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Minimax Estimation of Linear Combinations of
Restricted Location Parameters

Tatsuya Kubokawa *
University of Tokyo
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The estimation of a linear combination of several restricted location parameters is
addressed from a decision-theoretic point of view. A bench-mark estimator of the linear
combination is an unbiased estimator, which is minimax, but inadmissible relative to the
mean squared error. An interesting issue is what is a prior distribution which results
in the generalized Bayes and minimax estimator. Although it seems plausible that the
generalized Bayes estimator against the uniform prior over the restricted space should be
minimax, it is shown to be not minimax when the number of the location parameters, k., is
more than or equal to three, while it is minimax for £ = 1. In the case of £ = 2, a necessary
and sufficient condition for the minimaxity is given, namely, the minimaxity depends on
signs of coefficients of the linear combination. When the underlying distributions are
normal, we can obtain a prior distribution which results in the generalized Bayes estimator
satisfying minimaxity and admissibility. Finally, it is demonstrated that the estimation of
ratio of normal variances converges to the estimation of difference of the normal positive
means, which gives a motivation of the issue studied here.

Key words and phrases: Admissibility, decision theory, generalized Bayes estimator,
minimaxity, restricted parameters, Stein estimation.

1 Introduction

The point estimation of restricted parameters has been studied from a decision-theoretic
point of view since Katz (1961), who showed that the generalized Bayes estimator of a
restricted parameter is minimax and admissible in a one-parameter exponential family.
Farrell (1964) established the minimaxity and admissibility in the general location fam-
ily. This classical problem was revisited by Marchand and Strawderman (2004, 2005)
and Kubokawa (1990, 2004). Hartigan (2004) considered the simultaneous estimation of
a mean vector restricted to a convex cone in a k-variate normal distribution and used
the Gauss divergence theorem to show that the generalized Bayes estimator against the
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uniform prior dominates the unbiased estimator . Tsukuma and Kubokawa (2008) estab-
lished the minimaxity of the generalized Bayes estimator and proved that it is admissible
for £ = 1,2 and inadmissible for £ > 3. This is an extension of the Stein result to the
restricted case.

In this paper, we consider the estimation of the linear combination of the several
location parameters where each location parameter is restricted to the space of positive
real number. More specifically, we consider the following simple model: Let Xi,..., Xk
be mutually independent random variables where X; has probability density function
fi(z; — p;) with location parameter p; restricted to p; > 0 for i = 1,... k. It is assumed
that E[X?] < oo for i = 1,...,k. To express the model in matrix notations, let X =
(X1,..., X)) &= (21,...,2%) and g = (1, ..., ux)t where X' denotes the transpose of
X. Then, the joint density of X is denoted by

f@—p) =[] filei =) (1.1)

and p is restricted on the space
D={p|pn>0 i=1,...,k}.

For real constants a;’s and a = (ay, . ..,ax)", consider a linear combination of p given by

k

0= Zaim =a'p,

i=1
and we want to study the estimation of ¢ in a decision-theoretic framework, where an
estimator 6 of 0 is evaluated in terms of the mean squared error R(u,0) = E[(0 — 0)?].

An unbiased estimator of # is given by
k
=Y ot (12
i=1

where iV is the unbiased estimator of u; given by
//L\lU = Xz — Gy, for C;, = E[Xz — ,LL,J

As shown in Section 2, U is minimax, but inadmissible because of the restriction of the
parameter g on D. Thus, it is of great interest to obtain the admissible and minimax
estimator of §. To this end, it is plausible to consider the uniform prior

m(n)dp = dpl(p € D), (1.3)

where dp = Hle dp; and I(p € D) is the indicator function such that I(u € D) = 1 if
p € D, otherwise I(p € D) = 0. The resulting generalized Bayes estimator of 6 is

90— [ auf(X = wan/ [ 10X =i

k ) [e%S)
= i i fi(Xi — pi)dpss i(Xi — p)dps, :
Z/ (X u)u//o £(X: = o)y (1.4)



and our first concern is whether #9% is minimax or not. We investigate this problem in
Section 3 and show that 6% is not minimax for k > 3, but minimax for £ = 1. The
minimaxity in the case of k = 2 depends on the signs of the coefficients a; and ay, and a
necessary and sufficient condition for the minimaxity of 0GB is that ayay < 0. This means
that, for example, the generalized Bayes estimator 0SB is not minimax in the estimation
of the sum g7 + po, but minimax in the estimation of the difference p; — po.

Concerning the minimaxity of the generalized Bayes estimator against the uniform
prior, it is interesting to note that we have different stories between the simultaneous
estimation of g and the estimation of the linear combination a‘u, namely, ﬁGB =
Jouf(X — p)dp/ [, f(X — p)dp is always minimax in the simultaneous estimation
of p under a quadratic loss, while 698 is not necessarily minimax and it depends on the

dimension of pu.

In Section 4, we focus on normal distributions, and suggests a specific prior distribu-
tion such that the resulting generalized Bayes estimator is minimax and admissible. In
Section 5, we use the arguments as in Rukhin (1992) to show that the estimation of ratio
of normal variances asymptotically converges to the estimation of difference of positive
normal means, which gives a motivation of the estimation problem studied here.

2 Minimaxity and Inadmissibility of the Unbiased
Estimator

In this section, we show that the unbiased estimator 0V given in (1.2) is minimax, but
inadmissible under the assumption that E[X7] < oo for i = 1,..., k. The minimaxity of
0Y can be verified by using similar arguments as in Girshick and Savage (1951).

Proposition 2.1 (minimaxity of the unbiased estimator) The unbiased estimator
0V of 0 = Zf_l a;lt; s minimax in the estimation of the restricted parameters on D, and

the risk function Ry = R(p,0Y) is a constant.

Proof. Let D,, = {p| 0 < p; <m, i =1,...,k} for m = 1,2,..., and consider the
sequence of prior distributions given by

{m_k it pe D,

T (1) = 0  otherwise,

which yields the Bayes estimators

0r =07 (X) :/ a'uf(X —u)du f(X —u)du

m Dm

with the Bayes risk function

s O5) = ) [ {#n@ - a'u} (e - wazdu (2.1)



Since 7o (T, 07) < 7 (Tm, OY) = Ry, it is sufficient to show that lim inf,, e 7 (T, 07 ) >
Ry. Making the transformations z =  — p and t = u — p with dz = do and dt = du

gives that
O (@) —a'p =07, (2 + p) — a'p
:/ a'(u—p)f(z+p—u)du flz+p—u)du
m Dm

:/ a'tf(z— t)dt/ f(z —t)dt. (2.2)
t4+1E€Dm, t+pu€Dm

Making the transformation & = (2/m)(u;—m/2) with d€ = (2/m)*dp for & = (&1,..., &),
we can rewrites the condition 0 < p; < m as [§;] < 1. Also the condition that 0 < ¢;+u; <
m for t = (ty,...,t)" is expressed by the inequality —(m/2)(&+1) < t; < (m/2)(1 —&).
Let D} = {t| — (m/2)(&,+ 1) <t; < (m/2)(1 —&)}. Then the transformations are used
n (2.2) and (2.1) to obtain that

0 (x) — atps = / Ca'tf(z - o)t [ f(z— )t =0 (=l€), (2.3)

D

and

=g [ [{B0) sease

'''''

)z g [ [{ee) seame

-----

The range of t in the integrals in 0%, (z|€) given by (2.3) is D¥, = {t| — (m/2)(& +1) <
t; < (m/2)(1 —&)}. Since |§| < 1 —¢, it is noted that 1 =& >1—(1—¢) =¢ >0
and 1 +& > 1+ (—=1+¢) = ¢ > 0, which imply that the end points (m/2)(1 — ¢;) and

—(m/2)(1+&) tend to infinity and minus infinity as m — oo and then 0% (z|€) converges
0V(z). Using the Fatou lemma, we obtain that

. 1 . 2
lim inf r,, (7, 67,) > liminf — / 0 (z|€) ¢ f(z)dzd€
min 1, 07) 2limint o | {210} 1(2)

-----

1 . 2
>1 / {%iogfe;(z\s)} f(2)dzdé
[&i]<l—gi=1,...,k

1

== d HU d
2k [&i]<1—e,i=1 £/ f<z) B

=(1—e)*R(p, 9U) = (1—¢)" R

.....

From the arbitrariness of € > 0, it follows that liminf,, . 7 (7, é;r%) > Ry, completing
the proof of Proposition 2.1. [ ]



Proposition 2.1 is an extension of the results of Marchand and Strawderman (2005)
and Kubokawa (2004) who treated the case of k = 1.

Since the unbiased estimator 1Y = X; — ¢; of positve parameter i takes a negative
value with a positive probability for i = 1, ..., k, it is plausible that Y = Zle a;fiy can
be improved on by a truncated procedure. Let Ay and A_ be subsets of {1,...,k} such
that

a; >0 if i€Ay, and a; <0 if jeA_. (2.4)

Then 6 and 6V are decomposed as

0=0,—60_ for 0, = Z a;p; and 6_ = — Z @il
ieAy ieA_ (2.5)
6 :635{ — Y for HAZ = Z a;il and Y = — Z a; il . ‘
ieAy ieA_

Since 0, and 6_ are positive, it is reasonable to truncate QAE{ and 0V at zero, namely,
61F = max{0Y,0} and 0% = max{AY, 0}, which results in the truncated estimator

6T = T TR,

Proposition 2.2 (inadmissibility of the unbiased estimator) The truncated estima-
tor 0T% dominates the unbiased estimator OV, namely 0T% is minimaz.

Proof. Noting that ég and Y are mutually independent, we can write the risk
difference A, = E[(0Y — 0)%] — E[(0TF — 0)?] as
A =E[(87 — 0,)? — (677 — 0,)7) + BI(8” — 6. — (6% — 6"
+2E[0TE — 0, |E[0TF —6_).
It can be seen that (Y —0,)% — (7% — 0,)% = 0Y(8Y — 20,)1(8V < 0) > 0 where I(A)
is the indicator function such that I(A) = 1 if A is true, otherwise I(A) = 0. Also,

E[0TR —0,] = E[max{#Y,0} — 6,] = E[0Y — 6, + max{0, —0Y}] = E[max{0, —6V}] > 0.
These observations show that Ay, > 0 for any pu € D. [ ]

3 Is the Uniform Prior Bayes Estimator Minimax 7

We now investigate whether the generalized Bayes estimator 6eB against the uniform prior
over D is minimax or not. As shown below, the minimaxity depends on the dimension k
of the location vector p.

3.1 Minimaxity in the case of k =1

Let X be a random variable whose density function is given by f(x — p) where p is a
location parameter restricted on the space {¢ € R|u > 0}. The unbiased estimator of u



is p¥ = X — ¢ for ¢g = E[X — p] = [uf(u)du, which is minimax. We first consider a
class of estimators of the form

(o) = X — ¢(X)
for an absolutely continuous function ¢(-), and derive sufficient conditions on ¢(-) for the
minimaxity. From the arguments as in Kubokawa (1994a, 1999, 2004), we can see that
the risk difference of two estimators 1V and i(¢) can be expressed based on an integral.

Lemma 3.1 Assume that ¢(-) is an absolutely continuous function such that lim,, ., ¢(w) =
co. Then, the difference of the risk functions of ¥ and 1i(¢) is written as

A =R(u i) - R, i)
== [{[ utwau—stwsm [ raa}etsae. @)

—00
Proof. Since lim, _, ¢(w) = ¢y, it can be seen that

d

A = E[[(X — 6(X +1) — w5 = E| / T EX (X 1) - ]

which is rewritten as
A= —2//0 {z — ¢z +1t) — p}¢(z+ t)dtf(z — p)da.

Making the transformations w = v+t — p and v = w — ¢ with dw = dzr and du = —dt
in turn gives

A:—2//Ooo{w—t—qb(w—iru)}gb’(w—l—u)f(w—t)dtdw
——2 [ [ {u=stw ot ) fududu

which yields (3.1). u
Lemma 3.1 provides a class of estimators improving on V.

Proposition 3.1 Assume that ¢(-) is an absolutely continuous function which satisfies
that (a) ¢(w) is nondecreasing in w and lim,_,o ¢(w) = co, and (b) d(w) > ¢“B(w),
where

0“w) = [ uftadu/ [ fade
Then, the estimator i(¢) dominates iV, namely [i(¢) is minimazx.

It is easy to see that the function ¢“Z(w) is nondecreasing and lim,, ., ¢“Z(w) = c.
Since ¢“P(w) < w, it is also seen that ¢%F(w) < ¢?F(w) = min{w,co}. Thus, ¢“Z(w)
and ¢ (w) satisfy the conditions in Proposition 3.1, and we get the improved estimators

A =X = () = [ = o/ [ X =
=X — ¢"R(X) = max{X,0}.



It is noted that 7®” is the generalized Bayes estimator of i against the uniform prior du
over the space of y1 > 0, and that 7 ® is the maximum likelihood estimator of y.

It can be easily seen that lim, . R(u, 1%?) = Ry = R(p, iV). Also from Lemma 3.1,
we get the following risk property for the generalized Bayes estimator %%

Proposition 3.2 Both estimators i%? and iV have the same risk at . = 0, namely,
Ry = R(0,1Y) = R(0,1%B). Also, R(u, 1%P) converges to Ry as ji — 00.

3.2 Minimaxity and non-minimaxity in the case of & = 2

Let X; and X5 be two mutually independent random variables whose densities are fi(x; —
w1) and fo(xre — ug), respectively, where p; and po are unknown location parameters
restricted to p; > 0 and pus > 0. Let us consider the problem of estimating the linear
combination of p; and ps, namely,

0 = 04,0, = Q1f1 + azfia,

where a; and ay are real and known constants. From the results in the previous subsection,
it can be guessed that the generalized Bayes estimator 658 of 0 against the uniform
prior duldug over the space of u; > 0 and ps > 0 improves on the unbiased estimator
0V = a17i¥ + asfi¥ in terms of the mean squares error R(ju, o, 0Y) = E[(8Y — 0)?], where
Y = X; —¢; and ¢; = E[X; — p;) for i = 1,2. However, this conjecture is not true. As
shown below, the condition for the minimaxity of geB depends on signs of a; and as.

In general, let us consider a class of estimators of the form 6(¢y, ¢s) = ayfiy(¢1) +
asiia(P2), where [i;(¢;) = X; — ¢;(X;) for ¢ = 1,2 and ¢;(+) is an absolutely continuous
function.

Lemma 3.2 The risk difference of the estimators 0V and 0(¢y, ¢2) is written as

R(M17U27 éU) - R(Nl,ﬂ% é(¢1, ¢2>)
=a{{R(p1, 1Y) = R(pa, fir (61))} + a3{R(pa, i3 ) — Rz, fia(2))}
— 2a1a2E[jiy (¢1) — ] Elpia(p2) — pa].

nondecreasing function with lim,, ., ¢;(w) = ¢;, then it can be seen that E[j;(¢;) — ;] >
0. Hence from Proposition 3.1 and Lemma 3.2, we get the following proposition.

Proposition 3.3 For i = 1,2, assume that ¢;(-) is an absolutely continuous function
which satisfies that (a) ¢;(w) is nondecreasing in w and lim, o ¢;(w) = co, and (b)
Bi(w) > 6P (w), where

67w = [ upwae/ [ A

If ayas <0, then the estimator é(gzﬁl, ¢2) 1is minimar.



It is interesting to note that the condition ajas < 0 is necessary and sufficient for
the minimaxity of the generalized Bayes estimator against the uniform prior over the
restricted space, which is expressed as 98 = ;AP + aoi§? for i¢P = X; — ¢FB(X;).
Proposition 3.4 The generalized Bayes estimator 6eB — ar i + aoni§P against the
uniform prior duidps on py > 0 and ps > 0 s minimax relative to the squared error loss
if and only if ajas < 0.

Proof. Since ¢&P satisfies condition (a) of Proposition 3.3, it is observed that

Eli:(¢58)— ;] = c;i—E[¢¢B(X;)] > 0. Ifayay < 0, it is seen that —2ayay E[fiy (¢;)fiz(d2)] >

0. From Proposition 3.1, it follows that R(pi, 1Y) — R(pi, i§P) > 0 for i = 1,2. Thus,
the dominance of % over 9V is proved.

Reversely, suppose that 0SB dominates §V. We show that supposing the inequality
ajas > 0 yields a contradiction. From Lemma 3.2, it is seen that at (u1, pu2) = (0,0),

R(0,0,8Y) — R(0,0,695)
=a3{R(0, 7)) — R(0, i)} + a3{R(0, i) — R(0, 7i§")}
—2G1G2E0[N1 ]EO[AGBL

which is equal to —2a;a;Eo[n$P]Eo[$P] from Proposition 3.2. Under the supposition
that ajay > 0, it is clear that —2ajasEolaf A]EO[AGB] < 0 at (p1,u2) = (0,0). This
contradicts that 658 dominates Y. Hence, if 0B dominates HU then ajas < 0. [ |

3.3 Non-minimaxity for £ > 3

We here treat the case of k& > 3 where the setup of the random variables X,..., X} is
given around (1.1). Although it may be guessed that the generalized Bayes estimator
against the uniform prior over the parameter D is minimax, the following proposition
shows that this conjecture is not correct.
Proposition 3.5 The generalized Bayes estimator 6eB
form prior over D is not minimax if k > 3.

, giwven in (1.4), against the uni-

Proof. Corresponding to the decompositions given in (2.5), we can write 698 as
058 =658 — 057 for 097 =37, aif® and 057 = =37, a;af". Since k > 3, either
Ay or A_ includes more than two elements. We here suppose that A has more than two
elements without any loss of generality. The risk difference of the two estimators Y and

098 is expressed as
A(p) =R(,0Y) — R(p, 69%)
=E[(0Y - 6,)> — (05" — 0,)°] + E[(6Y — 6_)* — (69" — 0_)*]
+2E[098 — 0,]1E[0°F — 0]
=0y (p) + A_(p) + 2B (n)B-(pn), (say)



for By (p) = E[AS%—0,] and B_(u) = E[05 —6_]. Note that B_ (1) = — >, a:Bi(p:)
for Bi(wi) = E..[Xi — wi — ¢¢P(X;)] and that Bi(p;) = ¢ — Eo[¢¢P (X + p;)]. Since
Bi(u;) — 0 as u; — 00, it is seen that B_(p) — 0 as p; — oo for all i € A_. Since

A(p) =Y a{ElR —pw)’) = BIR® =)} =23 Y aa;Bi(ui)By(uy),

1€EA_ 1€EAN_ jFi,jEA_
from Proposition 3.2, it can be seen that A_(u) — 0 as pu; — oo for all i € A_. Thus,

lim — A(p) = A (p).

Hi—>00,5€ A

Similarly, Ay (p) is written as

Ar(p) = a{ Bl — p)) = BI(AT" — )} =2 > aia; Bi(p) By (),

€Ay i€Ay jFiL,JEAL

and from Proposition 3.1, it follows that the first term in the r.h.s. is equal to zero when
wi =0 for all i € A;. Since B;(0) = ¢; — Eo[¢FP(X;)] > 0 and a;a; > 0 for any i,j € Ay,
it is concluded that

lim lim  A(p)= lm Ai(p :—QZ Z a;a;B;(0)B;(0),

i—0,0EA i —00,3EN_ —0,ieA
Hi + M i + i€y jHijEAy

which is negative. That is, R(u, éU) < R(p, 9GB) for a pu € D, which means that 698 is
not minimax. [

4 Admissible and Minimax Estimation in Normal Dis-
tributions

The generalized Bayes estimator against the uniform prior over D is not necessarily mini-
max as shown in the previous section. An interesting query is what is a prior distribution
which results in the Bayes estimator satisfying the minimaxity. Although it may be hard
to answer this query in the general location family, we can find an affirmative solution in
a setup where the underlying distributions are normal.

Let Xy,..., X, be mutually independent random variables where X; has a normal
distribution with mean g; and unit variance, N (p;, 1) for g; > 0. We use the same
notations D, u, 0, a as defined around (1.1). A prior distribution considered here, denoted
by 7* (), is that with probability one,

i =&y for i€ Ay, and p; =36 for jeA_,

where a; = a; >0y a;/ D 5en, 0F, B = a5 icn aif Yicn ai, and & and & are dis-
tributed uniformly over the set {(€+,€2)|€+ > 0,&- > 0}. For notational simplicity, let
AL =Y ien, @i A2 =D ien, o, By =—>..p a;and By =Y., a?. Then it is noted



that 5.\, of = Af/Ag, Dicn, @it/ Yoicp, F = U /Ay, >iea, @i = Ay, and similar
equalities are satisfied for ;. The joint den51ty function of (X, p) is

(2m) /2 exp{—% Z (2 — &y )” — % Z (z; — B;€_)*}dadé dE

€A JEAL

AQ U 2 QU
e (6 — 5 - (€ — WS SMad A, (@)

where p(Si, S9) = (27) %2 exp{—(S,+5_)/2} for S, = Dien, Ti—(Dien, Qiti)?/ D ien, @
and S_ =37\ 27 — (3. Bi7i)?/ 2 jen. 57+ To simplify the notations more, let

0 =0,/ Ay, Oy=0_/\/Bs, 2z = ég/ VA2, 2= ég/ V Ba.

Then, z; and 2z are mutually independently distributed as N (6;,1) and N (s, 1), respec-

tively, and
0 = \/ Ayt — / Babs. (4.2)

Making the transformations & = A; A_1 2§+ and & = BlB;1/2§_, we can rewrite the
joint density function of (X, p) given in (4.1) as

exp{-l€ — 2/2) 2

(Sl, Sg)dwdé, (43)

where & = (£1,&2)" and 2z = (21,2)". Since Zi€A+ @iy + Y icn 486 = VA —

v Bo&s, the generalized Bayes estimator of 6 against the prior 7* can be written as

HGBs :fp(\/A_2§1 — V/Ba&y) exp{—||€ — z||?/2}d¢
Jpexp{—[1€ — z||?/2}d€
=V As{z1 — 75" (21)} — V/Ba{zo — 6“5 (22)},

where at! X = ég — 0V = \/Ay2, — \/Baz and

(4.4)

6% () = [ wep{-u?/2aul [ esp{-a?/2)au

éGB*

The minimaxity and admissiblity of can be established in the following proposition.

Proposition 4.1 The generalized Bayes estimator e B of 0 against the prior ™ is ad-
missible and minimaz.

Proof. The minimaxity of 69B* follows from Proposition 3.3. In fact, the arguments
given around (4.2) and (4.4) mean that the generalized Bayes estimator of 6 = /A0, —
V/Bafy is based on z, which has N (0, I) where 8 = (6, 0,)" for §; > 0 and 6, > 0. Thus,
it can be seen that ¢“5*(w) satisfies the conditions (a) and (b) of Proposition 3.3, so that
0%B* is minimax.

10



We next prove the admissibility of 95* using the method of Brown and Hwang (1982).
Consider a sequence of the prior distributions 7 (p) such that with probability one,

i = o0&y for €Ay, and p;=p;6- for jeA_,
where (£,,¢_) is distributed as {h, (A1 A;"2¢, + B1B; /*€.))}? for
1, if0<t<l
ho(t) =< 1—logt/logn, ifl1<t<n
0, if n <t.

Similarly to (4.3), we can write the joint density function of (X, ) given in (4.1) as

exp{- 1€ = 2I7/2Hha (€D L2 p(S1, S2)dade, (4.5

where |€] denotes |&€] = & + &. The generalized Bayes estimator 4, against the prior

*

7 (p) can be expressed as

Jo (VA6 — VBala) {ha(1€])}* exp{—[1€ — z|]*/2}d¢
Jolhn(1€)}? exp{—[1§ — z(]?/2}d¢€
and the generalized Bayes estimator #5B* corresponds to the case of hy,(|€|) = 1, where

D = {£[& > 0,§ > 0}. From (4.3), the difference of the Bayes risk functions of two
estimators #“B* and 6, is written by

5o =

Bo= [ [ {69 - 0 = 6, 07 Fexp- 116 — =1 /2) (€)1 5 2051, S2)dade

= [ =07 [ epl-le - 2P 2Dy 205, Se)ded,

where 6 = /A3 — /By in the above bracket. Noting that z;, zo and (S,,S_) are
mutually independent, we can evaluate A,, as

8,=C [0 =5, [ expl-le - zIP/2Hal€]) g0
<20, [{ [ ean@ie- [ an@ae} [ expi-le— =1 /2Hm ey dgaz

w208, [{ [ an@e- [ anee} [ eni-le -2/ eh e
=AL +A_, (say) (4.6)

where C' is an appropriate positive constant, and

{7 (1€])}° exp(— 1€ — =[I*/2)

I&) = T (e oxp(— € — 22 /2)dE”
el g — 2]2/2)
&) = I ole = 2P 2

11



We now show that A, — 0 and A_. — 0 as n — oo by using the same argu-
ments as in Tsukuma and Kubokawa (2008). Let 8 V n = (max(6;,n:), max (62, 1n2))*
and @ Am = (min(fy,n;), min(hy, 7)) for @ = (61, 02)" and 1 = (m1,12)". Since {h,(t)}>
is nonincreasing in ¢, it is noted that {h,(|0 A n|)}* > {h,(]€])}?, which implies that
f1(0) fa(m) < f2(0 vV n)fi1(60 An). Hence from Karlin and Rinott (1980), it follows that

[ anenes [anee i1z (47)
D D
Using the integration by parts, we can see that
[ (6= 0thallgDY exp(—lg — =I7/2)0¢
= exp(=21/2) [ {hn(6)) exp(—(& — ) 2)d
— / ha(I€){1/(1€|log n) } exp(—||€ — =[]*/2)dE, (4.8)
€€D,1<[¢|<n
[ (6= = exp(llg — =1 2)¢
= exp(—21/2) /OO exp(—(& — 22)?/2)dé&,. (4.9)
0
Combining (4.7), (4.8) and (4.9) gives that

0< /D (60 — =) ful€)dE — /D (62— =) f1(€)de

_ exp(—27/2)
Jo~ exp(=(& — 21)?2/2)d&
exp(=22/2) fi {hn (&)} exp(=(& — 22)%/2)d&
Joihn(1€))}? exp(—[€ — =[?/2)d¢
Jeena<iej<n(€110g 1) " R (I€]) exp(— 1§ — 2]1°/2)d€
Jo{hn(1€])}? exp(—]1€ — 2(1?/2)d€

Since h,(|€)I(& € D, 0 <& <n) < h,(&)1(0 <& <n, 0 <& < n), we observe that

(4.10)

/D (ha (€D} exp(— 1€ — 2IP/2)de
< / {hn(&)} exp(—[|€ — 2[|?/2)de
Oglﬁn,oébén .
< / exp(— (6 — 21)2/2)d6s / (€)Y exp(— (62 — )/2)d6,

which is used to evaluate the second term in the r.h.s. of the equation (4.10). Hence from
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(4.10),

0< /D (61— 20) fo(€)dé — /D (61— =) fi(€)de

Jeen 1<igj<n (161108 1) " R (|€]) exp(—[|€ — z[1*/2)d§
B Jolhn(I€))}? exp(— 1§ — =[|*/2)dg

Using the Cauchy-Schwarz inequality, we can see that

{ [ anene- [ aneae)
- {Jecp. 1<i¢1<n (€l log 1) " hi(€]) exp(—[|€ — =[|*/2)d€}?
- {[p{a(|€])}? exp(—1€ — =[|2/2)d&}?
fgeD,1§\g|§n(|€| logn) % exp(—||§ — 2[]?/2)d§
a Jotha (€]} exp(—[I§ — z(?>/2)d§

which implies that

ar =204y [{ [ e~ [ aunceae}” [ espl-le - zIP/2Hna€)) ez
§20A2//£ 1o 1o (e — 2[1*/2)agaz
:20A2(27T)/€ D1t se (§1+§2)_2d£(10gn)_2.
€D, 1<§1+62<5n

Making the transformations u = & + & and w = & /(&1 + &), we can see that

1 n
/ (&1 +&)7%dE = / dw/ u 'du = logn,
£€€D, 1< +82<n 0 1

so that A, is evaluated as
A, <2CA,(27)(logn) ™!,

which goes to zero as n — oco. Similarly, we have A_ < 2CB,(2n)(logn)~". Therefore,
the admissibility of §95* is established. [ ]

Finally, we give an expression of the risk function of 098, As seen from (4.3) and (4.4),
the estimator #%B* corresponds to the case of k = 2 in the generalized Bayes estimator
6eB against the uniform prior over D given in (1.3). Thus, we begin with handling the
estimator 898, First, the generalized Bayes estimator of the mean vector p against the
uniform prior is given by a“? = X — ¢%%(X), where

(X — &) exp{—|| X — £||*/2}d¢
Jpexp{~[IX —&|]>/2}d&

d)G’B(X) — fD

13



for & = (&,...,&)" Tt can be seen that ¢GB(X) = (¢SB(X1),...,6CB(X;))t where
077 (X;) = fooo (Xi — &) exp{—(X; — &)?/2}d&;/ fooo exp{—(X; — &)?/2}d¢;. The function

#¢B(X;) can be further rewritten as

son _ Sosuwoplzut/Rdu_ exp{-X?/2) (411)

J7o exp{—u?/2}du [ exp{—u?/2}du’

which is negative. In the context of the simultaneous estimation of p, Hartigan (2004)
derived an expression of the risk function of f%?, which is given by

077 (Xi) =

R, 5%%) = B[ = pll?) = b+ B> o (X))

i=1

This demonstrates that ﬁGB dominates X, namely, ﬁGB is minimax for any dimension k.
To the contrast, the dominance results obtained in Section 3 mean that the generalized
Bayes estimator 6B is not necessarily minimax. Using the same arguments as in Hartigan
(2004), we can get a similar expression of the risk function. Using the same notation as
n (4.11), we can express the generalized Bayes estimator 698 of 6 = a'p as

éGB _ atﬁGB —atX — at¢GB(X),
whose risk function is given in the following proposition.

Proposition 4.2 The risk function R(p,08) = E[(§98 — 0)?] is expressed as

k

R(,09F) = a'a + B, [Za widGP (X;) + 22 S a6 (X0efP (x| (412)

=1 =1 7>t

Proof. For notational simplicity, let ¢; = ¢9B(X;) and ¢ = (¢1,...,¢)". Let
A = R(p,0%P) — R(pu,a' X). Since R(u,a'X) = a'a, it is easy to see that

A=adE[—~(X - p)¢' — d(X — p)' + ¢¢']a.
Applying the Stein identity to one of the cross product terms gives that
E[(X — p)¢'] =E|diag; ((X - Mi)¢i)]
R Jo (Xi = &)?exp{—(X; — &)*/2}d&
=F[diag; (1 _Jdo o[ (X, — L) /o}de ¢i>]>
where diag;(d;) denotes diag (dy, ...,dy). Since (X; — u;)(X; — &) = (X; — &)* + (& —
1) (X; — &), the other cross product term is written as
e I (X — &) exp{—(X; — &)?/2}d&
El¢(X — )'] =E[diag, (2 o (X T T2E )
(fo (& — ) (Xi — &) exp{—(X; — §¢)2/2}d§z‘>]
fo exp{—(X; — &)?/2}d&; '

+ diag;
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By integration by parts, it is observed that
/ (& — 1) (Xi — &) exp{—(Xi — &)2/2}dé
0
— jexp{—X?/2} - / exp{— (X, — &)2/2}de..
0

From (4.11), it follows that

S (& = ) (X — &) exp{—(X; — &)?/2}d&
IS exp{—(X; — &)?/2}d¢

Combining the above observations gives that

A = a'E[-diag,({¢:}? — o) + ¢pda,

which yields expression (4.12). n

= —pip; — 1.

When p; is zero, it is seen that AEO[gbi(Xi)] = Fylp1(Xy1)] for i = 2,... k. Then from
Proposition 4.2, it is seen that R(0,0%%) = a'a+23.1, > i @ia{ Eo[¢F P (X1)]}?, which
implies that a necessary condition for the minimaxity of 695 is that Zle > i @ity <0
or k = 1. As seen from Propositions 3.1 and 3.3, this is a sufficient condition as well.
From Proposition 3.5, however, it is not sufficient in the case of k > 3.

As the case of k = 2 in Proposition 4.2, we can provide an expression of the risk of
the generalized Bayes estimator 5% given in (4.4). It is expressed as

R(p,09%) =A% + B2 + B, [A26109%%(21) + Ba2¢P*(25)]
— 2B, [\/ Ay Ba¢®P* (21) P (22)] .

5 A relation to the Stein problem in variance esti-
mation

In this section, we explain that the estimation of the restricted mean in a normal dis-
tribution is related to the Stein problem in the estimation of variance. This fact was
established by Rukhin (1992) in a canonical form of a normal distributional model. We
here use the same arguments to clarify the conditions on the parameters under which the
Stein estimator of variance in a linear regression model converges to the truncated esti-
mator of the restriced normal mean. We also show that the Stein problem in estimation
of ratio of variances converges to the estimation of the difference of two restricted normal
means.

Let us consider the linear regression model
y=XpB+e, (5.1)

where y and X are nx 1 and n X p observation matrices, respectively, and 3 is a p-vector of
the regression parameters and € is an n-vector of errors having a distribution N'(0, 021,).
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It is assumed that X is of full rank. Let 3 = (X'X)"' X'y and § = (y— X8)'(y — X 3),
which are distributed as N'(3, 0%1,) and ox2, for m = n—p. Stein (1964) showed that the
best scale estimator based on S is inadmissible and is improved on by using information
contained in B3. For instance, the unbiased estimator 62V = S/m is improved on by the
truncated estimator

5% = {S/m, (S + B X'XB)/n}

relative to an entropy loss function. Rukhin (1992) showed that this dominance result
can be approximated by the estimation of a positive mean in a normal distribution.

Consider the asymptotic approximation under the following setup which is a slightly
different framework from that of Rukin (1992):
(A1) The dimension p behaves as p = n — d,, where d,, > 0 and d,, = O(n’) for
0<6<1.
(A2) X'X /n converges to a positive definite matrix, and there is a positive constant
¢ such that
lim /mB' X' X B/(no®) = v/26.

Under (A1), it is easy to see that m = O(n’) and m — oo as n — oo. Let Z =
(S — mo?)/(v2mo?) and U = (X'X)Y2(8 — B)/o. Then U have N,(0,I). Since
E[S] = mo? and Var[S] = 2mo?, it is seen that Z converges to N'(0,1) as m — oo.
Thus,

Vm(e® — %) /o? =27 = —2(Y —6), (5.2)

_ : . Attt oryt 0wt y\1/2
where Y = —Z+0 and it converges to N (0, 1). Since 8 X' X3 = oc?U'U+2003" (X' X)?U+
B' X X3, it can be seen that

V(e - o) fo?
=/m(6?Y — 0?)/0® — /m max{0, %S -

—V/2Z — max{0, %(\/52 +y/m) — @UtU
ot B'X'X3
— 20—@ (X'X /n)Y?U — vmB X Xf s}
=27 — max{0, %\/EZ + @\/ﬁ(UtU/p - 1)
VmB'X'Xp
2

no

Bx'Xp

n

}

— 2U—@Bt(XtX/n)1/2U - 1.

From the assumptions, it is observed that p/n — 1, /mp/n = O(n®1/2) = 0 and
VPU'U /p — 1) = 0,(1), so that (y/mp/n)\/p(UU/p— 1) — 0. Note that

Bt(XtX/n)l/ZU

VB(XX/n)B

%gt(xt)(/n)l/m = \/\/E/n\/ﬁﬂtXtXB/n
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Since B'(X'X /n)Y2U /\/B'(X'X /n)B ~ N(0,1) and /m/n = O(n®?71), it is seen
that {\/m/o/n}B(X'X /n)"2U — 0. Thus,

V(6% — 0% /o® V27 — max{0,V2Z — v/26}
= — V2(max{Y,0} — 6), (5.3)

where Y = —Z + 6 converges to N'(0,1) for § > 0. This shows that Stein’s truncated
estimator of 0% converges to the nonnegative estimator max(Y,0) of 8 where Y ~ N (6, 1)
for 6 > 0.

We next consider the estimation of ratio of variances in two linear models, given by
y, = X8, + €, i = 1,2, where € ~ N,(0,021,), 3, is a p x 1 vector and the other
variables are defined similarly to (5.1). Let Bz and S; be defined as similar statistics as
in model (5.1). Kubokawa (1994b), Kubokawa and Srivastava (1996) and Iliopoulos and
Kourouklis (1999) showed that the best multiple by the ratio S;/5; can be improved
on by using information on 51 and 62 111 the estimation of the ratio p = 02/02. Let
62V = S;/m and %% = min{62Y, (S, +,3XXﬂ)/n} for i = 1,2 and m = n — p. For
1nstance the ratio of the unbiased estimators 62V /62Y should be 1mproved on by the ratio
of the truncated estimators 62°/62°. To derive the asymptotlc approximations of these
ratio estimators, it is noted that for two estimators 7 and 63,

22,22 2 2 _\/ﬁ(&%—ag)/ag—i—\/ﬁa_%_ ‘7_3
Vm(03/67 — a3/07) = 02—/l 11 o mo%
ok (et oot _ymiet ooty
o \(6f —of)/oi+1 (6 —of)/of +1

Assume the condition (A1) and
(A2") Fori = 1,2, X! X;/n converges to a positive definite matrix, and there is positive
constant 6; such that

lim mB!X'X,8,/(no?) = V2.
n—oo

For i = 1,2, let Z; = (S; — mo?)/(V/2mo?) and Y; = —Z; + 0;, which has N (0;,1).
Hence from (5.2) and (5.4), it is observed that

Vm(637 /617 — 03 /01) = (o3/a){ (Y1 — Ya) — (61 — 02)}.
Also from (5.3) and (5.4),
Vm(63° /61" — 3 /ot) — (03 /01){(max(Y1, 0) — max (Y3, 0)) — (1 — ) }.

This shows that the estimation of the ratio of the variances can be approximated by
the estimation of the difference of the positive means of normal distributions. Thus,
the estimation of the mean difference can be motivated from the estimation of ratio of
variances.
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