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Abstract 

 

Spain is a leader in terms of total international tourist arrivals and receipts. The Balearic 

Islands are one of the most popular destinations in Spain. For tourism management and 

marketing, it is essential to forecast tourist arrivals accurately. As it is important to 

provide sensible tourist forecast intervals, it is also necessary to model their variances 

accurately. Time-varying variances also provide useful information regarding the risk 

associated with tourist arrivals. This paper examines spatial aggregation across micro 

entities to more aggregated macro entities, in addition to temporal aggregation, for 

purposes of analyzing risk in tourism marketing and management. The paper examines 

four different types of asymmetric behaviour related to the effects of positive and 

negative shocks of equal magnitude on volatility. The paper analyzes daily air passenger 

arrivals from the Spanish National Airport Authority from 2001-06 to the Balearics, 

using time series models for the conditional mean and conditional volatility. 

 

Keywords: Risk management; Tourism management; Tourism marketing; Daily 

international tourist arrivals; Time-varying volatility; Spatial aggregation; Temporal 

aggregation; Asymmetric behaviour.  
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1. Introduction 

International tourism demand is important for many countries worldwide 

because of the tourist export receipts that they generate. Spain is one of the most visited 

countries in the world by international tourists, being second to France in terms of total 

of international tourist arrivals, and second to the USA in terms of international tourism 

receipts (UNWTO, 2007). Of the five major tourist regions in Spain, the Balearic 

Islands, comprising Mallorca, Ibiza and Menorca, are one of the most popular 

destinations. 

 

It is clear that international tourist arrivals are important globally, as well as 

nationally for Spain. For purposes of tourism management and marketing, it is essential 

to be able to forecast tourist arrivals and their percentage changes accurately. As it is 

important to provide sensible tourist forecast intervals in addition to the forecasts 

themselves, it is also necessary to model the variances of the forecasts accurately. 

Virtually all previous empirical research in forecasting international tourist arrivals has 

assumed that the variance is constant. However, when the variance changes over time, it 

is necessary to specify the time-varying nature of the underlying process. A time-

varying variance, otherwise known as time-varying volatility, also provides useful 

information regarding the risk (or uncertainty) associated with international tourist 

arrivals and their respective rates of growth. In this sense, models of international tourist 

arrivals, their respective percentage changes, and their associated time-varying 

volatilities, can make a significant contribution to tourism risk management and 

marketing. 

 

Forecasting international tourism and their associated volatility has been 

considered previously in Chan, Lim and McAleer (2005) and Hoti, McAleer and 

Shareef (2007) at the multivariate level, and in Shareef and McAleer (2007) at the 

univariate level. These papers have shown the importance and usefulness of both 

univariate and multivariate conditional volatility models, when used in conjunction with 

time series models of international tourist arrivals and their respective rates of growth.  

 

In the case of the Maldives, where a daily international tourist tax has been 

imposed, international tourists yield a significant contribution to government tax 

revenues. Consequently, the growth in tax revenues is equivalent to the returns in 
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financial markets. For this reason, Shareef and McAleer (2007) examine the number and 

the growth in international tourist arrivals to the Maldives using financial econometric 

models that are used to analyze financial rates of return. This methodological approach 

can also be used for purposes of tourism risk management and marketing, whereby 

international tourist arrivals might yield relevant tax revenue. 

 

One of the primary purposes of this paper is to extend the ideas in each of the 

papers above to the issue of spatial aggregation across micro entities, such as town, city, 

island, province, region or country, to more aggregated macro entities, such as city, 

island, province, region, country or continent, in addition to temporal aggregation across 

the seasons within a calendar year, for purposes of analyzing issues related to risk for 

tourism marketing and management. The effects of temporal aggregation across the 

seasons, as well as spatial aggregation across the three major islands in the Balearics, 

will be examined in connection with four different types of asymmetric behaviour that 

are related to the effects of positive and negative shocks of equal magnitude on 

volatility. One of these types of asymmetry is leverage and tourism downturn, which is 

derived from the related issue of leverage in financial economics. This paper introduces 

three other types of asymmetric behaviour, namely low season financial risk, 

overcrowding through overbooking and congestion, and tourism saturation. These new 

ideas can be applied for purposes of temporal aggregation, as well as the spatial 

aggregation of geographic and/or administrative entities to a more aggregated level.  

 

The plan of the remainder of the paper is as follows. Section 2 provides an 

economic and tourism analysis of the Balearic Islands. Section 3 assesses the 

importance of using daily data to analyze passenger arrivals and the conditional 

variance of passenger arrivals. Section 4 examines the alternative conditional mean and 

conditional volatility models for daily air passenger arrivals. The estimated models and 

empirical results are discussed in Section 5, and some concluding remarks are given in 

Section 6. 

 

2. The Balearic Islands 
The Balearic Islands, Spain, with a total population of just over 1 million people 

(INE, 2007), are one of the leading sun and sand destinations in the Mediterranean (see 

Figure 1). During the year 2006 the Balearic Islands received, by air and by sea, over 
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12.5 million tourists, and of these, approximately 12 million arrived by plane, and 9.77 

million were international tourists. The tourism industry accounts for 48% of the total 

GDP in the Balearics (Exceltur, 2007). However, the tourism industry is affected by 

seasonality, as it is in many other Mediterranean destinations. Almost 9 million tourists 

visited the islands between the months of May and September, but only 3.5 million 

visited during the remaining seven months (CITTIB, 2007). Furthermore, the local 

economy is not only highly dependent on tourism, but the standardized sun and sand 

product also predominates, despite the efforts of diversification promoted by public and 

private initiatives (Aguilo, Riera and Rossello, 2005). 

 

The three main islands in the Balearics are Mallorca, Ibiza and Menorca (for 

purposes of simplicity, data for the small island of Formentera is integrated with Ibiza), 

and each has an international airport in their respective capital cities of Palma de 

Mallorca, Ibiza and Mahon. Although all the islands enjoy the same climate, there are 

differences in their economic structures, the number of tourist arrivals, seasonal 

patterns, and the profiles of tourists who visit each island. Mallorca accounts for 79% of 

Balearic regional GDP, while Menorca and Ibiza represent 9% and 12%, respectively 

(CAIB, 2004). In Mallorca, total demand from tourism corresponds to 34% of island 

GDP, in Ibiza this percentage is 44%, and in Menorca tourism demand represents 28% 

of island GDP (CAIB, 2004). 

 

In 2006, Mallorca received a total of 9.6 million tourists. Of these, 38.4% were 

from Germany and 24.2% from the United Kingdom (see Table 1). In comparison, 

Ibiza, with 1.87 million visitors, had 35.2% from Britain, 17.1% from Germany and 

14.8% from Italy. For Menorca, the British represented 50.3% of tourists, followed by 

domestic tourism (29.4%) of a total of 1.009 million tourist arrivals in 2006 (CITTIB, 

2007). It is worth noting that Menorca and Ibiza suffer greater seasonality than does 

Mallorca. In 2005, 57.8% of the total tourist arrivals in Mallorca stayed during the high 

season, whereas in Menorca and Ibiza, this figure was as high as 83% (CRE, 2005). 

 

These figures give an idea of the existing differences among the three islands. 

Moreover, the image promoted by each island is different. While Menorca appeals 

primarily to families, Ibiza attracts a younger market, and Mallorca receives a broader 
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array of tourist segments. As a consequence, the majority of tourists in Menorca enjoy 

day time activities, the Ibiza visitors are more interested in the night life, while in 

Mallorca both, day and night activities, are sought (CITTIB, 2007). These differences 

suggest that each island should be considered as a different tourism destination for 

purposes of tourism planning, management and promotion. 

 

Due to the importance of tourism in the Balearics, many researchers have used 

this destination to analyze different aspects of tourism. In particular, from the demand 

perspective, Aguilo et al (2005) and Garin and Montero (2007) estimated price and 

income elasticities using yearly passenger arrivals data. From a microeconomic 

perspective, Alegre and Pou (2006) demonstrated the trend of tourists staying for 

shorter periods. However, it has also been shown that the islands benefit from a high 

repeat visitation rate (Alegre and Cladera, 2006; Garin and Montero, 2007). 

 

On the supply side, it has been recognized that the islands have reached their 

maximum carrying capacity, as well as the importance of protecting the natural 

environment and preserving the local cultural identity (Bujosa and Rossello, 2007; 

Knowles and Curtis, 1999). The role of tour operators in the commercialization and 

price structure of the packaged sun and sand product has also been investigated, arriving 

at the conclusion that British and German tour operators have an oligopolistic position 

towards accommodation providers and customers (Aguilo, Alegre and Riera, 2001).  

 

 This paper analyzes daily air passenger arrivals between 2001 and 2006 to the 

three international airports, giving a total of 2,191 observations for each island. Daily 

passenger arrivals data are obtained from the Spanish National Airport Authority 

(AENA). As data on daily tourist arrivals are not available, total passenger arrivals data 

are used as a proxy. Figure 2 shows the monthly international tourist arrivals and 

monthly air passenger arrivals. As the correlation coefficient between these two 

monthly series is 0.997, it is highly likely that daily passenger arrivals data would be an 

accurate proxy for daily international tourist arrivals. 

 

3. Data 

The data set comprises daily passenger arrivals at the three international airports 

in the Balearic Islands, namely Palma de Mallorca, Ibiza and Mahon, which are located 
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in the islands of Mallorca, Ibiza and Menorca, respectively, with data for the Balearics 

being the aggregate of arrivals to the three islands. The data are daily, for the period 1 

January 2001 to 31 December 2006, giving a total of 2,191 observations. The source of 

data is the AENA (Aeropuertos Españoles y Navegación Aérea), the Spanish National 

Airport Authority. 

 

The importance of using daily air passenger arrivals cannot be ignored. As 

compared with the use of aggregated data, daily data provide more detailed information, 

so that estimation will be more precise for purposes of modeling and forecasting 

international tourist arrivals. Furthermore, daily data are very useful for purposes of 

modeling the conditional variance of the time series when the assumption of constant 

variances is deemed to be unreasonable. 

 

Figure 3 plots the daily air passenger arrivals for Mallorca, Menorca, Ibiza and 

the Balearics. Figure 4 plots the volatility of daily air passenger arrivals, where 

volatility is defined as the squared deviation from the sample mean. 

 

Tourism seasonality is clear in all three islands, and there seems to be an 

increasing number of arrivals during the winter months, especially for Mallorca. 

However, in Menorca the number of passenger arrivals during the summer months 

appears to be decreasing. Another common pattern found in the arrivals to the three 

islands is how they decrease dramatically at the end of October. There is a single 

observation in summer 2002, which is a consequence of the one-day general strike 

called by the Spanish trade unions in protest at the proposed changes to unemployment 

benefits. This observation is clearly seen in the Palma de Mallorca sample, where 

arrivals were kept to a legally prescribed minimum for all three islands. Clearly, this 

affected Mallorca far more severely than it did to Ibiza or Menorca. There are peaks for 

the Christmas holidays in Palma de Mallorca during the low season, which is hardly 

noticeable in the other two islands. Nevertheless, the behaviour of the volatility of 

arrivals appears to be very similar between the islands, having higher volatility during 

the high season and lower volatility during the low season. 

 

Figures 5 and 6 plot the weekly differences and the volatility, respectively, in 

daily air passenger arrivals for the four samples. A closer analysis of Figures 3 and 4 
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shows a weekly pattern in the data. Consequently, the weekly difference in passenger 

arrivals in Figure 5 and its volatility in Figure 6 seem to have eliminated the weekly 

pattern. 

 

Table 2 gives the descriptive statistics of air passenger arrivals for the four 

samples. Palma Airport receives the majority of passengers who visit the Balearics. The 

third and fourth standardized moments about the mean, skewness and kurtosis, 

respectively, are also presented. Skewness (μ3/σ3) is a measure of asymmetry of the 

distribution of the series around its mean. Kurtosis (μ4/σ4) is a measure of peakedness, 

such that higher kurtosis means more of the variability is due to infrequent extreme 

deviations. The kurtosis of the normal distribution is 3. If the kurtosis exceeds 3, the 

distribution is peaked (leptokurtic) relative to the normal; if the kurtosis is less than 3, 

the distribution is flat (platykurtic) relative to the normal.  

 

The Jarque-Bera Lagrange multiplier test examines whether the series are 

normally distributed. The test statistic measures the difference in the skewness and 

kurtosis of the empirical series from those under the normal distribution. Under the null 

hypothesis of normality, the Jarque-Bera test statistic is distributed as chi-squared with 

2 degrees of freedom. The reported “Prob.” is the probability that a Jarque-Bera statistic 

exceeds (in absolute value) the observed value under the null hypothesis. All four 

samples are found to be not normally distributed. 

 

Table 3 gives the descriptive statistics of the weekly difference in air passenger 

arrivals for the four samples. The median is considerably greater than the mean in all 

four data sets. The distribution of air passenger arrivals in negatively skewed for Palma 

and the Balearics, but is positively skewed for Ibiza and Mahon. The Jarque-Bera 

Lagrange multiplier test of  normality suggests that all four samples are not normally 

distributed. 

 

4. Conditional Mean and Conditional Volatility Models 

The alternative time series models to be estimated for the conditional means of 

the daily air passenger arrivals and weekly changes in passenger arrivals, as well as 

their conditional volatilities, are discussed below. As Figures 3 to 6 illustrate, daily air 

passenger arrivals, and the weekly change in daily passenger arrivals to the Balearics, 
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show periods of high volatility followed by others of relatively low volatility. One 

implication of this persistent volatility behaviour is that the assumption of 

(conditionally) homoskedastic residuals is inappropriate (see, for example, Li, Ling and 

McAleer (2002), and McAleer (2005)). 

 

For a wide range of financial data series, time-varying conditional variances can 

be explained empirically through the autoregressive conditional heteroskedasticity 

(ARCH) model, which was proposed by Engle (1982). When the time-varying 

conditional variance has both autoregressive and moving average components, this 

leads to the generalized ARCH(p,q), or GARCH(p,q), model of Bollerslev (1986). The 

lag structure of the appropriate GARCH model can be chosen by information criteria, 

such as those of Akaike and Schwarz, although it is very common to impose the widely 

estimated GARCH(1,1) specification in advance.  

 

Consider the stationary AR(1)-GARCH(1,1) model for daily air passenger 

arrivals to the Balearics (or their weekly change, as appropriate), ty : 

 

1, 1110 <++= − φεφφ ttt yy      (1) 

 

for nt ,...,1= , where the shocks (or movements in daily air passenger arrivals) are given 

by:  
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where 0,0 ≥> αω  and 0≥β  are sufficient conditions to ensure that the conditional 

variance 0>th . The AR(1) model in equation (1) can easily be extended to univariate or 

multivariate ARMA(p,q) processes (for further details, see Ling and McAleer (2003a)). 

In equation (2), the ARCH (or α ) effect indicates the short run persistence of shocks, 

while the GARCH (or β ) effect indicates the contribution of shocks to long run 

persistence (namely, α + β ). The stationary AR(1)-GARCH(1,1) model can be 
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modified to incorporate a non-stationary ARMA(p,q) conditional mean and a stationary 

GARCH(r,s) conditional variance, as in Ling and McAleer (2003b).  

 

In equations (1) and (2), the parameters are typically estimated by the maximum 

likelihood method to obtain Quasi-Maximum Likelihood Estimators (QMLE) in the 

absence of normality of tη . The conditional log-likelihood function is given as follows: 
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The QMLE is efficient only if tη  is normal, in which case it is the MLE. When tη  is 

not normal, adaptive estimation can be used to obtain efficient estimators, although this 

can be computationally intensive. Ling and McAleer (2003b) investigate the properties 

of adaptive estimators for univariate non-stationary ARMA models with GARCH(r,s) 

errors.  

 

Ling and McAleer (2003a) showed that the QMLE for GARCH(p,q) is 

consistent if the second moment of εt is finite. For GARCH(p,q), Ling and Li (1997) 

demonstrated that the local QMLE is asymptotically normal if the fourth moment of tε  

is finite, while Ling and McAleer (2003a) proved that the global QMLE is 

asymptotically normal if the sixth moment of εt is finite. Using results from Ling and Li 

(1997) and Ling and McAleer (2002a; 2002b), the necessary and sufficient condition for 

the existence of the second moment of εt for GARCH(1,1) is 1<+ βα  and, under 

normality, the necessary and sufficient condition for the existence of the fourth moment 

is 12)( 22 <++ αβα .  

 

As discussed in McAleer, Chan and Marinova (2007), Elie and Jeantheau (1995) 

and Jeantheau (1998) established that the log-moment condition was sufficient for 

consistency of the QMLE of an univariate GARCH(p,q) process (see Lee and Hansen 

(1994) for the proof in the case of GARCH(1,1)), and Boussama (2000) showed that the 

log-moment condition was sufficient for asymptotic normality. Based on these 

theoretical developments, a sufficient condition for the QMLE of GARCH(1,1) to be 

consistent and asymptotically normal is given by the log-moment condition, namely  
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0))(log( 2 <+ βαηtE .    (3) 

 

This condition involves the expectation of a function of a random variable and 

unknown parameters. Although the sufficient moment conditions for consistency and 

asymptotic normality of the QMLE for the univariate GARCH(1,1) model are stronger 

than their log-moment counterparts, the second moment condition is more 

straightforward to check in practice.  

 

The effects of positive shocks (or upward movements) on the conditional 

variance, th , are assumed to be the same as the negative shocks (or downward 

movements) in the symmetric GARCH model. In order to accommodate asymmetric 

behavior, Glosten, Jagannathan and Runkle (1992) proposed the GJR model, for which 

GJR(1,1) is defined as follows:  
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where 0,0,0 ≥+≥> γααω  and 0≥β are sufficient conditions for ,0>th  and )( tI η  is an 

indicator variable defined by: 
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 as tη  has the same sign as εt. The indicator variable differentiates between positive and 

negative shocks of equal magnitude, so that asymmetric effects in the data are captured 

by the coefficient γ , with 0≥γ . The asymmetric effect, γ , measures the contribution 

of shocks to both short run persistence, 
2
γα + , and to long run persistence, 

2
γβα ++ .  
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Ling and McAleer (2002b) showed that the regularity condition for the existence 

of the second moment for GJR(1,1) under symmetry of ηt  is given by: 

 

1
2
1

<++ γβα ,   (5) 

 

while McAleer et al. (2007) showed that the weaker log-moment condition for GJR(1,1) 

was given by: 

 

0])))((log[( 2 <++ βηηγα ttIE ,  (6) 

 

which involves the expectation of a function of a random variable and unknown 

parameters. 

 

An alternative model to capture asymmetric behavior in the conditional variance 

is the Exponential GARCH (EGARCH(1,1)) model of Nelson (1991), namely:  

 

111 log||log −−− +++= tttt hh βγηηαω ,  1|| <β  (7) 

 

where the parameters have a distinctly different interpretation from those in the 

GARCH(1,1) and GJR(1,1) models.  

 

As noted in McAleer et al. (2007), there are some important differences between 

EGARCH and the previous two models, as follows: (i) EGARCH is a model of the 

logarithm of the conditional variance, which implies that no restrictions on the 

parameters are required to ensure 0>th ; (ii) Shephard (1996) observed that 1|| <β  is 

likely to be a sufficient condition for consistency of QMLE for EGARCH(1,1); (iii) as 

the conditional (or standardized) shocks appear in equation (7), 1|| <β  would seem to 

be a sufficient condition for the existence of moments; (iv) in addition to being a 

sufficient condition for consistency, 1|| <β  is also likely to be sufficient for 

asymptotic normality of the QMLE of EGARCH(1,1).  
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Furthermore, EGARCH captures asymmetries differently from GJR. The 

parameters α  and γ  in EGARCH(1,1) represent the magnitude (or size) and sign 

effects of the conditional (or standardized) shocks, respectively, on the conditional 

variance, whereas α  and γα +  represent the effects of positive and negative shocks, 

respectively, on the conditional variance in GJR(1,1).  

 

The following is an interpretation of asymmetries in EGARCH(1,1) for air 

passenger arrivals. Depending on the negative or positive slopes according to a positive 

or negative shock (see Figures 7 to 10), there are four possible scenarios of asymmetry 

in the EGARCH model, according to the restrictions on α  and γ , as follows: 

 

(i) Type 1 Asymmetry: Low Season Financial Risk, in which negative shocks increase 

volatility and positive shocks of a similar magnitude increase volatility by a smaller 

amount. 

 

(ii) Type 2 Asymmetry: Overbooking Pressure on Carrying Capacity, in which negative 

shocks increase volatility and positive shocks of a similar magnitude increase volatility 

by a larger amount. 

 

(iii) Type 3 Asymmetry: Tourism Saturation in High Season, in which negative shocks 

decrease volatility and positive shocks of a similar magnitude increase volatility. 

 

(iv) Type 4 Asymmetry: Leverage and Tourism Downturn, in which negative shocks 

increase volatility and positive shocks of a similar magnitude decrease volatility. 

 

5. Estimated Models 

It is well known that traditional unit root tests, primarily those based on the 

classic methods of Dickey and Fuller (1979; 1981) and Phillips and Perron (1988), 

suffer from low power and size distortions. However, these shortcomings have been 

overcome by various modifications to the testing procedures, such as the methods 

proposed by Perron and Ng (1996), Elliott, Rothenberg and Stock (1996), and Ng and 

Perron (2001).  
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We have applied the modified unit root tests, denoted as MADFGLS and MPPGLS, 

to the time series of daily passenger arrivals in the Balearics, and to the three sub-

samples of Mallorca, Menorca and Ibiza. In essence, these tests use GLS de-trended 

data and the modified Akaike information criterion (MAIC) to select the optimal 

truncation lag. The asymptotic critical values for both tests are given in Ng and Perron 

(2001).  

 

The results of the unit root tests are obtained from the econometric software 

package EViews 5.0, and are reported in Tables 4, 5, 6 and 7. The existence of a zero 

frequency unit root is tested for the arrivals as well as weekly differences (that is, the 

seven day differences) for the three islands and the total of the Balearics.  

 

In Tables 4-7, the lags are all in the order of 20 to 25 days, which is roughly 

three weeks of daily data. In Table 1 for the Balearics, the existence of a unit root is 

rejected by both tests and for both passenger arrivals and the weekly difference in 

passenger arrivals, regardless of whether both tests have an intercept only or both an 

intercept and deterministic trend. The results are virtually identical, both quantitatively 

and qualitatively, for Ibiza, Menorca and Mallorca in Tables 5-7, respectively. 

 

In short, the variable that is of primary interest for tourism management and 

marketing, namely passenger arrivals, is found to be stationary for each of the three 

major islands, as well as the Balearics. It follows, therefore, that the weekly difference 

is also stationary. However, as the weekly differences exhibit a different pattern from 

the passenger arrivals series, we will estimate models for both series, as well as their 

respective volatilities. 

 

The following models are used to estimate passenger arrivals (Models 1 and 3) 

and the weekly differences in passenger arrivals (Models 2 and 4), as well as their 

respective volatilities using GARCH(1,1), GJR(1,1) and EGARCH(1,1): 

 

Model 1: yt = φ0 + φ1 yt-1 + φ2 yt -7 + εt 

Model 2: ∆7 yt = φ0 + φ1 ∆7 yt-1 + εt 

Model 3: yt = φ0 + φ1δ H yt-1 + φ2δ H yt-7 + φ3δ L yt-1 + φ4δ L yt-1 + εt 
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Model 4: ∆7 yt = φ0 + φ1δ H ∆7 yt-1 + φ2δ L ∆7 yt-7 + εt 

 

where the dummy variables δ H and δ L distinguish between the high and low tourist 

seasons in all four data sets, and are defined as follows: 

 

δ H = 1 (δ L = 0) for the high tourist season, 1 April to 31 October; 

δ H = 0 (δ L = 1) for the low tourist season, 1 November to 31 March. 

 

Model 1 explains daily passenger arrivals to one destination as depending on 

passenger arrivals lagged 1 and 7 days, while Model 3 distinguishes between the high 

and low seasons in terms of explaining daily passenger arrivals. Model 2 explains the 

weekly differences in passenger arrivals as an autoregressive process of order 1, and 

Model 4 explains the change in weekly passenger arrivals as a restricted autoregressive 

process of order 7.  

 

Models 3 and 4 enable an investigation of the differences between the high and 

low tourist seasons in terms of forecasting daily passenger arrivals and weekly 

differences in passenger arrivals. In addition to the issue of aggregation across the three 

islands to obtain total passenger arrivals for the Balearic Islands, an examination of 

passenger arrival patterns across the high and low seasons, as well as their associated 

volatilities, will be able to provide more useful information for purposes of tourism 

management and marketing.  

 

The conditional means and conditional volatilities of passenger arrivals to the 

Balearic Islands, Ibiza, Menorca and Mallorca are given for Model 1 in Tables 8-11, 

respectively. In each table, the estimates are given for the conditional mean that are 

estimated simultaneously with the estimates of the corresponding conditional volatility 

model. The second moment and log-moment conditions are also given for the GARCH 

and GJR models. The maximized log likelihood values are also given for three models 

for each of the four data sets. These will be used for purposes of the likelihood ratio 

tests of the constancy of the coefficients in the high and low seasons, to be discussed in 

Table 24 below.  
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It is striking that the results in Tables 8-11 are qualitatively very similar. The 

estimates of the conditional means are numerically and statistically adequate, with φ1 in 

all cases being numerically small but statistically significant, the estimates for Ibiza 

being the largest in the range (0.065, 0.069), and the estimates of φ2 being in excess of 

0.933 in all cases. 

 

The estimates of the conditional volatilities in each case are also numerically and 

statistically adequate. It is clear that the assumption of a constant variance is untenable 

as compared with time-varying volatility. In Table 8 for the Balearic Islands, the second 

moment condition for GARCH(1,1) is not satisfied but the log-moment condition is 

satisfied, so that the QMLE are consistent and asymptotically normal, and can hence be 

used to draw valid inferences. As compared with standard financial econometric 

models, the short run persistence of shocks, α, is quite large at 0.6, whereas the 

contribution of lagged conditional volatility, β, is relatively small at around 0.42. 

Similar comments also apply to the GJR(1,1) model, where the asymmetry coefficient, 

γ, is zero, so that there is no asymmetric effect of positive and negative shocks of equal 

magnitude on volatility. The EGARCH(1,1) estimates also suggest symmetry between 

negative and positive shocks of equal magnitude as the estimate of γ is also not 

statistically significant. Overall the GARCH(1,1) and EGARCH(1,1,) are statistically 

and numerically sound. 

 

Tables 9-11 give the estimates for Model 1 for Ibiza, Menorca and Mallorca, 

respectively. Overall, the results in these three tables are qualitatively similar to those in 

Table 8 for the Balearics. In particular, the results for the conditional mean are quite 

similar for all three islands and the Balearics. The conditional volatility estimates are 

also reasonably similar for all three islands. The asymmetry coefficients in both GJR 

and EGARCH are insignificant in all cases, such that the effects on volatility of positive 

and negative shocks of similar magnitude are symmetric. The effect of lagged volatility, 

β, for all three islands is considerably larger than for the Balearics, while the short run 

persistence of shocks for Mallorca is considerably lower than the counterparts for the 

Balearics. In spite of the second moment condition not being satisfied for GARCH or 

GJR for any of the three islands, the log-moment condition is satisfied in all cases. 
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Therefore, the QMLE are consistent and asymptotically normal, and inferences are 

valid. 

 

The conditional means and conditional volatilities of the weekly change in 

passenger arrivals to the Balearic Islands, Ibiza, Menorca and Mallorca are given for 

Model 2 in Tables 12-15, respectively. In Table 12 for the Balearic Islands, the effect of 

the lagged weekly change in passenger arrivals is highly significant at around 0.72, 

whereas the effects are much lower at around 0.6, 0.57 and 0.62 for Ibiza, Menorca and 

Mallorca in Tables 13-15, respectively. For the conditional volatility models, the 

estimated asymmetric effect, γ, is significant for the Balearic Islands, but not for Ibiza, 

Menorca or Mallorca, such that GJR is preferred to GARCH in only one of four cases. 

However, the asymmetry coefficient is insignificant in all four cases for the EGARCH 

model. The second moment condition is satisfied for the Balearic Islands and Mallorca, 

but the log-moment condition is satisfied in all four cases. Therefore, the QMLE are 

consistent and asymptotically normal, and inferences are valid. 

 

Tables 16-19 give the conditional means and conditional volatilities of the daily 

passenger arrivals to the Balearic Islands, Ibiza, Menorca and Mallorca, respectively, 

for Model 3. The results are qualitatively similar for all four data sets. The differences 

between the high and low seasons are significant for all four data sets and all three 

models, particularly for Ibiza and Menorca. It is striking that the effect of lagged weekly 

passenger arrivals is much lower for Ibiza and Menorca in the low season as compared 

with the high season, whereas this is not the case for Mallorca and the Balearic Islands. 

The asymmetry coefficient is insignificant for GJR and EGARCH, so that positive and 

negative shocks of equal magnitude have a similar effect on volatility. The short run 

persistence of shocks for the GARCH model are 0.614, 0.612, 0.683, and a considerably 

lower 0.428 for the Balearics, Ibiza, Menorca and Mallorca, respectively. In spite of the 

second moment condition not being satisfied for GARCH or GJR for any of the four 

data sets, the log-moment condition is satisfied in all cases. Therefore, the QMLE are 

consistent and asymptotically normal, and inferences are valid. 

 

The conditional means and conditional volatilities of the weekly change in 

passenger arrivals to the Balearic Islands, Ibiza, Menorca and Mallorca are given for 

Model 4 in Tables 20-23, respectively. For the conditional mean of the weekly change 
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in passenger arrivals, there is a clear difference between the effect of the lagged change 

in weekly passenger arrivals between the high and low tourist seasons, with the high 

season effect being much greater than its low season counterpart, especially for Ibiza 

and Menorca. For the conditional volatility models, the asymmetric effect is significant 

for EGARCH for Ibiza and Menorca, but not for the Balearic Islands and Mallorca. 

Moreover, the asymmetry coefficient is significant for GJR for the Balearics, Ibiza and 

Menorca, but not Mallorca. It is striking that the asymmetric effects of positive and 

negative shocks of equal magnitude on volatility are significant for both GJR and 

EGARCH for Ibiza and Menorca. Although the second moment condition is not 

satisfied for Ibiza or Menorca, the log-moment condition is satisfied in all four cases. 

Therefore, the QMLE are consistent and asymptotically normal, and inferences are 

valid. 

 

For purposes of analyzing whether asymmetry in the EGARCH model is of 

Type 1, 2, 3 or 4, it is necessary to check that the asymmetry coefficient, γ, is different 

from zero. The estimates of γ for EGARCH in Models 1, 2 and 3 are not statistically 

significant in any of the four data sets. However, the asymmetry coefficient is positive 

and statistically significant in Model 4 for Ibiza and Menorca (see Tables 21 and 22, 

respectively). Moreover, the estimates of the size effect, α, are positive and significant, 

and much greater than the corresponding estimates of γ. Therefore, the volatility for 

Ibiza and Menorca exhibit Type 2 Asymmetry, namely overbooking pressure on 

carrying capacity. 

 

Table 24 gives the likelihood ratio test of constancy of coefficients in the high 

and low seasons. The first set of results relates to Model 1 as the null hypothesis and 

Model 3 as the alternative, whereas the second set of results has Model 2 as the null 

hypothesis and Model 4 as the alternative. Apart from non-rejection of Model 1 as the 

null hypothesis using GARCH and GJR for the Balearics, and non-rejection of Model 2 

as the null hypothesis using EGARCH for Mallorca, every other set of results rejects the 

constancy of coefficients in the high and low seasons for all data sets and for all 

conditional volatility models. Therefore, there is a clear difference between the impact 

of lagged effects in explaining passenger arrivals and the weekly difference in passenger 

arrivals in the high and low tourist seasons. 
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6. Concluding Remarks 

 

International tourism generates significant tourist export receipts worldwide. 

Crucial information required for optimal decision making in terms of planning, 

managing and promotion related to tourism, is an accurate forecast of international 

tourist arrivals, changes in tourist arrivals, and associated forecast intervals. In this 

respect, time-varying variances, otherwise known as time-varying volatility, provide 

useful information regarding the risk (or uncertainty) associated with international 

tourist arrivals.  

 

There are several practical applications in which accurate forecasts of 

international tourist arrivals, and their associated forecast intervals, would be useful. For 

example, where a daily international tourist tax might be levied, the number of 

international tourist arrivals would yield a significant contribution to government tax 

revenues, such that the growth in tax revenues would be equivalent to returns in 

financial markets. Such returns can be analyzed using financial econometric models. 

This methodological approach can also be used for purposes of tourism risk 

management and marketing, whereby international tourist arrivals yield relevant tax 

revenue. 

 

One of the primary purposes of this paper was to examine spatial aggregation 

across micro entities, such as town, city, island, province, region or country, to more 

aggregated macro entities, such as city, island, province, region, country or continent, in 

addition to temporal aggregation across the high and low seasons within a calendar 

year, for purposes of analyzing risk in tourism marketing and management. The paper 

examined four different types of asymmetric behaviour related to the effects of positive 

and negative shocks of equal magnitude on volatility. One of these types of asymmetry 

was leverage and tourism downturn, which is derived from the concept of leverage in 

financial economics. The paper also developed three other types of asymmetric 

behaviour, namely low season financial risk, overcrowding through overbooking and 

congestion, and tourism saturation. These new ideas can be applied to temporal 

aggregation, as well as the spatial aggregation of geographic and/or administrative 

entities to a more aggregated level. 
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Spain is a world leader in terms of total international tourist arrivals and 

international tourism receipts. Of the five major tourist regions in Spain, the Balearic 

Islands of Mallorca, Ibiza and Menorca are one of the most popular destinations. This 

paper analyzed daily passenger arrivals to the three international airports in the Balearic 

Islands, namely Palma de Mallorca (in Mallorca), Ibiza (in Ibiza), and Mahon (in 

Menorca), using time series models for the conditional mean and three widely used 

conditional volatility models for the time-varying risk. The three conditional volatility 

models, GARCH, GJR and EGARCH, included two models that accommodated the 

asymmetric effects of positive and negative shocks of equal magnitude in passenger 

arrivals on volatility. Daily passenger arrivals data for the period 1 January 2001 to 31 

December 2006 provided a total of 2,191 observations. The source of data was the 

AENA (Aeropuertos Españoles y Navegación Aérea), the Spanish National Airport 

Authority.  

 

The variable that is of primary interest for tourism management and marketing, 

namely passenger arrivals, was found to be stationary for each of the three islands, as 

well as for the Balearics. As the weekly differences in passenger arrivals exhibited a 

different pattern from the daily arrivals data, both time series, as well as their respective 

volatilities, were modelled for the four different data sets.  

 

Alternative lag structures were used to model passenger arrivals and their 

weekly changes, as well as the differences between the high and low tourist seasons in 

terms of forecasting daily passenger arrivals. The empirical results indicated significant 

differences in the estimates of passenger arrivals at the island and aggregated levels, as 

well as in their associated volatilities. Moreover, the likelihood ratio test of constancy of 

coefficients in the high and low seasons indicated clear differences between the impact 

of lagged effects in explaining passenger arrivals and the weekly difference in passenger 

arrivals in the high and low tourist seasons. 

 

These empirical results suggest that the new ideas developed in the paper can be 

useful for analyzing temporal aggregation, as well as the spatial aggregation of 

geographic and/or administrative entities to a more aggregated level. These findings 

should be relevant for tourism planning, tourism policy design and tourism management 

at all levels of government decision making. 
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Figure 1. Map of the Balearic Islands 

 

 
 

 

Figure 2. International Tourist and Passenger Arrivals 
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Figure 3. Daily Passenger Arrivals 
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Figure 4. Volatility of Passenger Arrivals 
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Figure 5. Weekly Difference in Passenger Arrivals 
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Notes:  
“BALW” is the Balearic weekly difference. 
“IBIW” is the Ibiza weekly difference 
“MAHW” is the Mahon weekly difference 
“PALW” is the Palma weekly difference 
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Figure 6. Volatility of Weekly Difference in Passenger Arrivals 
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Notes:  
“VOLATILITYB” is the volatility of the Balearic weekly difference. 
“VOLATILITYI” is the volatility of the Ibiza weekly difference. 
“VOLATILITYM” is the volatility of the Mahon weekly difference. 
“VOLATILITYP” is the volatility of the Palma weekly difference. 
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Figure 7. Type 1 Asymmetry: Low Season Financial Risk 

(α > 0, -α < γ < 0) 

 

 
 

 

 

Figure 8. Type 2 Asymmetry: Overbooking Pressure on Carrying Capacity  

(α > 0, 0 < γ < α) 
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Figure 9. Type 3 Asymmetry: Tourism Saturation in High Season  

(γ > 0, - γ < α < γ) 

 

 
 

 

 

Figure 10. Type 4 Asymmetry: Leverage and Tourism Downturn 

(γ < 0, γ < α < - γ) 
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Table 1. Air Tourist Arrivals to Balearics and Main Countries of Origin, 2006 

 

Islands 
Tourist Arrivals 

(millions) 

Germans 

% 

British 

% 

Italians 

% 

Domestic 

% 

Mallorca 9.396 38.4 24.2 1.7 18.6 

Ibiza 1.670 17.1 35.2 14.8 23.0 

Menorca 1.021 9.1 50.3 5.5 29.4 

Balearics 12.087 33.0 27.9 3.8 20.1 

 

 

 

Table 2. Descriptive Statistics of Air Passenger Arrivals 

 
Statistics Palma Ibiza Mahon Balearics 

 Mean  27,297  5,746  3,640  36,683

 Median  24,588  2,898  1,593  30,807

 Maximum  76,272  23,816  16,437  10,6250

 Minimum  3,003  508  283  3794

 Std. Dev.  15,976  5,525  3,593  23,980

 Skewness  0.86  1.23  1.32  0.88

 Kurtosis  3.17  3.61  3.94  2.87

J-B  273.46  590.10  721.53  282.27

Prob. 0.00 0.00 0.00 0.00
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Table 3. Descriptive Statistics of Weekly Difference of Air Passenger Arrivals 

 

 Statistics Palma Ibiza Mahon Balearics

 Mean  9.37  1.58  0.69  11.63

 Median  253.0  32.5  17.0  380.5

 Maximum  19195  7673  8153  27435

 Minimum -26446 -6303 -8118 -32234

 Std. Dev.  3671  1153  888  5115

 Skewness -0.52  0.15  0.276 -0.41

 Kurtosis  8.24  8.99  25.05  7.55

J-B  2597.0  3276.3  44275.1  1945.7

Prob.  0.00  0.00  0.00  0.00
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Table 4. Unit Root Tests for the Balearic Islands  
 

     

Variables MADFGLS MPPGLS Lags Z 

yt -2.984** -17.118* 22 (1,t) 

yt -2.138** -8.933** 22 (1) 

Δ7 yt -5.853*** -48.393*** 24 (1,t) 

Δ7 yt -5.118*** -36.038*** 19 (1) 

 

Notes:  
Yt denotes passenger arrivals to the Balearic Islands. 
(1,t) and (1) denote the presence of an intercept and trend, and intercept, respectively. 
(***), (**) and (*) denote the null hypothesis of a unit root is rejected at the 1%, 5% and 10% significance levels 
respectively.  
 
 

  
Critical Values 

% MADF GLS  MPPGLS 
Z=(1,t) Z=(1) Z=(1,t) Z=(1) 

1 -3.480 -2.566 -23.80 -13.80 
5 -2.890 -1.941 -17.30 -8.10 
10 -2.570 -1.617 -14.20 -5.70 

 
 
 
 
 
 
Table 5. Unit Root Tests for Ibiza  
 

     

Variables MADFGLS MPPGLS Lags Z 

yt -3.345** -21.542** 22 (1,t) 

yt -2.608*** -13.083** 22 (1) 

Δ7 yt -4.882*** -31.751*** 22 (1,t) 

Δ7 yt -3.514*** -16.940*** 20 (1) 

 
Notes:  
Yt denotes passenger arrivals to Ibiza. 
(1,t) and (1) denote the presence of an intercept and trend, and intercept, respectively. 
(***), (**) and (*) denote the null hypothesis of a unit root is rejected at the 1%, 5% and 10% significance levels 
respectively.  
Critical values are given in the notes of table 4. 
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Table 6. Unit Root Tests for Menorca 
 

 

Variables MADFGLS MPPGLS Lags Z 

yt -2.988** -15.232* 25 (1,t) 

yt -2.396** -10.076** 25 (1) 

Δ7 yt -5.723*** -36.926*** 25 (1,t) 

Δ7 yt -4.865*** -25.219*** 25 (1) 

 
Notes:  
Yt denotes passenger arrivals to Menorca. 
(1,t) and (1) denote the presence of an intercept and trend, and intercept, respectively. 
(***), (**) and (*) denote the null hypothesis of a unit root is rejected at the 1%, 5% and 10% significance 
levels respectively.  
Critical values are given in the notes of table 4. 

 
 
 
 
 
 
 
Table 7. Unit Root Tests for Mallorca 
 

 

Variables MADFGLS MPPGLS Lags Z 

yt -2.827* -14.215* 20 (1,t) 

yt -1.938* -7.135* 20 (1) 

Δ7 yt -6.252*** -53.907*** 20 (1,t) 

Δ7 yt -5.830*** -44.648*** 20 (1) 
 
Notes:  
Yt denotes passenger arrivals to Mallorca. 
(1,t) and (1) denote the presence of an intercept and trend, and intercept, respectively. 
(***), (**) and (*) denote the null hypothesis of a unit root is rejected at the 1%, 5% and 10% 
significance levels respectively.  
Critical values are given in the notes of table 4. 
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Table 8. Conditional Mean and Conditional Volatility Models for the Balearic Islands 
 

Model 1: yt = φ0 + φ1 yt-1 + φ2 yt -7 + εt  
 

Parameters GARCH GJR EGARCH 
0φ   

 
453.315 
(108.568) 

457.885 
(114.765) 

648.341 
(77.049) 

1φ  
  

0.033 
(0.004) 

0.034 
(0.004) 

0.029 
(0.005) 

2φ  
  

0.965 
(0.004) 

0.965 
(0.004) 

0.964 
(0.005) 

ω  
 

1893301 
(160514) 

1884235 
(162717) 

2.777 
(0.362) 

GARCH/GJR α  
 

0.607 
(0.032) 

0.615 
(0.038) -- 

GJR γ   
 

-- -0.015* 
(0.056) -- 

GARCH/GJR β  
 

0.423 
(0.015) 

0.424 
(0.016) -- 

EGARCH α  
 -- -- 0.913 

(0.065) 
EGARCH γ   
 

-- -- 0.002* 
(0.036) 

EGARCH β  
 

-- -- 0.789 
(0.023) 

Diagnostics    

Second moment 1.030 1.032 -- 
Log-moment -0.236 -0.235 -- 
Log likelihood -21123.80 -21123.77 -21114.61 
 
Notes:  
Yt is the number of passenger arrivals to the Balearic Islands.  
Numbers in parentheses are standard errors.  
(*) indicates the coefficient is not significant at the 5% level; otherwise, all estimates are significant at the 5% 
level. 
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Table 9. Conditional Mean and Conditional Volatility Models for Ibiza 
 

Model 1: yt = φ0 + φ1 yt-1 + φ2 yt -7 + εt  

Parameters GARCH GJR EGARCH 
0φ   

 
-6.459* 
(8.507) 

3.450* 
(7.887) 

10.073* 
(7.797) 

1φ  
  

0.069 
(0.009) 

0.069 
(0.009) 

0.065 
(0.009) 

2φ  
  

0.943 
(0.009) 

0.943 
(0.009) 

0.938 
(0.010) 

ω  
 

5609.17 
(1687.87) 

4881.85 
(1553.8) 

0.132* 
(0.101) 

GARCH/GJR α  
 

0.584 
(0.096) 

0.687 
(0.145) -- 

GJR γ   
 

-- -0.215* 
(0.118) -- 

GARCH/GJR β  
 

0.621 
(0.031) 

0.628 
(0.029) -- 

EGARCH α  
 -- -- 0.741 

(0.072) 
EGARCH γ   
 

-- -- 0.064* 
(0.036) 

EGARCH β  
 

-- -- 0.950 
(0.009) 

Diagnostics    

Second moment 1.205 1.207 -- 
Log-moment -0.040 -0.036 -- 
Log likelihood -17509.12 -17500.62 -17485.24 
 
Notes:  
Yt is the number of passenger arrivals to Ibiza. 
Numbers in parentheses are standard errors.  
(*) indicates the coefficient is not significant at the 5% level; otherwise, all estimates are significant at the 
5% level. 
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Table 10. Conditional Mean and Conditional Volatility Models for Menorca  
 

Model 1: yt = φ0 + φ1 yt-1 + φ2 yt -7 + εt  
 

 

Parameters GARCH GJR EGARCH 

 

0φ   
 

49.363 
(12.696) 

38.530 
(8.982) 

9.816* 
(8.959) 

1φ  
  

0.019 
(0.007) 

0.044 
(0.015) 

0.054 
(0.016) 

2φ  
  

0.935 
(0.014) 

0.933 
(0.018) 

0.960 
(0.010) 

ω  
 

3901.36 
(1982.45) 

3439.42* 
(1851.82) 

0.217* 
(0.123) 

GARCH/GJR α  
 

0.565 
(0.100) 

0.623 
(0.093) -- 

GJR γ   
 

-- -0.201* 
(0.128) -- 

GARCH/GJR β  
 

0.658 
(0.047) 

0.682 
(0.048) -- 

EGARCH α  
 -- -- 0.668 

(0.049) 
EGARCH γ   
 

-- -- 0.032* 
(0.043) 

EGARCH β  
 

-- -- 0.948 
(0.010) 

Diagnostics    

Second moment 1.223 1.204 -- 
Log-moment -0.041 -0.036 -- 
Log likelihood -16971.17 -16963.09 -16948.19 
 
Notes:  
Yt is the number of passenger arrivals to Menorca. 
Numbers in parentheses are standard errors.  
(*) indicates the coefficient is not significant at the 5% level; otherwise, all estimates are significant at the 
5% level 
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Table 11. Conditional Mean and Conditional Volatility Models for Mallorca 
 

Model 1: yt = φ0 + φ1 yt-1 + φ2 yt -7 + εt  

Parameters GARCH GJR EGARCH 
0φ   

 
347.610 
(93.669) 

351.747 
(102.472) 

395.08 
(73.38) 

1φ  
  

0.026 
(0.004) 

0.026 
(0.004) 

0.024 
(0.005) 

2φ  
  

0.970 
(0.004) 

0.970 
(0.004) 

0.970 
(0.005) 

ω  
 

847635.2 
(83926.5) 

822707.9 
(87087.9) 

1.406 
(0.428) 

GARCH/GJR α  
 

0.426 
(0.027) 

0.446 
(0.031) -- 

GJR γ   
 

-- -0.037* 
(0.040) -- 

GARCH/GJR β  
 

0.579 
(0.013) 

0.582 
(0.014) -- 

EGARCH α  
 -- -- 0.632 

(0.063) 
EGARCH γ   
 

-- -- 0.005* 
(0.029) 

EGARCH β  
 

-- -- 0.882 
(0.029) 

Diagnostics    

Second moment 1.005 1.009 -- 
Log-moment -0.151 -0.146 -- 
Log likelihood -20562.94 -20562.63 -20564.95 
 
Notes:  
Yt is the number of passenger arrivals to Mallorca. 
Numbers in parentheses are standard errors.  
(*) indicates the coefficient is not significant at the 5% level; otherwise, all estimates are significant at the 
5% level. 
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Table 12. Conditional Mean and Conditional Volatility Models for the Balearic Islands 
 

Model 2: ∆7 yt = φ0 + φ1 ∆7 yt-1 + εt  
 
Parameters GARCH GJR EGARCH 

0φ   
 

76.315* 
(52.264) 

99.97* 
(58.26) 

120.016 
(55.471) 

1φ  
  

0.719 
(0.016) 

0.720 
(0.016) 

0.718 
(0.020) 

ω  
 

865607.1 
(52528.4) 

847195.9 
(58519.65) 

1.355 
(0.545) 

GARCH/GJR α  
 

0.325 
(0.016) 

0.357 
(0.020) -- 

GJR γ   
 

-- -0.063 
(0.032) -- 

GARCH/GJR β  
 

0.663 
(0.011) 

0.667 
(0.013) -- 

EGARCH α  
 -- -- 0.513 

(0.068) 
EGARCH γ   
 

-- -- 0.032* 
(0.048) 

EGARCH β  
 

-- -- 0.893 
(0.035) 

Diagnostics    

Second moment 0.989 0.992 -- 
Log-moment -0.131 -0.127 -- 
Log likelihood -20667.22 -20666.22 -20665.16 
 
Notes:  
Yt is the number of passenger arrivals to the Balearic Islands.  
Numbers in parentheses are standard errors.  
(*) indicates the coefficient is not significant at the 5% level; otherwise, all estimates are significant at the 5% 
level. 
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Table 13. Conditional Mean and Conditional Volatility Models for Ibiza 

 

 
Model 2: ∆7 yt = φ0 + φ1 ∆7 yt-1 + εt  

 
Parameters GARCH GJR EGARCH 

0φ   
 

2.277* 
(11.490) 

16.117* 
(8.402) 

17.333* 
(8.422) 

1φ  
  

0.588 
(0.025) 

0.592 
(0.027) 

0.609 
(0.025) 

ω  
 

3980.83 
(1323.60) 

3088.4 
(1149.9) 

-0.026 
(0.063) 

GARCH/GJR α  
 

0.442 
(0.089) 

0.540 
(0.153) -- 

GJR γ   
 

-- -0.249* 
(0.158) -- 

GARCH/GJR β  
 

0.706 
(0.029) 

0.724 
(0.026) -- 

EGARCH α  
 -- -- 0.419 

(0.025) 
EGARCH γ   
 

-- -- 0.067* 
(0.034) 

EGARCH β  
 

-- -- 0.979 
(0.005) 

Diagnostics    

Second moment 1.148 1.140 -- 
Log-moment -0.028 -0.023 -- 
Log likelihood -17256.36 -17240.90 -17232.11 
 
Notes:  
Yt is the number of passenger arrivals to Ibiza. 
Numbers in parentheses are standard errors.  
(*) indicates the coefficient is not significant at the 5% level; otherwise, all estimates are significant at the 5% 
level. 
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Table 14. Conditional Mean and Conditional Volatility Models for Menorca 

.
 

 
Model 2: ∆7 yt = φ0 + φ1 ∆7 yt-1 + εt  

 
Parameters GARCH GJR EGARCH 

0φ   
 

6.668* 
(7.511) 

10.544 
(6.867) 

12.98 
(6.317) 

1φ  
  

0.567 
(0.045) 

0.569 
(0.043) 

0.581 
(0.050) 

ω  
 

3609.47 
(1500.46) 

3355.35 
(1465.31) 

0.135* 
(0.110) 

GARCH/GJR α  
 

0.632 
(0.066) 

0.719 
(0.093) -- 

GJR γ   
 

-- -0.181* 
(0.171) -- 

GARCH/GJR β  
 

0.655 
(0.024) 

0.658 
(0.025) -- 

EGARCH α  
 -- -- 0.590 

(0.045) 
EGARCH γ   
 

-- -- 0.061* 
(0.049) 

EGARCH β  
 

-- -- 0.959 
(0.009) 

Diagnostics    

Second moment 1.286 1.287 -- 
Log-moment -0.040 -0.038 -- 
Log likelihood -16807.55 -16804.78 -16781.85 
 
Notes:  
Yt is the number of passenger arrivals to Menorca.  
Numbers in parentheses are standard errors.  
(*) indicates the coefficient is not significant at the 5% level; otherwise, all estimates are significant at the 
5% level. 
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Table 15. Conditional Mean and Conditional Volatility Models for Mallorca 
 

Model 2: ∆7 yt = φ0 + φ1 ∆7 yt-1 + εt  
 

Parameters GARCH GJR EGARCH 
0φ   

 
54.11* 
(38.50) 

54.073* 
(49.203) 

45.844 
(58.130) 

1φ  
  

0.628 
(0.014) 

0.628 
(0.015) 

0.616 
(0.028) 

ω  
 

588188.8 
(37279.4) 

588119.1 
(41991.4) 

1.083 
(0.468) 

GARCH/GJR α  
 

0.295 
(0.020) 

0.294 
(0.023) -- 

GJR γ   
 

-- 0.000* 
(0.029) -- 

GARCH/GJR β  
 

0.688 
(0.015) 

0.687 
(0.016) -- 

EGARCH α  
 -- -- 0.458 

(0.044) 
EGARCH γ   
 

-- -- 0.008* 
(0.047) 

EGARCH β  
 

-- -- 0.911 
(0.031) 

Diagnostics    

Second moment 0.982 0.982 -- 
Log-moment -0.129 -0.129 -- 
Log likelihood -20212.37 -20212.37 -20205.71 
 
Notes:  
Yt is the number of passenger arrivals to Mallorca.  
Numbers in parentheses are standard errors.  
(*) indicates the coefficient is not significant at the 5% level; otherwise, all estimates are significant at the 
5% level. 
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Table 16. Conditional Mean and Conditional Volatility Models for the Balearic 
Islands 

 

 
Model 3: yt = φ0 + φ1δ H yt-1 + φ2δ H yt-7 + φ3δ L yt-1 + φ4δ L yt-1 + εt  

 
Parameters GARCH GJR EGARCH 

0φ   
 

338.097 
(163.42) 

341.78* 
(183.48) 

419.08 
(201.67) 

1φ  
  

0.039 
(0.005) 

0.038 
(0.005) 

0.038 
(0.006) 

2φ  
 

0.961 
(0.005) 

0.961 
(0.005) 

0.958 
(0.006) 

3φ  
  

0.022* 
(0.014) 

0.022* 
(0.014) 

0.014* 
(0.009) 

4φ  
  

0.987 
(0.012) 

0.987 
(0.013) 

0.999 
(0.009) 

ω  
 

1840217 
(157984) 

1830796 
(159205) 

2.798 
(0.342) 

GARCH/GJR α  
 

0.614 
(0.033) 

0.623 
(0.040) -- 

GJR γ   
 

-- -0.016* 
(0.061) -- 

GARCH/GJR β  
 

0.424 
(0.016) 

0.425 
(0.017) -- 

EGARCH α  
 -- -- 0.931 

(0.063) 
EGARCH γ   
 

-- -- 0.001* 
(0.035) 

EGARCH β  
 

-- -- 0.787 
(0.022) 

Diagnostics    

Second moment 1.038 1.039 -- 
Log-moment -0.232 -0.231 -- 
Log likelihood -21121.42 -21121.38 -21107.24 
 
Notes:  
Yt is the number of passenger arrivals to the Balearic Islands.  
Numbers in parentheses are standard errors.  
(*) indicates the coefficient is not significant at the 5% level; otherwise, all estimates are significant at the 
5% level. 
 

 



 44

 

Table 17. Conditional Mean and Conditional Volatility Models for Ibiza 

 

 
Model 3: yt = φ0 + φ1δ H yt-1 + φ2δ H yt-7 + φ3δ L yt-1 + φ4δ L yt-1 + εt  

 
Parameters GARCH GJR EGARCH 

0φ   
 

30.12* 
(48.54) 

25.986* 
(52.119) 

-7.852* 
(53.585) 

1φ  
  

0.049 
(0.011) 

0.047 
(0.011) 

0.053 
(0.011) 

2φ  
 

0.967 
(0.011) 

0.967 
(0.010) 

0.949 
(0.012) 

3φ  
  

0.176 
(0.023) 

0.178 
(0.024) 

0.177 
(0.023) 

4φ  
  

0.808 
(0.024) 

0.814 
(0.026) 

0.834 
(0.028) 

ω  
 

5507.47 
(1696.98) 

4820.05 
(1594.94) 

0.101* 
(0.092) 

GARCH/GJR α  
 

0.612 
(0.097) 

0.723 
(0.145) -- 

GJR γ   
 

-- -0.219* 
(0.115) -- 

GARCH/GJR β  
 

0.609 
(0.028) 

0.614 
(0.030) -- 

EGARCH α  
 -- -- 0.751 

(0.074) 
EGARCH γ   
 

-- -- 0.058* 
(0.037) 

EGARCH β  
 

-- -- 0.951 
(0.008) 

Diagnostics    

Second moment 1.221 1.227 -- 
Log-moment -0.039 -0.035 -- 
Log likelihood -17483.46 -17475.84 -17470.45 
 
Notes:  
Yt is the number of passenger arrivals Ibiza.  
Numbers in parentheses are standard errors.  
(*) indicates the coefficient is not significant at the 5% level; otherwise, all estimates are significant at the 
5% level. 
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Table 18. Conditional Mean and Conditional Volatility Models for Menorca 

 

 
Model 3: yt = φ0 + φ1δ H yt-1 + φ2δ H yt-7 + φ3δ L yt-1 + φ4δ L yt-1 + εt  

 
Parameters GARCH GJR EGARCH 

0φ   
 

321.24 
(50.82) 

313.82 
(48.757) 

263.17 
(39.26) 

1φ  
  

0.010* 
(0.008) 

0.010* 
(0.008) 

0.019 
(0.009) 

2φ  
 

0.974 
(0.007) 

0.974 
(0.008) 

0.971 
(0.009) 

3φ  
  

0.066* 
(0.037) 

0.065* 
(0.036) 

0.117 
(0.031) 

4φ  
  

0.606 
(0.031) 

0.607 
(0.031) 

0.607 
(0.029) 

ω  
 

2759.93 
(1004.44) 

2717.0 
(987.9) 

0.085* 
(0.089) 

GARCH/GJR α  
 

0.683 
(0.083) 

0.703 
(0.101) -- 

GJR γ   
 

-- -0.039* 
(0.130) -- 

GARCH/GJR β  
 

0.608 
(0.021) 

0.608 
(0.021) -- 

EGARCH α  
 -- -- 0.731 

(0.053) 
EGARCH γ   
 

-- -- 0.006* 
(0.043) 

EGARCH β  
 

-- -- 0.953 
(0.007) 

Diagnostics    

Second moment 1.290 1.292 -- 
Log-moment -0.034 -0.033 -- 
Log likelihood -16855.85 -16855.65 -16836.10 
 
Notes:  
Yt is the number of passenger arrivals to Menorca.  
Numbers in parentheses are standard errors.  
(*) indicates the coefficient is not significant at the 5% level; otherwise, all estimates are significant at the 
5% level. 
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Table 19. Conditional Mean and Conditional Volatility Models for Mallorca 

 

 
Model 3: yt = φ0 + φ1δ H yt-1 + φ2δ H yt-7 + φ3δ L yt-1 + φ4δ L yt-1 + εt  

 
Parameters GARCH GJR EGARCH 

0φ   
 

-63.040* 
(139.46) 

-64.522* 
(165.45) 

119.71* 
(198.43) 

1φ  
  

0.033 
(0.004) 

0.032 
(0.005) 

0.030 
(0.006) 

2φ  
 

0.971 
(0.005) 

0.971 
(0.005) 

0.970 
(0.006) 

3φ  
  

0.034 
(0.012) 

0.034 
(0.012) 

0.026 
(0.010) 

4φ  
  

0.999 
(0.011) 

1.000 
(0.011) 

0.999 
(0.011) 

ω  
 

768923.6 
(80740.1) 

738865.1 
(80616.6) 

1.284 
(0.415) 

GARCH/GJR α  
 

0.428 
(0.026) 

0.455 
(0.033) -- 

GJR γ   
 

-- -0.050* 
(0.042) -- 

GARCH/GJR β  
 

0.587 
(0.014) 

0.590 
(0.014) -- 

EGARCH α  
 -- -- 0.641 

(0.067) 
EGARCH γ   
 

-- -- 0.012* 
(0.030) 

EGARCH β  
 

-- -- 0.890 
(0.028) 

Diagnostics    

Second moment 1.015 1.020 -- 
Log-moment -0.139 -0.134 -- 
Log likelihood -20558.33 -20557.74 -20560.25 
 
Notes:  
Yt is the number of passenger arrivals to Mallorca.  
Numbers in parentheses are standard errors.  
(*) indicates the coefficient is not significant at the 5% level; otherwise, all estimates are significant at the 
5% level. 
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Table 20. Conditional Mean and Conditional Volatility Models for the Balearic Islands 

. 
 

 
Model 4: ∆7 yt = φ0 + φ1δ H ∆7 yt-1 + φ2δ L ∆7 yt-7 + εt  

 
Parameters GARCH GJR EGARCH 

0φ   
 

87.68* 
(52.59) 

123.036 
(57.553) 

185.51 
(53.18) 

1φ  
  

0.784 
(0.017) 

0.791 
(0.016) 

0.795 
(0.025) 

2φ  
  

0.560 
(0.046) 

0.556 
(0.045) 

0.567 
(0.031) 

ω  
 

852491.3 
(52506.5) 

818845.7 
(58495.9) 

1.252 
(0.538) 

GARCH/GJR α  
 

0.300 
(0.016) 

0.348 
(0.020) -- 

GJR γ   
 

-- -0.095 
(0.030) -- 

GARCH/GJR β  
 

0.679 
(0.012) 

0.684 
(0.014) -- 

EGARCH α  
 -- -- 0.486 

(0.066) 
EGARCH γ   
 

-- -- 0.050* 
(0.049) 

EGARCH β  
 

-- -- 0.901 
(0.035) 

Diagnostics    

Second moment 0.979 0.984 -- 
Log-moment -0.128 -0.123 -- 
Log likelihood -20651.73 -20649.41 -20651.31 
 
Notes:  
Yt is the number of passenger arrivals to the Balearic Islands.  
Numbers in parentheses are standard errors.  
(*) indicates the coefficient is not significant at the 5% level; otherwise, all estimates are significant at the 5% 
level. 
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Table 21. Conditional Mean and Conditional Volatility Models for Ibiza 

 

 
Model 4: ∆7 yt = φ0 + φ1δ H ∆7 yt-1 + φ2δ L ∆7 yt-7 + εt  

 
Parameters GARCH GJR EGARCH 

0φ   
 

0.769* 
(10.867) 

18.15 
(7.778) 

30.214 
(7.310) 

1φ  
  

0.688 
(0.032) 

0.721 
(0.034) 

0.737 
(0.034) 

2φ  
  

0.418 
(0.035) 

0.397 
(0.035) 

0.381 
(0.034) 

ω  
 

3794.4 
(1240.22) 

2590.82 
(1010.17) 

-0.030* 
(0.069) 

GARCH/GJR α  
 

0.430 
(0.080) 

0.542 
(0.132) -- 

GJR γ   
 

-- -0.317 
(0.159) -- 

GARCH/GJR β  
 

0.710 
(0.026) 

0.743 
(0.018) -- 

EGARCH α  
 -- -- 0.417 

(0.028) 
EGARCH γ   
 

-- -- 0.109 
(0.043) 

EGARCH β  
 

-- -- 0.980 
(0.005) 

Diagnostics    

Second moment 1.141 1.126 -- 
Log-moment -0.028 -0.020 -- 
Log likelihood -17235.92 -17212.12 -17200.87 
 
Notes:  
Yt is the number of passenger arrivals to Ibiza.  
Numbers in parentheses are standard errors.  
(*) indicates the coefficient is not significant at the 5% level; otherwise, all estimates are significant at the 
5% level. 
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Table 22. Conditional Mean and Conditional Volatility Models for Menorca 

 

 
Model 4: ∆7 yt = φ0 + φ1δ H ∆7 yt-1 + φ2δ L ∆7 yt-7 + εt  

 
Parameters GARCH GJR EGARCH 

0φ   
 

5.769* 
(6.569) 

12.014 
(5.873) 

18.504 
(5.084) 

1φ  
  

0.724 
(0.050) 

0.740 
(0.052) 

0.755 
(0.054) 

2φ  
  

0.382 
(0.034) 

0.373 
(0.034) 

0.391 
(0.036) 

ω  
 

3584.42 
(1396.91) 

3173.85 
(1302.53) 

0.160* 
(0.118) 

GARCH/GJR α  
 

0.651 
(0.063) 

0.825 
(0.097) -- 

GJR γ   
 

-- -0.350 
(0.149) -- 

GARCH/GJR β  
 

0.639 
(0.023) 

0.644 
(0.025) -- 

EGARCH α  
 -- -- 0.619 

(0.045) 
EGARCH γ   
 

-- -- 0.103 
(0.042) 

EGARCH β  
 

-- -- 0.955 
(0.010) 

Diagnostics    

Second moment 1.289 1.294 -- 
Log-moment -0.042 -0.038 -- 
Log likelihood -16783.43 -16776.54 -16755.24 
 
Notes:  
Yt is the number of passenger arrivals to Menorca.  
Numbers in parentheses are standard errors. 
(*) indicates the coefficient is not significant at the 5% level; otherwise, all estimates are significant at the 
5% level. 
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Table 23. Conditional Mean and Conditional Volatility Models for Mallorca 

 

 
Model 4: ∆7 yt = φ0 + φ1δ H ∆7 yt-1 + φ2δ L ∆7 yt-7 + εt  

 
Parameters GARCH GJR EGARCH 

0φ   
 

62.871* 
(39.180) 

60.142* 
(49.873) 

50.562* 
(61.832) 

1φ  
  

0.665 
(0.015) 

0.666 
(0.016) 

0.636 
(0.040) 

2φ  
  

0.555 
(0.043) 

0.556 
(0.043) 

0.576 
(0.035) 

ω  
 

587291.0 
(37214) 

590619 
(42164) 

1.084 
(0.478) 

GARCH/GJR α  
 

0.278 
(0.020) 

0.272 
(0.022) -- 

GJR γ   
 

-- 0.010* 
(0.028) -- 

GARCH/GJR β  
 

0.698 
(0.015) 

0.698 
(0.017) -- 

EGARCH α  
 -- -- 0.449 

(0.043) 
EGARCH γ   
 

-- -- 0.008* 
(0.048) 

EGARCH β  
 

-- -- 0.911 
(0.031) 

Diagnostics    

Second moment 0.976 0.975 -- 
Log-moment -0.128 -0.128 -- 
Log likelihood -20209.05 -20209.03 -20204.17 
 
Notes:  
Yt is the number of passenger arrivals to Mallorca. 
Numbers in parentheses are standard errors.  
(*) indicates the coefficient is not significant at the 5% level; otherwise, all estimates are significant at the 
5% level. 
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Table 24. Likelihood Ratio Tests of Constancy of Coefficients in High and Low 
Seasons 

 
H0: Model 1 
H1: Model 3 GARCH GJR EGARCH 
Balearics 4.76* 4.78* 14.74 

Ibiza 51.32 49.56 29.58 

Menorca 230.64 214.88 224.18 

Mallorca 9.22 9.78 9.40 

 
 
H0: Model 2 
H1: Model 4 GARCH GJR EGARCH 
Balearics 30.98 33.62 27.70 

Ibiza 40.88 57.56 62.49 

Menorca 48.24 56.48 53.22 

Mallorca 6.64 6.68 3.08* 
 
Note:  
(*) indicates that the likelihood ratio test statistic is not significant at the 5% level, where Χ2(2) = 5.991; 
otherwise, all test statistics are significant at the 5% level. 

 
 
 
 
 
  
 
 
 
 
 

 


