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Abstract

This article proposes a Bayesian estimation of demand functions under block-rate

pricing by focusing on increasing block-rate pricing. This is the first study that explicitly

considers the separability condition which has been ignored in previous literature. Under

this pricing structure, the price changes when consumption exceeds a certain threshold

and the consumer faces a utility maximization problem subject to a piecewise-linear bud-

get constraint. Solving this maximization problem leads to a statistical model in which

model parameters are strongly restricted by the separability condition. In this article, by

taking a hierarchical Bayesian approach, we implement a Markov chain Monte Carlo sim-

ulation to properly estimate the demand function. We find, however, that the convergence

of the distribution of simulated samples to the posterior distribution is slow, requiring an
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additional scale transformation step for parameters to the Gibbs sampler. These proposed

methods are then applied to estimate the Japanese residential water demand function.

Key words: Discrete/continuous choice approach, Markov chain Monte Carlo method,

Piecewise-linear budget constraint, Residential water demand, Separability condition.

JEL classification:C11, C24, Q25.

1 Introduction

Block-rate pricing is a nonlinear pricing system often applied to public utilities, such as water.

In contrast to other goods and services offered at a single price, consumers under block-rate

pricing face several prices corresponding to the level of consumption. Income tax also has

this pricing structure because the marginal tax rate changes according to total income. Gen-

eral microeconomic theory suggests that the most efficient allocation is achieved by setting a

good’s unit price equal to its production cost per unit, which is called marginal cost pricing.

However, in practice, several market issues exist that make marginal cost pricing inapplicable.

In such cases, block-rate pricing is often employed by regulators.

To derive the demand function under block-rate pricing, we adopt a discrete/continuous

choice approach, which Burtless and Hausman (1978) first used to analyze taxation’s effect on

the labor supply (see also Hanemann (1984); Hausman (1985); Moffitt (1986)). Model speci-

fications of this kind are commonly used to evaluate tax policy or examine consumer behavior

under block-rate pricing structures, such as labor supply (Burtless and Hausman, 1978), food

stamp expenditure (Moffitt, 1989), car ownership and use (de Jong, 1990), electricity demand

(Herriges and King, 1994; Reiss and White, 2005), and water demand (Hewitt and Hanemann,

1995; Olmstead, Hanemann, and Stavins, 2007).

While this approach is based on the consumer’s maximization problem, a correspond-

ing statistical model strongly restricts the model parameters. Furthermore, as Moffitt (1986)
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pointed out, there is not only a computational burden but also the non-differentiability of the

likelihood function. Thus, previous studies have exclusively estimated the demand function

under two-block-rate pricing. The only exception seems to be Olmstead et al. (2007), who

considered the multiple-block-rate pricing, where the number of blocks varies from two to

four, using the maximum likelihood method. This method, however, ignored the so-called

separability condition, which becomes important as the number of blocks increases. In Japan,

consumers usually face more than two blocks (specifically, between five and eleven for water

and between three and four for electricity), which requires the consideration of multiple-block-

rate pricing.

Therefore, this article takes a hierarchical Bayesian approach and implements a Markov

chain Monte Carlo (MCMC) simulation to properly estimate the demand function; see Chib

(2001) and Chib and Greenberg (1996) for the MCMC methodology and its use in econo-

metrics, respectively. The present paper allows two practical attributes that previous studies

excluded. First, we allow the number of blocks to be greater than two. Then, we use the

discrete/continuous approach to derive the demand function as a multinomial generalization

of the Type V Tobit model; see Chapter 10 of Amemiya (1985) for Tobit classifications and

Chib (1992) for a pioneering study of the Bayesian approach in Tobit modeling. Second, we

explicitly consider the separability condition, which guarantees that consumer preferences are

divided into disjoint blocks. This condition has been ignored in previous studies yet plays a

critical role, especially in multiple-block-rate pricing.

We find, however, that the distribution of samples obtained from the Gibbs sampler con-

verges very slowly to the posterior distribution. To improve sampling efficiency, we introduce

an additional scale transformation step for parameters to the Gibbs sampler based on the gen-

eralized Gibbs step (GGS) developed by Liu and Sabatti (2000).

The rest of this article is organized as follows. In Section 2, we describe the discrete/continuous

choice approach and the demand function under block-rate pricing. Section 3 explains the sta-

3



tistical model, derives its likelihood function and joint posterior density function, and accounts

for the separability condition. With this posterior density function, this section presents the

MCMC algorithm and the corresponding generalized Gibbs step. Section 4 carries out a sim-

ulation study and reveals several properties of our algorithms. After data description, Section

5 applies our proposed method to estimate the residential water demand function in Japan us-

ing microdata, and the price and income elasticities are also estimated to investigate demand

sensitivity in detail. Section 6 provides the conclusion for this article.

2 Demand Function

First, we explain the model settings, following the discussion of Moffitt (1986). There are two

types of goods; namely, a good under block-rate pricing and all other goods. Suppose that a

consumer’s demand for a good,Y, is subject toK-block-rate pricing, and that its demand is

strictly positive,Y > 0. Let Ya and I be the expenditure for non-Y goods and total income,

respectively. The price system ofY is as follows. There areK prices,Pk (k= 1, . . . ,K), related

to K blocks. These prices are fixed and considered as given constants throughout this article.

In practice, price often changes monotonically withPk < Pk+1 or Pk > Pk+1 for k= 1, . . . ,K−1.

This article focuses on the price system in which price increases monotonically. That is,Pk <

Pk+1 (k = 1, . . . ,K −1), which is known as increasing block-rate pricing. Japanese residential

water demand data in Section 5 offer an example of increasing block-rate pricing. LetȲk

denote the upper limit, or threshold, of thek-th block (k= 0, . . . ,K), whereȲ0 ≡ 0 andȲK ≡∞

for convenience. In addition to marginal prices and thresholds, there is a fixed cost,FC, that

is independent of consumption,Y. At a practical level, this fixed cost represents a minimum

access charge. The threshold values,Ȳk, and a fixed cost,FC, are given fixed constants.

Let U(Y,Ya) be the well-defined utility function. Then, the consumer’s utility maximiza-
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Figure 1: Utility maximization problem: three-block case.

tion problem is given by:

V =max
Y,Ya

U(Y,Ya) subject toc(Y)+Ya ≤ I , (1)

wherec(Y) = FC+Pk(Y− Ȳk−1)+
∑k−1

j=1 P j(Ȳj − Ȳj−1) if Ȳk−1 ≤ Y< Ȳk for k= 1, . . . ,K. Figure

1 illustrates a budget constraint and indifference curve under three-block increasing block-rate

pricing, where the second block is optimal with its optimal demand,Yopt, and level of indirect

utility, V. The budget constraint of this form is a piecewise-linear budget constraint because it

becomes linear given the choice of a block.

Finally, the demand function is derived. Before its derivation, we must defineK condi-

tional utility maximization problems. Fork = 1, . . . ,K, thek-th conditional problem is given

by:

max
Y,Ya

U(Y,Ya) subject toPkY+Ya ≤ Qk, whereQk = I −FC−
k−1∑
j=1

(P j −P j+1)Ȳj , (2)

andQk is an augmented income (also referred to as virtual income). Under Problem (2), the

consumer can maximize utility as if facing a single price,Pk, and virtual income,Qk. Let
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conditional demandYk be the solution to this conditional utility maximization problem, which

results in the demand function under increasing block-rate pricing:

Y=


Yk, if Ȳk−1 < Yk < Ȳk andk= 1, . . . ,K,

Ȳk, if Yk+1 ≤ Ȳk ≤ Yk andk= 1, . . . ,K −1.

(3)

In studying the demand function under block-rate pricing, there are several functional

forms, such as linear, quadratic, and log-linear functions, for the conditional demand,Yk, in

Equation (3); the log-linear conditional demand model is one of the most popular models

used in previous studies (Hewitt and Hanemann, 1995). Thus, this article focuses on the log-

linear model for conditional demand, but our proposed estimation method would apply to

other models in a similar manner. The log-linear model is given by lnYk = β1 lnPk+β2 lnQk,

where the parametersβ1 and β2 represent the price and income elasticities conditional on

block choice, respectively. For simplicity, lety, yk, ȳk, pk, andqk denote the logarithm of

demand (Y), k-th conditional demand (Yk), k-th threshold (̄Yk), k-th marginal price (Pk), and

k-th virtual income (Qk), respectively. Then, Equation (3) under the log-linear model can be

written as follows:

y=


yk, if ȳk−1 < yk < ȳk andk= 1, . . . ,K,

ȳk, if yk+1 ≤ ȳk ≤ yk andk= 1, . . . ,K −1,

(4)

yk = β1pk+β2qk ≡ xxx′kβββ, (5)

wherexxxk = (pk,qk)′, βββ = (β1,β2)′, ȳ0 ≡ −∞, andȳK ≡∞.
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3 Bayesian Analysis of Demand Functions under Block-Rate

Pricing

3.1 Statistical Model

From this section, we append the subscripti to thei-th consumer’s variables (i = 1, . . . ,n) and

the superscript∗ to latent variables. For example,yi , ȳik, pik,qik,Ki are observed variables,

whereasw∗i , s
∗
i are unobserved that will be explained in the following paragraph. We note that

yik, thek-th log conditional demand, is unobserved, as it has no superscript∗ to avoid tedious

notation. Because we construct a statistical model that assumes different block-rate pricing

for different observation, variables for block-rate pricing are also marked by the subscripti.

Our statistical model, which is a multinomial extension of Moffitt (1986), is described as

follows; see also Hewitt and Hanemann (1995). First, we introduce two unobserved random

variables into the demand function of thei-th consumer, namely, heterogeneity,w∗i , and state

variable,s∗i . Heterogeneity is a stochastic term that models consumer characteristics. Thew∗i

is assumed to follow the linear model:

w∗i = zzz′iδδδ+vi , vi ∼ i.i.d. N(0,σ2
v), (6)

wherezzzi andδδδ ared×1 vectors of explanatory variables for heterogeneity and corresponding

parameters, respectively, andvi is an independently and identically distributed disturbance

term with a normal distribution of mean 0 and varianceσ2
v. We assume that heterogeneity for

the i-th observation,w∗i , is additive to log conditional demand,yik. Then, the log conditional
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demand with heterogeneity,y∗i , for thei-th consumer is given by:

y∗i =


yik +w∗i , if ȳi,k−1 < yik +w∗i < ȳik andk= 1, . . . ,Ki ,

ȳik, if yi,k+1+w∗i ≤ ȳik ≤ yik +w∗i andk= 1, . . . ,Ki −1,

(7)

whereyik = xxx′ikβββ andxxxik = (pik,qik)′.

Another latent variable is the state variable,s∗i . There are 2Ki −1 potential outcomes in the

demand function Equation (7), includingKi conditional demands with heterogeneity (yik+w∗i )

andKi −1 threshold demands (¯yik). The state variable,s∗i , is an unobserved discrete random

variable taking values from 1 to 2Ki − 1 and indicates which outcome thei-th observation

selects; ifs∗i is odd, observationi chooses conditional demand with heterogeneity, and ifs∗i is

even, it selects the kink point as its demand. More precisely:

s∗i =


2k−1, if y∗i = yik +w∗i andk= 1, . . . ,Ki ,

2k, if y∗i = ȳik andk= 1, . . . ,Ki −1.

(8)

It is straightforward from Equation (7) that the condition regarding whethery∗i equals

yik +w∗i or ȳik is equivalent to the interval condition for heterogeneity.

ȳi,k−1 < yik +w∗i < ȳik⇐⇒ w∗i ∈ Ri,2k−1 =
(
ȳi,k−1−yik, ȳik −yik

)⇐⇒ s∗i = 2k−1, (9)

yi,k+1+w∗i ≤ ȳik ≤ yik +w∗i ⇐⇒ w∗i ∈ Ri,2k =
(
ȳik −yik, ȳik −yi,k+1

)⇐⇒ s∗i = 2k. (10)

Furthermore, we assume that conditional demandyi for thei-th consumer is observed with

a disturbance:

yi = y∗i +ui , ui ∼ i.i.d. N(0,σ2
u), i = 1, . . . ,n, (11)

whereui may imply optimization, specification, and measurement error (Hausman, 1985).
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Finally, the statistical model for the demand function under increasing block-rate pricing

is given by following equations:

yik = xxx′ikβββ, xxxik = (pik,qik)′ , k= 1, . . . ,Ki , (12)

w∗i = zzz′iδδδ+vi , vi ∼ i.i.d. N(0,σ2
v), (13)

s∗i =


2k−1, if w∗i ∈ Ri,2k−1 andk= 1, . . . ,Ki ,

2k, if w∗i ∈ Ri,2k andk= 1, . . . ,Ki −1,

(14)

y∗i =


yik +w∗i , if s∗i = 2k−1 andk= 1, . . . ,Ki ,

ȳik, if s∗i = 2k andk= 1, . . . ,Ki −1,

(15)

yi = y∗i +ui , ui ∼ i.i.d. N(0,σ2
u). (16)

Error terms, including measurement error,ui , and the error for heterogeneity,vi , are assumed

to be mutually independent conditional on the block choices∗i because they represent different

sources of error. This model is a multinomial extension of the Type V Tobit model; see Section

10.10 in Amemiya (1985) for more on the Type V Tobit model.

Remark 1.SupposeKi = 2. Then, Equations (14) and (15) reduce to:

s∗i =



1, if w∗i ∈ Ri1 = (−∞, ȳi1−yi1) ,

2, if w∗i ∈ Ri2 = (ȳi1−yi1, ȳi1−yi2) ,

3, if w∗i ∈ Ri3 = (ȳi1−yi2,∞) ,

y∗i =



yi1+w∗i , if s∗i = 1,

ȳi1, if s∗i = 2,

yi2+w∗i , if s∗i = 3.

(17)

Remark 2.There may be consumers whose first block is a zero marginal price; that is,Pi1 = 0.

They are assumed to consume more than or equal to the first threshold, ¯yi1, as suggested by

economic theory, which implies thats∗i = 2, . . . ,Ki andRi2 = (−∞, ȳi1−yi2).
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3.2 Likelihood Function

The augmented likelihood function for observationi is derived by multiplying two probabil-

ity density functions. First, we derive the joint probability density function of unobserved

variables,s∗i andw∗i . These variables are modeled using Equations (13) and (14). Thus:

f
(
s∗i ,w

∗
i | βββ,δδδ,σ2

v

)
= f

(
w∗i | δδδ,σ2

v

)
f
(
s∗i | w∗i ,βββ

)
∝ σ−1

v exp

[
− 1

2σ2
v

(
w∗i −zzz′iδδδ

)2
]
I
(
w∗i ∈ Ris∗i

)Ki−1∏
k=1

I
(
xxx′i,k+1βββ ≤ xxx′ikβββ

)
, (18)

where I (A) is an indicator function taking a value of 1 ifA is true and 0 otherwise. The

last truncation term,
∏Ki−1

k=1 I (xxx′i,k+1βββ ≤ xxx′ikβββ), is the separability condition that is first explic-

itly considered in this article. The role of the separability condition is explained in the next

subsection.

After the unobserved variables are determined by Equation (18), the conditional probabil-

ity density function ofyi is derived using Equations (15) and (16) and given by:

f
(
yi | s∗i ,w∗i ,βββ,σ2

u

)
∝


σ−1

u exp
[
− 1

2σ2
u

(
yi − xxx′ikβββ−w∗i

)2
]
, if s∗i = 2k−1 andk= 1, . . . ,Ki ,

σ−1
u exp

[
− 1

2σ2
u
(yi − ȳik)2

]
, if s∗i = 2k andk= 1, . . . ,Ki −1,

(19)

= σ−1
u exp

[
− 1

2σ2
u

(
yi −y∗i

)2
]
. (20)

Finally, multiplying these two probability density functions (18) and (20), we obtain the aug-

mented likelihood function for observationi:

f
(
yi , s
∗
i ,w
∗
i | βββ,δδδ,σ2

u,σ
2
v

)
= f

(
yi | s∗i ,w∗i ,βββ,σ2

u

)
f
(
s∗i ,w

∗
i | βββ,δδδ,σ2

v

)
∝ σ−1

u σ
−1
v exp

[
−1

2

{
σ−2

u

(
yi −y∗i

)2
+σ−2

v

(
w∗i −zzz′iδδδ

)2
}]
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×I
(
w∗i ∈ Ris∗i

)Ki−1∏
k=1

I
(
xxx′i,k+1βββ ≤ xxx′ikβββ

)
.

(21)

3.3 The Separability Condition

We briefly describe the role of the separability condition in our model. The separability condi-

tion is a condition that creates disjointed heterogeneity intervals. It guarantees that the upper

limit is greater than or equal to the lower limit for intervals in Equation (10). Under the

multiple-block-rate pricing, this condition is given by:

yi,k+1 ≤ yik

(
⇐⇒ xxx′i,k+1βββ ≤ xxx′ikβββ

)
for k= 1, . . . ,Ki −1 andi = 1, . . . ,n. (22)

Becauseβββ is two-dimensional in our case, the separability condition reduces to two condi-

tions. Letr =maxi,k−(pi,k+1− pik)/(qi,k+1−qik), and letr =mini,k−(pi,k+1− pik)/(qi,k+1−qik).

Then, Equation (22) is equivalent to

β2 ≤ rβ1 andβ2 ≤ rβ1, (23)

which is the shadowed region found in Figure 2. When the conditional demand includes more

than two variables, the separability condition is given by Equation (22). In this case, we must

address as many inequality conditions as the number of observations and blocks to numerically

maximize the likelihood function.

Let us illustrate the role of the separability condition. Consider the maximization of aug-

mented likelihood under two-block increasing block-rate pricing, assuming that there is only

one observation. Condition (22) then reduces toyi2 ≤ yi1 as the only condition. Without this

condition, the upper and lower limits for kink point demand are allowed to be reversed, and
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Figure 2: Region suggested by the separability condition.

hence, there could be a case in which ¯y1−yi2 < w∗i < ȳ1−yi1 (seeRi2 of Equatioin (17)). Such

a situation leads to ambiguity in the state variable ifs∗i = 1 or 3. Therefore, any estimation

without the separability condition causes disagreement within the model.

3.4 Posterior Density Function and Gibbs Sampler

First, we assume proper prior distributions for the model parameters (βββ,δδδ,σ2
u,σ

2
v). For these

parameters, we assume normal distributions forβββ andδδδ, conditional onσ2
u andσ2

v, and inverse

gamma distributions forσ2
u andσ2

v.

βββ | σ2
u ∼ N2

(
µµµβββ,0,σ

2
uΣΣΣβββ,0

)
, δδδ | σ2

v ∼ Nd

(
µµµδδδ,0,σ

2
vΣΣΣδδδ,0

)
, σ2

u ∼ IG

(
nu,0

2
,
Su,0

2

)
, σ2

v ∼ IG

(
nv,0

2
,
Sv,0

2

)
,

(24)

whereµµµβββ,0, is a 2×1 known vector;ΣΣΣβββ,0 = diag(σ2
β1,0
,σ2
β2,0

) is a 2×2 known diagonal matrix

with diagonal elements (σ2
β1,0
,σ2
β2,0

); µµµδδδ,0 is a d× 1 known vector,ΣΣΣδδδ,0 is a knownd× d

covariance matrix; andnu,0 > 0, Su,0 > 0, nv,0 > 0, Sv,0 > 0 are some known constants. In this

article, the subscript on the normal distribution indicates its dimension.
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The posterior density function for the statistical model in Equations (12) through (16) is

obtained by multiplying the augmented likelihood function in Equation (21) over all observa-

tions with the prior density function,π
(
βββ,δδδ,σ2

u,σ
2
v

)
:

π
(
βββ,δδδ,σ2

u,σ
2
v, sss
∗,www∗ | yyy

)
∝ π

(
βββ,δδδ,σ2

u,σ
2
v

)
×σ−n

u σ
−n
v exp

[
−1

2

{
σ−2

u
(
yyy−yyy∗

)′ (yyy−yyy∗
)
+σ−2

v
(
www∗−ZZZδδδ

)′ (www∗−ZZZδδδ
)}]

×
n∏

i=1

I (w∗i ∈ Ris∗i
)

Ki−1∏
k=1

I
(
yi,k+1 ≤ yik

) , (25)

whereyyy = (y1,y2, . . . ,yn)′, yyy∗ = (y∗1,y
∗
2, . . . ,y

∗
n)′, sss∗ = (s∗1, s

∗
2, . . . s

∗
n)′, www∗ = (w∗1,w

∗
2, . . .w

∗
n)′, and

ZZZ = (zzz1,zzz2, . . . ,zzzn)′.

Under log-linear conditional demand and above priors, the full conditional posterior distri-

butions are all standard distributions, as provided in Appendix A.1. We implement a standard

Gibbs sampler to draw samples from the posterior density function (25), which is summarized

in the following seven steps:

Algorithm 1.1: MCMC algorithm for the model in Equations (12)-(16)

Step 1. Initializeβββ,δδδ, sss∗,www∗,σ2
u andσ2

v.

Step 2. Generateβ1 givenβ2, sss∗,www∗,σ2
u.

Step 3. Generateβ2 givenβ1, sss∗,www∗,σ2
u.

Step 4. Generate
(
σ2

v, δδδ
)

givenwww∗.

Step 5. Generate
(
s∗i ,w

∗
i

)
givenβββ,δδδ,σ2

u,σ
2
v for i = 1, . . . ,n.

Step 6. Generateσ2
u givenβββ, sss∗,www∗.

Step 7. Go to Step 2.

A blocking technique is used to sample (s∗i ,w
∗
i ) in order to isolate the relationship in which

w∗i determiness∗i , while blocking in (σ2
v, δδδ) is used to accelerate the convergence of MCMC

draws.
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3.5 Convergence Acceleration

As we shall see in Sections 4 and 5, the obtained samples of parameters are sometimes highly

autocorrelated so that their convergence to the posterior distribution is slow. This subsection

introduces a generalized Gibbs step proposed by Liu and Sabatti (2000) to improve sampling

efficiency. While its implementation is simple, the GGS improves sampling efficiency to some

extent in the estimation of the discrete/continuous choice model.

The main idea of the GGS is to add one more sampling step for a transformation group

while keeping the transition kernel of MCMC invariant, so that we can obtain acceleration

effects similar to those of re-parametrization or blocking; see Section 2 of Liu and Sabatti

(2000) and Section 8.3 of Liu (2001) for a general definition of the GGS.

In our case, we apply the GGS to all parametersζζζ = (βββ,δδδ,www∗,σu,σv) so as to implement

the one-step Metropolis-Hastings (MH) algorithm described below, and take a scale transfor-

mation group, that is,Γ = {g> 0 : g(ζζζ) = gζζζ}. Then, the full conditional probability density

function ofg̃≡ g−1 is derived as Equation (A.37) in Appendix A.2. This full conditional prob-

ability density function is a nonstandard density function, so that the MH algorithm is adopted

to draw a sample of ˜g. Starting from the initial value ˜g = 1, we draw a candidate ˜g′, which

follows the truncated normal distribution with meanµg̃, varianceσ2
g̃, and truncation interval

Rg̃:

T NRg̃

(
µg̃,σ

2
g̃

)
, (26)

whereµg̃ = a2/a1 andσ2
g̃ = a−1

1 . See Equations (A.38), (A.39), and (A.41) in Appendix

A.2 for definitions ofa1, a2, andRg̃. The candidate is accepted with probabilityα (g̃, g̃′) =

min[1, (g̃′/g̃)a0−1], wherea0 = n+nu,0+nv,0.

The MH algorithm typically must be repeated in order to obtain a sample from the con-

ditional posterior density function of ˜g. As we have proved in Appendix A.3, however, it is

sufficient to draw a sample only once using the initial value ˜g = 1. Therefore, the GGS is
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implemented by replacing Step 7 of Algorithm 1.1 described in the previous subsection as

follows:

Algorithm 1.2: Generalized Gibbs step for the model in Equations(12)-(16)

Step 7. Generate ˜g givenβββ, sss∗,www∗,σu,σv.

(a) Generate ˜g′ ∼ T NRg̃(µg̃,σ
2
g̃) andu∼ U (0,1), whereU (0,1) denotes a uniform

distribution on interval (0,1).

(b) Accept a candidate ˜g′ if u≤ α (1, g̃′). If rejected, let ˜g= 1.

Step 8. Transform parameters(βββ,δδδ,www∗,σu,σv) by multiplying parameters byg= g̃−1.The

state variablesss∗ is also updated by this newwww∗.

Step 9. Go to Step 2.

4 Illustration Using Simulated Data

This section illustrates our Bayesian estimation of the statistical model based on Equations

(12) to (16), using simulated data. We consider two-block increasing block-rate pricing with

1,000 observations. The marginal price for the first block is generated using|N(1,0.52)|,

which is the absolute value of a random number following a normal distribution with mean

1 and variance 0.52. The absolute value is taken to guarantee a positive marginal price. The

second block’s marginal price is similarly generated by adding|N(1,0.52)| to the first block’s

price. There is one threshold in this price system, which is set equal to 0.5. As for other

variables, income is generated by|N(2,0.52)|, and fixed cost is equal to 0. We consider only

one explanatory variable other than the constant term for heterogeneity followingN(0,1).

Thus,δδδ = (δ0, δ1)′.

The true parameter values are(β1,β2, δ0, δ1,σu,σv) = (−0.6,0.3,0.1,0.1,0.3,0.1). The re-

gression parameter for price is set to be more elastic than for income based on evidence pro-

15



Table 1: Estimation summary with simulated data by GGS

Parameter True Mean SD 95%interval INEF CD∗∗

GGS/ GS∗

β1 −.6 −.62 .067 [−.76 −.49] 17.2 / 41.7 .116
β2 .3 .35 .10 [ .14 .54] 96.4 / 385.4 .108
δ0 (constant) .1 .090 .11 [−.11 .30] 134.9 / 498.8 .331
δ1 .1 .084 .010 [ .064 .10] 1.7 / 2.7 .205
σu (measurement error) .3 .29 .019 [ .24 .32] 35.5 / 69.2 .468
σv (heterogeneity) .1 .12 .040 [ .054 .20] 49.4 / 90.9 .413

∗ “INEF GGS / GS” denotes the estimated inefficiency factors using the Gibbs sampler with
Generalized Gibbs step and the standard Gibbs sampler
∗∗ “CD” denotes the convergence diagnostics.

vided in previous studies on the water demand function; see Table 2 of Hewitt and Hanemann

(1995). The prior distributions are:

βββ | σ2
u ∼ N2

(
000,102σ2

uIII
)
, δδδ | σ2

v ∼ N2

(
000,102σ2

vIII
)
, σ2

u ∼ IG
(
10−2,10−2

)
, σ2

v ∼ IG
(
10−2,10−2

)
.

(27)

The mean and variance for the precision parametersσ−2
u andσ−2

v are 1 and 102, respectively.

In hierarchical modeling, it is often pointed out that flat or improper prior distributions for

variance parameters may lead to (almost) improper posterior distributions (see, for example,

Section 5.3 of Gelman, Carlin, Stern, and Rubin (1995)), which makes Bayesian inference

unreliable. Thus, we use relatively tight proper prior distributions forσ2
u andσ2

v to avoid

(almost) improper posterior distributions.

We draw MCMC samples via the Gibbs sampler under Algorithm 1.1 and find its sample

autocorrelations are very high. Thus, we apply the generalized Gibbs step under Algorithm

1.2, to accelerate convergence of the samples to their posterior distribution. After deleting

3×104 samples, we draw 105 samples by applying the acceleration step. The obtained samples

are reduced to 104 by selecting every 10-th value. The GGS results are reported in Table 1.
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Because the other results obtained by the Gibbs sampler are very similar to those obtained by

the GGS, we omit them.

Table 1 reports true values, posterior means, posterior standard deviations, 95% credible

intervals, estimated inefficiency factors, and the convergence diagnostics (i.e., the two-sidedp-

values of the test for convergence). The inefficiency factor is defined as 1+2
∑∞

j=1ρ( j), where

ρ( j) is the sample autocorrelation at lagj. It is estimated by using the spectral density; see

Section 3.2 of Chib (2001) for details. It is interpreted as the ratio of the variance of the sample

mean from the Markov chain to the variance of uncorrelated draws. If the inefficiency factor

is close to one, the sampling method is almost as efficient as an independent draw. The greater

the inefficiency factor becomes, the more samples we need to take to reach convergence. The

convergence diagnostic is the test statistic with a null hypothesis of convergence, as proposed

in Section 3.2 of Geweke (1992). We use the first 10% and the last 50% of samples to calculate

this test statistic, as suggested by Geweke (1992).

In Table 1, we found smaller inefficiency factors under GGS than GS. We compare these

two samplers in terms of their sample autocorrelation functions. Figure 3 shows the sample

autocorrelation function ofβ2 for GS and GGS results; autocorrelation decays more quickly

in GGS than in GS. Thus, we conclude that the GGS is effective forβ2 in improving sample

convergence.

There are two findings regarding this simulation. The first is the role of the kink point. The

state change helps us to separately estimate measurement errorσu and heterogeneity errorσv.

When the kink point is chosen, however, other information, such as regression coefficientsβββ

and coefficients for heterogeneityδδδ is lost, which causes the sampling of our model to become

inefficient.

Second, initial values are important for efficient sampling, which is also a difficult task

in the maximum likelihood method; see Section 4 of Moffitt (1986). Because the full condi-

tional distributions, especially forβββ, are restricted to the tight parameter space, samples cannot
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Figure 3: Sample autocorrelation functions forβ2.

move freely in their state space. Thus, when initial values are far from true values, it takes

a considerable amount of time for the distribution of the MCMC samples to converge to the

posterior distribution. Because we do not know much about the true parameter values in the

empirical analysis, testing several initial values might be effective when sampling appears to

be inefficient.

5 Estimation of the Japanese Residential Water Demand Func-

tion

5.1 Data Description

We use household-level dataset collected by INTAGE Inc. (www.intage.co.jp/english) through

an online questionnaire. The population consists of households between the age of 20 and 79

years in the Tokyo and Chiba prefectures. In June 2006, there were over 8 million such house-

holds. Among these, INTAGE Inc. collected data from 47,239 households, from which we

have randomly chosen 1,678 households. Overall, 1,250 households out of 1,678 participated

in our research.
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Table 2: Variables used in the water demand function
Variable Coefficient Description

year June 2006
num. of obs. 365

price β1 water+sewer (log ¥103/m3)
virtual income β2 two-month income augmented by price (log ¥103)

variables forw∗i δ0 the constant
δ1 the number of members in a household (person)
δ2 the number of rooms in a house/apartment (room)
δ3 the total floor space of a house/apartment (50m2)

Table 3: Summary statistics of variables used in the water demand function

Variable Unit Mean SD Min. Max.

the amount of water logm3 3.53 .51 .098 4.87
the two-month income ¥103 1145.00 566.11 166.67 4666.70

the number of members in a household person 3.05 1.22 1 7
the number of rooms in a house/apartment room 4.29 1.10 1 8
the total floor space of a house/apartment 50m2 1.66 .70 .24 4.60

All households face increasing block-rate pricing, where the number of blocks varies from

five to eleven (see Figure 4(a)). The dependent variable is the amount of water calculated

from each payment using corresponding price tables. This amount is the water amount that

has been used in the last two months because water is charged every two month in Japan.

The explanatory variables to be used for empirical analysis are summarized in Table 2, and

their summary statistics are found in Table 3 and Figure 4. The number of observations was

reduced to 365 because of the following reasons.

1. Missing data concerning household attributes.

2. Missing data concerning water usage.

3. Difficulty in identifying the corresponding rate table.

4. Consumption within the zero marginal price block was observed.
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Figure 4: Histograms of the number of blocks, price, and fixed cost.

Observations linked to any of the above issues were omitted.

Regarding the income variable, asking households for their exact income level is a sensi-

tive task. In our research, the household annual income is recorded in one of eight intervals

in million yen, including 0-2, 2-4, 4-6, 6-8, 8-10, 10-12, 12-15, and over 15 million yen.

Then, we use the median of the interval divided by 6 as a proxy for two-month income for

most households. Households with annual income over 15 million yen were asked to approx-

imate their annual income, and we divided it by 6 to estimate two-month income for those

households.

5.2 Empirical Result

Initially, the following prior distributions are assumed for the parameters of the demand func-

tion:

βββ | σ2
u ∼ N2

(
000,10σ2

uIII
)
, δδδ | σ2

v ∼ N4

(
000,10σ2

vIII
)
, σ2

u ∼ IG
(
10−1,10−1

)
, σ2

v ∼ IG
(
10−1,10−1

)
.

(28)

Because the Gibbs sampler (Algorithm 1.1) in Subsection 3.4 is very slow to converge
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Table 4: Water demand function

Parameter Mean SD 95%interval INEF CD ∗∗

GGS/ GS∗

β1 (price) −1.09 .22 [−1.52 − .67] 242.55 / 370.44 .201
β2 (income) .067 .044 [− .028 .14] 272.18 / 583.76 .025
δ0 (constant) .23 .51 [− .89 1.12] 312.61 / 500.76 .055
δ1 (num. of members) .23 .039 [ .16 .31] 54.90 / 63.16 .983
δ2 (num. of rooms) .14 .049 [ .038 .23] 7.65 / 9.31 .198
δ3 (floor space) .041 .077 [− .11 .20] 7.07 / 7.47 .987
σu (measurement error) .42 .018 [ .38 .45] 8.91 / 19.41 .531
σv (heterogeneity) .20 .038 [ .14 .28] 17.39 / 10.60 .021

∗ “INEF GGS / GS” denotes the estimated inefficiency factors using the Gibbs sampler with
Generalized Gibbs step and the standard Gibbs sampler
∗∗ “CD” denotes the convergence diagnostics.

to the posterior distribution, we accelerate the convergence of the MCMC samples using the

GGS described in Algorithm 1.2 of Subsection 3.5. The initial 16×105 samples are discarded,

and the subsequent 4×106 samples are recorded. The recorded samples are reduced to 104

samples by picking up every 400-th value. These estimation results are shown in Table 4.

To first check the plausibility of our proposed model, we carried out the numerical poste-

rior predictive checks (PPCs) based on these results; see Chapter 6 of Gelman, Carlin, Stern,

and Rubin (2003). Seven test quantities (including the first and third quartile, mean, median,

standard deviation, minimum, and maximum) were chosen to conduct PPCs, and the results

are found in Figure 5. The density plots represent those of test quantities based on the repli-

cated data from the predictive distribution, and the vertical lines denote the values of test

quantities based on the observed data. We also calculated the posterior predictivep-values,

which are shown in parentheses. All density plots andp-values, except those for the mini-

mum, indicate that the discrete/continuous choice model would be plausible to represent our

Japanese residential water demand data. The smallp-value for the minimum indicates that

we may need to improve our model for low levels of consumption; the five lowest levels of

21



1st q. ( )p = .082 3rd q. ( )p = .57Mean ( )p = .067 Median ( )p = .25

Max. ( )p = .84Min. ( )p = 1.00SD ( )p = .53

Figure 5: Posterior predictive checks.

consumption are 0.098, 1.79, 1.86, 1.92, and 1.95 logm3. As stated in Remark 2 of Subsection

3.1, for simplicity, we excluded households that consume within the zero marginal price block

so that all consumptions are above this block. The PPC result for the minimum is improved

when we include in the model these households that consume little water, which could be a

future exercise in follow-up studies.

Next, we analyze the GGS results. The posterior mean of the price elasticity,β1, is esti-

mated to be negative at−1.09. Because the 95% credible interval does not include zero, the

probability thatβ1 < 0 is greater than 0.95. This is consistent with economic theory. However,

the posterior mean of the income elasticity,β2, may equal to zero, because its 95% credible

interval includes zero.

Among the independent variables that are expected to explain individual heterogeneity, the

number of members in a household and the number of rooms in a house or apartment exhibit

a positive relationship with residential water demand because Pr(δ j > 0 | yyy) > .95 (j = 1,2).

Furthermore, the former has a larger marginal effect on demand than does the latter. That is, a

one-person increase in a household has greater effect on water demand than does a one-room

extension to a house/apartment does. In contrast, the total floor space in a house/apartment

(δ3) has no effect on water demand in terms of its 95% credible interval.

We compare these parameter estimates with those of previous studies on water demand.
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Hewitt and Hanemann (1995) used microdata from Denton, Texas and employed the dis-

crete/continuous choice model as the underlying statistical model. Hewitt and Hanemann

(1995) then estimated the water demand function under block-rate pricing using the maximum

likelihood method. Because of the complex form of the likelihood function, that analysis sim-

ply focused on households under two-block increasing block-rate pricing. They reported that

the price and income parameters are−1.8989 and 0.1782, respectively. While these parame-

ters are larger in terms of absolute value than ours, Hewitt and Hanemann (1995)’s estimates

show a similar pattern to ours (i.e., the larger price and smaller income elasticities in their

absolute values).

Olmstead et al. (2007) also applied the discrete/continuous choice model to estimate the

water demand function. They used microdata from the United States and Canada that in-

corporates different price schedules, such as two-block and four-block increasing block-rate

pricings and the uniform price system. They showed that the price and income parameters for

households under block-rate pricing are estimated at−0.6411 and 0.1959, respectively.

Dalhuisen, Florax, de Groot, and Nijkamp (2003) analyzed 64 studies on water demand

and presented the meta-analysis on price and income elasticities. They showed that the price

and income elasticities are dispersed with means−0.41 and 0.43, respectively, and standard

deviations 0.86 and 0.79, respectively. Their estimates are somewhat similar to ours when we

take their large standard deviations into consideration.

5.3 Predictive Analysis

At the end of this section, we conduct a posterior predictive analysis on water demand when

the block-rate price schedule is changed to uniform pricing. We consider two types of uniform

pricing; namely, the same uniform price for all households and different uniform prices for

each households. For the former, let the unit price be ¥100/m3, ¥250/m3, or ¥500/m3 and set
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the fixed cost to ¥3,500 for every price scenario. These unit prices are inexpensive, almost

as high as, or expensive ones for the majority of households as compared with the present

increasing block-rate pricing, and the fixed cost is set close to the present fixed cost for most

households (see Figures 4(b) and 4(c)). Other variables remain the same. For the latter, we

use the price of the block where water is actually consumed and use it as the single price for

the suppositional uniform price system. The fixed cost remains the same as with the present

schedule. Furthermore, the virtual income for the block where water is actually consumed

is used for total income. Other variables remain the same. Under this hypothetical change,

the budget line becomes the straight line that matches the current piecewise-linear budget line

at the block where water is actually consumed. To analyze the effect of these price schedule

changes, we generate samples of predictive demand using the Gibbs with GGS samples, and

draw boxplots of predictive distributions for each household found in Figure 6.

\100/m
3

\250/m
3

\500/m
3 different uniform prices

Figure 6: Effects of uniform pricings.

In this figure, solid lines and boxplots represent plots of actual log demands and box-

plots of predictive distribution for each households, respectively. Water consumption of each
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household is arranged in ascending order, and the number of households is reduced to 60 by

selecting every 6-th household. Each box represents the range between the first and third

quartiles. The upper and lower whiskers denote the 95-th and 5-th percentiles, respectively.

The first three panels in Figure 6 reveal that most households consume more water as

price decreases, which is consistent with the negatively-estimated price elasticity. The bottom

right panel in Figure 6, however, shows another aspect of our data. From a microeconomic

view-point, a change of this kind has no effect on consumption when an underlying pref-

erence satisfies regular assumptions. However, this result is different from what we would

expect based on the microeconomic theory, especially for households that consume less than

approximately 3 log m3. When we assume that our statistical modeling is correct, the ac-

tual consumption block for these households is suboptimal partly due to heterogeneity and/or

partly due to measurement error. Thus, this result implies that we may need to take special

care with these households in terms of heterogeneity and/or measurement error.

6 Concluding Remarks

This article proposes a Bayesian estimation method for demand functions under block-rate

pricing and reports empirical analysis using Japanese residential water demand data. Further-

more, the separability condition is explicitly considered to obtain appropriate estimates. Our

method is useful for analyzing demand for water services, as well as for other goods or ser-

vices involving block-rate pricing, including taxes. Furthermore, it would be possible to apply

our method to examine a consumer’s choices over multiple product categories and brands

(Song and Chintagunta, 2007) and a consumer’s selection of wireless calling plans (Iyengar,

2004).

Future research can be conducted on several related issues. First, the supply structure

must be considered when applying our method to other goods under block-rate pricing. Water
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companies are regional monopolists and are obliged to supply as much water as consumers

require. Thus, we excluded firm competition. Other suppliers, such as telecommunication

services and deregulated electricity services, face no such obligation and compete fiercely

with each other. To analyze demand of these services, it is necessary to explicitly consider

the supply structure in our model. Disequilibrium models represent a framework that address

such market structures. See Kunitomo and Sato (1996) and Maddala (1983) for a discussion

of disequilibrium models.

Second, as pointed out in the previous section, there are households that consume less than

the zero marginal price block. The discrete/continuous choice model proposed by this article

excludes such behavior. Developing a structural approach to these consumers is a necessary

aspect of future studies.

Third, substitution among electricity, gas, and other fuels must be considered. It is pos-

sible for the block-rate pricing model proposed here to be extended to a multivariate setting

in a natural way. Furthermore, Japanese gas companies provide natural gas under a decreas-

ing block-rate pricing system. Thus, a subsequent study should examine the energy demand

function under a mixture of increasing and decreasing block-rate pricing.

Finally, an improved convergence acceleration method must be developed. Although the

generalized Gibbs step improved sampling efficiency, the regression coefficientsβββ still show

high sample autocorrelation. Further improvement of convergence acceleration should be a

subject of future research.
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Appendices

A.1 Full Conditional Distributions for the Statistical Model in Equations

(12) to (16)

This section provides the full conditional distributions for the statistical model in Equations

(12) to (16) following the standard Gibbs sampler’s steps (see Algorithm 1.1 in Subsection

3.4). LetA denote a set of observations that do not select the threshold or kink point as

their demand. That is,A = {i|s∗i is odd and equal to 2ki − 1}. Furthermore, without loss of

generality, we assume thatpi1,qi1, ȳi1 are strictly positive; i.e.,pi1,qi1, ȳi1 > 0. This can be

accomplished by adjusting the unit of measurement for price and income. WhenPi1 = 0

(pi1 = −∞), we assumes∗i ≥ 2 and letpi2 > 0.

Step 2. Generateβ1 givenβ2, sss∗,www∗,σ2
u. The full conditional distribution forβ1 is the truncated

normal distributionT NR1(µ1,σ
2
uσ

2
1), where:

µ1 = σ
2
1

σ−2
β1,0
µβ1,0+

∑
i∈A

piki

(
yi −β2qiki −w∗i

) , σ−2
1 = σ

−2
β1,0
+

∑
i∈A

(
piki

)2 ,
R1 =

(
max

i
(−∞,BLi) ,min

i,k

(
BUi ,−β2

qi,k+1−qik

pi,k+1− pik

))
,

(A.29)

andµβ1,0 is the prior mean ofβ1. TheBLi andBUi are the respective lower and upper bounds

of the intervalBi such that:

Bi =


(

ȳi,k−1−β2qik−w∗i
pik

,
ȳi,k−β2qik−w∗i

pik

)
, if s∗i = 2k−1,(

ȳi,k−β2qik−w∗i
pik

,
ȳi,k−β2qi,k+1−w∗i

pi,k+1

)
, if s∗i = 2k.

(A.30)

TheseBis are constructed from intervalsRis∗i
and defined in Equations (9) and (10) of Sub-

section 3.1. To sample from the truncated normal distributions, we use the inverse cumulative
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distribution function sampling method; see Section 1.3 of Gamerman (1997).

Step 3. Generateβ2 givenβ1, sss∗,www∗,σ2
u. As in Step 2, the full conditional distribution forβ2

is the truncated normal distributionT NR2(µ2,σ
2
uσ

2
2), where:

µ2 = σ
2
2

σ−2
β2,0
µβ2,0+

∑
i∈A

qiki

(
yi −β1piki −w∗i

) , σ−2
2 = σ

−2
β2,0
+

∑
i∈A

(
qiki

)2 ,
R2 =

(
max

i

(
−∞,BL†i

)
,min

i,k

(
BU†i ,−β1

pi,k+1− pik

qi,k+1−qik

))
,

(A.31)

andµβ2,0 is the prior mean ofβ2. TheBL†i andBU†i are the respective lower and upper bounds

of intervalB†i such that:

B†i =


(

ȳi,k−1−β1pik−w∗i
qik

,
ȳi,k−β1pik−w∗i

qik

)
, if s∗i = 2k−1,(

ȳi,k−β1pik−w∗i
qik

,
ȳi,k−β1pi,k+1−w∗i

qi,k+1

)
, if s∗i = 2k.

(A.32)

Step 4. Generate(σ2
v, δδδ) given www∗. Because a blocking technique is applied in this step,

δδδ is integrated over the full conditional distribution of (δδδ, σ2
v) to obtain the full conditional

distribution ofσ2
v. Thus, generate the sample ofσ2

v from the inverse gamma distribution

IG(nv,1
2 ,

Sv,1
2 ), and the sample ofδδδ from the multivariate normal distributionNd(µµµδδδ,1,σ

2
vΣΣΣδδδ,1),

wherenv,1 = nv,0+n,

Sv,1 = Sv,0+µµµ
′
δδδ,0ΣΣΣ

−1
δδδ,0µµµδδδ,0+www∗′www∗−µµµ′δδδ,1ΣΣΣ

−1
δδδ,1µµµδδδ,1,

µµµδδδ,1 = ΣΣΣδδδ,1
(
ΣΣΣ−1
δδδ,0µµµδδδ,0+ZZZ′www∗

)
, ΣΣΣ−1
δδδ,1 = ΣΣΣ

−1
δδδ,0+ZZZ′ZZZ.

(A.33)

Step 5. Generate(s∗i ,w
∗
i ) givenβββ,δδδ,σ2

u,σ
2
v for i = 1, . . . ,n. We again apply a blocking technique

in drawing samples of (s∗i ,w
∗
i ). Then, the conditional posterior distribution ofs∗i is discrete

28



such that:

Pr
(
s∗i = s | βββ,δδδ,σ2

u,σ
2
v

)
∝ τs

[
Φ

{
τ−1

s (RUis− θis)
}
−Φ

{
τ−1

s (RLis− θis)
}]

exp
(
−mis

2

)
, (A.34)

for s= 1, . . . ,2Ki − 1, whereΦ(·) is the cumulative density function of the standard normal

distribution; RUis and RLis denote the respective upper and lower limit of the interval for

heterogeneity;Ris is given by Equations (9) and (10); and (mis, θis, τ
2
s) is defined as follows:

(
mis, θis, τ

2
s

)
=



σ
−2
u σ

−2
v

(
yi −yik −zzz′iδδδ

)2
σ−2

u +σ
−2
v

,
σ−2

u (yi −yik)+σ−2
v zzz′iδδδ

σ−2
u +σ

−2
v

, {σ−2
u +σ

−2
v }−1

 ,
if s= 2k−1,(

σ−2
u (yi − ȳik)2 , zzz′iδδδ, σ

2
v

)
, if s= 2k.

(A.35)

Givens∗i = s, we generatew∗i from T NRis(θis, τ
2
s).

Step 6. Generateσ2
u givenβββ, sss∗,www∗. It is straightforward to show that the full conditional

posterior distribution ofσ2
u is the inverse gamma distributionIG(nu,1

2 ,
Su,1

2 ), wherenu,1 = nu,0+

2+n and

Su,1 = Su,0+
(
βββ−µµµβββ,0

)′
Σ−1
βββ,0

(
βββ−µµµβββ,0

)
+

(
yyy−yyy∗

)′ (yyy−yyy∗
)
. (A.36)

A.2 Full Conditional Density of g̃

We assume that ¯yi1 is strictly positive. The full conditional probability density function of ˜g

(= g−1) is derived as follows. First, we substitute parameters multiplied byg (= g̃−1) into the

posterior density (25). Because the number of parameters to be accelerated is 4+d+n, the

Jacobian of this transformation isg−(4+d+n). Transformingg to g̃, the conditional probability
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density function of ˜g is given by:

π
(
g̃ | βββ, sss∗,www∗,σv,σu

) ∝ g̃a0 exp

[
−1

2

{
a1g̃2−2a2g̃

}]
I
(
g̃ ∈ Rg̃

)
L(dg̃), (A.37)

whereL(dg̃) = g̃−1dg̃ is the left-Haar measure;a0 = n+nu,0+nv,0; and

a1 = σ
−2
u

Su,0+µµµ
′
βββ,0ΣΣΣ

−1
βββ,0µµµβββ,0+

n∑
i=1

a2
4i

+σ−2
v

(
Sv,0+µµµ

′
δδδ,0ΣΣΣ

−1
δδδ,0µµµδδδ,0

)
, (A.38)

a2 = σ
−2
u

βββ′ΣΣΣ−1
βββ,0µµµβββ,0+

n∑
i=1

a3ia4i

+σ−2
v δδδ
′ΣΣΣ−1
δδδ,0µµµδδδ,0, (A.39)

(a3i ,a4i) =


(
yik +w∗i , yi

)
, if s∗i = 2k−1,

(0, yi − ȳik) , if s∗i = 2k,
(A.40)

Rg̃ =

(
max

i

(
0,BL∗i

)
,min

i

(
BU∗i ,∞

))
. (A.41)

TheBL∗i andBU∗i are the respective lower and upper bounds of the intervalB∗i , which is given

by:

B∗i =


(
β1pik+β2qik+w∗i

ȳik
,
β1pik+β2qik+w∗i

ȳi,k−1

)
, if s∗i = 2k−1,(

β1pi,k+1+β2qi,k+1+w∗i
ȳik

,
β1pik+β2qik+w∗i

ȳik

)
, if s∗i = 2k.

(A.42)

A.3 Proof for the One-step MH Algorithm

We prove that it suffices to implement a one-step MH algorithm using the initial value ˜g= 1

in our GGS. By Theorem 2 of Liu and Sabatti (2000), it is sufficient to prove that for all

g̃, g̃′, g̃0 ∈ Γ̃ = {g̃> 0 : g̃(x) = g̃−1x},

Tζζζ
(
g̃, g̃′

)
L(dg̃′) = Tg̃−1

0 ζζζ

(
g̃g̃0, g̃

′g̃0
)
L(dg̃′), (A.43)

whereTζζζ (g̃, g̃′)L(dg′) is the transition kernel of our Markov chain.
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Let qζζζ(g̃′) denote our proposal density function. Then, the transition kernel becomes

Tζζζ (g̃, g̃′) = qζζζ(g̃′)α(g̃, g̃′)g̃′, where the last ˜g′ is the adjustment term for the left-Haar measure.

It is obvious that the acceptance probabilityα(g̃, g̃′) is invariant to the scale transformation of

g̃0. Moreover, we find that:

qζζζ(g̃
′)g̃′ = σ−1

g̃′ ϕ

(
g̃′−µg̃′

σg̃′

)
I
(
g̃′ ∈ Rg̃

)
g̃′, (A.44)

qg̃−1
0 ζζζ

(g̃′g̃0)g̃′g̃0 =
(
g̃0σg̃′

)−1
ϕ

(
g̃′g̃0− g̃0µg̃′

g̃0σg̃′

)
I
(
g̃′g̃0 ∈ g̃0Rg̃

)
g̃′g̃0 = qζζζ(g̃

′)g̃′, (A.45)

whereϕ(·) is the probability density function of the standard normal distribution. Thus, the

transition kernel of the Markov chain is invariant to the transformation ˜g, which completes the

proof.
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