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Abstract

In the small area estimation, the empirical best linear unbiased predictor (EBLUP)
or the empirical Bayes estimator (EB) in the linear mixed model is recognized useful
because it gives a stable and reliable estimate for a mean of a small area. In practi-
cal situations where EBLUP is applied to real data, it is important to evaluate how
much EBLUP is reliable. One method for the purpose is to construct a confidence
interval based on EBLUP. In this paper, we obtain an asymptotically corrected em-
pirical Bayes confidence interval in a nested error regression model with unbalanced
sample sizes and unknown components of variance. The coverage probability is
shown to satisfy the confidence level in the second order asymptotics. It is numeri-
cally revealed that the corrected confidence interval is superior to the conventional
confidence interval based on the sample mean in terms of the coverage probability
and the expected width of the interval. Finally, it is applied to the posted land
price data in Tokyo and the neighboring prefecture.

Key words and phrases: Best linear unbiased predictor, confidence interval, em-
pirical Bayes procedure, finite population, linear mixed model, nested error regres-
sion model, second order correction, small area estimation.

1 Introduction

The empirical best linear unbiased predictor (EBLUP) or the empirical Bayes estimator
(EB) in linear mixed models have been recognized as useful tools in small area estimation.
In small area estimation, sample means may have unacceptable estimation errors because
sample sizes of small areas are small. EBLUP is an alternative method to provide stable
estimates with higher precisions by borrowing data in the surrounding areas. In practical
situations where EBLUP is applied to real data, it is important to evaluate the estimation
errors of EBLUP for each small area. One method is to provide estimates of the mean
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squared errors of EBLUP, and it has been studied enough in the literature including
Prasad and Rao (1990), Harville and Jeske (1992), Booth and Hobert (1998), Datta and
Lahiri (2000), Rivest and Belmonte (2000), Das, Jiang and Rao (2004), Datta, Rao and
Smith (2005) and others. Another method is to provide the confidence intervals based on
EBLUP, and the two approaches to this issue have been studied. One is the method based
on parametric bootstrap proposed by Hall and Maiti (2007) and Chatterjee, Lahiri and Li
(2008), and the other is the method based on the Taylor series expansion. Although the
confidence intervals based on the parametric bootstrap can be applied to the general linear
mixed models, they are hard to implement. In contrast, the methods based on the Taylor
series expansion are easy to implement, but the derivation depends on individual models.
Since we specify a nested error regression model and the extended finite population model
in this paper, we want to develop closed form confidence intervals based on the Taylor
series expansion. This method has been used by Datta, Ghosh, Smith and Lahiri (2002)
and Basu, Ghosh and Mukerjee (2003), who derived the asymptotically corrected empirical
Bayes confidence interval in the Fay-Herriot model with a known error variance. The Fay-
Herriot model is categorized into basic area level models where only aggregated data such
as sample means are observed. When individual data are available, we can use basic unit
level models to carry out more precise inference for small areas. A simple, but useful
basic unit level model is a nested error regression model with unbalanced sample sizes
and unknown components of variance. In fact, this model has been extensively used
in the literature concerning the small area estimation as illustrated in Battese, Harter
and Fuller (1988) and Rao (2003). In this paper, we shall construct corrected empirical
Bayes confidence intervals based on EBLUP in the nested error regression model and the
extended finite population model.

To explain more details, consider the nested error regression model (NERM) given by

yij = x′ijβ + vi + eij, i = 1, . . . , k, j = 1, . . . , ni, (1.1)

where k is the number of small areas, xij is a p× 1 vector of explanatory variables, β is
a p× 1 unknown common vector of regression coefficients, and vi’s and eij’s are mutually
independently distributed as vi ∼ N (0, σ2

v) and eij ∼ N (0, σ2). Here, σ2
v and σ2 are

referred to as, respectively, ‘between’ and ‘within’ components of variance, and both are
unknown. We want to construct a confidence interval of the mean µi = x′iβ + vi of the
i-th small area for xi =

∑ni

j=1 xij/ni. Since the conditional distribution of the sample

mean yi given vi is N (µi, σ
2/ni), a conventional confidence interval based on the sample

mean yi is

IT
i : yi ± tα/2

√
σ̃2

e/ni, (1.2)

where σ̃2
e is an available unbiased estimator of σ2 which is independent of (y1, . . . , yk),

and tα/2 is the α/2 upper quantile of a t-distribution with appropriate degrees of freedom.
Although the coverage probability of IT

i is exactly identical to the confidence coefficient
1 − α, the width of the confidence interval IT

i is longer for smaller ni since yi has an
unacceptable estimation error. Thus, we construct a confidence interval based on EBLUP
or EB using the linear mixed model in (1.1).

Let ψ be the ratio of the variance components, namely, ψ = σ2
v/σ

2, and let γi =
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γi(ψ) = 1/(1 + niψ). Note that given yi, µi has conditionally

µi|yi ∼ N (
µ̂B

i (β, ψ), (σ2/ni)(1− γi)
)

(1.3)

where µ̂B
i (β, ψ) is the conditional mean E[µi|yi] given by

µ̂B
i (β, ψ) = x′iβ + (1− γi)(yi − x′iβ). (1.4)

This is also interpreted as the Bayes estimator, since the model (1.1) can be viewed as
a Bayesian model. Then, the confidence interval of µi with respect to this conditional
distribution is given by

IB
i (β, ψ, σ2) : µ̂B

i (β, ψ)± zα/2

√
(σ2/ni)(1− γi), (1.5)

where zα/2 is the α/2 upper quantile of a standard normal distribution. It is noted that
the conditional coverage probability satisfies P [µi ∈ IB

i (β, ψ)|yi] = 1− α, which leads to
P [µi ∈ IB

i (β, ψ)] = E[P [µi ∈ IB
i (β, ψ)|yi]] = 1 − α, namely, the unconditional coverage

probability satisfies the confidence level. Since β, ψ and σ2 are unknown, we need to
estimate these parameters. For known ψ, the generalized least squares estimator of β is
given by Rao (2003) as

β̂(ψ) =
(
A(ψ) + B

)−1
( k∑

i=1

niγi(ψ)xiyi +
k∑

i=1

ni∑
j=1

(xij − xi)(yij − yi)
)
, (1.6)

where A(ψ) =
∑k

i=1 niγi(ψ)xix
′
i and B =

∑k
i=1

∑ni

j=1(xij − xi)(xij − xi)
′. When consis-

tent estimators of σ2 and ψ, denoted by σ̂2 and ψ̂, are available, the estimators β̂(ψ̂), σ̂2

and ψ̂ are substituted into (1.5) to get the empirical Bayes confidence interval

IEB
i (ψ̂, σ̂2) : µ̂EB

i (ψ̂)± zα/2

√
(σ̂2/ni)(1− γ̂i), (1.7)

where µ̂EB
i (ψ̂) is the empirical Bayes estimator (EB) given by

µ̂EB
i (ψ̂) = µ̂B

i (β̂(ψ̂), ψ̂) = x′iβ̂(ψ̂) + (1− γ̂i)(yi − x′iβ̂(ψ̂)),

for
γ̂i = γi(ψ̂) = 1/(1 + niψ̂).

The empirical Bayes estimator µ̂EB
i (ψ̂) is known as the empirical best linear unbiased

predictor (EBLUP) in the context of the linear mixed model. For smaller niψ̂, the EB

estimator µ̂EB
i (ψ̂) shrinks yi more towards x′iβ̂(ψ̂), which results in a stable estimate with

a higher precision.

Although IEB
i (ψ̂, σ̂2) gives a stable confidence interval for small ni, it has a drawback

that the coverage probability P [µi ∈ IEB
i (ψ̂, σ̂2)] cannot be guaranteed to be greater

than or equal to the nominal confidence coefficient 1 − α. As seen from the simulation
experiment given in Section 3.1, it seems that P [µi ∈ IEB

i (ψ̂, σ̂2)] < 1 − α for some
ψ. A method for fixing this shortcoming is to adjust the significance quantile zα/2 as
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zα/2{1+(2k)−1hi(ψ̂)} with an appropriate correction function hi(ψ̂). That is, the corrected
confidence interval is described as

ICEB
i (ψ̂, σ̂2) : µ̂EB

i (ψ̂)± zα/2

[
1 + (2k)−1hi(ψ̂)

]√
(σ̂2/ni)(1− γ̂i). (1.8)

This method was used in Datta et al . (2002) and Basu et al . (2003) for the Fay-Herriot
model.

Another approch to constructing stable confidence intervals is to use the estimator of
the mean squared error (MSE) of µ̂EB

i (ψ̂) instead of (σ̂2/ni)(1−γ̂i). Let msei(σ̂
2, ψ̂) be the

second-order unbiased estimator of the MSE given by MSEi(σ
2, ψ) = E[(µ̂EB

i (ψ̂)−µi)
2],

namely, E[msei(σ̂
2, ψ̂)] = MSEi(σ

2, ψ) + O(k−3/2). Following Morris (1983), Prasad and
Rao (1990) proposed another type of the empirical Bayes confidence interval

IEB∗
i (ψ̂, σ̂2) : µ̂EB

i (ψ̂)± zα/2

√
msei(σ̂2, ψ̂). (1.9)

In this paper, we can modify IEB∗
i (ψ̂, σ̂2) to provide the corrected confidence interval

ICEB∗
i (ψ̂, σ̂2) : µ̂EB

i (ψ̂)± zα/2

[
1 + (2k)−1h∗i (ψ̂)

]√
msei(σ̂2, ψ̂), (1.10)

for an appropriate correction function h∗i (ψ̂).

In Section 2, we obtain the functions hi(ψ̂) and h∗i (ψ̂) such that the coverage proba-
bilities satisfy the nominal confidence coefficient in the second order for large k, namely,

P [µi ∈ ICEB
i (ψ̂, σ̂2)] =1− α + O(k−3/2),

P [µi ∈ ICEB∗
i (ψ̂, σ̂2)] =1− α + O(k−3/2),

(1.11)

as k →∞. Since the sample sizes ni’s are bounded in small area problems, it is common
to consider the setup of k going to infinity. In the sense of (1.11), we call ICEB

i (ψ̂, σ̂2)

and ICEB∗
i (ψ̂, σ̂2) the corrected empirical Bayes confidence intervals. In Section 2, the

corrected empirical Bayes confidence intervals are not only derived in the NERM, but
also extended to a finite population model. The numerical performance of the corrected
confidence intervals is investigated in Section 3 and it is revealed that ICEB

i (ψ̂, σ̂2) and

ICEB∗
i (ψ̂, σ̂2) are superior to the conventional confidence interval IT

i in terms of both
the coverage probability and the expected width of the interval. The proposed corrected
confidence interval is applied to a real data set of the posted land price data in Tokyo and
the neighboring prefecture, and it is shown to be useful. Concluding remarks are given in
Section 4, and the proofs are given in the final section.

2 Asymptotically Corrected Confidence Intervals

2.1 Nested error regression model (NERM)

We here provide the asymptotically corrected empirical Bayes confidence interval under
the NERM in (1.1). This model is expressed in vector notations as

yi = X iβ + jni
vi + ei, for i = 1, . . . , k, (2.1)
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where X i = (xi1, . . . , xi,ni
)′ and ni-vectors yi = (yi1, . . . , yi,ni

)′, ei = (ei1, . . . , ei,ni
)′ and

jni
= (1, . . . , 1)′. Then the covariance matrix of yi is Cov (yi) = σ2V i(ψ) for V i(ψ) =

Ini
+ ψJni

, where Ini
is the ni × ni identity matrix, and Jni

= jni
j ′ni

is the ni × ni

matrix with every elements being one. Letting y = (y′1, . . . , y
′
k)
′, X = (X ′

1, . . . , X
′
k)
′,

v = (v1, . . . , vk)
′ and e = (e′1, . . . , e

′
k)
′, we can rewrite the model (2.1) as

y = Xβ + Zv + e,

where Z = block diag(jn1
, . . . , jnk

), the block diagonal matrix. The covariance matrix
of y is Cov (y) = σ2V (ψ) for V = block diag(V 1(ψ), . . . , V k(ψ)). We shall use those
vector notations through the paper for the convenience.

As stated in Section 1, the corrected empirical Bayes confidence interval of the i-th
small area mean µi = x′iβ + vi is given by

ICEB
i (ψ̂, σ̂2) : µ̂EB

i (ψ̂)± zα/2

[
1 + (2k)−1hi(ψ̂)

]√
(σ̂2/ni)(1− γ̂i), (2.2)

where the correction function hi(ψ̂) is adjusted so that the coverage probability can satisfy
the nominal confidence level in the second order for large k. To this end, we assume the
following conditions:

(A1) The elements of X are uniformly bounded, and X ′V (ψ)−1X/k converges to a
positive definite matrix as k →∞;

(A2) ni’s are bounded for i = 1, . . . , k;
(A3) σ̂2 is an estimator of σ2 which satisfies that σ̂2−σ2 = Op(k

−1/2) and Biasψ(σ̂2) =
O(k−1) as k →∞.

(A4) ψ̂ is an estimator of ψ which satisfies that ψ̂−ψ = Op(k
−1/2), Biasψ(ψ̂) = O(k−1)

and ∂ψ̂/∂yi = O(k−1) as k →∞.
Then, we can get the main theorem which will be proved in Section 5:

Theorem 2.1 Assume the conditions (A1)-(A4). Define the correction function hi(ψ) by

hi(ψ) =k
γi

ψ
x′i(A(ψ) + B)−1xi + 2k

γi(1− γi)

ψ2
V ar(ψ̂)

− kE[H0,i] +
k

4
E[z2

α/2H
2
0,i + K2

0,i], (2.3)

where V ar(ψ̂) = E[(ψ̂−ψ)2], H0,i = γi(ψ̂−ψ)/ψ+(σ̂2−σ2)/σ2, K0,i = γi(ψ̂−ψ)/ψ−(σ̂2−
σ2)/σ2. Then, the corrected empirical Bayes confidence interval given in (2.2) satisfies

that P [µi ∈ ICEB
i (ψ̂, σ̂2)] = 1− α + O(k−3/2) as k →∞.

The function hi(ψ) can be obtained for specific estimators σ̂2 and ψ̂ by evaluating the

biases Bias(σ̂2), Bias(ψ̂), the variances V ar(σ̂2), V ar(ψ̂) and the covariance Cov(σ̂2, ψ̂)
asymptotically. Since ψ = σ2

v/σ
2 is the ratio of the variance components, it may be

convenient in some cases to express the moments E[(ψ̂−ψ)2], E[H0,i], E[H2
0,i] and E[K2

0,i]

based on the estimators of the variance components σ̂2 and σ̂2
v , where σ̂2

v = σ̂2ψ̂.
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Proposition 2.1 Let σ̂2
v = σ̂2ψ̂ and assume the conditions (A3) and (A4). Then, the

correction function hi(ψ) given in (2.3) can be expressed as

hi(ψ) =k
γi

ψ
x′i(A(ψ) + B)−1xi + 2kγi(1− γi)τ1(ψ)− k{(1− γi)be(ψ) + γibv(ψ)}

+
k

4
(z2

α/2 + 1)
{
γ2

i τ1(ψ)− 2γiτ2(ψ) + τ3(ψ)
}

+ O(k−3/2), (2.4)

where for Te = (σ̂2 − σ2)/σ2 and Tv = (σ̂2
v − σ2

v)/σ
2
v,

be(ψ) =E[Te], bv(ψ) = E[Tv],

τ1(ψ) =E[(Te − Tv)
2], τ2(ψ) = E[Te(Te − Tv)], τ3(ψ) = E[T 2

e ].
(2.5)

It is noted that the function hi(ψ) given in (2.4) includes the value of ψ in the de-
nominator at the first term in the r.h.s. of equation (2.4). Since the confidence interval

is constructed using the estimator ψ̂, this causes the instability when ψ̂ is close to zero.
Thus, it is reasonable to use the truncated estimator of ψ̂. An example of the truncation
is given by

[ψ̂]TR = max{ψ̂, k−a}, (2.6)

for a positive constant a. The estimators [ψ̂]TR and ψ̂ can be shown to be asymptotically
equivalent.

Proposition 2.2 Assume that ψ > 0 and ψ̂ → ψ in probability as k → ∞. Let a and b
be positive constants. Then, [ψ̂]TR = max{ψ̂, k−a} = ψ̂ + op(k

−b) as k →∞.

Proof. For any ε > 0, we shall show that P [kb|max(ψ̂, k−a)− ψ̂| > ε] → 0 as k →∞.

It is observed that P [kb|max(ψ̂, k−a) − ψ̂| > ε] = P [ψ̂ < k−a, ψ̂ < k−a − εk−b] ≤ P [ψ̂ <

k−a]. It is noted that ψ̂ → ψ > 0 while k−a → 0, which implies that P [ψ̂ < k−a] → 0.

We next consider the empirical Bayes confidence intervals given in (1.9) and (1.10)

using an estimator of the mean squared error (MSE) of µ̂EB
i (ψ̂). To this end, we begin

with deriving the unbiased estimator of the MSE, which can be shown by using the same
arguments as in Prasad and Rao (1990) and Datta and Lahiri (2000) under the following
condition:

(A5) The estimatr ψ̂ = ψ̂(y) satisfies (i) ψ̂(−y) = ψ̂(y) and (ii) ψ̂(y + Xα) = ψ̂(y)
for any p-dimensional vector α.

Proposition 2.3 Assume the conditions (A1)-(A5) and use the notations τ1(ψ), be(ψ)
and bv(ψ) defined in (2.5). Then the second-order approximation of the MSE of the

empirical Bayes estimator µ̂EB
i (ψ̂) is given by

MSEi(σ
2, ψ) = E[(µ̂EB

i (ψ̂)− µi)
2]

=
σ2

ni

(1− γi) + σ2γ2
i x

′
i(A(ψ) + B)−1xi + σ2niγ

3
i ψ

2τ1(ψ) + O(k−3/2), (2.7)

6



and the second-order unbiased estimator of the MSE is given by

msei(σ̂
2, ψ̂) =

σ̂2

ni

(1− γ̂i) + σ̂2γ2
i x

′
i(A(ψ̂) + B)−1xi

− σ̂2ψ̂γ̂i{(1− γ̂i)be(ψ̂) + γ̂ibv(ψ̂)}+ 2σ̂2niγ̂
3
i ψ̂

2τ1(ψ̂), (2.8)

namely, E[msei(σ̂
2, ψ̂)] = MSEi(σ

2, ψ) + O(k−3/2).

This proposition was derived by Prasad and Rao (1990) for the estimators given in
Example 2.1 and by Datta and Lahiri (2000) for the maximum likelihood and restricted
maximum likelihood estimators given in Example 2.2. These results can be unified by
Proposition 2.3 by assuming ∂ψ̂/∂yi = Op(k

−1).

The empirical Bayes confidence interval suggested by Prasad and Rao (1990) is given
by

IEB∗
i (ψ̂, σ̂2) : µ̂EB

i (ψ̂)± zα/2

√
msei(σ̂2, ψ̂), (2.9)

and the corrected confidence interval is given by

ICEB∗
i (ψ̂, σ̂2) : µ̂EB

i (ψ̂)± zα/2

[
1 + (2k)−1h∗i (ψ̂)

]√
msei(σ̂2, ψ̂), (2.10)

where for `i(ψ̂) = k{msei(σ̂
2, ψ̂)ni/{σ̂2(1 − γ̂i)} − 1} and hi(ψ) given in (2.3), h∗i (ψ̂) is

defined by

h∗i (ψ̂) =hi(ψ̂)− `i(ψ̂)

=
k

4
(z2

α/2 + 1)
{

γ̂2
i τ1(ψ̂)− 2γ̂iτ2(ψ̂) + τ3(ψ̂)

}
. (2.11)

In fact, noting that msei(σ̂
2, ψ̂) = (σ̂2/ni)(1 − γ̂i){1 + `i(ψ̂)/k} and `i(ψ̂) = Op(1), we

can see that

[
1 +

1

2k
h∗i (ψ̂)

]√
msei(σ̂2, ψ̂) =

[
1 +

1

2k
h∗i (ψ̂)

]√
σ̂2(1− γ̂i)/ni

√
1 + `i(ψ̂)/k

=
[
1 +

1

2k
{h∗i (ψ̂) + `i(ψ̂)}]

√
σ̂2(1− γ̂i)/ni + Op(k

−3/2),

and h∗i (ψ̂)+`i(ψ̂) = hi(ψ̂). This implies that the two corrected empirical Bayes confidence

intervals ICEB
i (ψ̂, σ̂2) and ICEB∗

i (ψ̂, σ̂2) are equivalent in the second-order asymptotics.
Hence from Theorem 2.1, we get the following proposition.

Proposition 2.4 Assume the conditions (A1)-(A4). Then, the corrected empirical Bayes

confidence interval ICEB∗
i (ψ̂, σ̂2) given in (2.10) satisfies that P [µi ∈ ICEB∗

i (ψ̂, σ̂2)] =
1− α + O(k−3/2) as k →∞.

We now provide a couple of examples for some specific estimators of σ2 and σ2
v .
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Example 2.1 (Prasad-Rao estimators) Prasad and Rao (1990) suggested estimators
based on unbiased estimators of σ2 and σ2

v , which are useful because they have simple and

explicit forms. Let β̂1 = B− ∑k
i=1

∑ni

j=1(xij − xi)(yij − yi) and S1 =
∑k

i=1

∑ni

j=1

{
(yij −

yi)− (xij−xi)
′β̂1

}2
where B is given below (1.6) and B− denotes the generalized inverse

of the matrix B. Then, an unbiased estimator of σ2 is given by

σ̂2U = S1/(N − k − r1), (2.12)

where N =
∑k

i=1 ni, and r1 is the rank of the matrix B. It can be seen that S1 is
independent of y1, . . . , yk and that S1/σ

2 ∼ χ2
N−k−r1

and yi ∼ N (x′iβ, σ2/(niγi)) for i =

1, . . . , k. To estimate σ2
v , we can use the Henderson method III. For β̂0 = (X ′X)−1X ′y,

we consider the sum of squares S = (y − Xβ̂0)
′(y − Xβ̂0), which can be rewritten as

S = (y − Xβ)′(y − Xβ) − (y − Xβ)′X(X ′X)−1X ′(y − Xβ). The expectation of S
is E[S] = tr [IN −X(X ′X)−1X ′]Cov (y) = σ2(N − p) + N∗σ2

v , where IN is the N ×N
identity matrix, and N∗ = N − tr {(X ′X)−1

∑k
i=1 n2

i xix
′
i}. Hence, an unbiased estimator

of σ2
v is given by

σ̂2U
v = N−1

∗
{
S − (N − p)σ̂2U

}
.

Based on σ̂2U and σ̂2U
v , the ratio ψ can be estimated by

ψ̂U = σ̂2U
v /σ̂2U = N−1

∗
{
S/σ̂2U − (N − p)

}
.

However, this estimator has a drawback of taking negative values with a positive proba-
bility, and it may be serious when ψ is small. Instead of ψ̂U , we here use the truncated
estimator

ψ̂TR = max
{
ψ̂U , k−2/3

}
, (2.13)

which is positive, consistent and ψ̂TR = ψ̂U +op(k
−a) for any a > 0 as shown in Proposition

2.2.

We here verify that ∂ψ̂TR/∂yi = Op(k
−1) as k → ∞. From Proposition 2.2 and the

definition of ψ̂U , it is sufficient to show that ∂S/∂yi = Op(1). It is noted that S is

expressed as S = S(1) + S(2) where S(1) =
∑k

i=1

∑ni

j=1{(yij − yi) − (xij − xi)
′β̂0}2 and

S(2) =
∑k

i=1 ni(yi − x′iβ̂0)
2. Since β̂0 = β̂1 − (B + A0)

−1A0(β̂1 − β̂20) for A0 = A(0) =∑k
i=1 nixix

′
i and β̂20 = A−1

0

∑k
i=1 nixiyi, S(1) can be expressed as

S(1) = S1 + (β̂1 − β̂20)
′A0(B + A0)

−1B(B + A0)
−1A0(β̂1 − β̂20).

Since β̂0 = β̂20 + (B + A0)
−1B(β̂1 − β̂20), S(2) is rewritten as

S(2) = S2 + (β̂1 − β̂20)
′B(B + A0)

−1A0(B + A0)
−1B(β̂1 − β̂20).

Combining these expressions of S(1) and S(2) gives that

S = S1 + S2 + (β̂1 − β̂20)
′C(β̂1 − β̂20),

where

C = A0(B + A0)
−1B(B + A0)

−1A0 + B(B + A0)
−1A0(B + A0)

−1B,
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which is equal to C = A0 −A0(B + A0)
−1A0. Noting that S1 and β̂1 are independent

of (y1, . . . , yk), it follows that

∂S

∂yi

=
∂S2

∂yi

− 2(β̂1 − β̂20)
′C

∂β̂20

∂yi

.

Since ∂S2/∂yi = 2ni{yi − x′iβ̂20}(1 + nix
′
iA

−1
0 xi) + 2ni

∑
j 6=i nj{yj − x′jβ̂20}x′jA−1

0 xi,

it is seen that ∂S2/∂yi = Op(1). Also, it is observed that (β̂1 − β̂20)
′C{∂β̂20/∂yi} =

(β̂1 − β̂20)
′CA−1

0 nixi = Op(1). Thus, it is shown that ∂ψ̂TR/∂yi = Op(k
−1).

To get the corrected empirical Bayes confidence, we need to evaluate the moments
of Te and Tv for Tv = (σ̂2U

v − σ2
v)/σ

2
v and Te = (σ̂2U − σ2)/σ2. Clearly, E[Te] = 0 and

E[Tv] = 0. From (5.4)-(5.6) in Prasad and Rao (1891), it follows that E[T 2
e ] = 2/(N − k)+

O(k−3/2), E[TvTe] = −2k/{N(N−k)ψ}+O(k−3/2) and E[T 2
v ] = 2(N2ψ2)−1

[
k2/(N − k)+∑k

i=1 γ−2
i

]
+O(k−3/2). Then the values of τ1(ψ), τ2(ψ) and τ3(ψ) given in Proposition 2.1

for the unbiased estimators σ̂2U and σ̂2U
v can be approximated as

τ1(ψ) =
2

N2ψ2

{ k∑
i=1

γ−2
i +

1

N − k

( k∑
i=1

γ−1
i

)2
}

+ O(k−3/2),

τ2(ψ) =
2

N(N − k)ψ

k∑
i=1

γ−1
i + O(k−3/2),

τ3(ψ) =2/(N − k) + O(k−3/2).

These approximations with the estimator ψ̂TR are substituted into (2.4) and (2.11) to get

hi(ψ̂
TR) and h∗i (ψ̂

TR), and the corresponding corrected confidence intervals are obtained.

Example 2.2 (ML and REML estimators) The general method for estimating vari-
ance components is the maximum likelihood (ML) or the restricted maximum likelihood
(REML) estimators, though the iteration methods such as the Newton method are nec-
essary for solving the likelihood equations numerically.

The moments of the ML and REML estimators can be derived by using the arguments
as in Datta and Lahiri (2000). The ML estimator ψ̂∗ of ψ is given as the solution of the
equation

k∑
i=1

{niγi(ψ̂
∗)}2{yi − x′iβ̂(ψ̂∗)}2 = σ̂2(ψ̂∗)

k∑
i=1

niγi(ψ̂
∗),

where σ̂2(ψ) is defined by

σ̂2(ψ) =
1

N

( k∑
i=1

ni∑
j=1

{
(yij − yi)− (xij − xi)

′β̂(ψ)
}2

+
k∑

i=1

niγi(ψ)
{
yi − x′iβ̂(ψ)

}2
)
.

From Proposition 2.2, we here use the truncated estimator of ψ̂∗ given by ψ̂M = max
{
ψ̂∗, k−2/3

}
.

Then, the ML estimators of σ2 and σ2
v are written by σ̂2M = σ̂2(ψ̂M) and σ̂2M

v = σ̂2M ψ̂M .

9



Let ξ = (ξ1, ξ2)
′ = (σ2, σ2

v)
′ and let `(β, ξ) be the log likelihood function of (y1, . . . , yk).

The Fisher information matrices are given by I˛,˛ = −E[∂2`(β, ξ)/∂β∂β′] and I‰,‰ =
−E[∂2`(β, ξ)/∂ξ∂ξ′], where I˛,‰ = −E[∂2`(β, ξ)/∂β∂ξ′] = 0 because of the orthogonal-
ity of the parameters (β, ξ). From Datta and Lahiri (2000) and Rao (2003), it follows
that I˛,˛ = (A(ψ) + B)/σ2,

I‰,‰ =
1

2σ4

(
N − k +

∑k
i=1 γ2

i

∑k
i=1 niγ

2
i∑k

i=1 niγ
2
i

∑k
i=1 n2

i γ
2
i

)
,

and

ξ̂
M − ξ =

1

2σ2
I−1
‰,‰

(
g1(y)
g2(y)

)
+ Op(k

−1),

where ξ̂
M

= (σ̂2M , σ̂2M
v )′, g1(y) =

∑k
i=1

∑ni

j=1{(yij−yi)−(xij−xi)
′β}2/σ2+

∑k
i=1 niγi(2−

γi)(yi−x′iβ)2/σ2−N−∑k
i=1(1−γi) and g2(y) =

∑k
i=1 n2

i γ
2
i (yi−x′iβ)2/σ2−∑k

i=1 niγi. Not-
ing that I‰,‰ = O(k), ∂g1(y)/∂yi = 2niγi(2− γi)(yi−x′iβ)/σ2 = Op(1) and ∂g2(y)/∂yi =

2n2
i γ

2
i (yi − x′iβ)/σ2 = Op(1), we can see that ∂ξ̂

M
/∂yi = Op(k

−1). Combining this fact
and the equation

∂ψ̂M

∂yi

=
1

σ̂2M

∂σ̂2M
v

∂yi

− ψ̂M

σ̂2M

∂σ̂2M

∂yi

can show that ∂ψ̂M/∂yi = Op(k
−1). From Datta and Lahiri (2000), it follows that

Var(ξ̂
M

) = I−1
‰,‰ + O(k−3/2) and

Bias
(
ξ̂

M
)

=
1

2
I−1
‰,‰

(
tr [I−1

˛,˛(∂I˛,˛/∂ξ1)]

tr [I−1
˛,˛(∂I˛,˛/∂ξ2)]

)
+ O(k−3/2).

Hence,

V ar(σ̂2M) =2σ4

k∑
i=1

n2
i γ

2
i /d(ψ) + O(k−3/2) = σ4E[T 2

e ],

V ar(σ̂2M
v ) =2σ4(N − k +

k∑
i=1

γ2
i )/d(ψ) + O(k−3/2) = σ4

vE[T 2
v ],

Cov(σ̂2M , σ̂2M
v ) =− 2σ4

k∑
i=1

niγ
2
i /d(ψ) + O(k−3/2) = σ2σ2

vE[TeTv],

where d(ψ) = (N − k +
∑k

i=1 γ2
i )

∑k
i=1 n2

i γ
2
i − (

∑k
i=1 niγ

2
i )

2. Then it is seen that τ1(ψ),
τ2(ψ) and τ3(ψ) in Proposition 2.1 are given by τ1(ψ) = 2N/{ψ2d(ψ)}+O(k−3/2), τ2(ψ) =
2
∑k

i=1 niγi/{ψd(ψ)} + O(k−3/2) and τ3(ψ) = 2
∑k

i=1 n2
i γ

2
i /d(ψ) + O(k−3/2). Also, the

biases are given by

Bias(σ̂2M) =
σ2

d(ψ)

{
−p

k∑
i=1

n2
i γ

2
i + (

k∑
i=1

niγi)c(ψ)
}

+ O(k−3/2) = σ2E[Te],

Bias(σ̂2M
v ) =

σ2

d(ψ)

{
p

k∑
i=1

niγ
2
i − (N − k +

k∑
i=1

γi)c(ψ)
}

+ O(k−3/2) = σ2
vE[Tv],
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where c(ψ) = tr [(A(ψ) + B)−1
∑k

i=1 n2
i γ

2
i xix

′
i]. Substituting these quantities into (2.4)

and (2.11), we get the correction terms hi(ψ) and h∗i (ψ) for the ML estimators σ̂2M and

ψ̂M . Thus, Theorem 2.1 implies that the corresponding corrected confidence intervals
based on the ML estimators has the coverage accuracy O(k−3/2).

For the REML estimator of ψ, it is given as the solution ψ∗ of the equation

k∑
i=1

{niγi(ψ̂∗)}2{yi − x′iβ̂(ψ̂∗)}2

=
N

N − p
σ̂2(ψ̂∗)

k∑
i=1

niγi(ψ̂∗)−
k∑

i=1

{niγi(ψ̂∗)}2x′i(A(ψ̂∗) + B)−1xi.

From Proposition 2.2, we use the truncated estimator of ψ̂∗ given by ψ̂R = max
{
ψ̂∗, k−2/3

}
.

Then, the REML estimators of σ2 and σ2
v are written by σ̂2R = {N/(N − p)}σ̂2(ψ̂R) and

σ̂2R
v = σ̂2Rψ̂R. From Datta and Lahiri (2000), it follows that Bias(σ̂2R) = Bias(σ̂2R

v ) =
O(k−3/2), and that the asymptotic variance and covariance of σ̂2R and σ̂2R

v are equal to
those of the ML estimators σ̂2M and σ̂2M

v . Thus, substituting these quantities into (2.4)

and (2.11), we get the correction terms for the REML estimators σ̂2R and ψ̂R.

2.2 Extension to the estimation of finite population means

The results given in Section 2.1 can be extended to the estimation of means of k finite
populations. Let Yij denote the value of a characteristic of interest for the jth unit of the
ith finite population where i = 1, . . . , k; j = 1, . . . , Ni. We assume that there exist the
auxiliary variables xij which can be associated with Yij as

Yij = x′ijβ + vi + eij, i = 1, . . . , k, j = 1, . . . , Ni,

where xij, β, vi and eij are defined similarly as in (1.1). We also assume that the
population sizes Ni’s and all the auxiliary variables xij’s are known and bounded, but
only some of the Yij’s are observed through the following sampling procedure. For each i,
a subset of {1, . . . , Ni} is called a sample from the ith population. Let Si denote the set
of all possible samples of fixed known size ni taken from {1, . . . , Ni}. A sampling design
p(si) is the probability of selecting the sample si from Si. Then p[si] ≥ 0 for all si ∈ Si

with
∑

si∈Si
p[si] = 1. Let s = (s1, . . . , sk) and S = S1 × · · · × Sk. Since the sampling

is carried out independetly for i = 1, . . . , k, it is seen that P [s] = P [s1] × · · · × P [sk]
and

∑
s∈S P [s] = 1. Given s, the subset of {Yi1, . . . , YiNi

} is observed for i = 1, . . . , k.
Suppose, without of loss of generality si = {1, . . . , ni}. Thus, the sampled values of Yij

are denoted by yi1, . . . , yini
, and unobserved varaibles are denoted by Y ∗

i,ni+1, . . . , Y
∗
i,Ni

.

The objective is to estimate the population mean Y i = N−1
i

∑Ni

j=1 Yij based on the
samples s1, . . . , sk, namely, {yij|j = 1, . . . , ni; i = 1, . . . , k} and the auxilliary variables
{xij|j = 1, . . . , Ni; i = 1, . . . , k}. Let yi = (yi1, . . . , yini

)′ and Y ∗
i = (Y ∗

i,ni+1, . . . , Y
∗
i,Ni

)′.
Correspondingly, let X i = (xi1, . . . , xi,ni

)′ and X∗
i = (xi,ni+1, . . . , xi,Ni

)′. It is noted that
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given si, (yi,Y
∗
i ) is jointly distributed as

(
yi

Y ∗
i

)
|si ∼ NNi

((
X i

X∗
i

)
β, σ2

(
Λ11 Λ12

Λ21 Λ22

))
,

where Λ11 = Ini
+ ψjni

j ′ni
, Λ12 = Λ′

21 = ψjni
j ′Ni−ni

and Λ22 = INi−ni
+ ψjNi−ni

j ′Ni−ni
.

The conditional distribution of Y ∗
i given yi and si is

Y ∗
i |yi, si ∼ NNi−ni

(X∗
i β + Λ21Λ

−1
11 (yi −X iβ), σ2Λ22.1),

where Λ22.1 = Λ22 − Λ21Λ
−1
11 Λ12. Since Λ21Λ

−1
11 = ψ(1 + niψ)−1jNi−ni

j ′ni
and Λ22.1 =

INi−ni
+ ψ(1 + niψ)−1jNi−ni

j ′Ni−ni
, it is seen that

Y ∗
i |yi, si ∼ NNi−ni

(
X∗

i β + (1− γi)(yi − x′iβ)jNi−ni
, σ2(INi−ni

+ ψγijNi−ni
j ′Ni−ni

)
)
,

for γi = 1/(1 + niψ). It is here noted that Y i is expressed as

Y i =(yi1 + · · ·+ yi,ni
)/Ni + (Y ∗

i,ni+1 + · · ·+ Y ∗
i,Ni

)/Ni

=(1− fi)yi + j ′Ni−ni
Y ∗

i /Ni,

for fi = (Ni − ni)/Ni. Then from the above conditinal distribution, it follows that

Y i|yi, si ∼ N (µ̂B
i (β, ψ, si), σ2fi(1− fiγi)/ni), (2.14)

where µB
i (β, ψ, si) is the conditional mean E[Y i|yi, si] given by

µ̂B
i (β, ψ, si) =(1− fi)yi + fi{(x∗i )′β + (1− γi)(yi − x′iβ)}

=x′i(p)β + (1− fiγi)(yi − x′iβ), (2.15)

for x∗i = (Ni − ni)
−1

∑Ni

j=ni+1 xij and xi(p) = N−1
i

∑Ni

j=1 xij, since

xi(p) = (1− fi)xi + fix
∗
i .

The estimator µ̂B
i (β, ψ, si) is viewed as the Bayes estimator in the finite population as

stated in Ghosh and Meeden (1986). Since conditional distribution (2.14) and conditional
mean (2.15) correspond to posterior distribution (1.3) and Bayes estimator (1.4), the same
arguments as in the previous sections can be used to construct the corrected confidence
interval of Y i.

Using the estimators ψ̂, β̂(ψ̂) and σ̂2 given in Section 2.1, we get the empirical Bayes

estimator µ̂EB
i (ψ̂, s) = µ̂B

i (β̂(ψ̂), ψ̂, si) and provide the corrected empirical Bayes confi-
dence interval

ICEB
i (ψ̂, σ̂2, s) : µ̂EB

i (ψ̂, s)± zα/2

[
1 + (2k)−1hi(ψ̂, s)

] √
(σ̂2/ni)fi(1− fiγ̂i), (2.16)

where hi(ψ, s) is given by

hi(ψ, s) =
kni

fi(1− fiγi)

{
d′i(A(ψ) + B)−1di + 2f 2

i niγ
3
i E[(ψ̂ − ψ)2]

}

− kE[Hi] +
k

4
E[z2

α/2H
2
i + K2

i ], (2.17)
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where
di = fi{x∗i − (1− γi)xi} = xi(p) − (1− f1γi)xi,

and

Hi =ai(ψ̂ − ψ)/ψ + (σ̂2 − σ2)/σ2,

Ki =ai(ψ̂ − ψ)/ψ − (σ̂2 − σ2)/σ2,
(2.18)

for ai = finiψγ2
i /(1− fiγi). Then, we can get the following theorem which will be proved

in Section 5.

Theorem 2.2 Assume the conditions (A1)-(A4). Then, the corrected empirical Bayes

confidence interval given in (2.16) satisfies that P [Y i ∈ ICEB
i (ψ̂, σ̂2, s)] = 1−α+O(k−3/2)

as k →∞.

Proposition 2.5 Let σ̂2
v = σ̂2ψ̂ and assume the conditions (A3) and (A4). Then, the

correction function hi(ψ) given in (2.17) can be expressed as

hi(ψ, s) =
kni

fi(1− fiγi)

{
d′i(A(ψ) + B)−1di + 2f 2

i niγ
3
i ψ

2τ1(ψ)
}
− k{(1− ai)be(ψ) + aibv(ψ)}

+
k

4
(z2

α/2 + 1)
{
a2

i τ1(ψ)− 2aiτ2(ψ) + τ3(ψ)
}

+ O(k−3/2), (2.19)

where be(ψ), bv(ψ), τ1(ψ), τ2(ψ) and τ3(ψ) are defined in Proposition 2.1.

Proposition 2.6 Assume the conditions (A3) and (A4). Given s, the second-order ap-

proximation of the MSE of the empirical Bayes estimator µ̂EB
i (ψ̂, s) is given by

MSEi(σ
2, ψ, s) = E[(µ̂EB

i (ψ̂, s)− Y i)
2]

=
σ2

ni

fi(1− fiγi) + σ2d′i(A(ψ) + B)−1di + σ2f 2
i niγ

3
i ψ

2τ1(ψ) + O(k−3/2), (2.20)

and the second-order unbiased estimator of the MSE is given by

msei(σ̂
2, ψ̂, s) =

σ̂2

ni

fi(1− fiγ̂i)
{
1− (1− âi)be(ψ̂)− âibv(ψ̂)

}

+ σ̂2d′i(A(ψ̂) + B)−1di + 2σ̂2fi62niγ̂
3
i ψ̂

2τ1(ψ̂), (2.21)

for âi = finiψ̂γ̂2
i /(1− fiγ̂i), namely, E[msei(σ̂

2, ψ̂, s)] = MSEi(σ
2, ψ, s) + O(k−3/2).

The empirical Bayes confidence interval and its corrected interval are given by

IEB∗
i (ψ̂, σ̂2, s) : µ̂EB

i (ψ̂, s)± zα/2

√
msei(σ̂2, ψ̂, s), (2.22)

ICEB∗
i (ψ̂, σ̂2, s) : µ̂EB

i (ψ̂, s)± zα/2

[
1 + (2k)−1h∗i (ψ̂, s)

]√
msei(σ̂2, ψ̂, s), (2.23)
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where

h∗i (ψ̂, s) =hi(ψ̂, s)− k
{

msei(σ̂
2, ψ̂, s)ni/{σ̂2fi(1− fiγ̂i)} − 1

}

=
k

4
(z2

α/2 + 1)
{

â2
i τ1(ψ̂)− 2âiτ2(ψ̂) + τ3(ψ̂)

}
.

The same argument as in the proof of Proposition 2.4 can be used to verify the following
proposition.

Proposition 2.7 Assume the conditions (A1)-(A4). Then, the corrected empirical Bayes

confidence interval ICEB∗
i (ψ̂, σ̂2, s) given in (2.23) satisfies that P [µi ∈ ICEB∗

i (ψ̂, σ̂2, s)] =
1− α + O(k−3/2) as k →∞.

3 Numerical studies

3.1 Comparison of the confidence intervals

We now investigate the numerical performances of the confidence intervals given in the
previous sections under nested error regression model (1.1) or (2.1) without covariates
through simulations experiments. The confidence intervals we want to compare are the
conventional confidence interval based on a t-distribution

IT
i : yi ± tα/2

√
σ̂2U/ni, (3.1)

the two kinds of the empirical Bayes confidence intervals

IEB
i : µ̂EB

i (ψ̂)± zα/2

√
(σ̂2/ni)(1− γ̂i),

IEB∗
i : µ̂EB

i (ψ̂)± zα/2

√
msei(σ̂2, ψ̂),

and the corrected empirical Bayes confidence interval

ICEB∗
i : µ̂EB

i (ψ̂)± zα/2

[
1 + (2k)−1h∗i (ψ̂)

] √
msei(σ̂2, ψ̂), (3.2)

where the truncated Prasad-Rao estimator (ψ̂TR, σ̂2U) is used for (ψ, σ2). Here tα/2 is the
α/2 upper quantile of a t-distribution with (N − k− r1)-degrees of freedom, and σ̂2U and

ψ̂TR are given in (2.12) and (2.13).

The simulation experiments are carried out under model (1.1) or (2.1) without covari-
ates for k = 20. In this case, x′ijβ = µ (i.e., xij = 1), and we can put µ = 0 without
any loss of generality since the confidence intervals are translation-invariant. The sample
sizes ni’s are given as n1 = · · · = n5 = 2, n6 = · · · = n10 = 4, n11 = · · · = n15 = 6
and n16 = · · · = n20 = 8. The total number of the sample sizes is N =

∑20
i=1 ni = 100.

We handle the cases that σ2 = 1 and ψ = σ2
v takes the values from 0 to 2. We generate

10,000 random sets of the response variables y = (y11, . . . , y1,n1 ; . . . ; yk1, . . . , yk,nk
)′ based

on model (1.1), and the frequency of the confidence interval which includes the mean µi
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is counted for i = 1, . . . , k. The coverage probability is estimated by dividing the total
number of the frequency by 10, 000. The expected width of the confidence interval can
be also estimated by a similar method.

The coverage probabilities and the expected widths of the confidence intervals IT
i , IEB

i ,
IEB∗
i and ICEB∗

i are obtained through the above simulation for each area i = 1, . . . , k. The
average values of the coverage probabilities over the total k areas for k = 20 are illustrated
in Figure 1, where the confidence coefficient is 1 − α = 0.95, and the x-axis denotes the
value of ψ. The average values of the expected widths of the confidence intervals over
the total k areas are illustrated in Figure 2. From Figures 1 and 2, we can observe the
following:

(1) The corrected empirical Bayes confidence interval ICEB∗
i satisfies the nominal con-

fidence level, while the empirical Bayes confidence intervals IEB
i and IEB∗

i violate the
confidence level for ψ > 0.2 as seen from Figure 1. Since ICEB∗

i has a larger expected
width than IEB

i and IEB∗
i as illustrated in Figure 2, it is seen that ICEB∗

i extends the
widths of IEB

i and IEB∗
i so as to satisfy the nominal confidence level.

(2) The expected width of ICEB∗
i is much smaller than that of IT

i , while both the
confidene intervals satisfy the nominal confidence level. This means that ICEB∗

i improves
on IT

i .
(3) As seen from the forms of the confidence intervals given in (1.7), (1.8), (2.9) and

(2.10), the confidence intervals become instable when ψ̂ is close to zero. Thus we need
to use the truncated estimator like (2.13), but in the case of small k, such a truncation
affects the performances of ICEB∗

i , IEB
i and IEB∗

i for small values of ψ. This is the reason
that the coverage probablities of ICEB∗

i , IEB
i and IEB∗

i are over 0.95 for ψ < 0.2 in Figure
1.

(4) We have investigated the performances of the corrected empirical Bayes confidence
interval ICEB

i and have found that the performances of ICEB
i are quite similar to those of

ICEB∗
i , though the numerical results are omitted here.

We thus conclude that the corrected empirical Bayes confidence intervals ICEB
i and

ICEB∗
i not only satisfy the nominal confidence level by extending the widths of IEB

i and
IEB∗
i , but also are superior to the conventional interval IT

i in terms of the coverage prob-
ability and the expected width.

3.2 Example: Posted Land Price Data

We here apply the proposed confidence interval to the posted land price data along the
Keikyu train line. This train line connects the suburbs in the Kanagawa prefecture to
the Tokyo metropolitan area. Those who live in the suburbs in the Kanagawa prefecture
take this line to work or study in Tokyo everyday. Thus, it is expected that the land price
depends on the distance from Tokyo.

The posted land price data are available for 48 stations on the Keikyu train line, and
we consider each station as a small area, namely, k = 48. For the i-th station, data
of ni land spots are available in 2001. For j = 1, . . . , ni, yij denotes the value which is
transformed by logarithm from the posted land price (Yen) for the unit meter squares of
the j-th spot, Ti is the time to take from the nearby station i to the Tokyo station around
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Figure 1: Coverage probabilities of IT
i , IEB

i , IEB∗
i and ICEB∗

i for k = 20 (The x-axix denotes the value
of ψ from 0 to 2)
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Figure 2: Expected widths of IT
i , IEB

i , IEB∗
i and ICEB∗

i for k = 20 (The x-axix denotes the value of ψ
from 0 to 2)
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8:30 in the morning, Dij is the geographical distance from the spot j to the station i and
FARij denotes the floor-area ratio, or ratio of building volume to lot area of the spot
j. Using the Akaike information criterion, Kubokawa and Srivastava (2007) selected the
regressor variables of and proposed the nested error regression model

yij = β0 + FARijβ1 + Tiβ2 + (T 2
i )β3 + Dijβ4 + vi + eij. (3.3)

Then, the estimates of the parameters are given by σ̂2 = 0.020803, ψ̂TR = 0.406572,
σ̂2

v = ψ̂TR × σ̂2 = 0.008458 and

β̂(ψ̂TR) = (β̂0, β̂1, β̂2, β̂3, β̂4) = (13.448, 0.0010105,−0.032302, 0.00018892,−6.0411×10−5).

It is interesting to note that the land price decreases through the quadratic function f(T1)
of the time T1, namely, f(T1) = β0 + β2T1 + β3T

2
1 = 13.448− 0.032302T1 + 0.00018892T 2

1 .

Now we give the confidence intervals of the average land price for the unit meter
squares at the i-th station, namely, µi = β0 + FARiβ1 + Tiβ2 + (T 2

i )β3 + Diβ4 + vi for
i = 1, . . . , 48, where FARi =

∑ni

j=1 FARij/ni and Di =
∑ni

j=1 Dij/ni. The upper and

lower bounds of the confidence interval IT
i and the corrected empirical Bayes confidence

interval ICEB
i based on the Prasad-Rao estimators are computed by (3.1) and (3.2), and

those values transformed by exponential are plotted in Figure 3 for i = 1, . . . , 48, where
the X-axis denotes the stations from No.1 to No.48, namely No.1 is the station closest
to the Tokyo station and No.48 is the station farthest from Tokyo. The widths of the
confidence intervals are also plotted in Figure 4. The values of ni are indicated in Figures
3 and 4 with a different scale. It is revealed that ICEB

i is more stabilized and shorter than
IT
i for smaller ni’s and that the confidence intervals have the general pattern of decrease

in i on the X-axis.
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Figure 3: Confidence intervals of the means based on IT
i and ICEB

i for i = 1, . . . , 48
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4 Concluding Remarks

In this paper, we have obtained the asymptotically corrected empirical Bayes confidence
intervals whose coverage probabilities can satisfy the confidence level in the second order
asymptotics. This is an extension of the results of Datta et al . (2002) and Basu et al .
(2003) to the nested error regression model and to the finite population model with un-
balanced sample sizes and unknown components of variance. The corrected confidence
intervals have been numerically shown to be superior to the conventional confidence in-
terval based on the sample mean in terms of the coverage probability and the expected
width of the interval. The usefulness has also been shown through the application to the
posted land price data in Tokyo and the neighboring prefecture.

5 Appendix

We shall prove the theorems and propositions given in Section 2.

Proof of Theorems 2.1 and 2.2. We begin with proving Theorem 2.2 for i = 1,
namely, P [Y 1 ∈ ICEB

1 ] = 1− α + O(k−3/2) as k →∞. Since

P [Y 1 ∈ ICEB
1 ] =

∑
s∈S

P [Y 1 ∈ ICEB
1 (ψ̂, σ̂2, s)|si]P [s],

it is sufficient to show that P [Y 1 ∈ ICEB
1 (ψ̂, σ̂2, s)|s] = 1 − α + O(k−3/2). Since the

conditional distribution of Y 1 given y1 is

Y 1|y1 ∼ N (µ̂B
1 (β, ψ, s1), σ

2(f1/n1)(1− f1γ1))

for γ1 = 1/(1 + n1ψ) and f1 = (N1 − n1)/N1. For the notational convenience, we omit

the condition s as P [·|s] = P [·]. Then, the coverage probability of ICEB
1 (ψ̂, σ̂2, s) can be
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written as

P [Y 1 ∈ ICEB
1 (ψ̂, σ̂2, s)] =P [−z + G(−z) <

Y 1 − µ̂B
1 (β, ψ, s1)√

σ2(f1/n1)(1− f1γ1)
< z + G(z)]

=E[Φ(z + G(z))− Φ(−z + G(−z))], (5.1)

where

G(z) =
µ̂EB

1 (ψ̂, s)− µ̂B
1 (β, ψ, s1) + z[1 + h1(ψ̂, s)/(2k)]

√
σ̂2(f1/n1)(1− f1γ̂1)√

σ2(f1/n1)(1− f1γ1)
− z

=
d′1(β̂(ψ̂)− β)− f1(γ̂1 − γ1)(y1 − x′1β) + f1(γ̂1 − γ1)x

′
1(β̂(ψ̂)− β)√

σ2(f1/n1)(1− f1γ1)

+ z
[
1 + h1(ψ̂, s)/(2k)

] √
σ̂2(f1/n1)(1− f1γ̂1)√
σ2(f1/n1)(1− f1γ1)

− z,

for d1 = x1(p) − (1 − f1γ1)x1. We begin with approximating G(z) up to order Op(k
−1).

Note that
γ̂1 = γ1 − n1γ

2
1(ψ̂ − ψ) + n2

1γ
3
1(ψ̂ − ψ)2 + Op(k

−3/2),

which yields

d′1(β̂(ψ̂)− β)− f1(γ̂1 − γ1)(y1 − x′1β) + f1(γ̂1 − γ1)x
′
1(β̂(ψ̂)− β)√

σ2(f1/n1)(1− f1γ1)

=
û1√
k

+
û2

k
+ Op(k

−3/2), (5.2)

where

û1 =

√
k√

σ2(f1/n1)(1− f1γ1)

[
d′1(β̂(ψ̂)− β) + f1n1γ

2
1(ψ̂ − ψ)(y1 − x′1β)

]
,

û2 =− kf1n1γ
2
1√

σ2(f1/n1)(1− f1γ1)

[
(ψ̂ − ψ)x′1(β̂(ψ̂)− β) + n1γ1(ψ̂ − ψ)2(y1 − x′1β)

]
.

It is also noted that
√

1− f1γ̂1√
1− f1γ1

=1 +
f1n1γ

2
1

2(1− f1γ1)
(ψ̂ − ψ)

− f 2
1 n2

1γ
4
1 + 4f1n

2
1γ

3
1(1− f1γ1)

8(1− f1γ1)2
(ψ̂ − ψ)2 + Op(k

−3/2),

√
σ̂2

√
σ2

=1 +
1

2σ2
(σ̂2 − σ2)− 1

8σ4
(σ̂2 − σ2)2 + Op(k

−3/2),

which yield that

[
1 + h1(ψ̂, s)/(2k)

] √
σ̂2(1− f1γ̂1)√
σ2(1− f1γ1)

− 1 =
v̂1√
k

+
v̂2

k
+

h1(ψ̂)

2k
+ Op(k

−3/2), (5.3)
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where

v̂1 =

√
k

2
H1,

v̂2 =− kf1n
2
1γ

3
1

2(1− f1γ1)
(ψ̂ − ψ)2 − k

8
K2

1 ,

for H1 = a1(ψ̂ − ψ)/ψ + (σ̂2 − σ2)/σ2 and K1 = a1(ψ̂ − ψ)/ψ − (σ̂2 − σ2)/σ2 for a1 =
f1n1γ

2
1ψ/(1− f1γ1). Combining (5.2) and (5.3) gives the approximation

G(z) =
û1√
k

+
û2

k
+ z

{
v̂1√
k

+
v̂2

k
+

h1(ψ̂, s)

2k

}
+ Op(k

−3/2). (5.4)

Since G(z) = Op(k
−1/2), Φ(z + G(z)) is evaluated as

Φ(z + G(z)) =Φ(z) + G(z)φ(z) +
G2(z)

2
φ′(z) +

1

2

∫ z+G(z)

z

(z + G(z)− x)2φ′′(x)dx

=Φ(z) +
{
G(z)− zG2(z)/2

}
φ(z) + Op(k

−3/2),

so that from (5.1),

P [Y 1 ∈ ICEB
1 (ψ̂, σ̂2, s1)]

= Φ(z)− Φ(−z) + φ(z)E
[
G(z)−G(−z)− (z/2){G(z)2 + G(−z)2}] + O(k−3/2)

= 1− α + φ(z)E
[
G(z)−G(−z)− (z/2){G(z)2 + G(−z)2}] + O(k−3/2). (5.5)

From (5.4), it is seen that

E
[
G(z)−G(−z)− (z/2){G(z)2 + G(−z)2}]

=E

[
2z

v̂1√
k

+
z

k
[2v̂2 + h1(ψ̂, s)]− z

k
û2

1 −
z3

k
v̂2

1

]

=
z

k

{
E[h1(ψ̂, s)]− [−kE[H1] + E[−2v̂2 + û2

1 + z2v̂2
1]

]}
.

=
z

k

{
E[h1(ψ̂, s)]− E

[
û2

1 +
kf1n

2
1γ

3
1

1− f1γ1

(ψ̂ − ψ)2 − kH1 + kK2
1/4 + kz2H2

1/4

]}
, (5.6)

from the definitions of v̂1 and v̂2. Hence, we need to evaluate the term E[û2
1], which is

written as

E[û2
1] =

n1k

σ2f1(1− f1γ1)
E

[{
d′1(β̂(ψ̂)− β) + f1n1γ

2
1(ψ̂ − ψ)U1

}2
]

, (5.7)

where U1 = y1 − x′1β. The Taylor expansion with respect to ψ̂ at ψ gives the expression

β̂(ψ̂) = β̂(ψ) + β̂
(1)

(ψ)(ψ̂ − ψ) +
β̂

(2)
(ψ)

2
(ψ̂ − ψ)2 + Op(k

−3/2),
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where β̂
(1)

(ψ) = (∂/∂ψ)β̂(ψ) and β̂
(2)

(ψ) = (∂2/∂ψ2)β̂(ψ). It can be seen that β̂(ψ)−β =

Op(k
−1/2), β̂

(1)
(ψ) = Op(k

−1/2) and β̂
(2)

(ψ) = Op(k
−1/2). Thus, it is observed that

β̂(ψ̂)− β̂(ψ) = β̂
(1)

(ψ)(ψ̂ − ψ) + Op(k
−3/2), and

E
[{

d′1(β̂(ψ̂)− β) + f1n1γ
2
1(ψ̂ − ψ)U1

}2]

=E
[{

d′1(β̂(ψ)− β) + d′1β̂
(1)

(ψ)(ψ̂ − ψ) + f1n1γ
2
1(ψ̂ − ψ)U1

}2]
+ O(k−3/2)

=E
[
d′1(β̂(ψ)− β)(β̂(ψ)− β)′d1] + f 2

1 n2
1γ

4
1E

[
(ψ̂ − ψ)2U2

1 ]

+ 2f1n1γ
2
1E

[
d′1(β̂(ψ)− β)(ψ̂ − ψ)U1

]
+ O(k−3/2)

=I1 + I2 + I3 + O(k−3/2). (say)

It is easy to see that I1 = d′1(A(ψ) + B)−1d1σ
2. To evaluate I2 and I3, the following

Stein identity is useful. Note that y1 ∼ N (x′1β, σ2/(n1γ1)). For an absolutely continuous
function g(y1), Stein (1981) showed that

E[g(y1)(y1 − x′1β)] =
σ2

n1γ1

E

[
∂

∂y1

g(y1)

]
,

which is called the Stein identity. Using the Stein identity, we observe that

E
[
d′1(β̂(ψ)− β)(ψ̂ − ψ)U1

]
=

σ2

n1γ1

E

[
∂

∂y1

{
d′1(β̂(ψ)− β)(ψ̂ − ψ)

}]

=
σ2

n1γ1

E

[
d′1

{
∂

∂y1

β̂(ψ)

}
(ψ̂ − ψ) + d′1(β̂(ψ)− β)

∂

∂y1

ψ̂

]
.

Since {yij − yi, i = 1, . . . , k, j = 1, . . . , ni} are independent of {y1, . . . , yk}, we can see

that ∂β̂(ψ)/∂y1 = (A(ψ) + B)−1n1γ1(ψ)x1, which is Op(k
−1). From the assumption of

the theorem, ∂ψ̂/∂y1 = Op(k
−1). These imply that I3 = 0 + O(k−3/2). For I2, the Stein

identity is used to get that

E
[
(ψ̂ − ψ)2U2

1 ] =
σ2

n1γ1

E

[
∂

∂y1

{
(ψ̂ − ψ)2U1

}]

=
σ2

n1γ1

E

[
2(ψ̂ − ψ)U1

{
∂ψ̂

∂y1

}
+ (ψ̂ − ψ)2

]

=
σ2

n1γ1

E[(ψ̂ − ψ)2] + O(k−3/2),

so that I2 = σ2f 2
1 n1γ

3
1E[(ψ̂ − ψ)2] + O(k−3/2). Hence from (5.7), we obtain that

E[û2
1] =

n1k

f1(1− f1γ1)

{
d′1(A(ψ) + B)−1d1 + f 2

1 n1γ
3
1E[(ψ̂ − ψ)2]

}
+ O(k−3/2).

21



From (5.6), we get that

E

[
û2

1 +
kf1n

2
1γ

3
1

1− f1γ1

(ψ̂ − ψ)2 − kH1 + kK2
1/4 + kz2H2

1/4

]

=
n1k

f1(1− f1γ1)

{
d′1(A(ψ) + B)−1d1 + 2f 2

1 n1γ
3
1E[(ψ̂ − ψ)2]

}

− kE[H1] +
k

4
E[z2H2

1 + K2
1 ] + O(k−1/2),

which is equal to h1(ψ) given by (2.3). Hence from (5.6), it is seen that

E
[
G(z)−G(−z)− (z/2){G(z)2 + G(−z)2}]

=
z

k

{
E[h1(ψ̂, s)]− E

[
û2

1 +
kf1n

2
1γ

3
1

1− f1γ1

(ψ̂ − ψ)2 − kH1 + kK2
1/4 + kz2H2

1/4

]}

=O(k−3/2).

From (5.5), we thus conclude that P [µ1 ∈ ICEB
1 ] = 1 − α + O(k−3/2), and the proof of

Theorem 2.2 is complete.

Since Theorem 2.1 corresponds to Theorem 2.2 with fi = 1, ai = γi and di = xi, the
same arguments can prove Theorem 2.1.

Proof of Propositions 2.1 and 2.5. Since Proposition 2.1 corresponds to Propo-
sition 2.5 with fi = 1 and ai = γi, it is enough to show Proposition 2.5. Note that ψ̂ is
approximated as

ψ̂ =
σ̂2

v

σ̂2
= σ̂2

v

{
1

σ2
− σ̂2 − σ2

σ4
+

(σ̂2 − σ2)2

σ6

}
+ Op(k

−3/2),

or
(ψ̂ − ψ)/ψ = Tv − Te − TvTe + T 2

e + Op(k
−3/2).

Thus, the moments are approximated as

E[(ψ̂ − ψ)2] =ψ2E
[
T 2

v − 2TvTe + T 2
e

]
+ O(k−3/2),

E [Hi] =E [aiTv + (1− ai)Te] + aiE
[
T 2

e − TvTe

]
+ O(k−3/2),

E
[
H2

i

]
=E

[
a2

i T
2
v + 2ai(1− ai)TvTe + (1− ai)

2T 2
e

]
+ O(k−3/2),

E
[
K2

i

]
=E

[
a2

i T
2
v − 2ai(1 + ai)TvTe + (1 + ai)

2T 2
e

]
+ O(k−3/2).

(5.8)

Using the notations τ1(ψ), τ2(ψ) and τ3(ψ) defined in Proposition 2.1, we can see that

E[(ψ̂ − ψ)2] = ψ2τ1(ψ) + O(k−3/2), E[H2
i ] = a2

i τ1(ψ) − 2aiτ2(ψ) + τ3(ψ) + O(k−3/2),
E[K2

i ] = a2
i τ1(ψ) + 2aiτ2(ψ) + τ3(ψ) + O(k−3/2). Substituting these terms into (2.17), we

can get expression (2.19).

Proof of Propositions 2.3 and 2.6. We begin with proving Proposition 2.6, where
the given sample s in µ̂EB

i (ψ̂, s) is omitted here for the notational convenience. Following

22



Pradad and Rao (1990) and Datta and Lahiri (2000), the MSE of µ̂EB
i (ψ̂) can be written

as

MSEi(σ
2, ψ) = E[{µ̂EB

i (ψ̂)− Y i}2]

=E[{µ̂B
i (β, ψ)− Y i}2] + E[{µ̂EB

i (ψ)− µ̂B
i (β, ψ)}2] + E[{µ̂EB

i (ψ̂)− µ̂EB
i (ψ)}2]

=
σ2

ni

fi(1− fiγi) + σ2d′i(A(ψ) + B)−1di + g3i(σ
2, ψ),

where di = fi{x∗i − (1 − γi)xi} = xi(p) − (1 − f1γi)xi and g3i(σ
2, ψ) = E[{µ̂EB

i (ψ̂) −
µ̂EB

i (ψ)}2]. From the Taylor expansion, it follows that

g3i(σ
2, ψ) = E[{∂µ̂EB

i (ψ)/∂ψ}2(ψ̂ − ψ)2] + O(k−3/2),

where ∂µ̂EB
i (ψ)/∂ψ = finiγ

2
i (yi − x′iβ̂(ψ)) + d′i{∂β̂(ψ)/∂ψ}. It can be observed that

{∂β̂(ψ)/∂ψ} = Op(k
−1/2) and β̂(ψ)− β = Op(k

−1/2), so that g3i is approximated as

g3i(σ
2, ψ) = f 2

i n2
i γ

4
i E[(yi − x′iβ)2(ψ̂ − ψ)2] + O(k−3/2).

From the Stein identity used in the above proof, g3i can be evaluated as

g3i(σ
2, ψ) =σ2f 2

i niγ
3
i E[

∂

∂yi

{(yi − x′iβ)(ψ̂ − ψ)2}] + O(k−3/2)

=σ2f 2
i niγ

3
i E[(ψ̂ − ψ)2 + 2(yi − x′iβ)(ψ̂ − ψ)

∂ψ̂

∂yi

] + O(k−3/2)

=σ2f 2
i niγ

3
i E[(ψ̂ − ψ)2] + O(k−3/2),

since ∂ψ̂/∂yi = Op(k
−1). From (5.8), it is also expressed as g3i(σ

2, ψ) = σ2f 2
i niγ

3
i ψ

2E[(Te−
Tv)

2] + O(k−3/2) = σ2f 2
i niγ

3
i ψ

2τ1(ψ) + O(k−3/2), and we get the expression given in (2.7).
For the asymptotically unbiased estimator of the MSE, it is noted that

E[
σ̂2

ni

fi(1− fiγ̂i)] =
σ2

ni

fi(1− fiγi) + fi
1− fiγi

ni

E[σ̂2 − σ2] + σ2f 2
i γ2

i E[ψ̂ − ψ]

+ f 2
i γ2

i E[(σ̂2 − σ2)(ψ̂ − ψ)]− σ2f 2
i niγ

3
i E[(ψ̂ − ψ)2] + O(k−3/2)

=
σ2

ni

fi(1− fiγi)
{
1 + (1− ai)be(ψ) + aibv(ψ)

}− g3i(ψ) + O(k−3/2).

Combining this fact and (2.20), we can get the second-order unbiased estimator given in
(2.21).

Since Proposition 2.3 corresponds to Proposition 2.6 with fi = 1 and di = xi, the
same arguments can prove Proposition 2.3.
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