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Abstract
This paper develops a general asymptotic theory for the estimation of

strictly stationary and ergodic time series models. Under simple conditions
that are straightforward to check, we establish the strong consistency, the
rate of strong convergence and the asymptotic normality of a general class of
estimators that includes LSE, MLE, and some M-type estimators. As an ap-
plication, we verify the assumptions for the long-memory fractional ARIMA
model. Other examples include the GARCH(1,1) model, random coefficient
AR(1) model and the threshold MA(1) model.

Key words and phrases: Asymptotic normality, estimation, rate of strong
convergence, strong consistency, time series models.

1 Introduction

The three main results that can be used for the asymptotic theory of the estimators

in time series models are Basawa, Feign and Heyde (1976), Amemiya (1985) and
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#HKUST4765/03H. The second author is most grateful for the financial support of the Australian
Research Council and the National Science Council, Taiwan.
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Tjφstheim (1986). While not specific to time series models, Basawa et al. (1976)

and Amemiya (1985) provide the condition for the weak consistency of the estimated

parameters. For asymptotic normality, the result in Basawa et al. (1976) requires

the expectation of the third derivatives of the objective function (OF). The condition

in Amemiya (1985) does not give a specific method for the convergence of the sample

information matrix to prove asymptotic normality.

The result in Tjφstheim (1986) holds for strictly stationary and ergodic time

series models, and implies that there exists a sequence of strongly consistent estima-

tors to maximize the OF. However, this sequence of estimators may not be the global

maximizer of the OF. His result also requires the expectation of the third deriva-

tives of the OF, but the third derivatives of the OF can be extremely complicated in

some models, as in the case of the likelihood function for ARMA-GARCH models.

Jeantheau (1998) also gives the condition for strong consistency of the maximum

likelihood estimator (MLE) for a class of GARCH models. However, the results in

each of these papers do not discuss the initial value problem, which needs to be ad-

dressed for each individual model. As many time series models have been developed

in the last two decades, a unified and simple asymptotic theory of estimation for

time series models should have wide applicability.

This paper establishes a general asymptotic theory for the estimation of strictly

stationary and ergodic time series models. The estimators, including LSE, MLE, and

some M-type estimators (except for LAD estimator), among others, are the global

maximizers of the respective OFs. We establish the strong consistency, the rate of

strong convergence and the asymptotic normality of the estimated parameters. The

rate of strong convergence of the estimated parameters has not previously appeared

in the literature in a general setting. The conditions, including the initial conditions,

are simple and easy to check, and third derivatives are not required. Some related

references are Huber(1967) and Pfanzagl (1969).

This paper proceeds as follows. Section 2 presents the model and the main

results. Section 3 examines the long-memory FARIMA model. The proofs are given
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in Sections 4-5.

2 Model and Main Results

Assume that the real p×1 vector time series {yt : t = 0,±1, · · ·} is Ft− measurable,

strictly stationary and ergodic, and its conditional distribution is given by

yt|Ft−1 ∼ G(θ, Yt−1),(2.1)

where Ft is the σ-field generated by {yt, yt−1, · · ·}, Yt = (yt, · · · , yt−p+1) or Yt =

(yt, yt−1, · · ·), and θ is an m × 1 unknown parameter vector. The structure of the

time series {yt} is characterized by the distribution G and the parameter θ. We

assume that the parameter space Θ is a compact subset of Rm, and the true value

θ0 of θ is an interior point in Θ. We use the following OF with the initial value Y0

to estimate θ0:

Ln(θ) =
n∑

t=1

lt(θ),

where lt(θ) = l(Yt, θ) is a measurable function with respect to Yt and is almost surely

(a.s.) and continuously twice differentiable in terms of θ.

Denote Dt(θ) = ∂lt(θ)/∂θ, Pt(θ) = −∂2lt(θ)/∂θ∂θ
′, Σ = E[Pt(θ0)] and Ω =

E[Dt(θ0)D
′
t(θ0)]. Let V0(η) = {θ : ‖θ−θ0‖ < η}. The following assumption is made:

Assumption 2.1.

(i) E supθ∈Θ[lt(θ)] <∞, and E[lt(θ)] has a unique maximizer at θ0;

(ii) Dt(θ0) is a martingale difference in terms of Ft with 0 < Ω <∞;

(iii) Σ > 0 and E supθ∈V0(η) ‖Pt(θ)‖ <∞ for some η > 0.

When model (2.1) reduces to the class of models: yt = f(θ, Yt−1)+ ηt

√
h(θ, Yt−1)

with {ηt} being i.i.d. with mean zero and Eη2
t = 1, and the QMLE is used, we have

lt(θ) = −1

2

[
log ht(θ) +

ε2
t (θ)

ht(θ)

]
,
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where f(λ, Yt) and h(λ, Yt) > 0 are measurable functions in terms of Yt. In this case,

Assumption 2.1 (i) is ensured by the conditions: (a) E supθ∈Θ[ε2
t (θ)/ ht(θ)] < ∞

and E supθ∈Θ log ht(θ) < ∞, and (b) [εt(θ), ht(θ)] = [εt(θ0), ht(θ0)] a.s. if and only

if θ = θ0. See Jeantheau (1998) and Ling and McAleer (2003).

When the dimension of the initial value Y0 is infinite, it need to be replaced by

some constant Ỹ0. We denote lt(θ) with the initial value Ỹ0 by l̃t(θ). Similarly define

D̃t(θ) and P̃t(θ). The initial condition is given as follows.

Assumption 2.2. For some ν > 0, it follows that

(i) E sup
Θ
|lt(θ)− l̃t(θ)| = O(

1

tν
);

(ii) E‖Dt(θ0)− D̃t(θ0)‖ = O(
1

t1/2+ν
) and (iii)E sup

Θ
‖Pt(θ)− P̃t(θ)‖ = O(

1

tν
).

The decay rates in Assumption 2.2 are very low and are satisfied by most of time

series models. For long memory time series, Assumption 2.2(ii) can be replaced by:

Assumption 2.2(ii’). For any ε > 0,

lim
l→∞

P ( max
l≤n<∞

1√
n
‖

n∑
t=1

[Dt(θ0)− D̃t(θ0)]‖ > ε) = 0.

The corresponding OF is modified as

L̃n(θ) =
n∑

t=1

l̃t(θ).

When the dimension of Y0 is finite, Assumption 2.2 is redundant. In what follows,

−→L denotes convergence in distribution. We now state our main result as follows:

Theorem 2.1 Let θ̂n = argmaxΘL̃(θ).

(a) If Assumptions 2.1(i) and 2.2(i) hold, then θ̂n → θ0 a.s..

(b) Furthermore, if Assumptions 2.1(ii)-(iii) and 2.2(ii)-(iii) hold, then

θ̂n = θ0 +O
[( log log n

n

)1/2]
a.s. and

√
n(θ̂n − θ0) −→L N(0,Σ−1ΩΣ−1).

Remark 2.1. For (a), we only need lt(θ) to be continuous in terms of θ a.s.,

while twice differentiability is redundant. θ̂n can be LSE, MLE, and some M-type

estimators, among others. Many nonlinear time series models in Tong (1990) satisfy
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Assumptions 2.1-2.2, such as TAR, bilinear ARMA, GARCH and random coefficient

AR models. The compactness of Θ is not a serious restriction in practice since the

true value θ0 is an interior point in the parameter space and we can always get a

compact Θ to include it. Compared with the assumptions mentioned in Section 1,

our assumptions are simple, clear and easy to check in practice.

Σ and Ω can be estimated, respectively, by

Σ̂n =
1

n

n∑
t=1

P̃t(θ̂n) and Ω̂n =
1

n

n∑
t=1

D̃t(θ̂n)D̃′
t(θ̂n).

By Lemma 4.2, Σ̂n = Σ + o(1) a.s.. Since supΘ ‖Pt(θ)‖1/2 is strictly stationary

and has a finite variance, we know that max1≤t≤n supΘ ‖Pt(θ)‖1/2/
√
n = op(1). By

Taylor’s expansion, we have ‖Dt(θ̂n) − Dt(θ0)‖/
√
n ≤ [maxΘ ‖Pt(θ)‖/n]‖

√
n(θ̂n −

θ0)‖ = op(1) uniformly in t. Furthermore, by Assumption 2.2(ii), we know that

‖D̃t(θ̂n) − Dt(θ0)‖/
√
n = op(1) uniformly in t. By Taylor’s expansion and Lemma

4.2, we have
∑n

t=1 D̃t(θ̂n)/
√
n = −n−1 ∑n

t=1 P̃t(θ̂
∗
n)
√
n(θ̂n − θ0) = Op(1). Thus,

n−1 ∑n
t=1[D̃t(θ̂n) −Dt(θ0)]D̃

′
t(θ̂n)] = op(1). Finally, by the ergodic theorem, we can

see that Ω̂n = Ω+op(1). Thus, under Assumptions 2.1-2.2, Σ̂n and Ω̂n are consistent

estimators of Σ and Ω, respectively.

Example 2.1. Consider the GARCH(1, 1) model:

yt = ηt

√
ht and ht = α0 + αy2

t−1 + βht−1,

where ηt ∼i.i.d. N(0,1), α0 > 0, α > 0 and β > 0. Assume that E ln(β + αη2
t ) < 0.

Let θ = (α0, α, β)′. When using MLE to estimate θ0, we take

lt(θ) = − log ht(θ)−
y2

t

ht(θ)
,

where ht(θ) = α0 + αy2
t−1 + βht−1(θ), t = 1, · · · , n and y0 = 0 and h0 = 1. From the

proof of Theorem 2.1 in Francq and Zakoan (2004), we see that Assumptions 2.1(i)

and 2.2(i) hold. From the proof of Theorem 2.2 in Francq and Zakoian (2004), we

know that Assumptions 2.1(ii)-(iii) and 2.2(ii)-(iii) hold, see also Lee and Hansen

(1994) and Ling and McAleer (2003). We do not need to study the third derivative

of lt(θ) as done in these papers.
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Example 2.2. Consider the random coefficient AR(1) model:

yt = (φ+ ψt)yt−1 + εt,

where {ψt} and {εt} are i.i.d. sequences with zero mean and variance α > 0 and

σ2 > 0, respectively, and they are mutually independent. Assume E ln |φ + ψt| < 0

and let θ = (φ, α, σ2)′. When we use QMLE to estimate θ0, we take

lt(θ) = −1

2
log(σ2 + αy2

t−1)−
(yt − φyt−1)

2

2(σ2 + αy2
t−1)

.

By exactly following the proof of Lemmas A.1, A.2 and A.3(i) in Ling (2004), we

can show that Assumption 2.1 holds. Assumption 2.2 hold automatically.

Example 2.3. Consider the first order threshold MA (TMA (1)) model:

yt = [φ+ ψI(yt−1 ≤ r)]εt−1 + εt,

where {εt} is a sequence of i.i.d random variables, with mean zero, variance 0 <

σ2 < ∞ and a density function f . Assume that |φ| < 1, |φ + ψ| < 1 and

|ψ| supx |xf(x)| < 1. This assumption ensures that the TMA(1) model is strictly

stationary and ergodic, and invertible, see Ling, Tong and Li (2007). Let θ = (φ, ψ).

When using the CLSE to estimate θ0, we take

lt(θ) = −ε2
t (θ),

where εt(θ) = yt − [φ + ψI(yt−1 ≤ r)]εt−1(θ), t = 1, · · · , n and εt(θ) = 0 as t ≤ 0.

Furthermore, assume that the delay parameter r is known and Eε4
t < ∞. By the

very minor modification of Lemmas 6.1-6.5 in Ling and Tong (2005), we can show

that Assumption 2.1 holds. Similarly, a minor modification of Lemma 6.6 in Ling

and Tong (2005) shows that Assumption 2.2 holds. We should mention that this is

a new result for the TMA(1) model. When r is unknown, the asymptotic theory on

the TMA model remains open.
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3 Application to Long Memory FARIMA Models

The process {yt} is said to follow the long memory (LM)-ARFIMA model if

φ(B)(1−B)dyt = ψ(B)εt,(3.1)

where φ(B) = 1 − ∑p
i=1 φiB

i, ψ(B) = 1 +
∑q

i=1 ψiB
i, (1 − B)d =

∑∞
k=0 akB

k with

ak = (k − d− 1)!/k!(−d− 1)!, B is the backward-shift operator, and {εt} is i.i.d.

with zero mean and variance 0 < σ2 < ∞. θ = (d, φ1, · · · , φp, ψ1, · · · , ψq)
′ and its

true value is θ0. We assume that the parameter space Θ is a compact subset of

Rp+q+1, θ0 is an interior point in Θ, and the following assumption holds.

Assumption 3.1. d ∈ (0, 1/2), all the roots of φ(B) and ψ(B) are outside the

unit circle, φp 6= 0, ψq 6= 0, and φ(B) and ψ(B) have no common root.

Given {y1, · · · , yn}, we consider the conditional LSE of θ0, which is defined as

θ̂n = argmin
∑n

t=1 ε̃
2
t (θ), where ε̃t(θ) is εt(θ) = ψ−1(B)φ(B)(1 − B)dyt, with initial

value Ỹ0. We have the following results:

Theorem 3.1. If Assumption 3.1 holds, then

(a) θ̂n = θ0 +O
[( log log n

n

)1/2]
a.s.,

(b)
√
n(θ̂n − θ0) −→L N

(
0, σ2E−1

[∂εt(θ0)

∂θ

∂εt(θ0)

∂θ′

])
.

Remark 3.1. Model (3.1) has the long-memory property and has been widely

applied in hydrology and economics. Some related references are Granger and

Joyeux (1980), Hosking (1981), Li and McLeod (1986), Robinson (1994) and Be-

ran (1995), among others. When εt follows the GARCH model, model (3.1) was

studied by Baillie (1996), Ling and Li (1997) and Ling (2003). However, the paper

is the first to provide the rate of strong convergence of θ̂n, as in (a). From the proof

in Section 5, we can see that the initial condition is crucial in this development.
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4 Proof of Theorem 2.1

Lemma 4.1. If Assumptions 2.1(i)-2.2(i) hold, then for any η > 0,

lim
l→∞

P
(

max
l≤n<∞

sup
‖θ−θ0‖≥η

n∑
t=1

[l̃t(θ)− l̃t(θ0)] ≥ 0
)

= 0.

Proof. Let Vη̃ = {θ̃ : ‖θ̃ − θ‖ ≤ η̃} and Xt(η̃) = supθ∈Θ supVη̃
|lt(θ̃)− lt(θ)|. By

Assumption 2.1(i), EXt(η̃) → 0 as η̃ → 0. Thus, for any ε > 0, there is η̃ > 0 such

that EXt(η̃) < ε/2. Since Xt(η̃) is strictly stationary and ergodic, by Lemma 1 in

Chow and Teicher (1978, p.66) and the ergodic theorem, for any ε1 > 0, we have

P ( max
l≤n<∞

1

n

∣∣∣ n∑
t=1

[Xt(η̃)− EXt(η̃)]
∣∣∣ ≥ ε

2
) < ε1,

as l is large enough. Thus, for any ε, ε1 > 0, there exists a constant η̃ > 0 such that

P ( max
l≤n<∞

1

n

n∑
t=1

Xt(η̃) ≥ ε) ≤ P ( max
l≤n<∞

1

n

∣∣∣ n∑
t=1

[Xt(η̃)− EXt(η̃)]
∣∣∣ ≥ ε

2
) < ε1.(4.1)

By Assumption 2.1(i) and the ergodic theorem, for each θ ∈ Θ and any ε > 0,

lim
l→∞

P
(

max
l≤n<∞

∣∣∣ 1
n

n∑
t=1

[lt(θ)− Elt(θ)]
∣∣∣ ≥ ε

)
= 0.(4.2)

Since Θ is compact, we can choose a collection of balls of radius ∆ > 0 covering

Θ, and the number of such balls is a finite integer N . In the ith ball, we take a

point ξi and denote this ball by V (ξi). For any ε > 0,

P ( max
l≤n<∞

1

n
sup
Θ

∣∣∣ n∑
t=1

[lt(θ)− Elt(θ)]
∣∣∣ ≥ ε)

≤ P
(

max
1≤j≤N

sup
θ∈V (ξj)

max
l≤n<∞

∣∣∣ 1
n

n∑
t=1

[lt(θ)− lt(ξj)]
∣∣∣ ≥ ε

3

)
+P

(
max

1≤j≤N
sup

θ∈V (ξj)

∣∣∣E[lt(θ)− lt(ξj)]
∣∣∣ ≥ ε

3

)
+P

(
max

1≤j≤N
max

l≤n<∞

∣∣∣ 1
n

n∑
t=1

[lt(ξj)− Elt(ξj)]
∣∣∣ ≥ ε

3

)
≤ P

(
sup
ξi∈Θ

sup
θ∈V (ξj)

max
l≤n<∞

∣∣∣ 1
n

n∑
t=1

[lt(θ)− lt(ξj)]
∣∣∣ ≥ ε

3

)

+
N∑

j=1

P
(

sup
θ∈V (ξj)

∣∣∣E[lt(θ)− lt(ξj)]
∣∣∣ ≥ ε

3

)

+
N∑

j=1

P
(

max
l≤n<∞

∣∣∣ 1
n

n∑
t=1

[lt(ξj)− Elt(ξj)]
∣∣∣ ≥ ε

3

)
< ε,(4.3)
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as l is large enough and ∆ is small enough, where the last inequality holds by (4.1),

(4.2) and the uniform continuity of Elt(θ).

Since E[lt(θ)] has a unique maximum at θ0, Θ is compact, and Elt(θ) is contin-

uous, there exists a constant c > 0, such that

max
‖θ−θ0‖>η

E[lt(θ)− lt(θ0)] ≤ −c,(4.4)

for any η > 0. By (4.3)-(4.4), it follows that

P
(

max
l≤n<∞

sup
‖θ−θ0‖≥η

{
n∑

t=1

[lt(θ)− lt(θ0)] +
cn

2
} > 0

)
= P

(
max

l≤n<∞
sup

‖θ−θ0‖≥η

{
n∑

t=1

[lt(θ)− Elt(θ)]

−
n∑

t=1

[lt(θ0)− Elt(θ0)] + n[Elt(θ)− Elt(θ0)] +
cn

2
} > 0

)
≤ P

(
max

l≤n<∞
sup
Θ
{2

∣∣∣ n∑
t=1

[lt(θ)− Elt(θ)]
∣∣∣− cn+

cn

2
} > 0

)
≤ P

(
max

l≤n<∞
sup
Θ
{
∣∣∣ 1
n

n∑
t=1

[lt(θ)− Elt(θ)]
∣∣∣} > c

4

)
→ 0,(4.5)

as l→∞. By Assumption 2.2(i) and Markov’s inequality, it follows that

lim
l→∞

P ( max
l≤n<∞

1

n

n∑
t=1

sup
Θ
|l̃t(θ)− lt(θ)| > ε)

≤ lim
l→∞

P (
∞∑

t=1

1

t1−0.5ν
sup
Θ
|l̃t(θ)− lt(θ)| > εl0.5ν)

≤ lim
l→∞

1

εl0.5ν

∞∑
t=1

1

t1−0.5ν
E sup

Θ
|l̃t(θ)− lt(θ)| = lim

l→∞

O(1)

εl0.5ν

∞∑
t=1

1

t1+0.5ν
= 0,(4.6)

for any ε > 0. By (4.5) and (4.6), we have

P
(

max
l≤n<∞

sup
‖θ−θ0‖≥η

n∑
t=1

[l̃t(θ)− l̃t(θ0)] +
cn

4
> 0

)
≤ P

(
max

l≤n<∞
sup

‖θ−θ0‖≥η

n∑
t=1

[lt(θ)− lt(θ0)] + 2 max
l≤n<∞

n∑
t=1

sup
Θ
|l̃t(θ)− lt(θ)|+

cn

4
> 0

)
≤ P

(
max

l≤n<∞
sup

‖θ−θ0‖≥η

n∑
t=1

[lt(θ)− lt(θ0)] +
cn

2
> 0

)
+P ( max

l≤n<∞

1

n

n∑
t=1

sup
Θ
|l̃t(θ)− lt(θ)| >

c

8
) → 0,

as l→∞. By this equation, we can see that the conclusion holds. 2

9



Lemma 4.2. If Assumptions 2.1(iii)-2.2(iii) hold, then for any ε > 0,

lim
l→∞

P ( max
l≤n<∞

max
V0(η)

1

n

∥∥∥ n∑
t=1

[P̃t(θ)− Σ]
∥∥∥ ≥ ε) = 0.

Proof. Let Xt(η) = supV0(η) ‖Pt(θ) − Pt(θ0)‖. By Assumption 2.1(iii), as η is

small enough, EXt(η) < ε/4. Since {Xt(η)} is strictly stationary and ergodic, by

Lemma 1 in Chow and Teicher (1978, p.66) and the ergodic theorem, we have

lim
l→∞

P ( max
l≤n<∞

1

n

n∑
t=1

Xt(η) ≥ ε) ≤ lim
l→∞

P ( max
l≤n<∞

1

n
‖

n∑
t=1

(Xt(η)− EXt(η))‖ ≥
ε

2
) = 0,

for any ε > 0. By Assumption 2.1(iii) and the ergodic theorem, it follows that

lim
l→∞

P ( max
l≤n<∞

1

n
‖

n∑
t=1

[Pt(θ0)− Σ]‖ ≥ ε) = 0,

for any ε > 0. By the preceding two equations, there is η > 0 such that

lim
l→∞

P ( max
l≤n<∞

max
V0(η)

1

n

∥∥∥ n∑
t=1

[Pt(θ)− Σ]
∥∥∥ ≥ ε) = 0.(4.7)

Let X̃t = supV0(η) ‖P̃t(θ) − Pt(θ)‖. By Assumption 2.2(iii), we can show that

P (maxl≤n<∞
∑n

t=1 X̃t/n ≥ ε) → 0 as l→∞, for any ε > 0. Note that maxV0(η) ‖
∑n

t=1

[P̃t(θ)−Pt(θ)]‖ ≤
∑n

t=1 X̃t. Furthermore, by (4.7), the conclusion holds. 2

Proof of Theorem 2.1. By Lemma 4.1, for any ε > 0, we have

lim
l→∞

P ( max
l≤n<∞

‖θ̂n − θ0‖ > ε)

= lim
l→∞

P
{

max
l≤n<∞

‖θ̂n − θ0‖ > ε, max
l≤n<∞

n∑
t=1

[
l̃t(θ̂n)− l̃t(θ0)

]
≥ 0

}
≤ lim

l→∞
P

{
max

l≤n<∞
sup

‖θ−θ0‖>ε

n∑
t=1

[
l̃t(θ)− l̃t(θ0)

]
≥ 0

}
= 0.

Thus, (a) holds. Applying Taylor’s expansion to ∂l̃t(θ̃n)/∂θ and using Lemma 4.2,

θ̂n − θ0 = −
[ 1

n

n∑
t=1

P̃t(θ̂
∗
n)

]−1 1

n

n∑
t=1

D̃t(θ0) = −[Σ + o(1)]−1 1

n

n∑
t=1

D̃t(θ0) a.s.,

where θ̂∗n lies between θ̂n and θ0 and θ̂∗n → θ0 a.s.. By Assumption 2.2(ii) and using

a similar method as for (4.6), we can show that

lim
l→∞

P ( max
l≤n<∞

1√
n
‖

n∑
t=1

[D̃t(θ0)−Dt(θ0)]‖ ≥ ε) = 0,

10



for any ε > 0. Thus, we have θ̂n − θ0 = −[Σ + o(1)]−1 ∑n
t=1Dt(θ0)/n+ o(n−1/2) a.s..

By the law of iterated logarithm, we can claim that θ̂n − θ0 = O((log log n)/n)1/2)

a.s.. By Assumption 2.1(ii) and the central limit theorem, (b) holds. 2

5 Proof of Theorem 3.1

Proof. We verify Assumptions 2.1-2.2 with lt(θ) = −ε2
t (θ). For simplicity, we only

consider the case with p = q = 0, while the general case can be similarly verified.

First, Assumption 3.1 ensures that {yt} is strictly stationary and ergodic with

Ey2
t <∞, and the following expansions hold:

yt =
∞∑
i=0

c0iεt−i and εt(θ) = (1−B)dyt =
∞∑
i=0

ai(θ)yt−i,(5.1)

where c00 = a0(θ) = 1, c0i = O(i−1+d0) and ai(θ) = O(i−1−d). Since Θ is compact,

there are d and d̃ such that 0 < d ≤ d ≤ d̃ < 0.5. Thus, we have supθ∈Θ |ai(θ)| =

O(i−1−d), and hence it follows that

sup
Θ
|εt(θ)| = sup

Θ
|
∞∑
i=0

ai(θ)yt−i| ≤ |yt|+O(1)
∞∑
i=1

1

i1+d
|yt−i|.

By the Cauchy-Schwarz inequality, we have E supΘ |εt(θ)|2 <∞. It is not difficult to

show that −E[ε2
t (θ)] has a unique maximum on Θ. Thus, Assumption 2.1(i) holds,

and

Dt(θ) = −2εt(θ)
∂εt(θ)

∂d
and Pt(θ) = 2

[∂εt(θ)

∂d

]2
+ 2εt(θ)

∂2εt(θ)

∂d2
,

where ∂εt(θ)/∂d = log(1−B)(1−B)dyt =
∑∞

i=1 a1i(θ)yt−i and ∂2εt(θ)/∂d
2 = log2(1−

B)(1 − B)dyt =
∑∞

i=1 a2i(θ)yt−i, with supθ∈Θ |aji(θ)| = O(i−1−d) as j = 1, 2. Using

these, it is straightforward to show that Assumption 2.1(ii)-(iii) holds.

We next consider Assumption 2.2. For simplicity, let Ỹ0 = (0, 0, · · ·). By (5.1),

E[sup
Θ
|εt(θ)− ε̃t(θ)|]2

= E
[
sup
Θ
|
∞∑
i=t

ai(θ)yt−i|
]2
≤ CE

( ∞∑
i=t

1

i1+d
|yt−i|

)2
= O(t−2d).

11



It is readily shown that E supΘ ε̃
2
t (θ) is bounded uniformly in t. Thus, by the

Cauchy-Schwarz inequality, we have

E sup
Θ
|ε2

t (θ)− ε̃2
t (θ)|

≤ {E[sup
Θ
|εt(θ) + ε̃t(θ)|]2E[sup

Θ
|εt(θ)− ε̃t(θ)|]2}1/2 = O(t−d),

so that Assumption 2.2(i) holds. Similarly, we can show that Assumption 2.2(iii)

holds.

We now verify Assumption 2.2(ii’). Denote

At = εt(θ0)− ε̃t(θ0) =
∞∑
i=t

ai(θ0)yt−i,

A1t =
∂εt(θ0)

∂d
− ∂ε̃t(θ0)

∂d
,

A2t =
∂εt(θ0)

∂d
− vt = −

∞∑
i=t

1

i
εt−i,

where vt = −∑t−1
i=1 εt−i/i. We first make the following decomposition:

D̃t(θ0)−Dt(θ0) = 2εt(θ0)
∂εt(θ0)

∂d
− 2ε̃t(θ0)

∂ε̃t(θ0)

∂d

= 2εt(θ0)A1t + 2
∂ε̃t(θ0)

∂d
At

= 2εt(θ0)A1t + 2Atvt + 2AtA2t − 2AtA1t.(5.2)

Since E(ytyt+r) = O(|r|−1+2d0), we have

EA2
t =

∞∑
i=t

a2
i (θ0)Ey

2
t−1−i + 2

∞∑
i=t

∞∑
r=1

ai(θ0)ai+r(θ0)E(yt−1−iyt−1−i−r)

= O(1)[
∞∑
i=t

1

i2(1+d0)
+ 2

∞∑
i=t

∞∑
r=1

1

i1+d0(i+ r)1+d0r1−2d0
]

≤ O(1)[
∞∑
i=t

1

i2(1+d0)
+ 2

∞∑
i=t

1

i1+d0

∫ ∞

1

1

(i+ x)1+d0x1−2d0
dx]

≤ O(1)[
∞∑
i=t

1

i2(1+d0)
+ 2

∞∑
i=t

1

i2

∫ ∞

0

1

(1 + z)1+d0z1−2d0
dz] = O(t−1).(5.3)

Using a similar method, we can show that

EA2
it = O(t−1) and E(AtAit) = O(t−1) as i = 1, 2.(5.4)
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As in the proof of (4.6), using (5.4), we can show that

lim
l→∞

P
(

max
l≤n<∞

1√
n

n∑
t=1

|AtAit| > ε
)

= 0, as i = 1, 2.(5.5)

We next show that
∑n

t=1 εtA1t/
√
n = o(1) a.s. as n→∞, which is equivalent to

lim
l→∞

P
(

max
l≤n<∞

1√
n
|

n∑
t=1

εtA1t| > ε
)

= 0.(5.6)

By the Kronecker Lemma in Hall and Hedye (1981, p.31), it is sufficient to show

that

Sk =
k∑

t=1

1√
t
A1tεt converges a.s..(5.7)

By (5.4), it follows that

E|
k∑

t=s

1√
t
A1tεt|2 = O(1)

( k∑
t=s

1

t2

)
= O(1)

( k∑
t=s

1

t1+ν

)α
,(5.8)

for any integer 0 < s ≤ k and some α > 1, where O(1) holds uniformly in k and s.

Consider the subsequence {S2k : k = 0, 1, · · ·}. By (5.8), we have

E|S2k+1 − S2k | ≤ O(1)
( 2k+1∑

t=2k+1

1

t1+ε

)
≤ O

( 1

2εk

)
,

for some ε > 0. By this equation and the monotone convergence theorem, we have

E lim
n→∞

n∑
k=0

|S2k+1 − S2k | = lim
n→∞

E
n∑

k=0

|S2k+1 − S2k | ≤ O
( ∞∑

k=0

1

2εk

)
<∞.

Thus,
∑n

k=0 |S2k+1 − S2k | converges a.s. as n→∞, and hence

lim
n→∞

S2n+1 = X1 + lim
n→∞

n∑
k=0

(S2k+1 − S2k) converges a.s..(5.9)

By (5.8) and Theorem 12.2 in Billingsley (1968), it follows that, for any ∆ > 0,

P
(

max
2k<n≤2k+1

|Sn − S2k | ≥ ∆
)
≤ O(1)

( 2k+1∑
t=2k+1

1

t1+ν

)α
= O

( 1

2ε1k

)
,

for some ε1 > 0. By the Borel-Canteli Lemma, we can claim that

max
2k<n≤2k+1

|Sn − S2k | → 0 a.s. as k →∞.(5.10)
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By Lemma 2.3.1 in Stout (1974) and (5.9)-(5.10), we know that (5.7) holds.

Note that vs is independent of A1t as s ≥ 2, so that

E|
k∑

t=s

1√
t
A1tνt|2 = E|

k∑
t=s

k∑
t1=s

1√
t

1√
t1
E(A1tA1t1)E(νtνt1)

= O(1)
( k∑

t=s

1

t1+1/2

)2
= O(1)

( k∑
t=s

1

t1+ν

)α
,

for any integer 0 < s ≤ k, where O(1) holds uniformly in k and s. Using this

equation and a similar method as for (5.6), we can show that

lim
l→∞

P ( max
l≤n<∞

1√
n
|

n∑
t=1

vtAt| > ε) = 0.(5.11)

By (5.2), (5.5)-(5.6) and (5.11), we can show that Assumption 2.2(ii’) holds. 2

14



REFERENCES

Amemiya, T. (1985), Advanced Econometrics, Cambridge, Harvard University Press.

Baillie, R.T. (1996), Long memory processes and fractional integration in econo-

metrics, Journal of Econometrics 73, 5-59.

Basawa, I.V., Feign, P.D., and Heyde, C.C. (1976), Asymptotic properties of max-

imum likelihood estimators for stochastic processes, Sankhya A, 259-270.

Beran, J. (1995), Maximum likelihood estimation of the differencing parameter for

invertible short and long memory autoregressive integrated moving average

models, Journal of the Royal Statistical Society B 57, 659-672.

Billingsley, P. (1968), Convergence of Probability Measures, New York, Wiley.

Chow, Y.S. and Teicher, H. (1978), Probability Theory. Independence, Interchange-

ability, Martingales, Springer-Verlag, New York and Heidelberg,

Francq, C. and Zakoian, J.M. (2004) Maximum likelihood estimation of pure

GARCH and ARMA-GARCH processes. Bernoulli 10, 605-637.

Granger, C.W.J. and Joyeux, R. (1980), An introduction to long-memory time

series models and fractional differences, Journal of Time Series Analysis 1,

15-39.

Hall, P. and Heyde, C.C. (1980), Martingale Limit Theory and Its Applications,

Academic, San Diego.

Hosking, J.R.M. (1981), Fractional differencing, Biometrika 68, 165-76.

Huber, P.J. (1967), The behavior of maximum likelihood estimates under nonstan-

dard conditions, in Proc. 5th Berkeley Symp. Math. Statist. Probab., Vol. 1.

Univ. California Press, Berkeley, pp. 221-234.

Jeantheau, T. (1998), Strong consistency of estimators for multivariate ARCH

models, Econometric Theory 14, 70-86.

Lee, S-W. and Hansen, R.E.(1994). Asymptotic theory for GARCH(1,1) quasi-

maximum likelihood estimator. Econometric Theory 10, 29-52.

15



Li, W.K. and McLeod, A.I. (1986), Fractional time series modelling, Biometrika

73, 217-21.

Ling, S. (2003), Adaptive estimators and tests of stationary and non-stationary

short and long memory ARIMA-GARCH models, Journal of the American

Statistical Association 98, 955-967

Ling, S. (2004) Estimation and testing of stationarity for double autoregressive

models. Journal of the Royal Statistical Society: Series B 66, 63-78.

Ling, S. and Li, W.K. (1997), Fractional ARIMA-GARCH time series models,

Journal of the American Statistical Association 92, 1184-1194.

Ling, S. and McAleer, M. (2003), Asymptotic theory for a vector ARMA-GARCH

model, Econometric Theory 19, 280-310.

Ling, S. and Tong, H. (2005) Testing for a linear MA model against threshold MA

models. Annals of Statistics 33, 2529-2552..

Ling, S., Tong, H. and Li, D. (2007) Ergodicity and invertibility of threshold MA

(1) models. Bernoulli, 13, 161-168.

Pfanzagl, J. (1969), On the measurability and consistency of minimum contrast

estimates, Metrika 14, 249-272.

Robinson, P.M. (1994), Time series with strong dependence, in C. Sims (ed.), Ad-

vances in Econometrics, Sixth World Congress, Cambridge, Cambridge Uni-

versity Press.

Stout, W.F.(1974), Almost Sure Convergence, Academic Press, New York and Lon-

don.

Tjφstheim, D. (1986), Estimation in nonlinear time series models, Stochastic Pro-

cesses and Applications 21, 251-273.

Tong, H. (1990), Nonlinear Time Series. A Dynamical System Approach, Claren-

don Press and Oxford University Press, New York.

16


