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Abstract

For estimating the realized volatility and covariance by using high frequency data, we have intro-
duced the Separating Information Maximum Likelihood (SIML) method when there are possibly
micro-market noises by Kunitomo and Sato (2008a, 2008b, 2010a, 2010b). The resulting estimator
is simple and it has the representation as a specific quadratic form of returns. We show that the
SIML estimator has reasonable asymptotic properties; it is consistent and it has the asymptotic
normality (or the stable convergence in the general case) when the sample size is large under
general conditions including some non-Gaussian processes and some volatility models. Based on
simulations, we find that the SIML estimator has reasonable finite sample properties and thus it
would be useful for practice. The SIML estimator has the asymptotic robustness properties in
the sense it is consistent when the noise terms are weakly dependent and they are endogenously
correlated with the efficient market price process. We also apply our method to an analysis of
Nikkei-225 Futures, which has been the major stock index in the Japanese financial sector.
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1. Introduction

Recently a considerable interest has been paid on the estimation problem of the

realized volatility by using high-frequency data in financial econometrics. Now it is

possible to use a large number of high-frequency data in financial markets including

the foreign exchange rates markets and stock markets. Although there were some

discussion on the estimation of continuous stochastic processes in the statistical lit-

erature, the earlier studies often had ignored the presence of micro-market noises

in financial markets when they tried to estimate the underlying stochastic process.

Because there are several reasons why the micro-market noises are important in

high-frequency financial data both in economic theory and in statistical measure-

ment, several new statistical estimation methods have been developed. See Zhou, B.

(1998), Anderson, T.G., Bollerslev, T. Diebold, F.K. and Labys, P. (2000), Gloter

and Jacod (2001), Ait-Sahalia, Y., P. Mykland and L. Zhang (2005), Hayashi and

Yoshida (2005), Zhang, L., P. Mykland and Ait-Sahalia (2005), Hansen P. and A.

Lunde (2006), Ubukata and Oya (2009), Barndorff-Nielsen, O., P. Hansen, A. Lunde

and N. Shepard (2008), Hansen, P., J. Large and A. Lunde (2008), Xiu (2008), Zhang

(2008), and Christensen, Kinnebrock and Podolskij (2009) for further discussions on

the related topics.

The main purpose of this paper is to develop a new statistical method for esti-

mating the realized volatility and the realized covariance by using high frequency

data in the presence of possible micro-market noise. The estimation method we

have proposed in Kunitomo and Sato (2008a, 2008b, 2010a, 2010b) is called the

Separating Information Maximum Likelihood (SIML) estimator, which is regarded

as a modification of the standard Maximum Likelihood (ML) method under the

Gaussian process. The SIML estimator of the realized volatility and covariance for

the underlying continuous (diffusion type) process has the representation as a spe-

cific quadratic form of returns. As we shall show in this paper, the SIML estimator

has reasonable asymptotic properties; it is consistent and it has the asymptotic nor-

mality (or the stable convergence in the general case) when the sample size is large
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under general situations including some non-Gaussian processes and some volatil-

ity models. There has been a theoretical development of the ML estimation of one

dimension diffusion process with measurement errors by Gloter and Jacod (2001).

Our method could be interpreted as a modification of their procedure and also it

is related to the method proposed by Zhou (1998) and other estimation methods.

However, the SIML approach has some different features from their methods and it is

a new estimation method. (Recently Cai, Munk and Schmidt (2010) have developed

a similar approach and examined the estimation problem of the realized volatility in

a constant volatility model. As we shall see later, there are several different aspects

of their approach from the SIML estimation method in this paper.)

The main motivation of our study is the fact that it is usually difficult to han-

dle the exact likelihood function and calculate the exact ML estimator of unknown

parameters from a large number of data for the underlying continuous stochastic

process with micro-market noise in the multivariate non-Gaussian cases. This as-

pect is quite important for the analysis of multivariate high frequency data in stock

markets and their futures markets. Instead of calculating the exact likelihood func-

tion, we try to separate the information of the signal and noise from the likelihood

function and then use each information separately. This procedure simplifies the

maximization of the likelihood function and make the estimation procedure appli-

cable to multivariate high frequency data in a straightforward manner. We denote

our estimation method as the Separating Information Maximum Likelihood (SIML)

estimator because it gives an interesting extension of the standard ML estimation

method. The main merit of the SIML estimation is its simplicity and then it can

be practically used for the multivariate (high frequency) financial time series. The

SIML estimator does have not only desirable asymptotic properties in the situations

including some non-Gaussian processes and volatility models, but also it has rea-

sonable finite sample properties. Also Kunitomo and Sato (2010a,b) have shown

that the SIML estimator has the asymptotic robustness properties in the sense it is

consistent when the noise terms are weakly dependent and they are endogenously

correlated with the efficient market price process. Although the real motivation of
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this study is an application of a multivariate high frequency data, we shall introduce

and discuss only the basic properties of the SIML estimation method with equidis-

tance observations in this paper because of the resulting simplicity. For applications

we need to discuss additional features such as the micro-market structure with the

multivariate high frequency data and some details of the application to the analy-

sis of Nikkei-225 futures market have been reported in Kunitomo and Sato (2008b,

2010b).

In Section 2 we introduce the standard model and the SIML estimation of the

realized volatility and the realized covariance with micro-market noise. We give

the asymptotic properties of the SIML estimator in the situation first when the

instantaneous covariance function is constant, that is, the standard (or simple) case,

and then in the time-varying deterministic case and the time varying stochastic case.

Then in Section 3 we shall report some finite sample properties of the SIML estimator

and a comparison with the realized kernel estimation by Banforff-Nielsen et al.

(2008) based on a set of simulations. In Section 4 we shall discuss an application

of the SIML method to the Nikkei-225 futures data at Osaka Securities Exchange

(OSE) and then in Section 5 some brief remarks will be given. The mathematical

derivations of our theoretical results will be given in Section 6. Tables and Figures

based on the simulations will be presented in Appendix.

2. The SIML Estimation of Realized Volatility and Covari-

ance with Micro-Market Noise

2.1 The Statistical Models in Continuous Time and Dis-

crete Time

Let yij be the i−th observation of the j−th (log-) price at tni for i = 1, · · · , n; j =

1, · · · , p; 0 = tn0 ≤ tn1 ≤ · · · ≤ tnn = 1. We set yi = (yi1, · · · , yip)
′
be a p×1 vector and

Yn = (y
′
i) be an n × p matrix of observations. The underlying continuous process

xi at tni (i = 1, · · · , n) is not necessarily the same as the observed prices and let
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v
′
i = (vi1, · · · , vip) be the vector of the additive micro-market noise at tni , which is

independent of xi. Then we have

yi = xi + vi(2.1)

where vi are a sequence of independent random variables with E(vi) = 0 and

E(viv
′
i) = Σv. In this paper we focus on the equi-distance case with hn = tni −tni−1 =

1/n (i = 1, · · · , n).

We assume that

xt = x0 +
∫ t

0
C(x)

s dBs (0 ≤ t ≤ 1),(2.2)

where Bs is a q × 1 (q ≥ 1) vector of the standard Brownian motions, and C(x)
s =

(c
(x)
gh (s)) is a p × q matrix which is progressively measurable in [0, s] × Fs and

predictable. We write the instantaneous diffusion functions Σ(x)
s (= (σ

(x)(s)
gh )) =

C(x)
s C(x)′

s (Fs is the σ−field generated by {Br, r ≤ s}). For the construction of

stochastic integration and the Ito’s stochastic calculus, see Chapters II and III of

Ikeda and Watanabe [1989], for instance.

Then the main statistical problem in this paper is to estimate the quadratic

variations and co-variations

Σx = (σ
(x)
gh ) =

∫ 1

0
Σ(x)

s ds(2.3)

of the underlying continuous process {xt} and also the variance-covariance Σv =

(σ
(v)
gh ) of the noise process from the observed discrete time process yi (i = 1, · · · , n).

We use the notation that σ
(x)
gh (s) and σ

(v)
gh are the (gh)-th element of Σ(x)

s and Σv,

respectively.

In this paper three different situations on the instantaneous covariance function

shall be considered and the related problems shall be discussed mainly for the expos-

itory purpose. (i) When the coefficient matrix is constant, (i.e. C(x)
s = C(x)), we call

the standard case or the simple case. Since the instantaneous variance and covari-

ance are constant over time, the realized variance and covariance are constant. (ii)

When the coefficient matrix is time-varying, but it is a deterministic function of time

(C(x)
s ), we call the deterministic time-varying case. We shall give the asymptotic
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properties of the SIML estimator when the instantaneous variance and covariance

are time-varying, but the realized variance and covariance are constant (or determin-

istic). (iii) When the coefficient matrix is time-varying and it is a stochastic function

of time (C(x)
s ), we call the stochastic case. Then we shall investigate the asymptotic

properties of the SIML estimator under some additional conditions when the real-

ized variance and covariance are stochastic. In the last case it may be convenient to

consider the situation when C(x)
s = C

(x)
tni−1

in (2.2) (tni−1 ≤ s < tni ; i = 1, · · · , n) (we

may call the locally constant case), which is measurable with respect to the σ−field

Ftni−1
(we denote Fn,i−1 in the following) and thus they can be stochastic. This

formulation may be the standard situation when we have the underlying diffusion

process as the signal term and the discrete (observed) time series models by using

the framework of the Ito’s stochastic calculus. (See Chapters II and III of Ikeda and

Watanabe [1989], for instance.) Then we write the conditional covariance function

of the (underlying) price returns without micro-market noise as

E
[
(xi − xi−1)(xi − xi−1)

′|Fn,i−1

]
=
∫ ti

ti−1

Σ(x)
s ds ,

which corresponds to 1
n
Σ

(x)
tni−1

= 1
n
C

(x)
tni−1

C
(x)′

tni−1
, where xi−xi−1 is a sequence of martin-

gale differences, Σ(x)
s are the time-dependent (instantaneous) conditional variance

and Fn,i−1 is the σ−field generated by xj (j ≤ i − 1) with (2.2) and vj (j ≤ i − 1).

More generally, as n → ∞ we can consider the situation that the (true) realized

covariance of the returns

1

n

n∑
i=1

Σ
(x)
tni−1

−→ Σx =
∫ 1

0
Σ(x)

s ds ,(2.4)

which is a deterministic and constant matrix, and Σ
(x)
0 is the (fixed) initial condition.

It is the case when the (instantaneous) covariance function Σ(x)
s (0 ≤ s ≤ 1) is time-

varying and also it can be stochastic. In this paper we assume that

sup
0≤s≤1

∥Σ(x)
s ∥ < ∞ (a.s.)(2.5)

for the instantaneous covariance function. We shall discuss some examples of the

deterministic time varying (instantaneous) volatility function and the stochastic

time varying (instantaneous) volatility function in Section 3.
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2.2 The Standard Case

We first consider the situation when xi and vi (i = 1, · · · , n) are independent with

Σ(x)
s = Σx (0 ≤ s ≤ 1), and vi are independently, identically and normally dis-

tributed as Np(0,Σv). Then given the initial condition y0, we have

Yn ∼ Nn×p

(
1n · y′

0, In ⊗ Σv + CnC
′

n ⊗ hnΣx

)
,(2.6)

where 1
′
n = (1, · · · , 1), hn = 1/n (= tni − tni−1) and

Cn =



1 0 · · · 0 0

1 1 0 · · · 0

1 1 1 · · · 0

1 · · · 1 1 0

1 · · · 1 1 1


.(2.7)

In order to investigate the likelihood function in the standard case, we prepare the

next lemma, which may be of independent interest. (See Appendix A of Kunitomo

and Sato (2008a) for the proof.)

Lemma 1 : (i) Define an n × n matrix An by

An =
1

2



1 1 0 · · · 0

1 0 1 · · · 0

0 1 0 1 · · ·
0 0 · · · 0 1

0 · · · 0 1 0


.(2.8)

Then cos π( 2k−1
2n+1

) (k = 1, · · · , n) are the eigenvalues of An and the eigen vectors are

cos[π( 2k−1
2n+1

)1
2
]

cos[π( 2k−1
2n+1

)3
2
]

...

cos[π( 2k−1
2n+1

)(n − 1
2
)]

 (k = 1, · · · , n).(2.9)

(ii) Then we have the spectral decomposition

C−1
n C

′−1
n = PnDnP

′

n = 2In − 2An ,(2.10)
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where Dn is a diagonal matrix with the k-th elements

dk = 2

[
1 − cos(π(

2k − 1

2n + 1
))

]
(k = 1, · · · , n) ,(2.11)

C−1
n =



1 0 · · · 0 0

−1 1 0 · · · 0

0 −1 1 0 · · ·
0 0 −1 1 0

0 0 0 −1 1


(2.12)

and

Pn = (pjk) , pjk =

√√√√ 2

n + 1
2

cos

[
π(

2k − 1

2n + 1
)(j − 1

2
)

]
.(2.13)

We transform Yn to Zn (= (z
′
k)) by

Zn = h−1/2
n P

′

nC
−1
n

(
Yn − Ȳ0

)
(2.14)

where

Ȳ0 = 1n · y′

0 .(2.15)

We note that given the initial condition y0 the transformation is one-to-one and

each components of Zn are independent in the present situation. Then the likelihood

function under the Gaussian noise is given by

L∗
n(θ) =

(
1√
2π

)np n∏
k=1

|aknΣv + Σx|−1/2e

{
−1

2
z

′

k (aknΣv + Σx)
−1 zk

}
,(2.16)

where

akn = 4n sin2

[
π

2

(
2k − 1

2n + 1

)]
(k = 1, · · · , n) .(2.17)

Hence the maximum likelihood (ML) estimator can be defined as the solution of

maximizing

Ln(θ) =
n∑

k=1

log |aknΣv + Σx|−1/2 − 1

2

n∑
k=1

z
′

k[aknΣv + Σx]
−1zk .(2.18)
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From this representation we find that the ML estimator of unknown parameters is

a rather complicated function of all observations in general because each akn terms

depend on k as well as n. Let denote akn,n and then we can evaluate that akn,n → 0

as n → ∞ when kn = O(nα) (0 < α < 1
2
) since sin x ∼ x as x → 0. Also

an+1−ln,n = O(n) when ln = O(nβ) (0 < β < 1).

When kn is small, we expect that akn,n is small. Then we may approximate

2 × Ln(θ) by

L(1)
n (θ) = −m log |Σx| −

m∑
k=1

z
′

kΣ
−1
x zk .(2.19)

It is the standard likelihood function except the fact that we only use the first m

terms. (See Lemma 3.2.2 of Anderson (2003).) Then the SIML estimator of Σ̂x is

defined by

Σ̂x =
1

mn

mn∑
k=1

zkz
′

k .(2.20)

On the other hand, when ln is small and kn = n + 1 − ln, we expect that an+1−ln,n

is large. Thus we may approximate 2 × Ln(θ) by

L(2)
n (θ) = −

n∑
k=n+1−l

log |aknΣv| −
n∑

k=n+1−l

z
′

k[aknΣv]
−1zk .(2.21)

It is also the standard likelihood function approach except the fact that we only use

the last l terms. Then the SIML estimator of Σ̂
(v)

is defined by

Σ̂v =
1

ln

n∑
k=n+1−ln

a−1
knzkz

′

k .(2.22)

For both Σ̂v and Σ̂x, the number of terms mn and ln should be dependent on n.

Then we only need the order requirements that mn = O(nα) (0 < α < 1
2
) and

ln = O(nβ) (0 < β < 1) for Σx and Σv, respectively.

In the above construction we define the SIML estimator by approximating the

exact likelihood function under the Gaussian micro-market noise and the continuous

diffusion process with the deterministic covariance. As we shall discuss later, the

convergence rate of estimator of the realized volatility and covariance is not optimal

in the light of Gloter and Jacod (2001). However, the SIML estimator has some

asymptotic robustness as we have discussed in Kunitomo and Sato (2010a, b). The
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most important characteristic of the SIML estimator is its simplicity and it has some

important aspects for dealing with high-frequency data. It is because the number

of observations of tick data becomes enormous from the standard statistical sense.

It is quite easy to deal with the multivariate high-frequency data in our approach

as we demonstrated in Kunitomo and Sato (2008b, 2010b).

Since we use a linear transformation in (2.14) and Lemma 2 of Section 6, we can

alternatively write

Σ̂x(2.23)

=
1

m
(

2n

n + 1
2

)
m∑

k=1

[
n∑

i=1

Ri cos

[
π(

2k − 1

2n + 1
)(i − 1

2
)

]]  n∑
j=1

R
′

j cos

[
π(

2k − 1

2n + 1
)(j − 1

2
)

]′

=
n∑

i=j=1

ciiRiR
′

i +
n∑

i ̸=j=1

cijRiR
′

j ,

where Ri = yi − yi−1 and

cii = (
2n

2n + 1
)

1 +
1

2m

sin 4πm( i−1/2
2n+1

)

sin(π i−1/2
2n+1

)

 ,

cij =
1

2m
(

2n

2n + 1
)

sin 2πm( i+j−1
2n+1

)

sin(π i+j−1
2n+1

)
+

sin 2πm( i−j
2n+1

)

sin(π i−j
2n+1

)

 (i ̸= j) .

Hence we have an alternative representation of the SIML estimator in terms of asset

returns (i.e. yt − yt−1 = (yt,j − yt−1,j) with the observation interval hn). Then we

may find the relation between the SIML estimator and other estimation methods.

2.3 Asymptotic Properties of the SIML estimator in the

Simple Case

Since the SIML estimator has a simple representation, it is not difficult to derive

the asymptotic properties of the SIML estimator. In order to make our arguments

clear, we first consider the asymptotic normality of the SIML estimator of the real-

ized volatility and the realized covariance in the simple case, i.e., the instantaneous

covariance function is constant over time in Section 2.3. Then in Section 2.5 we
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shall consider the same problem in a more general setting on the time-varying (con-

ditional) covariance function. It may be appropriate here to stress the fact that we

do not assume the Gaussianity on the noise process to develop the analysis of the

asymptotic properties of the SIML estimator.

Let ri = xi − xi−1 and the (constant) covariance matrix is given by

E
[
n rir

′

i|Fn,i−1

]
= Σx(2.24)

for all i (i = 1, · · · , n). When C(x)
s (0 ≤ s ≤ 1) does not depend on s, we write

C(x)
s = Cx) and the realized covariance matrix Σx = (σ

(x)
gh ) is a constant (non-

negative definite) matrix. Then we have the next result and the proof will be given

in Section 6.

Theorem 1 : We assume that xi and vi (i = 1, · · · , n) are independent and they

follow (2.1) and (2.2) with C(x)
s = Cx, Σ(x)

s = C(x)
s C(x)′

x = Σx ≥ 0(non-negative

definite) for s ∈ [0, 1] and Σv ≥ 0. Define the SIML estimator Σ̂x = (σ̂
(x)
gh ) of

Σx = (σ
(x)
gh ) and Σ̂v = (σ̂

(v)
gh ) of Σv = (σ

(v)
gh ) by (2.20) and (2.22), respectively.

(i) For mn = nα and 0 < α < 1/2, as n −→ ∞

Σ̂x − Σx
p−→ O .(2.25)

(ii) For mn = nα and 0 < α < 0.4, as n −→ ∞

√
mn

[
σ̂

(x)
gh − σ

(x)
gh

]
w−→ N

(
0, σ(x)

gg σ
(x)
hh +

[
σ

(x)
gh

]2)
.(2.26)

The covariance of the limiting distributions of
√

mn[σ̂
(x)
gh −σ

(x)
gh ] and

√
mn[σ̂

(x)
kl −σ

(x)
kl ]

is given by σ
(x)
gk σ

(x)
hl + σ

(x)
gl σ

(x)
hk (g, h, k, l = 1, · · · , p).

(iii) For ln = nβ and 0 < β < 1, as n −→ ∞

Σ̂v − Σv
p−→ O .(2.27)

(iv) Furthermore, assume the moment condition E [v2
igv

2
jh] < ∞ for all i, j = 1, · · · , n; g, h =

1, · · · , p. Then √
ln
[
σ̂

(v)
gh − σ

(v)
gh

]
w−→ N

(
0, σ(v)

gg σ
(v)
hh +

[
σ

(v)
gh

]2)
.(2.28)
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The covariance of the limiting distributions of
√

ln[σ̂
(v)
gh − σ

(v)
gh ] and

√
ln[σ̂

(v)
kl − σ

(v)
kl ]

is given by σ
(v)
gk σ

(v)
hl + σ

(v)
gl σ

(v)
hk (g, h, k, l = 1, · · · , p).

It may be obvious that we have the joint normality of Σ̂x and Σ̂v as the limiting

distributions of the SIML estimator if we take a look at the proofs of Section 6. One

interesting observation is the result that the asymptotic covariance in (2.26) and

(2.28) do not depend on the fourth order moments of the noise term. This feature

has an important implication for the testing problems on the realized volatility in

the presence of micro-market noise. In the SIML approach the testing procedures

and confidence regions can be constructed rather directly by using (2.26) and (2.28)

for the covariance of the underlying continuous stochastic process and the covariance

of the noises. We can utilize the decomposition

1

n

n∑
k=1

zkz
′

k(2.29)

=
(

m

n

)
1

m

m∑
k=1

zkz
′

k +

(
n − l − m

n

)
1

n − l − m

n+1−l∑
k=m+1

zkz
′

k +

(
l

n

)
1

l

n∑
k=n+1−l

zkz
′

k

=
m

n
Σ̂

(1)

x +
n − l − m

n
Σ̂

(2)

x +
l

n
Σ̂

(3)

x (m + l < n),

where Σ̂
(i)

x (i = 1, 2, 3) are defined accordingly. Since they are asymptotically in-

dependent, we can construct the testing procedure and confidence region on any

elements of Σx and Σv based on them.

One simple testing example is to test the null-hypothesis H0 : σ(v)
gg = 0 vs.

H1 : σ(v)
gg > 0 for some j, where σ(v)

gg is the (g, g)-th element of Σv (g = 1, · · · , p).

For this problem we consider the test statistic

T1 =
√

mn


1

ln

n∑
k=n+1−ln

z2
kg

1

mn

mn∑
k=1

z2
kg

− 1

 ,(2.30)

where zk = (zkg) (k = 1, · · · , n; g = 1, · · · , p).

When H0 is true, (1/ln)
∑n

k=n+1−ln z2
kg diverges in probability because of (2.17) while

12



(1/mn)
∑mn

k=1 z2
kg converges to σ(x)

gg in probability. Hence it may be reasonable to use

this statistic for testing the null hypothesis H0. Under the null hypothesis H0, we

have the next result and the proof is given at the end of Section 6.

Corollary 1 : Assume 0 < α < β < 1 and the conditions of Theorem 1. Under

H0 : σ(v)
gg = 0 for some g (1 ≤ g ≤ p),

T1
d→ N(0, 2)(2.31)

as n → ∞.

It is straightforward to construct test statistics and testing procedures based

on the SIML estimator, which are valid asymptotically as the standard statistical

procedure, which is one of nice properties of the SIML approach.

2.4 An Optimal Choice of mn

Because the properties of the SIML estimation method crucially depend on the

choice of mn, which are dependent on n, we have investigated the asymptotic effects

as well as the small sample effects of several possibilities.

By using Lemma 4 and Lemma 5 with (6.9) and (6.12), the main order of the

bias of the SIML estimator is n−1∑mn
i=1 akn = O(n2α−1). Since the normalization of

the SIML estimator is in the form of
√

mn[σ̂(x)
gg −σ(x)

gg ] = Op(1), its variance is of the

order O(n−α). Hence when n is large we can approximate the mean squared error

of σ̂(x)
gg (g = 1, · · · , p) as

MSEn(α) = c1g
1

nα
+ c2gn

4α−2 ,(2.32)

where c1g and c2g are some constants.

The first term and the second term of (2.32) correspond to the order of the variance

and the squared bias, respectively. By minimizing MSEn(α) with respect to α, we

can obtain an optimal choice of mn.

Theorem 2 : An optimal choice of mn = nα (0 < α < 0.5) to minimize (2.32) with

13



respect to α, when n is large, is given by α∗ = 0.4.

By using Theorem 1, Lemma 3 and Lemma 4 of Section 6, we find that when

α = 0.4
√

mn

[
σ̂

(x)
gh − σ

(x)
gh − a

√
mn

]
w−→ N

(
0, σ(x)

gg σ
(x)
hh +

[
σ

(x)
gh

]2)
,(2.33)

where

a = σ
(v)
gh lim

n→∞

1
√

mn

n∑
k=1

akn = σ
(v)
gh

π2

3
.(2.34)

In this case we have some asymptotic bias, which is dependent upon the covariance

σ
(v)
gh . By using a set of simulations, we have investigated the finite sample properties

of the SIML estimator by choosing different mn.

It is possible to generalize the rule mn = [d nα] and d is a constant. When

p = q = 1, for instance, we use the notation Σx = σ2
x and Σv = σ2

v . Then it is

straightforward to show that an asymptotically optimal choice is α∗ = 0.4 and

d∗ =

[
9

2π4

σ4
x

σ4
v

]1/5

∼ 0.541

(
σ2

x

σ2
v

)0.4

.(2.35)

In most cases of our simulations we have reasonable estimates when we set α = 0.4

and d = 1. We may have a problem to use an estimate of the unknown signal-noise

ratio for d except d = 1 in practical applications. For ln we only have the condition

0 < β < 1 and we have reasonable estimate when we set β = 0.8 by using our results

in simulations. There could be some improvements on the finite sample properties

if we use different criteria for choosing mn.

2.5 Asymptotic Properties of the SIML estimator when the

Instantaneous Covariance function is Time-varying

It is important to investigate the asymptotic properties of the SIML estimator when

the instantaneous volatility function Σ(x)
s of the underlying asset price is not constant

over time. When the realized volatility is a positive (deterministic) constant a.s. (i.e.

14



σ
(x)
gh =

∫ 1
0 σ

(x)
gh (s)ds is not stochastic) while the instantaneous covariance function is

time varying, we have the consistency and the asymptotic normality of the SIML

estimator as n → ∞. For the deterministic time varying case we summarize the

asymptotic properties of the SIML estimator and the proof is given in Section 6.

Theorem 3 : We assume that xi and vi (i = 1, · · · , n) in (2.1) and (2.2) are

independent and Σ(x)
s = C(x)

s C(x)′
s ≥ 0. Assume (2.4), (2.5) and Σx is a constant (or

deterministic) matrix (a.s.). Define the SIML estimator Σ̂x = (σ̂
(x)
gh ) of Σx = (σ

(x)
gh )

by (2.20) and (2.22), respectively.

(i) For mn = nα and 0 < α < 0.5, as n −→ ∞

Σ̂x − Σx
p−→ O .(2.36)

(ii) For mn = nα and 0 < α < 0.4, as n −→ ∞

√
mn

[
σ̂

(x)
gh − σ

(x)
gh

]
d→ N [0, Vgh] ,(2.37)

provided that we assume the convergence of the asymptotic variance which is given

by

Vgh =
[∫ 1

0
σ(x)

gg (s)ds
] [∫ 1

0
σ

(x)
hh (s)ds

]
+
[∫ 1

0
σ

(x)
gh (s)ds

]2
+ plimn→∞

n∑
i,j=1

(mnc2
ij − 1)

[∫ ti

ti−1

σ(x)
gg (s)ds

∫ tj

tj−1

σ
(x)
hh (s)ds +

∫ ti

ti−1

σ
(x)
gh (s)ds

∫ tj

tj−1

σ
(x)
gh (s)ds

]

and it is a positive constant.

There are some remarks on the limiting distribution of the SIML estimator and

its asymptotic variance formula in Theorem 3. The quantity V
(2)
gh.n defined by

V
(2)
gh.n =

n∑
i,j=1

(mnc
2
ij − 1)

[∫ ti

ti−1

σ(x)
gg (s)ds

∫ tj

tj−1

σ
(x)
hh (s)ds +

∫ ti

ti−1

σ
(x)
gh (s)ds

∫ tj

tj−1

σ
(x)
gh (s)ds

]
(2.38)

is a bounded function by using (2.5) and Lemma 3 of Section 6. Hence it may be

reasonable to assume the convergence of V
(2)
gh.n to the second part of Vgh (V

(2)
gh , say).
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When the instantaneous covariance σ
(x)
gh (s) = σ

(x)
gh is constant, then

Vgh =
[∫ 1

0
σ(x)

gg (s)ds
] [∫ 1

0
σ

(x)
hh (s)ds

]
+
[∫ 1

0
σ

(x)
gh (s)ds

]2
,

which is equivalent to (2.26). (We shall give the detailed derivations of these formulas

in Section 6.)

Also Kunitomo and Sato (2010a,b) have reported an alternative expression of the

limiting distribution of σ̂
(x)
gh − σ

(x)
gh in terms of

√
mn

[
σ̂

(x)
gh − σ

(x)
gh −

n∑
i=1

(cii − 1)
∫ ti

ti−1

σ
(x)
gh (s)ds

]
d→ N [0, Vgh] ,(2.39)

However, Lemma 5 of Section 6 shows that

√
mn

n∑
i=1

(cii − 1)
∫ ti

ti−1

σ
(x)
gh (s)ds = op(1) .(2.40)

Hence we have found that this term is actually the higher order bias of the SIML

estimator.

When Σx is a random matrix, we need the concept of stable convergence, which

has been explained by Chapter 3 of Hall and Heyde (1980) or Gloter and Jacod

(2001). The results of Theorem 3 can be held in the stochastic case with an addi-

tional assumption. By applying Theorem 3.5 and Corollary 3.3 of Hall and Heyde

(1980) to our present formulation, we obtain the next result and the proof is given

in Section 6.

Theorem 4 : We assume that xi and vi (i = 1, · · · , n) in (2.1) and (2.2) are

independent and Σ(x)
s = C(x)

s C(x)′
s ≥ 0. Additionally we assume that Σx can be a

(non-negative) random variable (a.s.) in (2.4) and (2.5) while both each elements

of C(x)
s (0 ≤ s ≤ 1) and Σx are bounded. Define the SIML estimator Σ̂x = (σ̂

(x)
gh ) of

Σx = (σ
(x)
gh ) by (2.20).

(i) For mn = nα and 0 < α < 1/2, as n −→ ∞

Σ̂x − Σx
p−→ O .(2.41)
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(ii) For mn = nα and 0 < α < 0.4, as n −→ ∞

Zgh.n =
√

mn

[
σ̂

(x)
gh − σ

(x)
gh

]
d→ Z∗

gh(2.42)

and the characteristic function gn(t) = E [exp(itZgh.n)] converges to the characteristic

function of Z∗
gh, which is written as

g(t) = E [e−
Vght2

2 ] ,(2.43)

provided that we assume the probability convergence of the random variable, which

is given by

Vgh =
[∫ 1

0
σ(x)

gg (s)ds
] [∫ 1

0
σ

(x)
hh (s)ds

]
+
[∫ 1

0
σ

(x)
gh (s)ds

]2
+ plimn→∞

n∑
i,j=1

(mnc2
ij − 1)

[∫ ti

ti−1

σ(x)
gg (s)ds

∫ tj

tj−1

σ
(x)
hh (s)ds +

∫ ti

ti−1

σ
(x)
gh (s)ds

∫ tj

tj−1

σ
(x)
gh (s)ds

]
.

We have additional remarks on the stochastic case when the instantaneous co-

variance function is time-varying. The boundedness condition of C(x)
s (0 ≤ s ≤ 1)

and Σx in Theorem 4 has been used to simplify the proof given in Section 6, but it

may not be essential for the result. Also Lemma 3 of Section 6 shows the condition

that

(
1

n
)2

n∑
i,j=1

(mnc2
ij − 1) → 0(2.44)

as n → ∞. Hence when the underlying instantaneous volatility function is locally

smooth in some sense, we have the next result under an additional condition (2.46).

Corollary 2 : Let

Vgh(ti−1, ti) =
1

hn

∫ ti

ti−1

σ
(x)
gh (s)ds (i = 1, · · · , n)(2.45)

be the local covariance functions, where hn = ti − ti−1 = 1/n. We assume that

Vgh(ti−1, ti)
p−→ σ

(x)∗
gh(2.46)
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uniformly as n → ∞. Then the asymptotic (stochastic) variance of the SIML

estimator Vgh in Theorem 4 is given by

Vgh = σ(x)∗
gg σ

(x)∗
hh + [σ

(x)∗
gh ]2 .(2.47)

When Σ(x)
s = Σ

(x)
tni−1

for tni−1 ≤ s < tni , we immediately find that the condition

(2.46) implies that Σ(x)
s

p→ Σx. In general Vgh can be a random variable (i.e. in

the stochastic case) and some stochastic volatility models may satisfy the present

condition.

2.6 Discussions

Although we have introduced the SIML estimator as a modification of the ML

estimator in the standard situation, Theorem 1, Theorem 3 and Theorem 4 show that

it has the consistency and the asymptotic normality under more general conditions.

Also Kunitomo and Sato (2010a, b) have shown that the asymptotic properties of

the SIML estimator essentially remains the same even when the noise terms are

weakly dependent and they can be correlated with the signal terms, which has

been sometimes called the efficient price process in financial economics. In the

SIML approach we can separate the information on the covariance matrix of the

underlying price volatilities and the covariance matrix of the micro-market noise in

an asymptotic sense. Then the resulting estimators of the realized volatility and

the covariance do not depend on the independence assumption among xt (the state

vector) and vi (the noise vector). Also we have already conducted a large number

of simulations on these issues and have found that the finite sample properties

explained in Section 3 are not changed essentially. (See Kunitomo and Sato (2010a,

b).)

Although there are merits in the SIML estimation, there could be naturally

some cost. The convergence rate of the SIML estimator of Σx in Theorem 1 implies

that it is slightly less than 1/4 if we take α = 0.4. It has been known that the
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asymptotic bound is 1/4 in the standard case. (See Gloter and Jacod (2001) for

instance.) Thus the SIML estimation sacrifices some efficiency loss against the ML

estimator based on the MA(1) process when the standard assumptions hold without

any misspecification. It is because we have pursued the simplicity of the estimation

method and an asymptotic robustness of the estimation procedure for multivariate

high frequency data with possible misspecification. Kunitomo and Sato (2010a,b)

have investigated the related problems and found that the SIML estimator has the

asymptotic robustness.

3. Simulations

We have investigated the finite sample distributions of the SIML estimators for

the realized variance and the realized covariance based on a set of simulations. The

number of replications is 1000. As a reasonable setting we have taken n = 5000

and n = 20000, and we have chosen α = 0.4 and β = 0.8. In our experiments we

have considered the situation that the variance of noise 10−2 ∼ 10−6 of the realized

variances of the underlying signals. We have reported additional simulation results

in Kunitomo and Sato (2008b, 2010a) with some multivariate settings.

3.1 Basic Simulations

In our basic simulations we consider two cases when the observations are the sum

of signal and micro-market noise. with p = q = 1. Thus we use the notation

Σ(s)
s = σ2

x(s), Σx = σ2
x and Σv = σ2

v . In the first example the signal is the Brownian

motion with the instantaneous volatility function

σ2
x(s) = σ(0)2

[
a0 + a1s + a2s

2
]
,(3.1)

where ai (i = 0, 1, 2) are constants and we have some restrictions such that σx(s)
2 >

0 for s ∈ [0, 1]. In this case the realized variance Σx = σ2
x is given by

σ2
x =

∫ 1

0
σx(s)

2ds = σx(0)2
[
a0 +

a1

2
+

a2

3

]
.(3.2)
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In this example we have taken several intra-day instantaneous volatility patterns

including the flat (or constant) volatility, the monotone (decreasing or increasing)

movements and the U-shaped movements.

In the second example the volatility function follows the stochastic volatility model

such that Σx(s) = σ2
x(s) and

σ2
x =

1

n

n∑
i=1

σx(t
n
i )2,(3.3)

where σx(t
n
i )2 = eh(ti) (s = ti, 0 < tn1 < · · · < tnn ≤ 1) and

h(tni ) = γ h(tni−1) + c u(tni ) .(3.4)

We have set that u(tni ) is independent of v(tni ). Then we have the condition given

by (2.4) when we have |γ| < 1. In our experiments we have set γ = 0.9, c = 0.2 and

u(tni ) are the white noise process followed by N(0, 1) as a typical situation.

We summarize our estimation results of the first example in Tables 3.1～3.4

and the second example in Table 3.5, respectively. (See Tables in Appendix.) In

each table we have also calculated the value of the historical volatility as HI for

comparison. When there are micro-market noise components with the martingale

signal part, the value of HI often differs from the true realized volatility of the signal

part substantially. However, we have found that it is possible to estimate the realized

variance and the noise variance when we have the signal-noise ratio as 10−2 ∼ 10−6

at least by the SIML estimation method. Although we have omitted the details of

the second example, the estimation results are similar in the stochastic volatility

model.

By our basic simulations we may conclude that we can estimate both the realized

volatility of the hidden martingale part and the market noise part reasonably in all

cases we have examined by the SIML estimation. When the market noises are

extremely small, we have some difficulty to estimate the noise variance, which may

be a natural phenomenon. In that case, however, we can detect that fact by using the

testing procedure and the confidence interval constructed by the SIML estimation
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method. We also have conducted a number of further simulations and the details

of our results have been given in Kunitomo and Sato (2008b, 2010b). They have

reported some additional results on the robustness of the SIML estimator and the

optimal hedging problem when p = q = 2.

3.2 A Finite Sample Behavior of the Distribution of SIML

Estimator

In order to examine the finite sample and asymptotic behabior of the SIML estima-

tor, we have done a large number of simulations on the shape of the distribution

function of the SIML estimator in the form of (2.20) and (2.22). We have found

that the (higher order) bias term of (2.40) is numerically small and negligible for

practical purposes. For an illustration, we only give two figures (Figures 3.1 and

3.2 in Appendix) of the histograms on the SIML estimator when the instantaneous

covariance function has a deterministic time varying U-shape and with n = 5000

and n = 30000.

When n = 5000, the distribution of the SIML estimator is skewed considerably as

we expected as a kind of variance estimator, while its distribution becomes symmet-

ric when n = 30000. Because mn = n0.4, the convergence rate toward the limiting

normal distribution is not so fast although it depends crucially on the sample size,

the realized covariance and the noise variance. It may be typical when we estimate

the realized variance and covariance in a nonparametric or semi-parametric way.

3.3 A Simple Comparison with the Realized Kernel method

The Realized Kernel (RK) method developed by Bandorff-Nielsen et al. (2008) has

been influential on the estimation problem of the realized volatility. Since there is a

natural question on the comparison of the RK estimator and the SIML estimator,

we give two tables Table 3.6 and Table 3.7. In order to make a fair comparison we

have tried to follow the recommendation by Bandorff-Nielsen et al. (2008) on the

choice of kernel (Tukey-Hanning) and the band width parameter H. One important
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issue in the RK method has been to choose H, which depends on the noise variance

and the instantaneous variance and so we have chosen some reasonable velues of

H = c
√

σ2
v/[σ2

x/n] when p = q = 1 in our experiments. Although we have done a

large number of simulations, we only give two tables for the case when the noise

variance is comparable to the instantaneous variance.

From Tables 3.6 and 3.7 we have found that the RK estimation gives a reasonable

estimate if we had taken the reasonable value of the key parameter H. In some cases

of such situations the variance of the RK estimator is smaller than the variance of the

SIML estimator. On the other hand, the variance of the RK estimator can be larger

than the variance of the SIML estimator while the latter is quite stable because the

SIML estimator is quite robust against the possible values of the variance ratio. On

the whole, we have confirmed that the SIML estimator gives the robustness property.

In addition to these observations we should note that we need a priori information

on the variance ratio for the Realized Kernel method while we do not need such

information in advance for the SIML estimation.

4. An Application to Nikkei-225 Futures

One of important futures market in Japan was formally started in September

1987 at the Osaka Securities Exchanges (OSE), which is the second largest securities

exchanges after Tokyo Securities Exchange (TSE) and it has been developed in the

trading size and scale over the past 20 years. The Nikkei-225 futures, the successful

products of OSE, correspond to the Nikkei-225 Spot-Index as its future contracts.

The Nikkei-225 spot index has been the most important stock index in the Japanese

financial sector. The trading volume of the Nikkei225 futures at OSE has been

heavy and there have been usually trades occurred within one second in most days.

The Nikkei-225 Futures have been the major financial tool in the financial industry

because the Nikkei-225 is the major index in Japan. We have high frequency data

less than 1 second of Nikkei-225 Futures in most times and in our analysis we have

used data in 1 second, 5 seconds, 10 seconds, 30 seconds and 60 seconds.

We have picked one day in April 2007 and estimated the realized volatility with

22



different time intervals in Table 4.1 by both the traditional historical volatility (HI)

estimation and the SIML estimation as a typical example. Then we found that the

values of the estimated HI heavily depend on the observation intervals while our

estimation does not depend on them very much. The problem of significant biases

of the estimated HI has been pointed out recently by several researchers and our

analysis has been consistent with them. Also by using the test statistic in (2.30)

we find that T1 = 103.56(1s), 43.26(5s), 19.15(10s), 11.29(30s), 3.07(60s). Thus we

have also confirmed that the presence of micro-market noises is an important factor

with high frequencies in the Nikkei-225 futures market.

The analysis of Nikkei-225 spot and futures markets with the bivariate high

frequency data was the real motivation of our study and we have illustrated the

results briefly. Some details of our analysis and results including the realized hedging

have been reported in Kunitomo and Sato (2008b, 2010b).

5. Concluding Remarks

In this paper, we have developed a new statistical method for estimating the

realized variance and the realized covariance by using high-frequency financial data

under the presence of noise. The Separating Information Maximum Likelihood

(SIML) estimator proposed by Kunitomo and Sato (2008a,b) can be regarded as

a modification of the standard Maximum Likelihood (ML) method and it has the

representation as a quadratic form of returns. We have shown that the SIML estima-

tor has reasonable asymptotic properties; it is consistent and it has the asymptotic

normality (or the stable convergence in the general case) when the sample size is

large and the data frequency interval is small under some conditions including non-

Gaussian processes and volatility models. The SIML estimator has reasonable finite

sample properties and also it has the asymptotic robustness properties as shown in

Kunitomo (2010a,b).

The SIML estimator is so simple that it can be practically used not only for the

realized volatility but also the realized covariance of the multivariate high frequency

financial series. As an application we have applied the SIML estimation to investi-
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gate a set of high frequency data of Nikkei-225 Futures at OSE (Osaka Securities

Exchange). We have confirmed that the presence of micro-market noises is an im-

portant factor in the Nikkei-225 futures market. Some further empirical analysis

have been discussed in Kunitomo and Sato (2008b, 2010b).

6 Mathematical Derivations

We first prepare some useful formulas and evaluations. The derivations are the

results of elementary use of trigonometric functions, which are straightforward and

thus they are omitted.

Lemma 2 : For any integer l and m (1 ≤ l, m ≤ n)

m∑
k=1

[
cos π

2k − 1

2n + 1
l

]
=

1

2

sin 2πm l
2n+1

sin π l
2n+1

(6.1)

and
m∑

k=1

[
cos π

2k − 1

2n + 1
l

]2

=
m

2
+

1

4

sin 4πm l
2n+1

sin 2π l
2n+1

.(6.2)

Lemma 3 : Let cij = (2/m)
∑m

k=1 siksjk (i, j = 1, · · · , n; k = 1, · · · ,m) and

sjk = cos
[

2π

2n + 1
(j − 1

2
)(k − 1

2
)
]

.(6.3)

Then we have

(i) for any integers j, k
n∑

i=1

cijcik =
2

m
(n +

1

2
)cjk(6.4)

and
n∑

i,j=1

c2
ij =

4

m

[
n

2
+

1

4

]2
.(6.5)

(ii) As n → ∞,
1

n

n∑
i=1

(cii − 1) → 0(6.6)

and
1

n

n∑
i=1

(cii − 1)2 → 0 .(6.7)
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We shall give the proofs of Theorem 1, Theorem 3 and Theorem 4 in Section 2.

Since Theorem 1 is a special case of Theorem 3, we shall mainly focus on the proofs

of Theorem 3 and Theorem 4. For any unit vector eg = (0, · · · , 0, 1, 0, · · · , 0)
′
(g =

1, · · · , p), we define σ
(x)
gh = e

′
gΣxeh, σ̂

(x)
gh = e

′
gΣ̂xeh, σ

(v)
gh = e

′
gΣveh and σ̂

(v)
gh =

e
′
gΣ̂veh. From the transformation (2.14) we set xkg = e

′
gzk (k = 1, · · · , n) and

xkg = x
(1)
kg + x

(2)
kg , where x

(1)
kg and x

(2)
kg correspond to the (k, g)−elements of X(1)

n =

h−1/2
n P

′
nC

−1
n (Xn − Y0) and X(2)

n = h−1/2
n P

′
nC

−1
n Vn, respectively. By using Lemma

1, we have E [X(1)
n eg] = 0, E [X(2)

n eg] = 0 and

E [X(2)
n ege

′

hX
(2)′

n ] = (e
′

gΣveh)h
−1
n P

′

nC
−1
n C

′−1
n P

′

n = (e
′

gΣveh)h
−1
n Dn .(6.8)

In the following derivations, we mainly discuss the estimation of the realized variance

(or the realized volatility). It is because the estimation of the realized covariance is

quite similar with additional notations. One important difference is to use the fact

that in the limiting distribution 2(E [X2
g ])2 should be replaced by (E [X2

g ])(E [X2
h]) +

(E [XgXh])
2 when X = (Xg) follows the multivariate normal distribution for any

g, h = 1, · · · , p. It has been a standard practice in the statistical multivariate analysis

(see Anderson (2003), for instance). Also without loss of generality we often use the

case when q = 1 in our derivations because the resulting expressions become simple.

In our proofs of theorems we shall extensively use the decomposition

σ̂(x)
gg − σ(x)

gg(6.9)

=
1

mn

mn∑
k=1

[
x2

kg − σ(x)
gg

]
=

1

mn

mn∑
k=1

[
x

(1)2
kg − σ(x)

gg + σ(v)
gg akn

]
+

1

mn

mn∑
k=1

[
x

(2)2
kg − σ(v)

gg akn

]
+ 2

1

mn

mn∑
k=1

[
x

(1)
kg x

(2)
kg

]
.

Lemma 4 : Assume the assumptions of Theorem 3.

(i) For 0 < α < 0.5,

σ̂(x)
gg − σ(x)

gg

p−→ 0(6.10)
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as n → ∞.

(ii) For 0 < α < 0.4,

√
mn

[
σ̂(x)

gg − σ(x)
gg −

n∑
i=1

(cii − 1)
∫ ti

ti−1

σ2
x(s)ds

]
(6.11)

−
√

mn

[
1

m

m∑
k=1

(
x

(1)2
kg

)
− σ(x)

gg −
n∑

i=1

(cii − 1)
∫ ti

ti−1

σ2
x(s)ds

]
p−→ 0

as n → ∞.

Proof of Lemma 4 : By using (2.17) and the relation sinx = x − (1/6)x3 +

(1/120)x5 + O(x7),

1

mn

mn∑
k=1

akn =
1

mn

2n
mn∑
k=1

[
1 − cos(π

2k − 1

2n + 1
)

]
(6.12)

=
n

mn

[
2mn −

sin π 2mn

2n+1

sin π 1
2n+1

]

∼ n

mn

[
2mn −

(π 2mn

2n+1
) − 1

6
(π 2mn

2n+1
)3

( π
2n+1

) − 1
6
( π

2n+1
)3

]

= O(
m2

n

n
)

and

1

mn

mn∑
k=1

a2
kn =

1

mn

4n2
mn∑
k=1

[
1 − 2 cos(π

2k − 1

2n + 1
) +

1

2
(1 + cos(2π

2k − 1

2n + 1
))

]
(6.13)

=
4n2

mn

[
3

2
mn −

sin π 2mn

2n+1

sin π 1
2n+1

+
1

4

sin π 4mn

2n+1

sin π 2
2n+1

]

= O(
m4

n

n2
)

as n → ∞. Then (6.12) and (6.13) are o(1) when we have the condition that

m2
n/n → 0 (n → ∞). Hence for the first term of (6.9) we need 0 < α < 0.5 for

the consistency and 0 < α < 0.4 for the asymptotic normality as the mimimum

requirements, respectively, because (1/
√

mn)
∑mn

i=1 akn should be negligible in the

latter case. In order to show that these conditions are sufficient, we shall evaluate

each terms of
√

mn[σ̂(x)
gg − σ(x)

gg ] based on the decomposition (6.9).
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For the third term of (6.9), there exists a positive constant K1

E

 1
√

mn

mn∑
j=1

x
(1)
kg x

(2)
kg

2

(6.14)

=
1

mn

mn∑
k,k′=1

E
[
x

(1)
kg x

(1)

k
′
,g
x

(2)
kg x

(2)

k
′
,g

]

=
1

mn

mn∑
k,k′=1

E

2 n∑
j,j′=1

sjksj′k′E(rjgrj′ ,g|Fmin(j,j′ ))x
(2)
kg x

(2)

k
′
,g


=

1

mn

mn∑
k,k′=1

E

2 n∑
j=1

sjksj,k′E(r2
jg|Fj−1)x

(2)
kg x

(2)

k
′
,g


≤ K1

[
sup

0≤s≤1
E(c(x)

gg (s))

]
2

n
(
n

2
+

1

4
)

1

mn

mn∑
k=1

akn

= O(
m2

n

n
)

where we use the notation C(x)
s = (cgh(s)). In the above evaluation we have used

the independence of x
(1)
kg and x

(2)
kg , and the relation

n∑
j=1

s2
jk = n/2 + 1/4 for any k ≥ 1 .(6.15)

For the second term of (6.9), let bk = e
′
kP

′
nC

−1
n = (bkj) and e

′
k = (0, · · · , 1, 0, · · ·) is

an n × 1 vector. Then we can write x
(2)
kg =

∑n
j=1 bkjvjg and

E

 1
√

mm

mn∑
j=1

(x
(2)2
kg − σ(v)

gg akn)

2

(6.16)

=
1

mn

mn∑
k,k′=1

E
[
(x

(2)2
kg − σ(v)

gg akn)(x
(2)2

k
′
,g
− σ(v)

gg ak′n)
]

=
1

mn

mn∑
k,k′=1

E

( n∑
j=1

bkjvjg)
2(

n∑
j′=1

bk′j′vj′ ,g)
2 − σ(v)

gg aknak′n


≤ K2

1

mn

mn∑
k=1

n∑
j=1

b4
kj

≤ K2
1

mn

mn∑
k=1

a2
kn = O(

m4
n

n2
) ,

where K2 is a positive constant.

Hence we have found that the main effect of the sampling errors associated with
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the SIML estimator of the realized variance is the first term of (6.9). Then we

shall show the consistency and the variance formula in (2.26) and (2.28). We write

ri = (rig) = xi − xi−1 (i, j = 1, · · · , n; g = 1, · · · , p) and by using the fact that

ri = (rig) (i = 1, · · · , n; g = 1, · · · , p) are a sequence of martingale differences,

E
[

1

mn

mn∑
k=1

(x
(1)2
kg − σ(x)

gg )

]2

(6.17)

=
[

2n

2n + 1

]2
E


n∑

i,j=1

[
cij rigrjg − δij

∫ ti

ti−1

σ(x)
gg (s)ds

]
2

=
[

2n

2n + 1

]2
E


n∑

i=j=1

[
cijr

2
ig −

∫ ti

ti−1

σ(x)
gg (s)ds

]
2

+ E


n∑

i̸=j=1

[cijrigrjg]


2

,

where δij = 1 (i = j); δij = 0 (i ̸= j). Then we need to evaluate

E
{

n∑
i=1

[
ciirigrig −

∫ ti

ti−1

σ(x)
gg (s)ds

]}2

= E

 n∑
i,j=1

ciicjj(r
2
ig −

∫ ti

ti−1

σ(x)
gg (s)ds)(r2

jg −
∫ tj

tj−1

σ(x)
gg (s)ds)


=

n∑
i=1

c2
iiE
[
r2
ig −

∫ ti

ti−1

σ(x)
gg (s)ds

]2

and

E


 n∑

i̸=j=1

cijrigrjg

2
 = 2

n∑
i ̸=j=1

c2
ijE(r2

ig)E(r2
jg) .(6.18)

By using (2.5), we have the relation

E(r2
ig) = E(

∫ ti

ti−1

[c(x)
gg (s)]2ds) ≤ K3

n
,

where K3 is a positive constant. Then by using Lemma 3, we find that the second

term of the right-hand side of (6.17) is of the order O( 1
m

). As we shall show im-

mediately, the first term of the right-hand side of (6.17) is of the order o( 1
m

), we

have

E
[

1
√

mn

mn∑
k=1

(x
(1)2
kg − σ(x)

gg )

]2

= E

√mn

n∑
i ̸=j=1

cijrigrjg


2

+ o(1)(6.19)

= O(1) .
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It is because the first term of (6.17) the right-hand side of is approximately equivalent

to
n∑

i=1

[
r2
ig −

∫ ti

ti−1

σ(x)
gg (s)ds + (cii − 1)r2

ig

]
(6.20)

=

√
1

n

√
n

n∑
i=1

[
r2
ig −

∫ ti

ti−1

σ(x)
gg (s)ds

]
+

[
n∑

i=1

(cii − 1)(r2
ig −

∫ ti

ti−1

σ(x)
gg (s)ds)

]

+

[
n∑

i=1

(cii − 1)
∫ ti

ti−1

σ(x)
gg ds

]
.

Then by using the basic evaluation obtained by Jacod-Protter (1998) as

√
n

n∑
i=1

[
r2
ig −

∫ ti

ti−1

σ2
x(s)ds

]
= Op(1) .

Also we have the desired result by applying the inequalities

|
n∑

i=1

(cii − 1)
∫ ti

ti−1

σ(x)
gg (s)ds|2 =

[
n∑

i=1

(cii − 1)2

] [
n∑

i=1

(
∫ ti

ti−1

σ(x)
gg (s)ds)2

]

≤
[
1

n

n∑
i=1

(cii − 1)2

] [
sup

0≤s≤t
σ(x)

gg (s)

]2

= O(
1

mn

)

and

E
[
|

n∑
i=1

(cii − 1)(r2
ig −

∫ ti

ti−1

σ(x)
gg (s)ds)|2

]
=

[
n∑

i=1

(cii − 1)2E(r2
ig −

∫ ti

ti−1

σ(x)
gg (s)ds)2

]

= O(
1

n
) .

Q.E.D.

Lemma 5 : For 0 < α ≤ 0.4,

√
mn

[
n∑

i=1

(cii − 1)
∫ ti

ti−1

σ(x)
gg (s)ds

]
p−→ 0(6.21)

as n → ∞.

Proof of Lemma 5 : We use the relation

√
mn

[
n∑

i=1

(cii − 1)
∫ ti

ti−1

σ(x)
gg (s)ds

]
(6.22)

=
n∑

i=1

1

2
√

mn

[
sin[2πmn

2n+1
(2i − 1)]

sin[ π
2n+1

(2i − 1)]

] ∫ ti

ti−1

σ(x)
gg (s)ds .
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We take a positive constant γ (0 < γ < 1) and divide the summation of the right-

hand side of (6.22) from 1 to n into two parts, that is, (i) 1 ≤ i ≤ nγ and (ii)

nγ + 1 ≤ i ≤ n. For (i) there exists a positive K4 such that the first part of the

summation is less that

K4
1

mn

nγ∑
i=1

n

i

[
1

n
sup

0≤s≤1
σ(x)

gg (s)

]
= Op(

log nγ

√
mn

) .(6.23)

For (ii) there exists a positive K5 such that the second part of the summation is less

that

K5
1

√
mn

n∑
i=nγ+1

n

nγ

[
1

n
sup

0≤s≤1
σ(x)

gg (s)

]
= Op(

n

nγ+α/2
) .(6.24)

Hence if we impose the condition γ + α/2 > 1, both terms converge to zero as

n −→ ∞ by using (2.5). Actually we can take γ satisfying this condition.

Q.E.D.

We note that in Lemma 5 we have intentionally used Op( · ) instead of O( · ) because

of the stochastic case below.

Lemma 6 : Under the assumptions of Theorem 1 with the condition 0 < β < 1, as

n → ∞,

σ̂
(v)
gh − σ

(v)
gh

p−→ 0(6.25)

and √
ln
[
σ̂

(v)
gh − σ

(v)
gh

]
= Op(1) .(6.26)

Proof of Lemma 6 : We only give a brief proof for the estimation problem of

noise variance σ(v)
gg because the argument on the estimation of the noise covariance

is quite similar. For this purpose we use the decomposition

σ̂(v)
gg − σ(v)

gg(6.27)

=
1

ln

n∑
k=n+1−l

a−1
kn

[
x2

kg − σ(x)
gg akn

]

=
1

ln

n∑
k=n+1−ln

a−1
kn

[
x

(2)2
kg − σ(v)

gg akn

]
+

1

ln

n∑
k=n+1−ln

a−1
kn

[
x

(1)2
kg + 2x

(1)
kg x

(2)
kg

]
.
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Then the main argument of the proof is similar to that of Lemma 4 except ln

instead of mn. For the variance of noise term, we use the fact that ln/n = o(1)

and for n + 1 − ln ≤ k ≤ n and ln/n = o(1), akn = 2n[1 + cos π( 2ln
2n+1

)] ≥ n for a

sufficiently large n. Since a−1
kn = o(n−1),

E [
n∑

k=n+1−ln

a−1
kn (x

(1)2)
kg )] = σ(x)

gg

n∑
k=n+1−ln

a−1
kn = O(

ln
n

) .(6.28)

Then by using the similar evaluations as (6.14) and (6.16)

E

 1√
ln

n∑
k=n+1−ln

a−1
knx

(1)2
kg

2

= o(1)

and

E

 1√
ln

n∑
k=n+1−ln

a−1
knx

(1)
kg x

(2)
kg

2

= o(1) .(6.29)

Hence we can ignore the last two terms of the right-hand side of (6.27) and we need

to evaluate the leading term. Then by using the similar evaluation as (6.16), it is

possible to evaluate

E

 1

ln

n∑
k=n+1−ln

a−1
kn

(
x

(2)2
kg − σ(v)

gg akn

)2

= o(1)(6.30)

and

E

 1√
ln

n∑
k=n+1−ln

a−1
kn

 n∑
i,j=1;i̸=j

bikbjkvigvjg

2

= O(1) .(6.31)

Q.E.D.

Proofs of Theorem 1, Theorem 3 and Theorem 4 :

(Step 1) : We shall give only the proof of the asymptotic normality (and the stable

convergence in Theorem 4) of the realized variance σ(x)
gg (g = 1, · · · , p). (The proof

of the realized covariance is quite similar with some extra notations. We give some

brief comments on the related problem between Lemma 3 and Lemma 4.) We first

use the proofs of Lemma 4 and Lemma 5 for the consistency and the asymptotic

behavior of the SIML estimator.
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We write
√

mn[σ̂(x)
gg − σ(x)

gg ] as

√
m

 n∑
i,j=1

cijrigrjg − δij

∫ ti

ti−1

σ(x)
gg (s)ds

(6.32)

= 2
√

m
∑
i>j

cijrigrjg +
√

m

[
n∑

i=1

ciir
2
ig −

∫ ti

ti−1

σ(x)
gg (s)ds

]
,

where δij = 1 (i = j); δij = 0 (i ̸= j) and the second term is equivalent to

√
m

n∑
i=1

[
r2
i −

∫ ti

ti−1

σ(x)
gg (s)ds + (cii − 1)r2

ig

]
(6.33)

=

√
m

n

√
n

n∑
i=1

[
r2
ig −

∫ ti

ti−1

σ(x)
gg (s)ds

]
+
√

m

[
n∑

i=1

(cii − 1)(r2
ig −

∫ ti

ti−1

σ(x)
gg (s)ds)

]

+
√

m

[
n∑

i=1

(cii − 1)
∫ ti

ti−1

σ(x)
gg (s)ds

]
,

which is op(1).

From the proofs of Lemma 4 and Lemma 5, we can ignore each terms of (6.33) for

the limiting distribution
√

mn[σ̂(x)
gg − σ(x)

gg ].

The summation of the conditional covariances associated with the first term of

the right-hand side of (6.32) is

4
∑
i<j

mnc
2
ijEi−1[r

2
ig]Ej−1[r

2
jg]

= 2
n∑

i,j=1

mnc
2
ijEi−1[r

2
ig]Ej−1[r

2
jg] − 2

n∑
i=1

mnc2
ii(Ei−1[r

2
ig])

2

= 2
n∑

i,j=1

Ei−1[r
2
ig]Ej−1[r

2
jg] + 2

n∑
i,j=1

(mnc2
ij − 1)Ei−1[r

2
ig]Ej−1[r

2
jg] − 2

n∑
i=1

mnc2
ii(Ei−1[r

2
ig])

2 ,

where we use the notation Ei−1[r
2
ig] = E [r2

ig|Fn,i−1].

For the third term, we have

n∑
i=1

mc2
ii

(
Ei−1[r

2
ig]
)2

≤
[

sup
0≤≤1

σ(x)
gg (s)

]2
mn

n2

n∑
i=1

c2
ii → 0(6.34)

as m/n → 0. Then the main part of the asymptotic variance of (2.37) becomes

Vgg.n(6.35)

32



= 2

[
n∑

i=1

∫ ti

ti−1

σ(x)
gg (s)ds

]2

+ 2
n∑

i,j=1

(mnc2
ij − 1)

∫ ti

ti−1

σ(x)
gg (s)ds

∫ tj

tj−1

σ(x)
gg (s)ds

→ 2
[∫ 1

0
σ(x)

gg (s)ds
]2

+ 2 lim
n→∞

n∑
i,j=1

(mnc2
ij − 1)

[∫ ti

ti−1

σ(x)
gg (s)ds

] [∫ tj

tj−1

σ(x)
gg (s)ds

]
= Vgg .

The second term is bounded because by using Lemma 3 we have

1

n2

n∑
i,j=1

|mnc2
ij − 1| ≤ 1 +

mn

n2

n∑
i,j=1

c2
ij .

When the volatility function is constant (σ(x)
gg (s) = σ(x)

gg ),

∫ ti

ti−1

σ(x)
gg (s)ds = σ(x)

gg

1

n
,

the second term of (6.35) vanishes because Lemma 3 again implies

1

n2

n∑
i,j=1

(mnc2
ij − 1) =

1

n2

[
n2 + n +

1

4
− n2

]
→ 0

and then

Vgg = 2
[
σ(x)

gg

]2
.(6.36)

(Step 2) : Next, we need to show that the SIML estimator has the asymptotic

normality. For this purpose, we construct a sequence of σ−fields such that Fn,i ⊆
Fn+1,i and we apply the Martingale Central Limit Theorem (MCLT) to the first

part of (6.32). We shall use Theorem 3.5 and Corollary 3.3 of Hall and Heyde

(1980) in particular. In order to do this, we need the condition that V (2)
gg.n in (2.38)

converges to Vgg and Vgg is positive a.s. (We need that Vgg takes a non-negative

value in Theorem 3 while it is non-negative a.s. in the stochastic case for Theorem

4. When the probability limit Vgg is a random variable, the MCLT gives the stable

convergence. See Chapter 3 of Hall and Heyde (1980) for the detailed discussion we

need for the present purpose.)

In our proof we shall use of a sequence of random variables

Un =
n∑

j=2

[2
j−1∑
i=1

√
mncijrig]rjg,(6.37)
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which is a martingale. Then we apply Theorem 3.5 of Hall and Heyde (1980) to Un by

setting Xnj = (2
∑j−1

i=1

√
mncijrig)rjg (j = 2, · · · , n) and V ∗

gg.n =
∑n

j=2 E [X2
nj|Fn,j−1].

Under the assumptions of Theorems we have enough moment conditions on rig.

Then in our situation it is sufficient to check Condition (A)

max
1≤j≤n

E [X2
nj|Fn,j−1]

p−→ 0 ,(6.38)

Condition (B)
n∑

j=1

E [X4
nj] −→ 0(6.39)

and Condition (C)

E [(V ∗
gg.n − Vgg)

2] −→ 0(6.40)

as n −→ ∞.

First we notice that Condition (B) implies Condition (A) in the present formulation

because for Ynj = E [X2
nj|Fn,j−1] and any ϵ > 0

P( max
1≤j≤n

Ynj > ϵ) ≤
n∑

j=1

P(Ynj > ϵ) ≤ (
1

ϵ
)2

n∑
j=1

E [Y 2
nj] .(6.41)

Then Lemma 7 below shows Condition (B).

Second, we have assumed the condition Vgg.n
p−→ Vgg in Theorems and Vgg.n and Vgg

are bounded. Then we can find a positive K6 such that for any ϵ > 0

E [(Vgg.n − Vgg)
2] = E [(Vgg.n − Vgg)

2I(|Vgg.n − Vgg| ≥ ϵ)]

+E [(Vgg.n − Vgg)
2I(|Vgg.n − Vgg| < ϵ)]

≤ K6P(|Vgg.n − Vgg| ≥ ϵ) + ϵ2 .

Hence we only need to show Condition (D)

E [(V ∗
gg.n − Vgg.n)2] −→ 0(6.42)

as n −→ ∞. Then Lemma 8 below shows Condition (D).

(Step 3) : The proof of the asymptotic normality of the variance and covariance

of the noise terms can be given, which are very similar to the ones in (i) and (ii)
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for the integrated variance. Since Lemma 6 gives the proof of the consistency and

the order of the SIML estimator, the remaining task is to calculate the asymptotic

variance and to apply Theorem 3.5 of Hall and Heyde (1980). Since the arguments

are lengthy, but most of them are parallel to the arguments in (i) and (ii) because the

method of our proof does not depend on the Gaussianity of the underlying process

much and we have omitted its details.

Q.E.D.

Lemma 7 : Under the assumptions of Theorem 4, we have Condition (B).

Proof of Lemma 7 : Without loss of generality we consider the stochastic case

when p = q = 1 and we denote C(x)
s = cs. We shall show Condition (B) under the

assumptions of Theorem 4. Let

Znj(t) =
∫ t

tj−1

csdBs (tj−1 ≤ t ≤ tj, j = 1, · · · , n)

and

Wnj =
j−1∑
i=1

√
mncij

∫ ti

ti−1

csdBs (j = 2, · · · , n) .

Then we need to show that

n∑
j=2

E [W 4
njZnj(tj)

4] −→ 0(6.43)

as n → ∞.

First by using Ito’s Lemma, we have

Znj(t)
4 =

∫ t

tj−1

4[Znj(s)]
3csdBs +

∫ t

tj−1

6[Znj(s)]
2c2

sds .

Then by taking the conditional expectation of both sides given Fn,j−1 (we denote

E [ · |Fn,j−1] = Ej−1[ · ]), we have

Ej−1[Znj(t)
4] =

∫ t

tj−1

6Ej−1[(Znj(t))
2c2

s]ds(6.44)

and then

Ej−1[Znj(t)
4] ≤ 3

∫ t

tj−1

Ej−1[(Znj(s))
4]ds + 3

∫ t

tj−1

Ej−1[c
4
s]ds .(6.45)
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By using the boundedness condition, we have
∫ t
tj−1

c4
sds = O( 1

n
). Then by using the

standard argument in stochastic calculus on the evaluation of moments (i.e. Chapter

III of Ikeda and Watanabe (1989), for instance), we can find a positive constant K7

such that

Ej−1[Znj(t)
4] ≤ K7(

1

n
) .

By using the Cauchy-Schwartz inequality, we can find a positive constant K8 such

that

Ej−1[Znj(t)
4] ≤ 6

∫ t

tj−1

(
Ej−1[(Znj(s))

4]
)1/2 (

Ej−1[c
4
s]
)1/2

ds ≤ K8

[
1

n

]1+ 1
2

.

By repeating the above substitution procedure, we have the bound of the fourth

order moment as K
′
8(

1
n
)1+1/2+(1/2)2+···+(1/2)r

for an arbitrary positive integer r (r ≥ 2)

and a positive constant K
′
8. Then we can find that for an arbitrary small ϵ (> 0)

and tj−1 ≤ t ≤ tj,

Ej−1[Znj(t)
4] = O((

1

n
)2(1−ϵ)) .(6.46)

Next, we shall evaluate the expectation E [Wnj(t)
4], that is

E [Wnj(t)
4]

= E

 j−1∑
i1,i2,i3,i4=1

m2
nci1,jci2,jci3,jci4,j

∫ ti1

ti1−1

cs1dBs1

∫ ti2

ti2−1

cs2dBs2

∫ ti3

ti3−1

cs3dBs3

∫ ti4

ti4−1

cs4dBs4

 .

In this form we only need to consider the summations of the forms (i)
∑

i1=i2,i3,i4 [ · ]

and (ii)
∑

i1=i2,i3=i4 [ · ] because
∫ ti1
ti1−1

cs1dBs1 is a martingale difference. We first

consider Case (i) and we set i1 = i2 > i3 > i4. In this case we can utilize the fact

that E[

∫ ti1
ti1−1

cs1dBs1 ]
2 =

∫ ti1
ti1−1

c2
s1

ds and

|2
∫ ti3
ti3−1

cs3dBs3

∫ ti4
ti4−1

cs4dBs4 | ≤ [
∫ ti3
ti3−1

cs3dBs3 ]
2 + [

∫ ti4
ti4−1

cs4dBs4 ]
2.

By using the assumption that cs are bounded in Theorem 4 and
∫ ti1
ti1−1

cs1dBs1 is a

martingale difference, we can find a positive constant K9 such that

E
[
|
∫ ti1

ti1−1

cs1dBs1

∫ ti2

ti2−1

cs2dBs2

∫ ti3

ti3−1

cs3dBs3

∫ ti4

ti4−1

cs4dBs4 |
]
≤ K9(

1

n
)2 .(6.47)

Hence we have

E [Znj(t)
4](

1

n
)2(1−ϵ) = o(

1

n
)
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if we can show  j−1∑
i1,i3,i4

m2
nc

2
i1,jci3,jci4,j(

1

n
)1+2(1−ϵ)

 −→ 0(6.48)

as n → ∞. By using the similar method to the proof of Lemma 5 to

q∑
i=1

cij =
2

mn

mn∑
k=1

[
sin[ πq

2n+1
(2k − 1)]

2 sin[ π
2n+1

(2k − 1)]

]
sjk ,

for a sufficiently small ϵ (> 0) we have
√

mn

n1−ϵ

q∑
i=1

cij = o(1)(6.49)

as n → ∞. Hence we have the result for Case (i). We can use the same method

of evaluation for Case (ii) and then we have obtained the order of E [Znj(t)
4]. Fi-

nally, because we set the assumption that cs and σ(x)
gg (s) are bounded (g = 1) and

WnjZnj(t) (tj−1 ≤ t ≤ tj; j = 2, · · · , n) is a sequence of martingale differences, we

have the desired result. Q.E.D.

We shall give the proof of Condition (D) for the time-varying deterministic case

because the arguments we use are rather clear and straightforward. However, it is

possible to show the result in the stochastic case with additional arguments illus-

trated in the proof of Lemma 7.

Lemma 8 : Under the assumptions in Theorem 3, we have Condition (D).

Proof of Lemma 8 : Without loss of generality we consider the case when

p = q = 1. By using (6.34) and (6.35) (Ei−1[r
2
ig] = E [r2

ig] in the present case),

it is sufficient to evaluate

Dn = E


 n∑

j=1

[Ej−1(X
2
nj) − E(X2

nj)]

2


= E


n∑

j=1

 n∑
i1,i2=1

mnci1,jci2,j(
∫ tj

tj−1

c2
sds)

[
(
∫ ti1

ti1−1

csi1
dBsi1

)(
∫ ti2

ti2−1

csi2
dBsi2

) − δ(i1, i2)(
∫ ti1

ti1−1

c2
si1

dsi1)

])}2

,

where Ej−1(X
2
nj) = E(X2

nj|Fn,j−1), δ(i1, i2) = 1 for i1 = i2 and δ(i1, i2) = 0 for

i1 ̸= i2.
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We use (6.47) for ti1 = ti2 , ti1 = ti3 or ti1 = ti4 in the proof of Lemma 7. Because we

have E [
∫ ti
ti−1

csdBs]
2 = Op(

1
n
), which is bounded a.s. under the present formulation,

and we use Lemma 3 (i.e. (6.5)), there exist positive constants K10 and K11 such

that

Dn 　 ≤ K10(
1

n
)2

n∑
i1.i2=1

 n∑
j,j′=1

m2
nci1,jci2,jci1.j′ci2,j′ (

∫ tj

tj−1

c2
sds)(

∫ t
j
′

t
j
′−1

c2
s
′ds

′
)


= K10(

1

n
)2

 n∑
j,j′=1

(
n∑

i1=1

mnci1,jci1.j′ )(
n∑

i2=1

mnci2,jci2.j′ )(
∫ tj

tj−1

c2
sds)(

∫ t
j
′

t
j
′−1

c2
s
′ds

′
)


≤ K11(

1

n
)2(n +

1

2
)2

 n∑
j,j′=1

c2
j.j

′

 (
1

n
)2 .

Then by using Lemma 3 (i.e. (6.5)) and the fact that E [
∫ tj
tj−1

csdBs]
2 = O( 1

n
), finally

we find that

Dn = O(
1

mn

) .(6.50)

Q.E.D.

Proof of Corollary 1 : When σ(v)
gg = 0, we have X(2)

n eg = 0 and then Zneg =

h−1/2
n PnCn(Xn − Ȳ0eg. We use the relation

T1 =
√

mn


(

1
ln

∑n
k=n+1−ln z2

kg − σ(x)
gg

)
−
(

1
mn

∑mn
k=1 z2

kg − σ(x)
gg

)
σ

(x)
gg +

(
1

mn

∑mn
k=1 z2

kg − σ
(x)
gg

)


= −
√

mn

 1
mn

∑mn
k=1 z2

kg − σ(x)
gg

σ
(x)
gg

+

√
mn√
ln

√
ln

 1
ln

∑n
k=n+1−ln z2

kg − σ(x)
gg

σ
(x)
gg

+ op(1) .

Because of the condition 0 < α < β < 1, we have mn/ln → 0 as n → ∞ and then

the second term converges to 0 in probability. The first term converges to N(0, 2)

by Theorem 1 and thus we have the result.

Q.E.D.
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Appendix : Tables and Figures

In this Appendix we gather Tables and Figures, which we have mentioned in Section

3 and Section 4.

Table 3.1 : Estimation of realized volatility :

Case I (a0 = 1, a1 = a2 = 0)

5000 σ̂2
x σ̂2

v HI σ̂2
x σ̂2

v HI

True 2.000E-04 2.000E-06 2.000E-04 2.000E-07

Mean 2.06E-04 2.01E-06 2.02E-02 2.00E-04 2.11E-07 2.20E-03

SD 5.26E-05 9.64E-08 4.96E-04 5.13E-05 9.84E-09 5.08E-05

True 2.000E-04 2.000E-08 2.000E-04 2.000E-09

Mean 2.00E-04 3.02E-08 4.00E-04 2.01E-04 1.23E-08 2.20E-04

SD 5.35E-05 1.37E-09 7.83E-06 5.24E-05 5.66E-10 4.57E-06

20000 σ̂2
x σ̂2

v HI σ̂2
x σ̂2

v HI

True 2.000E-04 2.000E-06 2.000E-04 2.000E-07

Mean 2.03E-04 2.01E-06 8.02E-02 2.01E-04 2.02E-07 8.20E-03

SD 4.01E-05 5.39E-08 9.76E-04 4.03E-05 5.46E-09 1.01E-04

True 2.000E-04 2.000E-08 2.000E-4 2.000E-09

Mean 2.00E-04 2.25E-08 1.00E-03 2.01E-04 4.55E-09 2.80E-04

SD 4.03E-05 6.17E-10 1.18E-05 3.90E-05 1.17E-10 2.77E-06

Note : In Table 3.1, σ̂2
x and σ̂2

v correspond to the estimates for the variances Σx (3.2) and

Σv, respectively. Mean and SD are the sample mean and the standard deviation of the

SIML estimator in the simulation. HI stands for the historical volatility.
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Table 3.2 : Estimation of realized volatility :

Case II (a0 = 1, a1 = 1, a2 = 1)

5000 σ̂2
x σ̂2

v HI σ̂2
x σ̂2

v HI

True 3.67E-04 2.000E-06 3.667E-04 2.000E-07

Mean 3.67E-04 2.02E-06 2.04E-02 3.67E-04 2.19E-07 2.37E-03

SD 9.80E-04 9.58E-08 4.89E-04 1.03E-04 1.08E-08 5.71E-05

True 2.000E-04 2.000E-08 2.000E-04 2.000E-09

Mean 3.67E-04 3.896E-08 5.66E-04 3.62E-04 2.09E-08 3.87E-04

SD 1.02E-04 1.90E-09 1.22E-05 9.74E-05 1.02E-09 7.97E-06

20000 σ̂2
x σ̂2

v HI σ̂2
x σ̂2

v HI

True 3.667E-04 2.000E-06 3.667E-04 2.000E-07

Mean 3.63E-04 2.00E-06 8.04E-02 3.66E-04 2.05E-07 8.36E-03

SD 7.48E-05 5.40E-08 9.71E-04 7.74E-09 5.37E-09 9.87E-05

True 3.667E-04 2.000E-06 3.667E-04 2.000E-07

Mean 3.68E-04 2.46E-08 1.17E-03 3.63E-04 6.66E-09 4.47E-04

SD 7.65E-05 6.55E-10 1.35E-05 7.49E-05 1.81E-10 4.62E-06

Note : In Table 3.2, σ̂2
x and σ̂2

v correspond to the estimates for the variances Σx (3.2) and

Σv, respectively. Mean and SD are the sample mean and the standard deviation of the

SIML estimator in the simulation. HI stands for the historical volatility.
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Table 3.3 : Estimation of realized volatility :

Case III (a0 = 1, a1 = −1, a2 = 1)

5000 σ̂2
x σ̂2

v HI σ̂2
x σ̂2

v HI

True 1.667E-04 2.000E-06 1.677E-04 2.000E-07

Mean 1.70E-04 2.01E-06 2.02E-02 1.68E-04 2.09E-07 2.17E-03

SD 4.48E-05 9.05E-08 4.80E-04 4.22E-05 9.71E-09 5.16E-05

True 1.667E-04 2.000E-08 1.667E-04 2.000E-09

Mean 1.70E-04 2.86E-08 3.67E-04 1.69E-04 1.06E-10 1.87E-04

SD 4.79E-05 1.34E-09 7.67E-06 4.29E-05 4.88E-10 3.76E-06

20000 σ̂2
x σ̂2

v HI σ̂2
x σ̂2

v HI

True 1.667E-04 2.000E-06 1.667E-04 2.000E-07

Mean 1.71E-04 2.00E-06 8.02E-02 1.66E-04 2.02E-07 8.17E-03

SD 3.41E-05 5.55E-08 1.01E-03 3.30E-05 5.21E-09 9.66E-05

True 1.667E-04 2.000E-8 1.667E-04 2.000E-09

Mean 1.66E-05 2.21E-08 9.66E-04 1.66E-04 4.12E-09 2.47E-04

SD 3.14E-05 6.00E-10 1.10E-05 3.11E-05 1.11E-10 2.56E-06

Note : In Table 3.3, σ̂2
x and σ̂2

v correspond to the estimates for the variances Σx in (3.2)

and Σv, respectively. Mean and SD are the sample mean and the standard deviation of

the SIML estimator in the simulation. HI stands for the historical volatility.
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Table 3.4 : Estimation of realized volatility :

Case IV (a0 = 3, a1 = −3, a2 = 1)

5000 σ̂2
x σ̂2

v HI σ̂2
x σ̂2

v HI

True 3.67E-06 2.000E-06 3.67E-04 2.000E-07

Mean 3.71E-04 2.02E-06 2.04E-02 3.701E-04 2.19E-07 2.37E-03

SD 9.69E-05 9.43E-08 4.79E-04 1.000E-04 1.02E-08 5.55E-05

True 3.67E-04 2.000E-09 3.667E-04 2.000E-09

Mean 3.70E-04 3.88E-08 5.66E-04 3.71E-04 2.08E-08 3.87E-04

SD 1.05E-05 1.87E-10 1.18E-06 1.03E-04 1.02E-09 8.26E-06

20000 σ̂2
x σ̂2

v HI σ̂2
x σ̂2

v HI

True 3.67E-06 2.000E-06 3.67E-04 2.000E-07

Mean 3.73E-04 2.01E-06 8.04E-02 3.71E-04 2.05E-07 8.37E-03

SD 8.08E-05 5.38E-08 9.86E-04 7.62E-05 5.49E-09 9.70E-05

True 3.67E-04 2.000E-09 3.667E-04 2.000E-09

Mean 3.66E-04 2.46E-08 1.17E-03 3.67E-05 6.65E-09 4.47E-04

SD 7.55E-05 6.88E-10 1.26E-05 7.60E-05 1.82E-10 4.48E-06

Note : In Table 3.4, σ̂2
x and σ̂2

v correspond to the estimates for the variances Σx in (3.4)

and Σv, respectively. Mean and SD are the sample mean and the standard deviation of

the SIML estimator in the simulation. HI stands for the historical volatility.
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Table 3.5 : Estimation of realized volatility :

Case V (Stochastic Volatility)

5000 σ̂2
x σ̂2

v HI σ̂2
x σ̂2

v HI

True 4.22E-04 2.000E-06 4.22E-04 2.000E-07

Mean 4.23E-04 2.02E-06 2.05E-02 4.23E-04 2.22E-07 2.42E-03

SD 1.07E-04 9.61E-08 4.93E-04 1.11E-04 1.02E-08 5.39E-05

True 4.22E-04 2.000E-08 4.22E-04 2.000E-09

Mean 4.23E-04 4.18E-08 6.23E-04 4.20E-04 2.37E-08 4.42E-04

SD 1.09E-04 1.97E-09 1.45E-05 1.09E-04 1.24E-09 1.09E-05

20000 σ̂2
x σ̂2

v HI σ̂2
x σ̂2

v HI

True 4.22E-04 2.000E-06 4.22E-04 2.000E-07

Mean 4.25E-04 2.00E-06 8.04E-02 4.19E-04 2.06E-07 8.42E-03

SD 8.01E-05 5.56E-08 9.87E-04 8.10E-05 5.50E-09 9.84E-05

True 4.22E-04 2.000E-08 4.22E-04 2.000E-9

Mean 4.21E-04 2.54E-08 1.22E-03 4.19E-04 7.37E-09 5.02E-04

SD 8.26E-05 6.67E-10 1.39E-05 7.97E-05 2.05E-10 6.27E-06

Note : In Table 3.5, σ̂2
x and σ̂2

v correspond to the estimates for the variances Σx and Σv

when we have the stochastic volatility model of (3.3) and (3.4). Mean and SD are the

sample mean and the standard deviation of the SIML estimator in the simulation. HI

stands for the historical volatility.
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Table 3.6 : SIML and Realized Kernel methods (n=10000, H=3)

σ̂2
x(SIML) σ̂2

v(SIML) σ̂2
RK(RK)

True Value σ2
x = 1.0 σ2

v = 0.01 σ2
x = 1.0

Mean 1.0157 0.010 0.9908

SD 0.2285 3.44E-04 0.9986

σ̂2
x(SIML) σ̂2

v(SIML) σ̂2
RK(RK)

True Value σ2
x = 1.0 σ2

v = 0.001 σ2
x = 1.0

Mean 1.0051 0.010 1.006

SD 0.2337 3.55E-05 0.1216

σ̂2
x(SIML) σ̂2

v(SIML) σ̂2
RK(RK)

True Value σ2
x = 1.0 σ2

v = 0.0001 σ2
x = 1.0

Mean 1.0151 1.26E-04 0.9993

SD 0.2257 4.48E-06 0.0371

Note : In Tables 3.6 and 3.7, σ̂2
x and σ̂2

v correspond to the SIML estimates for the variances

Σx and Σv while σ̂2
RK corresponds to the Realized Kernel estimate of σ2

x, which is based

one Bandorff-Nielsen et al. (2008).
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Table 3.7 : SIML and Realized Kernel methods (n=10000, H=10)

σ̂2
x(SIML) σ̂2

v(SIML) σ̂2
RK(RK)

True Value σ2
x = 1.0 σ2

v = 0.03 σ2
x = 1.0

Mean 1.0748 0.0299 0.9987

SD 0.2681 0.0011 0.6444

σ̂2
x(SIML) σ̂2

v(SIML) σ̂2
RK(RK)

True Value σ2
x = 1.0 σ2

v = 0.001 σ2
x = 1.0

Mean 0.9911 0.0010 1.0009

SD 0.2257 3.72E-05 0.057

σ̂2
x(SIML) σ̂2

v(SIML) σ̂2
RK(RK)

True Value σ2
x = 1.0 σ2

v = 0.0001 σ2
x = 1.0

Mean 1.0077 3.55E-05 0.9991

SD 0.2297 1.22E-06 0.0445
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Table 4.1 : Estimation of Realized Volatility :

σ̂2
x HI

1s 4.085E-05 4.946E-04

5s 3.994E-05 2.601E-04

10s 4.990E-05 1.764E-04

30s 3.551E-05 9.449E-05

60s 4.550E-05 6.964E-05

Note : In Table 4.1, σ̂2
x corresponds to the variance estimate of Σx and HI stands for the

historical volatility.
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