × Rs(θ,mses) by
simulation are reported in Table 1, where the Prasad-Rao estimator is treated in columns
(A) and (B) and the Fay-Herriot estimator is treated in column (C).

Since the ExactU is an unbiased estimator, it is clear that the values of the bias of
ExactU are quite small, but it has very large risks. This means that estimating the MSE
unbiasedly does not necessarily lead to improvement of the risk, but rather yields large
variability in general. Investigating the relative biases and risks of TLap, PBap and PBbl
in details, we can see that TLap is a positive bias, but PBap and PBbl have negative
biases in the column (A) for appropriately balanced di’s, and TLap has a slightly smaller
risk than others. Although the relative biases and the risks of TLap, PBap and PBbl are
small in (A), their values are large in the extreme case (B) with quite large di in group
G1. Especially, TLap have larger relative biases and risks except group G1. This may
be caused by the estimator of θ. We thus investigate the case (C) where the Fay-Herriot
estimator is used for θ. As indicated in (C), the biases and risks of TLap, PBap and PBbl
are reasonably small for the Fay-Herriot estimator. In comparison of PBap and PBbl, it
is seen that PBbl has a slightly smaller bias, while PBap has a slightly smaller risk, but
their difference is little.

Thus, we suggest from Table 1 that the estimators TLap, PBap and PBbl with the
Prasad-Rao estimator are good in pattern (a), but for pattern (b), the use of the Fay-
Herriot estimator in TLap, PBap and PBbl is recommendable. It is also clear that the
exact unbiased estimator ExactU is not useful.

Concerning the interval estimation, we handle the four confidence intervals ICEB,
ICEB∗
1 , ICEB∗

2 and ICLL given in (4.9), (4.7), (4.8) and (4.10), which are referred as TLap,
PB1, PB2 and PBcll, respectively. The values of their coverage probabilities 102 × CP
and expected lengths 102 × EL by simulation are reported in Table 2.

In (A) for pattern (a) in Table 2, three confidence intervals PB1, PB2 and PBcll have
slightly smaller coverage probabilities than 95% nominal coefficient, but their differences
are not significant. TLap satisfies the nominal confidence level, but it has a tendency
to take slightly larger coverage probability than 95%. In the case (B) for pattern (b),
however, the parametric bootstrap procedures PB1, PB2 and PBcll are not good since
their coverage probabilities are much smaller than the nominal confidence coefficient. As
defined in (4.2), the conditional distribution of y∗a given y is N (x′

aβ̂(θ̂), θ̂ + da), and the
variability of y∗ strongly depends on the estimate θ̂. This implies that we need to use an
estimator of θ with higher precision. Thus, we employ the Fay-Herriot estimator instead
of the Prasad-Rao estimator. The resulting CP and EL are given in the column (C).
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Table 1: Values of relative biases and risks of the four MSE estimators for θ = 1

bias B(θ,mse) risk R(θ,mse)

di MSE TLap PBap PBbl ExactU TLap PBap PBbl ExactU

(A) pattern (a) for the Prasad-Rao estimator

G1 0.7 0.438 1.98 −2.50 −2.51 0.04 3.4 7.4 8.3 128.6

G2 0.6 0.398 2.21 −2.24 −2.33 −0.08 2.6 6.5 7.4 100.9

G3 0.5 0.354 2.41 −1.97 −1.98 0.00 1.8 5.5 6.3 81.8

G4 0.4 0.303 2.60 −1.67 −1.69 −0.37 1.0 4.4 5.2 60.0

G5 0.3 0.244 2.78 −1.31 −1.18 −0.26 0.4 3.3 4.0 41.4

(B) pattern (b) for the Prasad-Rao estimator

G1 4.0 0.909 8.73 −11.48 −10.72 0.97 28 45 52 2261

G2 0.6 0.425 43.66 −9.06 −8.81 −0.18 25 15 17 159

G3 0.5 0.378 47.95 −8.93 −8.53 −0.12 35 13 15 136

G4 0.4 0.325 52.99 −8.69 −8.19 −0.61 51 11 12 109

G5 0.1 0.100 60.01 −5.48 −4.17 0.21 105 2 3 27

(C) pattern (b) for the Fay-Herriot estimator

G1 4.0 0.854 −1.59 −2.48 −2.08 1.55 22 23 25 2744

G2 0.6 0.403 −0.40 0.21 0.09 0.01 4 6 8 111

G3 0.5 0.358 −0.20 0.88 0.82 −0.23 3 5 7 86

G4 0.4 0.306 0.05 1.77 1.75 −0.51 2 4 6 64

G5 0.1 0.094 2.14 6.79 8.09 −0.05 0 1 4 11

As indicated, coverage probabilities of all the confidence intervals are improved in the
sense that they are close to 95%. Especially, PB2 and PBcll have superior behaviors. The
difference between PB1 and PB2 appears in the coverage probability at G1 in the case (C).
In fact, mse∗ sometimes takes negative values in this case, and the resulting confidence
interval PB1 cannot construct an interval, which yields 94.6% coverage probability at G1,
slightly smaller than the nominal confidence coefficient. PB2 and PBcll are free from such
a drawback. Comparing PB2 and PBcll in case (C), we see that PB2 has slightly smaller
EL than PBcll, but the difference is quite small.

Thus, we suggest from Table 2 that the confidence intervals TLap, PBap and PB-
cll with the Prasad-Rao estimator are not bad in pattern (a), but for pattern (b), the
confidence intervals PB2 and PBcll with the Fay-Herriot estimator are good.

[Simulation experiment II] We next investigate the performances of AIC and
conditional AIC derived in the previous sections through simulation and compare them
in terms of the frequencies of selecting the true model.

Let x1, . . . ,xk be generated from Np(0,Σx) where Σx = (1−ρx)Ip+ρxJp for ρx = 0.1,
where Jp = jpj

′
p for jp = (1, . . . , 1)′, a p-vector of ones. Suppose that the true model is

given by

(p∗) y = Xβ∗ + v + ϵ,
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Table 2: Values of coverage probability and expected length of the four confidence intervals
with nominal confidence coefficient 95% for θ = 1

cov. prob. 102 × CP expected length EL

di TLap PB1 PB2 PBcll TLap PB1 PB2 PBcll

(A) pattern (a) for the Prasad-Rao estimator

G1 0.7 96.2 94.0 94.0 93.8 2.78 2.62 2.63 2.62

G2 0.6 96.4 94.2 94.3 93.9 2.64 2.50 2.50 2.49

G3 0.5 96.2 94.2 94.2 94.0 2.47 2.35 2.35 2.34

G4 0.4 96.0 94.3 94.4 94.0 2.27 2.17 2.17 2.16

G5 0.3 96.2 94.7 94.7 94.4 2.02 1.94 1.94 1.93

(B) pattern (b) for the Prasad-Rao estimator

G1 4.0 99.6 95.7 97.9 89.3 7.90 4.20 4.52 3.95

G2 0.6 98.8 92.9 93.1 91.0 5.44 2.56 2.57 2.51

G3 0.5 98.7 92.8 93.0 91.3 5.00 2.39 2.40 2.36

G4 0.4 98.5 92.6 92.7 91.5 4.44 2.20 2.20 2.17

G5 0.1 97.4 93.8 93.8 93.5 1.73 1.20 1.21 1.19

(C) pattern (b) for the Fay-Herriot estimator

G1 4.0 96.2 94.6 95.9 95.3 4.05 3.94 4.00 4.15

G2 0.6 96.2 95.2 95.3 95.2 2.66 2.60 2.61 2.67

G3 0.5 96.1 95.2 95.3 95.3 2.50 2.45 2.45 2.50

G4 0.4 96.0 95.2 95.3 95.2 2.30 2.26 2.27 2.30

G5 0.1 95.5 95.7 95.7 95.2 1.25 1.26 1.26 1.23

Table 3: Frequencies selected by the five criteria AIC, AIC∗
1 , AIC

∗
2 , cAIC and cAIC∗

for k = 15, θ = 1 and the Prasad-Rao estimator: the dimension of a full model is p = 7
and the true model is (3)

pattern (a) pattern (b)

(m) AIC AIC∗
1 AIC∗

2 cAIC cAIC∗ AIC AIC∗
1 AIC∗

2 cAIC cAIC∗

(1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.5

(2) 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 1.6 3.5

(3) 62.7 60.2 62.2 73.1 67.4 58.9 56.4 57.9 64.0 57.0

(4) 13.7 13.9 12.7 12.4 11.8 13.1 13.9 12.2 13.6 13.3

(5) 8.5 9.0 8.5 6.2 6.7 9.6 9.9 8.7 8.7 8.5

(6) 7.7 8.3 8.0 4.5 5.8 8.9 9.5 9.4 6.6 7.5

(7) 7.4 8.4 8.4 3.5 6.1 9.3 10.1 11.5 5.2 8.4

(3) + (4) 76.4 74.1 74.9 85.1 79.2 72.0 70.3 70.1 77.6 70.3
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where β∗ = (β1, . . . , βp∗ , 0, . . . , 0)
′ for 1 ≤ p∗ ≤ p, and v and ϵ are mutually independent

random variables having v ∼ Nk(0, θI) and ϵ ∼ Nk(0,D). Also, βℓ for 1 ≤ ℓ ≤ p∗ is
generated as a random variable distributed as βℓ = 2(−1)ℓ+1{1 + U(0, 1)} for a uniform
random variable U(0, 1) on the interval (0, 1). We here handle the case that θ = 1, p = 7,
p∗ = 3 and k = 15. Let (m) be the set {1, . . . ,m}, and we write the model using the first
m regressor variables β1, . . . , βm by Mm or simply (m). Then, the full model is (7) and
the true model is (p∗). As candidate models, we consider the nested subsets (1), . . . , (7)
of {1, . . . , 7}, namely,

(m) y = Xβ(m) +Zv + ϵ,

where β(m) = (β1, . . . , βm, 0, . . . , 0)
′. Corresponding to the model (m), we generete ran-

dom variables from the parametric bootstrap model y∗ = Xβ̂
(m)

+ Zv∗ + ϵ∗, where v∗

and ϵ∗ are defined below (4.2).

We compare the five selection criteria in the sense of frequency of selecting the true
model (3). The criteria we examine are the existing procedures AIC and cAIC based
on the Taylor series expansion, and the proposed ones AIC∗

1 , AIC
∗
2 and cAIC∗ based on

the parametric bootstrap method. In the simulation experiments, we use the Prasad-Rao
estimator for θ. For each criterion and each candidate model (m), the number of selecting
the model (m) is counted for 10,000 data set. We thus obtain the frequencies of the
model (m) selected by the criteria by dividing the number by 10,000. These frequencies
are reported in Table 3, where the last column denotes the sum of two frequencies of
(3) and (4). Although the model (4) is not true, it includes the true model (3), so that
it may be not bad to look at the sum of the two frequencies. From Table 3, it is seen
that the parametric bootstrap procedures AIC∗

1 , AIC
∗
2 and cAIC∗ are slightly worse than

the existing criteria AIC and cAIC for patterns (a) and (b). For pattern (a), conditional
information criteria cAIC and cAIC∗ have higher frequencies than the unconditional ones
AIC and AIC∗

i , i = 1, 2. It is also seen that the differences in AIC, AIC∗
1 and AIC∗

2

are not significant. The frequencies of all the criteria are smaller in pattern (b) than in
pattern (a).

The pattern (b) is the extreme case, and it may be better to use the Fay-Herriot
estimator instead of the Prasad-Rao estimator. Table 4 reports the frequencies of the five
criteria when the Fay-Herriot estimator is used for θ. From this table, we can see that the
parametric bootstrap procedures AIC∗

1 , AIC
∗
2 and cAIC∗ are much improved in light of

frequency, and they are slightly better than AIC and cAIC.

Through these experiments, cAIC and cAIC∗ with the Prasad-Rao estimator are
good for pattern (a) and that the use of the Fay-Herriot estimator for θ is recommendable
for pattern (b). However, it seems that there are not significant differences among the
frequencies of the five information criteria, and we need to examine more abour their
behaviors in other situations and models as a future study.
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Table 4: Frequencies selected by the five criteria AIC, AIC∗
1 , AIC

∗
2 , cAIC and cAIC∗

for k = 15, θ = 1 and the Fay-Herriot estimator: the dimension of a full model is p = 7
and the true model is (3)

pattern (b)

(m) AIC AIC∗
1 AIC∗

2 cAIC cAIC∗

(1) 0.0 0.0 0.0 0.7 1.5

(2) 0.0 0.0 0.0 1.5 3.8

(3) 59.1 66.4 66.4 63.1 65.5

(4) 12.8 10.3 10.3 13.8 11.9

(5) 9.6 7.5 7.5 8.3 6.0

(6) 8.6 7.0 7.0 6.2 5.1

(7) 9.7 8.6 8.6 6.0 6.0

(3) + (4) 71.9 76.7 76.7 76.9 77.4

5 An Empirical Study Based on the Nested Error

Regression Model

In this section, we investigate whether the proposed procedures work practically through
the posted land price data. To analyze the data, we use the nested error regression model,
which has been extensively employed in the literature as a unit level model since Battese,
et al . (1988).

5.1 Nested error regression model

The nested error regression model (NERM) is described as

yab = x′
abβ + va + εab, a = 1, . . . , k, b = 1, . . . , na, (5.1)

where k is the number of small areas, N =
∑k

a=1 na, xab is a p × 1 vector of ex-
planatory variables, β is a p × 1 unknown common vector of regression coefficients,
and va’s and εab’s are mutually independently distributed as va ∼ N (0, σ2

v) and εab ∼
N (0, σ2) for unknown σ2

v and σ2. Let Xa = (xa1, . . . ,xa,na)
′, X = (X ′

1, . . . ,X
′
k)

′,
ya = (ya1, . . . , ya,na)

′, y = (y′
1, . . . ,y

′
k)

′ and let ϵ be similarly defined. Let v = (v1, . . . , vk)
′

and Z = block diag(j1, . . . , jk) for ja = (1, . . . , 1)′ ∈ Rna . Then, the model is expressed
in vector notations as y = Xβ +Zv + ϵ.

To estimate σ2 and σ2
v , we use the Prasad-Rao estimators, which are given as follows:

Let S = y′(IN −X(X ′X)−1X ′)y and S1 = y′(E −EX(X ′EX)−1X ′E)y where E =
block diag(E1, . . . ,Ek) for Ea = Ia − n−1

a Ja. Then, unbiased estimators of σ2 and σ2
v

are given by

σ̂2U = S1/(N − k − p) and σ̂2U
v = {S − (N − p)σ̂2U}/N∗,
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where N∗ = N−tr {(X ′X)−1
∑k

a=1 n
2
axax

′
a}. Since σ̂2U

v takes a negative value with a posi-
tive probability, it may be reasonable to use the truncated estimator σ̂2TR

v = max{σ̂2U
v , 0}.

For estimator σ̂2U and σ̂2TR
v given above, Model 2 in (2.2) is described as

y∗ab = x′
abβ̂(σ̂

2U , σ̂2TR
v ) + v∗a + ε∗ab, a = 1, . . . , k, b = 1, . . . , na, (5.2)

where v∗a’s and ε∗ab’s are mutually independently distributed as v∗a ∼ N (0, σ̂2TR
v ) and

ε∗ab ∼ N (0, σ̂2U). The estimators σ̂2U∗, σ̂2TR∗
v and β̂

∗
(σ̂2U∗, σ̂2TR∗

v ) can be obtained from

y∗ab’s by using the same techniques used to obtain σ̂2U , σ̂2TR
v and β̂(σ̂2U , σ̂2TR

v ).

When we want to estimate the mean µs = x′
sβ + vs of the s-th small area, the

EBLUP is µ̂EB
s = x′

sβ̂(σ̂
2U , σ̂2TR

v )+
(
nsσ̂

2TR
v /(σ̂2U+nsσ̂

2TR
v )

)
(ys−x′

sβ̂(σ̂
2U , σ̂2TR

v )) for xs =∑ns

j=1 xsj/ns. Then, the functions g1(σ
2, σ2

v) and g2(σ
2, σ2

v) are expressed as g1(σ
2, σ2

v) =

σ2σ2
v(σ

2 +nsσ
2
v)

−1 and g2(σ
2, σ2

v) = (σ2)2(σ2 +nsσ
2
v)

−2x′
s(X

′Σ−1X)−1xs. Then, the esti-
mator of MSE of EBLUP and the confidence intervals based on the parametric bootstrap
method are given in (2.9), (2.12) and (2.13), where in this model,

g∗3 = nsE∗
[
{σ̂2TR∗

v (σ̂2U∗ + nsσ̂
2TR∗
v )−1 − σ̂2TR

v (σ̂2U + nsσ̂
2TR
v )−1}2(σ̂2U∗ + nsσ̂

2TR
v )

∣∣y].
Also, AIC and conditional AIC are given in (2.17) and (2.20).

5.2 Posted land price data

We now apply the proposed procedures to the posted land price data along the Keikyu
train line which connects the suburbs in Kanagawa prefecture to the Tokyo metropolitan
area. Since those who live in the suburbs take this line to work or study in Tokyo on
weekdays, it may be expected that the land price depends on the distance from Tokyo.

A data set of the posted land price data in 2001 and their covariates are available
for 48 stations on the Keikyu train line, and we consider each station as a small area,
namely, k = 48. For the a-th station, there are data of na land spots, where the average
of na’s is 3.73. For b = 1, . . . , na, we use five kinds of observations yab, TRNa, DSTab,
FOOTab and FARab, where yab denotes the value of the posted land price (Yen in the
hundred of thousands) per m2 of the b-th spot, TRNa is the time to take by train from
the station a to the Tokyo station around 8:30 in the morning, DSTab is the geographical
distance from the spot b to the nearby station a, FOOTab is the time to take on foot from
the spot b to the nearby station a and FARab denotes the floor-area ratio of the spot b.
As regressor variables, we consider nine variables FARab, TRNa, TRN2

a , DSTab, DST 2
ab,

FOOTab, FOOT 2
ab, TRNa ×DSTab and TRNa × FOOTab, which are denoted by x1, x2,

x3, x4, x5, x6, x7, x8 and x9. Also, the constant term is denoted by x0. Then we can treat
nested error regression model (5.1) with the regressor variables x0-x9 as a full model.

Table 5 reports values of AIC∗
1 and cAIC∗ given in (2.17) and (2.20) for several

candidate models, where the regressor variables which minimizes the information cri-
teria are added to the model based on the forward stepwise selection. Among these
candidate models, AIC∗

1 selects both {x0, x1, x2, x3} and {x0, x1, x2, x3, x4}. Although
the minimum of cAIC∗ is attained at the model with {x0, x1, x2, x3}, we can select the
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Table 5: AIC and conditional AIC for selecting regressor variables in the posted land
price data

m xi AIC∗
1 cAIC∗ σ̂2U σ̂2TR

v

1 x0 566 512 0.796 1.188
2 x0, x1 461 415 0.449 0.481
3 x0, x1, x2 407 396 0.452 0.131
4 x0, x1, x2, x3 395 389 0.456 0.079
5 x0, x1, x2, x3, x4 395 390 0.459 0.071
6 x0, x1, x2, x3, x4, x9 398 393 0.462 0.070
7 x0, x1, x2, x3, x4, x8, x9 465 425 0.466 0.371
10 all xi’s 489 451 0.470 0.416

variables {x0, x1, x2, x3, x4} since their difference is not significant. Since it may be bet-
ter to explain the model including more regressor variables, we suggest the model with
{x0, x1, x2, x3, x4}, namely,

yab = β0 + FARaβ1 + TRNaβ2 + (TRNa)
2β3 + FOOTaβ4 + va + εab,

for a = 1, . . . , k and b = 1, . . . , na. The parameters are estimated by σ̂2 = 0.45936, σ̂2
v =

0.07154 and (β̂0, β̂1, β̂2, β̂3, β̂4) = (5.1288, 6.3937×10−3,−0.1076, 7.0710×10−4,−8.1562×
10−5). This result demonstrates that the land prices are not only decreasing as a quadratic
function of TRNa, time to take from the nearby station to Tokyo station, but also de-
creasing in FOOTab, time to take from the land sopt to the nearby station.

We now estimate the average land price per m2 around the s-th station, namely,
µs = x′

sβ + vs for s = 1, . . . , 48 where xs is the mean of the regressor variables salected
above. For some selected stations, the column of ‘prediction’ in Table 6 reports the values
of ns, ys, x

′
sβ̂ and EBLUP µ̂EB

s , where all the values are given in Yen in the thousands.
Also, the table reports the values of

√
mse∗s, which is the square of estimates of MSE

given in (2.9), and σ̂/
√
ns, which is the square of estimates of the conditional variance of

ys given vs. The lower and upper end-points of the confidence interval ICEB∗
2 , given in

(2.13), with 95% confidence coefficient and the length of the interval are reported in the
column of ‘confidence interval’ in Table 6.

From Table 6, it is revealed that for smaller ns, the EBLUP µ̂EB
s shrinks ys much

more toward x′
sβ̂, which results in smaller values

√
mse∗s than σ̂/

√
ns. For example,√

mse∗s is about half of σ̂/
√
ns for ns = 1, but

√
mse∗s is equal to σ̂/

√
ns for ns = 12.

Also, it is seen that the confidence intervals give shorter intervals for larger ns. Thus,
these observations show that the MSE estimator and the confidence interval based on the
parametric bootstrap method work well in this example.
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Table 6: Values of EBLUP, MSE estimates and confidence intervals for the average land
price (Yen in the thousands)

prediction confidence interval

s ns ys x′
sβ̂ µ̂EB

s

√
mse∗s σ̂/

√
ns lower upper length

4 1 569 458 473 31 67 400 546 146
8 2 401 426 420 28 47 356 484 128
12 2 316 358 348 27 47 287 409 122
16 2 285 317 309 27 47 249 369 121
20 1 270 300 296 28 67 231 361 130
24 3 312 350 338 26 39 280 395 114
28 5 246 235 240 24 30 187 292 105
32 12 247 177 223 19 19 181 265 84
36 3 187 209 202 26 39 145 260 114
40 3 285 270 275 26 39 216 333 117
44 5 185 188 187 24 30 134 240 106
48 4 159 203 186 28 33 120 252 132

6 Concluding Remarks

In this paper, we have suggested the procedures based on the parametric bootstrap meth-
ods in the estimation of the MSE of EBLUP, the confidence interval based on EBLUP, and
variable selection problems based on AIC and conditional AIC. These procedures are not
only easy to implement practically, but also justified theoretically to have second-order
approximations. Also their performances have been investigated through simulation ex-
periments and the empirical study, and it has been shown that the proposed procedures
work well and are useful. Since existing procedures derived based on the Taylor series
expansions are harder to compute in models with more parameters, the results obtained
in this paper show that we can replace the existing procedures with the proposed ones. As
shown in Kubokawa (2011), especially, the conditional AIC includes complicated terms
in the penalty part, so that the parametric bootstrap method suggested in this paper is
useful as an alternative procedure.
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