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Abstract

Bertola/Caballero (1994) and Abel/Eberly (1996) extended Jor-
genson�s classical model of �rms�optimal investment. By introducing
investment frictions, they were able to capture the role of future antic-
ipations in investment decisions as well as the lumpy and intermittent
nature of investment dynamics. We extend Jorgenson�s model to the
other direction of �nancing frictions. We construct a model of an
equity-only �rm, who must pay a linear �nancing cost for issuing new
shares. We show that the �rm�s optimal investment-�nancing is a
two-trigger policy in which the �rm �nances investment by issuing
new shares (supplementing internal funds) when the shadow price of
capital hits the upper trigger value. When the shadow price hits the
lower trigger value, she sells a portion of her capital stock and buys
back shares (or pays dividends). Values of the shadow price of capital
between the two trigger values de�ne a range of "inaction", in which
the �rm does neither issue nor buy back shares and invests all of her
internal funds for expansion.
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1 Introduction

Frictions are the primary theme of the theory of the �rm and corporate �-
nance. In the past four decades, there has been a �ood of theoretical as well
as empirical studies on how investment frictions in�uence the dynamics of
corporate investments. In contrast, how �nancing frictions in�uence corpo-
rate dynamics is a recent topic of research and has been studied mostly via
numerical approach which provides realistic but intractable analysis.
Jorgenson�s formulation of a dynamic investment problem (Jorgenson

(1963)) is where our construction starts. In his classical model the �rm can
adjust her capital stock without any frictions, and this absence of frictions
makes �rm�s optimal investment policy to be a purely static one in which
the marginal product of capital equals the user cost of capital.
The �rm�s decision becomes a truly dynamic problem, in which anticipa-

tions about the future economic environment a¤ect current decisions when
frictions prevent instantaneous and costless adjustment of the capital stock.
Bertola and Caballero (1994) introduced "irreversibility" of investment in
the sense that the �rm cannot sell its capital stock. This is equivalent to
assuming that the selling price of capital is zero. Abel and Eberly (1996)
generalized this model to the case of "costly reversibility"; namely the �rm
can sell its capital stock but at a price less than the purchase price. They
were successful in showing that frictions are the source of nonlinear and in-
termittent investment dynamics1.
In this paper, we pursue the other direction of introducing �nancing fric-

tions to Jorgenson�s model. "Irreversibility" in our model means that the
�rm may return cash to stockholders by paying dividends or buying back
shares but cannot obtain additional cash from stockholders by issuing new
shares2. "Costly reversibility" means that the �rm can �nance externally
but at some cost3. Readers will see that our development goes very much

1Nonlinear adjustment cost incurred upon changing production capacity is another
source of investment frictions. This idea originates in Uzawa�s "Penrose curve" (Uzawa
(1969)). There is again an ample literature on this topic including Mussa (1977), Abel
(1983) and Hayashi (1982). See Abel and Eberly (1994) for a uni�cation of both ap-
proaches. In this paper we do not assume the adjustment cost of investment (nor any
form of investment frictions) in order to focus solely on the impact of �nancing frictions.

2Neglecting taxation dividends and share repurchase are equivalent in our model. We
will use these terms interchangeably, but will mostly use "buying back shares" instead of
"dividends" to contrast it to "issuing new shares".

3We do not explicitly model asymmmetic information and/or di¤erential taxation to
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in parallel with the irreversible investment literature. Yet, by introducing
�nancial frictions our formulation naturally includes �nancing decisions as
well as investment decisions, which is in contrast to the optimal investment
literature. In this regard, the benchmark Jorgensonian model may as well be
called the Modigliani-Miller model in our context.
We construct a model of an equity-only �rm who must pay a linear �nanc-

ing cost for issuing new shares. We show that the �rm�s optimal investment-
�nancing is a two-trigger policy in which the �rm �nances its investment by
issuing new shares (supplementing internal funds) when the shadow price of
capital hits the upper trigger value. When the shadow price hits the lower
trigger value, she sells a portion of her capital stock and buys back shares
(or pays dividends). Values of the shadow price of capital between the two
trigger values de�ne a range of "inaction", in which the �rm does neither
issue nor buy back shares and invests all of her internal funds for expansion.
Analytically we work on the Hamilton-Jacobi-Bellman equation to character-
ize the optimal investment and �nancing policy. We will show that �nancial
frictions force the shadow price of capital to satisfy a second-order ordinary
linear di¤erential equation, which is dual to the one generated by investment
frictions.
Vast amount of researches has been done to study how �nancial con-

straints and �nancial frictions a¤ect corporate behavior. But most of them
are empirical and only a handful of papers formulate the �rm�s investment
and �nancing decisions as a stochastic dynamic optimization problem.
Whited (2006) and Hennessy and Whited (2005, 2007) are most closely

related to ours in this regard. Using a discrete-time formulation their inter-
est is to provide a model which produces lumpy and intermittent corporate
investments most consistent with reality. Thus their models include such
factors as taxation, bankruptcy costs, endogenous defaults, endogenous bor-
rowing rate of interest, and nonlinear equity-issuance costs. However, relying
on numerical computation to solve the dynamic optimization problem, the
characterization of the optimal investment/�nancing policy is imperfect and
theoretical insights are limited.
As stated in footnote 1 we avoid the introduction of nonlinear adjustment

cost of investment. These authors share the same spirit, except that Whited
(2006) investigates how lumpy investment behavior depends on nonconvex

endogenize these costs. This is because we want to investigate analytically the impact of
these costs on corporate investment and �nancing decisions in the simplest setting.
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physical adjustment cost and the presence of �nancial constraints.
A latest working paper by Bolton, Chen and Wang (2009) is more in line

with ours in that they analytically derive the nature of the optimal policy4.
Their model includes a wider set of corporate decisions than ours such as
cash management and default decisions. On the other hand they work on a
revenue function which is proportional to capital, whence nonlinear capital
adjustment cost is essential for their formulation. This aspect of their model
considerably restricts the generality and depth of their theoretical inquiry.
The paper is organized as follows. Section 2 gives the Jorgenson�s model

in a format that serves as a benchmark to our considerations. In section 3
we present the analysis of "irreversible investment" and then proceed to the
case of "costly reversible investment". We will provide a more straightforward
derivation of the optimal policy for the latter case. In section 4 we present
a model with "irreversible �nancing". Section 5 extends the analysis to the
case of "costly reversible �nancing". In section 6 we compute the optimal
investment and �nancing policy numerically by the value-iteration algorithm
and show graphically a typical path of the capital stock corresponding to
each case. In this paper we assume that the exogenous process driving the
market and technological conditions follows a geometric Brownian motion.
This technical assumption reduces the problem to one with a single state
variable. Section 7 shows how one can extend the model to re�ect changing
growth-rate, which expands the problem to a two-dimensional state space.
Section 8 concludes the paper and proposes additional directions of extending
this research.

2 The Classical Jorgensonian Model of In-
vestment

We extend Jorgenson�s classical model of investment to a stochastic environ-
ment. We also provide an alternative formulation, which is more suited to
analyze the in�uence of �nancial constraints. He showed that when a �rm
can adjust its capital stock without any frictions its optimal investment policy
is a static decision in which the construct called the user cost of capital is the
key variable a¤ecting investment.

4We thank Hayne Leland to teach us of this paper.
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Firm�s optimization problem

Consider a �rm who uses capital stock Kt to produce output. The �rm�s
instantaneous operating cash �ow is given by

�(K t; Zt) = K�
t Zt; 0 < � < 1; (1)

where Zt denotes a random shock which represents the business conditions
facing the �rm such as strength of demand, costs of inputs and �rm�s pro-
ductivity. The speci�cation in (1) can be derived if �rm�s production and
demand functions have constant elasticity. Assume that fZtg follows a geo-
metric Brownian motion

dZt = Zt (�dt+ �dWt) ; (2)

where � and � are constants and fWtg is a standard Wiener process.
Capital can be purchased and sold at a constant unit price P 5. The

capital stock depreciates at a constant proportional rate � � 0, so the capital
stock evolves according to

dKt = ��Ktdt+ dGt; (3)

in which fGtg denotes the cumulative gross investment process6. At this
stage the increments fdGtg is unconstrained in sign; i.e., investments are
reversible.
Assume that the �rm maximizes the market value of the �rm which is

de�ned as the expected present value of net cash �ows (free cash �ows)
discounted at a constant positive rate r7. The market value of the �rm is

V (K0; Z0) � max
fGtg

E0

�Z 1

0

e�rt fK�
t Ztdt� PdGtg

�
(4)

5We can obviously assume that the price of capital stock also moves randomly. We
suppress this generality to focus attention on the fundamental nature of the optimal deci-
sions.

6Formally, let f
;F ; Pg be a �ltered probability space supporting a Brownian motion
fWtg where F = fFtg and Ft represents the augmented �ltration generated by all the
information up to time t. We assume that fGtg is adapted to F . All the decision variables
in subsequent sections are assumed to be adapted to F .

7To keep the generality of the model one can either assume that r is a riskless rate of
interest and the expectation is taken under the risk-neutral probability measure or that r
is a risk-adjusted rate and the expectation is taken under the natural probability measure.
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Since Gt is not di¤erentiable, the second term in (4) is to be interpreted as
Itô integral. As usual the subscript of the expectation operator indicates
timing of the information with which the conditional expectation is taken.
The valuation (4) re�ects the cash �ow discount formula. We can trans-

form this to the dividend discount formula as follows. Denote the cumulative
dividend process by fDtg. Again we have no sign restriction on fdDtg at this
stage, so that dDt < 0 means negative dividends; i.e., �nancing by issuing
new shares. At each date we have the budget equation

K�
t Ztdt = dDt + PdGt: (5)

Using (5) the valuation formula (4) is rewritten as

V (K0; Z0) = max
fDtg

E0

�Z 1

0

e�rtdDt

�
: (6)

In this section we need to use (4) as we will be focusing on the investment
constraints such as dGt � 0. In section 3 and 4 we will need to work on (6)
as we will focus on the �nancing constraints such as dDt � 0. Note that a
choice of investment policy fGtg implies a corresponding choice of �nancing
policy fdDtg and vice versa8.

Optimal investment policy under no frictions

Inserting (3) for dGt into (4) and integrating by parts, one can translate the
problem into a maximization problem with respect to fKtg:

V (K0; Z0) = PK0 + E0

�Z 1

0

e�rtmax
fKtg

fK�
t Zt � (r + �)PKtg dt

�
(7)

This valuation formula shows that the market value of the �rm consists of
(i) the physical value of the capital stock on hand and (ii) the value created
by using the capital stock for business activities. The contribution in the
second term during a small time interval (t; t+�t) is the operating cash �ow,
(K�

t Zt)�t; in excess of Jorgenson�s "user cost of capital", (r + �)PKt�t.
Jorgenson de�nes the user cost of capital as the opportunity cost of carrying a

8Some restriction on the space of fGtg and fDtg (such as restricting fGtg and fDtg as
predictable processes) is necessary to guarantee the uniqueness of the process fGtg given
the process fDtg.
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stock of progressively depreciating capital9. Alternatively it is the accounting
earnings, (K�

t Zt � �PKt)�t; in excess of the required return on capital,
(PKt) r�t. It is worth noting that this simple "residual income" valuation
formula holds only under the assumption of no frictions in investment and
�nancing.
The right hand side of (7) reveals that the �rm�s maximization problem

reduces to a static problem of choosing the capacity Kt at each date which
maximizes the periodical residual income. The �rst-order condition for Kt is

�K��1
t Zt = (r + �)P: (8)

The �rm is best served by the myopic rule of setting the marginal revenue
product of capital equal to the user cost of capital at every instance of time.
Solving (8) the optimal frictionless capital stock is given by the rule

KJ (Zt) =

�
�

(r + �)P

�1=(1��)
Z
1=(1��)
t 8t: (9)

Inserting this result back to (7) and carrying out the stochastic integra-
tion, we �nd that the optimal value of the �rm at time t is given by

V (Kt; Zt) = PKt + AZ
1=(1��)
t (10)

where

A � 1� �

r � 1
1��

h
�+ �

2(1��)�
2
i � �

(r + �)P

��=(1��)
: (11)

Note that the integral in (7) converges if

r >
1

1� �

�
�+

�

2 (1� �)
�2
�
: (12)

Remark 1 Check this formula as Bertola�s equation (9) has a minus sign.

Budget equation (5) dictates how the investment is �nanced. IfK�
t Zt�t <

�Gt the di¤erence is �nanced by issuing shares, whereas if K�
t Zt�t > �Gt

the excess cash �ow is paid as dividends.

Remark 2 Optimal investment dictates �nancing in section 2 and 3. Op-
timal �nancing dictates investments in section 4. In paper 2 with banks we
return to the former relationship even with �nancial frictions.

9If the price of capital stock changes over time as Jorgenson assumed, the user cost of
capital includes the capital loss (or capital gain) realized on holding the stock.
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3 The Model With Investment Frictions

In this section we summarize the analysis provided by Bertola and Caballero
(1994) for the case of irreversible investments. We then proceed for the
case of costly reversible investments. Both cases allow closed form solutions
for the optimal investment policy. We will provide a more straightforward
derivation of the optimal policy on costly reversibility than was o¤ered by
Abel and Eberly (1996).

Irreversible investments

Irreversible investment can be characterized by the constraint dGt � 0. We
use the dynamic programming to solve this problem.
The Hamilton-Jacobi-Bellman equation of this problem takes the form

rV (Kt; Zt) dt = max
fdGt�0g

fK�
t Ztdt� PdGt + Et [dV (Kt; Zt)]g ; (13)

in which Et [dV ] denotes the in�nitessimal generator applied on V (Kt; Zt).
The left-hand side of equation (13) is the required return on the �rm. The
right-hand side of (13) is the maximized expected return consisting of net
cash �ow plus the expected change in the value of �rm. Using Itô�s lemma
we obtain

rV (Kt; Zt) dt = max
fdGt�0g

f(VK � P ) dGt +K�
t Ztdt� �KtVKdt

+�ZtVZdt+
1

2
�2Z2t VZZdt

�
: (14)

The inequality dGt � 0 requires the complementary slackness condition

VK � P

�
� 0 8t;
= 0 8t : dGt > 0

(15)

This implies that the shadow price of capital, or the marginal valuation of
capital, should never be allowed to exceed its price P .
Adopting this condition (14) reduces to

rV (Kt; Zt) = K�
t Zt � �KtVK + �ZtVZ +

1

2
�2Z2t VZZ : (16)
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Since this equation holds identically along the optimal path, and can be
di¤erentiated term-by-term with respect toKt , taking the partial derivatives
of both sides of (16) by Kt yields

rVK = �K��1Z � �VK � �KVKK + �ZVKZ +
1

2
�2Z2VKZZ : (17)

De�ning the shadow price of capital by

v (K;Z) � VK (K;Z) ;

(17) is

(r + �) v = �
�
Z=K1���� �KvK + �ZvZ +

1

2
�2Z2vZZ : (18)

It turns out that v (K;Z) depends on (K;Z) through

y � Z1=(1��)

K
: (19)

Expressing v (K;Z) � q (y) the partial di¤erential equation (18) becomes an
ordinary di¤erential equation of the form

�2

2 (1� �)2
y2q00 (y) +

�
� +

�

1� �
+

��2

2 (1� �)2

�
yq0 (y)

� (r + �) q (y) = ��y1�� (20)

In addition to satisfying the di¤erential equation (20), q (y) must satisfy
the boundary conditions. Optimal investment is zero when the shadow price
of capital, q (y) ; is less than the price of the capital stock P . Condition (15)
requires that the �rm should undertake positive gross investment only if q (y)
reaches P . The trigger value of y, which we denote by yG, is given by the
smooth-pasting condition

q (yG) = P (21)

and the high-contact condition

q0 (yG) = 0: (22)

Figure 1 illustrates the nature of the shadow price, q (y), corresponding to
the optimal solution10. The complementary slackness condition (15) requires

10It is natural to expect that q (y) increases in y. This is con�rmed by the closed-form
solution provided below.
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that the optimal policy should prevent q (y) from ever exceeding P and should
involve no gross investment, dGt = 0, until q (y) reaches the triggered value
P . The latter requirement generates the di¤erential equation (20). The
smooth-pasting condition guarantees that if the boundary is reached at time
t, the shadow price of capital, i.e., the value of additional unit of capital
stock, will equal its cost, P . The high-contact condition ensures that the
shadow price of capital does not change when investment is non-zero11.

Figure 1. Shadow price of capital (irreversible investment)

The optimal frictionless capital stock was given by the function KJ (Zt) ;
only dependent on the prevailing business condition, Zt. In contrast, if the in-
vestment is irreversible, the optimal capital stock becomes history-dependent.
Figure 2 illustrates the �rm�s optimal investment policy. Using the trigger
value, yG; de�ne function KG (Zt) by

KG (Zt) �
1

yG
Z
1=(1��)
t 8t (23)

Denote the currently installed capital stock by K� and the let Z� denote the
unique solution to KG (Z�) = K�. Then the optimal investment is given by
the following rule: . If Zt > Z� invest immediately so as to obtain Kt =
KG (Zt); otherwise Kt should be allowed to depreciate. The condition Zt >
Z� re�ects an insu¢ cient capital: The installed capital is too small relative
to the �rm�s anticipation of the current and future business conditions12. The
�rm �nd herself stuck with excessive stock of capital when Zt < Z�.

11See Dumas (1991) and Abel and Eberly (1996) for a presentation and economic inter-
pretations of the smooth-pasting and high-contact conditions below.
12Note that yG re�ects the future anticipations, in particular the volatility parameter

�, as will be shown in (28) and (30).
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Figure 2. Optimal investment policy (irreversible investment)

The general solution to (20) is given by

q (y) = �Hy1�� + �HC1y
�1 + �HC2y

�2 ; (24)

where
H � 1

r + �� � �
(25)

and �1; �2 are the roots of the characteristic equation

�2

2 (1� �)2
x (x� 1) +

�
� +

�

1� �
+

��2

2 (1� �)2

�
x� (r + �) = 0 (26)

Since r + � > 0 this quadratic equation has two roots of opposite sign.
Since Z = 0 is absorbing for the fZ(t)g process, it must be the case that
limy!0 q(y) = 0, to imply that only the positive root need be considered.
Accordingly, we have

q (y) = �Hy1�� + �HCy� 8y � yG; (27)

where and � is the positive root of (26), and B is a constant of integration.
Note that � > 1 can be easily shown from (26) as (12) holds by assumption.
As shown in Appendix A, the solution of (B; yG) that satisfy (21) and

(22) turns out

yG =

�
cP

�

�1=(1��)
(28)

C = �1� �

�

1

y
��(1��)
G

; (29)
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where
c � r + � +

1

2 (1� �)
�2�: (30)

From (23) the desired level of capital is given by

KG (Zt) =
� �
cP

�1=(1��)
Z
1=(1��)
t : (31)

Since c � r + �, comparing (9) and (23) we �nd

KG (Zt) � KJ (Zt) 8Zt; (32)

with equality holding when � = 0. The desired capital with irreversible in-
vestments is no larger than the optimal capital with reversibility. Intuitively,
when capital once acquired cannot be resold again, the �rm should be more
prudent in investment13. If � = 0 and the �rm can perfectly anticipate the
future, irreversibility plays no role and the optimal investment coincides with
the frictionless case.
The shadow price of capital is given by

q (y) = �Hy1�� �H
� (1� �)

�

1

y
��(1��)
G

y� (33)

Integrating (33) the value of the �rm under the optimal investment policy is
given by14

V (Kt; Zt) = HK�
t Zt +H

� (1� �)

� (� � 1)
1

y
��(1��)
G

 
Z
1=(1��)
t

Kt

!�
Kt: (34)

13Bertola and Caballero (1994) shows that on average the capital stock under investment
irreversibility is actually higher than the capital stock under frictionless investment (see
footnote 3).
14This equation (34) shows that the value of the �rm consists of two terms. The �rst

term is the present value of expected operating cash�ow if the �rm operates with installed
capital without additional investment. The second term is the value of the growth option,
i.e. the option to increase the capital stock in the future. Note that both terms are
positive. The marginal value of the �rst term in (33) is positive, but the marginal value of
the second term is negative, since addition of capital marginally kills the growth option.
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Costly reversible investments

Costless reversible investment and irreversible investment are opposite ends
of a spectrum in which there is costly reversibility. Abel and Eberly (1994,
1996) studied investment with costly reversibility by introducing a di¤erence
between the purchase price and the sale price of capital.
When investment is costly reversible, �rm�s optimization problem is re-

de�ned as follows:

V (K0; Z0) � max
fdGt�0;dCt�0g

E0

�Z 1

0

e�rt fK�
t Ztdt� PUdGt � PLdCtg

�
subject to

dKt = ��Ktdt+ dGt + dCt:

In this formulation fGtg denotes the cumulation of all purchases of capital
and fCtg denotes the cumulation of all sales of capital up to time t. The
increment dGt is restricted to be nonnegative, and the increment dCt is re-
stricted to be nonpositive. The purchase price of capital, PU , and the sales
price of capital, PL, are assumed to be constants. The wedge between the
two prices could arise from transaction costs or from the �rm-speci�c nature
of capital. This model includes the Jongenson�s case (PU = PL) and the
irreversible investment case (PL = 0).
The Hamilton-Jacobi-Bellman equation becomes

rV (Kt; Zt) dt = max
fdGt�0g

(VK � PU) dGt + max
fdCt�0g

(VK � PL) dCt

+K�
t Ztdt� �KtVKdt+ �ZtVZdt+

1

2
�2Z2t VZZdt: (35)

The inequality dGt � 0 requires the complementary slackness condition

VK � PU

�
� 0 8t;
= 0 8t : dGt > 0:

The inequality dCt � 0 requires the complementary slackness condition

VK � PL

�
� 0 8t;
= 0 8t : dCt > 0:

These conditions imply thatmaxfdGt�0g (VK � PU) dGt = maxfdCt�0g (VK � PL) dCt =
0. Applying these conditions to (35) we �nd that the shadow price of capital,
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q (y), should satisfy the same di¤erential equation (20) that we obtained for
the case of irreversible investments. We also have

PL � q (y) � PU (36)

In this case the optimal investment policy becomes a two-trigger rule:
buy capital when q (y) touches the level equal to PU ; sell capital when q (y)
touches the level equal to PL; no investment action when q (y) is between PU
and PL. The values of y which trigger purchase of capital and sales of capital
are denoted by yG and yC , respectively. These trigger values are determined
by the smooth-pasting condition

q (yC) = PL and q (yG) = PU ; (37)

and the high-contact condition

q0 (yC) = 0 and q0 (yG) = 0: (38)

Figure 3 exhibits the shape of q (y).

Figure 3. Shadow price of capital (costly reversibility)

Using the trigger values yG and yC de�ne functions KG (Zt) and KC (Zt)
by

KG (Zt) �
1

yG
Z
1=(1��)
t ; KC (Zt) �

1

yC
Z
1=(1��)
t 8t (39)

Figure 4 illustrates the optimal investment policy. Let ZG� denote the unique
solution to KG

�
ZG�
�
= K�, in which K� is the current capital stock. Sim-

ilarly let ZC� denote the unique solution to KC
�
ZC�
�
= K�. The optimal

14



investment is given by the following rule: (i) If Zt > ZG� invest immediately
so as to obtain Kt = KG (Zt); (ii) If Zt < ZC� sell capital immediately so as
to obtain Kt = KC (Zt); (iii) otherwise no investment action and let capital
depreciate.

Figure 4. Optimal investment policy (costly reversibility)

We summarize the closed-form solution below15. Let �1 > 1 and �2 < 0
denote the two roots of the characteristic equation (26). De�ne functions
� (x) and � (x) by

� (x) � x�1 � x1��

x�1 � x�2
; (40)

� (x) � H

�
1� (1� �)

�1
[1� � (x)]� (1� �)

�2
� (x)

�
: (41)

Then yG and yC are obtained by

�y1��G =
PU

� (G�1)
; �y1��C =

PL
� (G)

; (42)

where G � yG=yC is the solution to

G1��
� (G�1)

� (G)
=
PU
PL

: (43)

Abel and Eberly (1996) showed that even a tiny wedge between the purchase
price and the sale price of capital produces a substantial range of inaction.

15See Apendix B for an alternative and more straightforward derivation of the solution.
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The shadow price of capital is given by

q (y) = �Hy1���H� (1� �)

�1
[1� � (G)] y

(1��)��1
C y�1�H� (1� �)

�2
� (G) y

(1��)��2
C y�2 :

(44)
Integrating (44) the value of the �rm under the optimal investment policy is
given by16

V (Kt; Zt) = HK�
t Zt +H

� (1� �)

�1 (�1 � 1)
[1� � (G)]

1

y
�1�(1��)
C

 
Z
1=(1��)
t

Kt

!�1
Kt

�H � (1� �)

�2 (1� �2)
� (G) y

(1��)��2
C

 
Z
1=(1��)
t

Kt

!�2
Kt: (45)

4 The Model With No External Financing

We now extend the foregoing analysis to the �rm�s optimal investment sub-
ject to �nancial frictions. To contrast the impact of �nancial frictions upon
�rm�s investment to that of investment frictions we assume frinctionless in-
vestment, i.e., the �rm can purchase or sell the capital stock at a constant
price, P .
Assume that the �rm cannot �nance externally. She has the choice be-

tween earnings retention and dividends. All retained earnings are used to
purchase capital stock. Thus investment decision is equivalent to dividend
decision.
The decision problem is formulated as follows:

V (K0; Z0) � max
fdDt�0g

E0

�Z 1

0

e�rtdDt

�
(46)

subject to (3) and
K�
t Ztdt = dDt + PdGt; (47)

16As in (34) the �rst term is the value of maintaining the current operation and the
second term is the value of the growth option. The third term is the value of the aban-
donment option, i.e. the option to sell the capital stock in the future. Note that all terms
are positive. In contrast, the marginal value of the second term in (44) is negative and the
marginal value of the third term is positive. To verify these signs note that 0 < � (G) < 1:
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where fDtg denotes the cumulation of all dividends up to time t, which is
restricted to have nonnegative increments (dDt � 0). If we remove the non-
negativity constraint on fdDtg, we return to the Jorgenson�s case. In this
regard the Jorgenson�s case is more properly called the Modigliani-Miller
case. "Irreversibility" in �nancing means that the �rm may return cash to
stockholders by paying dividends or buying back shares but cannot obtain
additional cash from stockholders by issuing new shares. This �nancial con-
straint generates an optimal dynamic dividend policy which is nonlinear and
path-dependent.

Solving the problem

The Hamilton-Jacobi-Bellman equation for this optimization problem is

rV (Kt; Zt) dt = max
fdDt�0g

fdDt + Et [dV (Kt; Zt)]g : (48)

Substituting (47) into (3) we can cancel the term dGt and get

dKt = ��Ktdt+
1

P
(K�

t Ztdt� dDt) :

Using Itô�s lemma, we obtain

rV (Kt; Zt) dt = max
fdDt�0g

��
1� VK

P

�
dDt

+VK

�
��Ktdt+

1

P
K�
t Ztdt

�
+ �ZtVZdt+

1

2
�2Z2t VZZdt

�
:

The inequality dDt � 0 requires the complementary slackness condition

1� VK
P

�
� 0 8t;
= 0 8t : dDt � 0

(49)

It enforces the shadow price of installed capital never to fall below the price
of capital P .
Adopting this condition the Hamilton-Jacobi-Bellman equation reduces

to

rV (K;Z) = VK

�
��K +

1

P
K�Z

�
+ �ZVZ +

1

2
�2Z2VZZ (50)
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De�ning v (K;Z) � VK (K;Z) ; y � Z1=(1��)=K, and q (y) � v (K;Z) as
before, we can derive the following equation for q (y) (see Appendix C for
derivation):

�2

2 (1� �)2
y2q00 (y) +

�
� +

�

1� �
+

��2

2 (1� �)2
� 1

P
y1��

�
yq0 (y)

�
�
r + � � �

P
y1��

�
q (y) = 0: (51)

This second-order linear di¤erential equation is very similar to (20), except
that it is a homogeneous equation. On the other hand, the power function
y1�� which was in the non-homogeneous term is now in the coe¢ cient of
q0 (y) and q (y). This prevents a closed-form expression for q (y).

The nature of optimal investment and dividend policy

The �rm cannot raise additional capital from her stockholders. This �nancial
constraint motivates the �rm to store capital by restricting dividends. The
complementary slackness condition (49) prevents q (y) from falling below P .
Figure 5 illustrates the shape of q (y). The optimal dividend policy directs to
pay dividends only when the shadow price drops to P . Otherwise, the �rm
should grow by investing all of the earned income. Distributing dividends
by selling one unit of capital stock (or by distributing earnings in an amount
equal to buying one unit of capital stock) should be weighted against losing
the marginal future income. If q (y) > P , the stockholders�opportunity cost
of losing marginal future income outweights the bene�t of receiving dividends.
The �rm should pay dividends only when q (y) = P .
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Figure 5. Shadow price of capital (no external �nancing)

Let ydiv denote the value of y which triggers dividend payments. At this
boundary we have the smooth-pasting condition

q (ydiv) = P; (52)

and the high-contact condition

q0 (ydiv) = 0: (53)

Figure 6 illustrates the �rm�s optimal dividend and investment policy.
Using the trigger value ydiv; de�ne Kdiv (Zt) by

Kdiv (Zt) �
1

ydiv
Z
1=(1��)
t 8t (54)

For the current installed capital stock, K�, let Z� denote the unique solution
to Kdiv (Z�) = K�. Then the optimal decision rule is the following: If Zt >
Z�, retain all her earnings and invest in the capital stock; if Zt � Z�, sell
capital stock and distribute the proceeds as dividends until Kt = Kdiv (Zt)
is realized.
Note that in the case of Zt > Z� the new level of capital stock may be

above or below Kdiv (Zt), depending on the amount of the current income.
It is when the �rm has an excessive capital stock (relative to the current
and anticipated future business conditions) that the �rm should distribute
returns to her stockholders.
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Figure 6. Optimal investment policy (no external �nancing)

Since no closed-form solution is available we will show how the optimal
policy operates by solving the stochastic dynamic programming problem nu-
merically in section 6.

5 The Model With Costly Equity Finance

In this section we assume that the �rm can raise additional capital by issuing
new shares. This assumption relaxes the assumption of irreversible �nancing.
As illustrated in Introduction we assume that a �nancing cost of � per dollar
is incurred whenever the �rm �nances by issuing shares.
The �rm�s optimization problem is given by

V (K0; Z0) � max
fdDt�0;dEt�0g

E0

�Z 1

0

e�rt (dDt + dEt)

�
subject to (3) and

K�
t Ztdt = dDt + (1� �) dEt + PdGt; (55)

where fEtg denotes the cumulation of all equity �nance up to time t, which
is restricted to have nonpositive increments (dEt � 0).
The Hamilton-Jacobi-Bellman equation for this problem is

rV (Kt; Zt) dt = max
fdDt�0g

�
1� VK

P

�
dDt + max

fdEt�0g

�
1� (1� �)

VK
P

�
dEt

+VK

�
��Ktdt+

1

P
K�
t Ztdt

�
+ �ZtVZdt+

1

2
�2Z2t VZZdt:

20



The inequality dDt � 0 requires (49). The inequality dEt � 0 requires

1� (1� �)
VK
P

�
� 0 8t;
= 0 8t : dEt < 0:

(56)

Adopting these conditions the Hamilton-Jacobi-Bellman equation reduces
again to the di¤erential equation (51) for q (y). We also obtain the inequality

P � q (y) � P

1� �
: (57)

The nature of optimal investment and �nancing policy

When the �rm can raise capital by issuing new shares with issuing cost
� > 0, the optimal policy becomes a two-trigger rule: pay dividends (or
repurchase shares) when q (y) touches the level equal to P ; issue new shares
when q (y) touches the level equal to P= (1� �); no �nancing action when
q (y) is between P and P= (1� �). Denote the trigger values by ydiv for
dividend payments, and by yissue for issuing shares. These trigger values are
determined by the boundary conditions (52), (53), and

q (yissue) =
P

1� �
; q0 (yissue) = 0; (58)

as exhibited in Figure 7.

Figure 7. Shadow price of capital (costly equity �nance)

As in the previous section, if q (y) > P then the stockholders�opportunity
cost of losing marginal future income outweights the bene�t of receiving
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dividends. If q (y) < P= (1� �), then increasing one unit of capital stock by
issuing new shares will hurt the shareholders since the marginal contribution
to the �rm value is lower than the shareholders�cash contributions per unit
of capital. Thus the �rm should remain inactive in cashing-in or cashing-out
the stockholders if the shadow price of capital is in (P; P= (1� �)) :
Figure 8 illustrates the �rm�s optimal �nancing and investment policy.

Together with Kdiv (Zt) given by (54) de�ne K issue (Zt) by

K issue (Zt) �
1

yissue
Z
1=(1��)
t 8t (59)

Let Z issue� denote the unique solution to K issue
�
Z issue�

�
= K� and let Zdiv�

denote the unique solution to Kdiv
�
Zdiv�

�
= K�, in which K� is the current

capital stock. The optimal decisions are given by the following rule: (i)
If Zt > Z issue� issue new shares to �nance investment immediately so as to
obtain Kt = K issue (Zt); (ii) If Zt < Zdiv� sell capital immediately so as to
obtain Kt = Kdiv (Zt) and distribute the sales proceeds as dividends ; (iii) if
Zdiv� � Z � Z issue� there should be no external �nance nor dividend payouts
and the �rm should invest all of the current income for capital expansion.
Note that case (i) may involve no equity �nance if the current income is
su¢ cient to realize Kt = K issue (Zt) :

Figure 8. Optimal �nancing policy (costly equity �nance)

When the �nancing cost � = 0, we have the Jorgenson/Modigliani-Miller
case. In this case (57) requires q (y) = P; 8y, i.e., the shadow price of
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capital always equals the price of capital stock. It is worth noting that if we
substitute q0 (y) � q00 (y) � 0 into (51) we obtain

r + � =
�

P
y1��; (60)

which coincides with (8)17. The two curves in Figure 8 collapses to a single
curve, and it coincides with the Jorgenson�s desired capital KJ (Zt). The
capital should adjust immediately to this level independent of history. The
amount of dividends or equity �nance is determined by such requirement.
That is, �nancing decisions are completely subjected to the investment deci-
sions if �nancing is frictionless.
De�ne the variable yJ by

yJ �
�
(r + �)P

�

�1=(1��)
(61)

Comparing (61) with (28) we �nd that

yG � yJ (62)

holds. If investment is irreversible, the �rm has strong disincentive to over-
invest. This is manifested in (62), or equivalently KG (Zt) � KJ (Zt) for all
Zt (see (32)).
We can extend this observation. If accessibility to the equity market for

external �nancing is absent, the �rm has strong incentive to accumulate cap-
ital more than is necessary for producing goods to ful�ll the current demand.
This intuition suggests the following inequality

ydiv � yJ , (63)

or equivalently, Kdiv (Zt) � KJ (Zt) :There is an alternative root to prove
(62), by which we can also prove the inequality (63).
Recall the di¤erential equation (20) for q (y). As explained above the �rst

term and the second term of the left-hand-side are both zero at y = yJ . In
contrast the �rst term is negative (q00 (yG) < 0 as one can see from Figure 1)
and the second term is zero at y = yG. Observe that q (yJ) = P (Jorgensonian
shadow price) and q (yG) = P (the smooth-pasting condition), implying that

17Naturally the same result obtains when we substitute q0 (y) � q00 (y) � 0 into (20).
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the third term is identical at yJ and yG. Using these properties one can easily
show (63) by contradiction.
Similarly on the di¤erential equation (51) we have q00 (ydiv) > 0 (see Figure

5), q0 (ydiv) = 0, and q (ydiv) = P . From this we can prove the inequality (63)
by contradiction.
Thus the inequality

KG (Zt) � KJ (Zt) � Kdiv (Zt) (64)

follows.

6 Numerical Solution of the Problem

The models of Section 3 have closed-form solutions, but the models of sec-
tion 4 and section 5 do not. Hence we solved all the stochastic dynamic
programming problems numerically. Namely, we transformed the problem to
a discrete-time, discrete-state Markov decision problem and used the method
of value iteration to obtain the optimal solution18.
We set the risk-free interest r = 5%, the depreciation rate � = 10%; � =

0:7; � = 2% and � = �2=2. For the model of section 5 we set the equity is-
suance cost at � = 1%. The algorithm produces the value function V (K ;Z)
and the values of all decision variables at each node of (K;Z). We let ln (Z)
to have 800 points of support in [�100�; 100�]. The capital stock K lies
in the set

�
�K; �K (1� ��t) ; �K (1� ��t)2 ; :::; �K (1� ��t)500

�
; where we set

�t = 0:2 and the maximum allowable capital stock, �K; is determined by

@�
�
K; �Z

�
@K

� � = 0; (65)

in which �Z is the maximum grid value of Z. We used Gauss-Hermite quada-
ture to evaluate the conditional expectation of next period�s �rm value in
implementing the value iteration.

18We double-checked our result by comparing with the solution that we obtained by
numerically solving the second-order linear di¤erential equations of (20) or (51).
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Irreversible Investment and Costly Reversible Investment

Figure 9. Typical investment path (irreversible investment and costly
reversibility)

Figure 9 exhibits a typical path of optimal capital stock when investment
is costly reversible. The lower dotted line shows the path ofKG (Zt), the level
of capital that triggers buying additional capital, while the upper dotted line
shows the path of KC (Zt), the level of capital that triggers selling capital.
If the installed capital stock is strictly inside these trigger bounds, the �rm
takes no investment action and the capital stock is left to depreciate. Note
that these trigger bounds �uctuate according to the movement of Zt. The
bold dotted line shows the optimal path of capital stock.
It is interesting and very much worth a formal proof that the level of buy

trigger is independent of the selling price of capital stock19. This further
implies that trigger level of buying capital, KG (Zt), remains the same when
we move to the case of irreversible investment. We superimpose the optimal
solution for the irreversibility case on the same �gure. The straight line shows
the optimal path of capital stock when investment is irreversible. The path
of installed capital stock is higher for this case than when the case of costly

19We believe that this is a fairly general property of optimization problems that involve
two-sided trigger. We found no reference to this property in Abel and Eberly (1994, 1996)
and in related literature. The proof is left to the readers.
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reversibility on occasions when costly reversibility enforces the �rm to sell
capital.

No equity �nance and costly equity �nance

Figure 10. Typical investment path (no equity �nance and costly equity
�nance)

Figure 10 exhibits a typical path of capital stock when additional equity
�nance is available but costly. Again the optimal strategy involves a trigger
rule, but in this case an action means cash transactions between the �rm
and the stockholders. The lower dotted line shows the path of K issue (Zt),
the level of capital that triggers issuing new shares, while the upper dotted
line shows the path of Kdiv (Zt), the level of capital that triggers dividend
payouts, or repurchase of shares. If the installed capital stock is strictly inside
these trigger bounds, the �rm takes no �nancing action, which means that
the �rm uses all internal funds for buying capital stock. The bold dotted line
shows the optimal path of capital stock.
Again we �nd that the level capital that triggers dividend payouts is

independent of the equity �nancing cost, �. This in turn implies that the
level of capital that triggers dividend payouts, Kdiv (Zt), remains the same
when we move to the case of no equity �nance. We superimpose this case of
no equity �nance on the same �gure. In this case we have only the dividend-
trigger as the �rm cannot issue shares. The straight line shows the optimal
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path of capital stock when equity �nance is unavailable. The path of installed
capital stock is lower when equity �nance is unavailable than when it is
available on occasions when the growing demand enforces the �rm to issue
shares for further accumulation of capital.

7 A Model With Changing Growth Rate

We have worked with the assumption that the exogenous process Zt describ-
ing the business conditions �uctuates with constant expected rate of growth
and constant volatility. In this section we propose an alternative model of
Zt which may make our model more realistic.
Assume that fZtg follows the process

dZt = �tZtdt; (66)

in which �t follows an Ornstein-Uhlenbeck mean-reverting process

d�t = (� � ��t) dt+ ��dWt: (67)

where �, � and �� are constants and fWtg is a standard Brownian motion.
The value of (�=�) is the long-run rate of growth and the parameter � in-
dicates the speed of adjustment in the mean-reversion:We only consider the
case with investment irreversibility (dGt � 0), i.e., the �rst model of Section
3. The extension of the following analysis to the other three cases is obvious.
Besides Kt and Zt, we have an additional state variable �t in the set of

state variables, so that the value function is given by V (Kt; Zt; �t). Applying
Itô�s lemma the Hamilton-Jacobi-Bellman equation (13) becomes

rV (Kt; Zt; �t) dt = max
fdGt�0g

(VK � P ) dGt +K�
t Ztdt� �KtVKdt+ �tZtVZdt

+(� � ��t)V�dt+
1

2
�2�V��dt: (68)

De�ning y � Z
1

1��=K as before and � (y; �) (y; �) � VK (K;Z; �), we can re-
peat the same process as in section 3 and obtain the linear partial di¤erential
equation

�2�
2
��� + (� � ��)�� +

�
� +

�

1� �

�
y�y � (r + �)� = ��y1��: (69)
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The complementary slackness gives the inequality constraint � (y; �) � P for
all (y; �) and dGt > 0 only when � (y; �) = P .
One can show that the solution to (69) is given in an additive form

� (y; �) = q (y) +  (�) (70)

where q (y) satis�es�
� +

�

1� �

�
yq0 (y)� (r + �) q (y) = ��y1�� (71)

and  (�) satis�es

�2�
2
 00 (�) + (� � ��) 0 (�)� (r + �) (�) = 0: (72)

These two ordinary di¤erential equations together with the smooth-pasting
and high-contact conditions leads to the optimal solution of the problem.
The challenge of solving this free-boundary problem is left to the readers.
Figure 11 illustrates �rm�s optimal investment policy.

Figure 11. Optimal investment policy (a model with changing growth rate)

The curve exhibited on this state space of (y; �) gives the trigger boundary,
which is the locus of points for which the equality q (y) +  (�) = P holds.
The optimality condition requires that the �rm should maintain the shadow
price of capital within a range not greater than P . If the current state is to
the south-west of this curve, the �rm should not invest in the capital stock
and distribute all of the current income as dividends. If the state touches
the curve, the �rm should invest immediately.
The desired level of capital stock is given by KG

t (Zt; �t) = � (�t)Z
1=(1��)
t ,

in which � (�t) is some increasing function of �t. Let K� denote the install
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capital stock and let Z� � (K�=� (�t))
1��. Then Zt > Z� re�ects an in-

su¢ cient capital: The installed capital is too small relative to the �rm�s
anticipation of the current and future business conditions. The �rm should
invest immediately to obtain the desired level of capital stock. On the other
hand, when Zt < Z� the �rm �nds herself stuck with excessive stock of
capital and hence distribute all of the current income to stockholders. It
conforms to intuition that the no-investment zone for Zt gets smaller as the
anticipated short-run growth rate �t increases:

8 Conclusion

In this paper we have shown that the theory of investment under irreversibil-
ity and costly reversibility can be naturally extended to construct a dynamic
theory of �rm�s �nancing decisions. "Irreversibility" in our model meant
that the �rm may buy back shares but cannot issue new shares. "Costly
reversibility" meant that the �rm can issue shares at some cost. We have
shown that �nancial frictions force the shadow price of capital to satisfy a
second-order ordinary linear di¤erential equation, which is "dual" to the one
generated by investment frictions. Although the dual di¤erential equation
does not have a closed-form solution, we could characterize the nature of the
optimal �nancing policy analytically. We also provided some results which
compare the impact of �nancing frictions on investment behavior to that of
investment frictions.
We assumed no investment frictions to contrast the role of �nancing fric-

tions to investment frictions. But, since the �rm can buy or sell her capital
stock without any frictions in our model, the capital stock got the additional
role of providing the vehicle of corporate savings. An obvious extension is
to include transactions with banks, i.e., bank savings and borrowings at dif-
ferent rates of interest20. A subsequent paper will show how one can extend
the present analysis to include these additional spectrum of �nancing.
To Include investment frictions into the model and investigate the inter-

action between the two would be another topic of interest. Adding �xed

20If we allow that the �rm can save or borrow at the same rate of interest (i.e. "re-
versible" �nancing in regard to bank transactions), the frictions on equity �nancing plays
no essential role and we go back to the Modigliani-Miller paradigm in which �nancing de-
cisions are irrelevant. Thus we need to model di¤erential rates of interest between saving
and borrowing.
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and/or nonlinear adjustment cost in �nancing and investment may bring the
prediction of the model closer to reality in corporate investment and �nancing
dynamics.

Appendix A. Derivation of the solution for
the case of irreversible investment

In this appendix we show that the parameters C and yG in (27) should be
given by (28), (29), and (30) to satisfy the boundary conditions (21) and
(22).
Using (21) and (22), we get

�Hy1��G + �HCy�G = P (A1)

and
� (1� �)Hy��G + �HC�y��1G = 0: (A2)

Solving these two equations we �nd

yG =

�
�

� � (1� �)

P

�H

�1=(1��)
(A3)

and (29). We further show that (A3) has a simpler expression of (28). Let �
be a solution to a0x2 + b0x+ c0 = 0 for an arbitrary pair (a0; b0; c0). Rewriting
this equation as

(x� (1� �))

�
a0x� c0

1� �

�
= �

�
(1� �) a0 + b0 +

c0

1� �

�
x

gives the expression

x� (1� �)

x
= �

(1� �) a0 + b0 + c0

1��

a0x� c0

1��
:

In our case, � is the positive root of the characteristic equation (26) and thus

� � (1� �)

�
= �

(1� �) �2

2(1��)2 +
h
� + 1

1��

�
�� �2

2

�i
� 1

1�� (r + �)

�2

2(1��)2� +
1

1�� (r + �)

=
1�

r + � + 1
2(1��)�

2�
�
H
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Insert this relationship into (A3) to get

yG =

��
r + � +

1

2 (1� �)
�2�

�
PH

�H

�1=(1��)
=

�
cP

�

�1=(1��)
;

where c is given by (30).

Appendix B. Derivation of the solution for the
case of costly reversible investment

We provide an alternative and more straightforward derivation of the optimal
solution for the case of costly reversible investment, which supplements Abel
and Eberly (1996).
We know that the general solution to the second-order linear di¤erential

equation (20) is given by (24) for yC � y � yG, where H is de�ned by (25)
and �1, �2 are the roots of the characteristic equation (26) with �1 > 1 and
�2 < 0:
The constants (C1; C2; yC ; yG) in q (y) are determined by the four bound-

ary conditions (37) and (38):

y1��C + C1y
�1
C + C2y

�2
C =

PL
�H

(B1)

y1��G + C1y
�1
G + C2y

�2
G =

PU
�H

(B2)

(1� �) y1��C + C1�1y
�1
C + C2�2y

�2
C = 0 (B3)

(1� �) y1��G + C1�1y
�1
G + C2�2y

�2
G = 0: (B4)

As the �rst step, using (B3) and (B4) we express (C1; C2) as functions of
(yC ; yG). De�ning

G � yG
yC
; (B5)

we obtain

C1 = �(1� �)

�1

G1�� �G�2

G�1 �G�2
y
(1��)��1
C ;

C2 = �(1� �)

�2

G�1 �G1��

G�1 �G�2
y
(1��)��2
C :
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De�ne function � (x) by

� (x) � x�1 � x1��

x�1 � x�2
; (B6)

which implies

1� � (x) =
x1�� � x�2

x�1 � x�2
: (B7)

Using � (x) we can rewrite C1 and C2 as

C1 = �(1� �)

�1
[1� � (G)] y

(1��)��1
C (B8)

C2 = �(1� �)

�2
� (G) y

(1��)��2
C : (B9)

The conditions (B1) and (B2) then determines yC and yG. Substituting
(B8) and (B9), the left-hand-side of (B1) is

y1��C

�
1� (1� �)

�1
[1� � (G)]� (1� �)

�2
� (G)

�
� y1��C

� (G)

H

if we de�ne

� (x) � H

�
1� (1� �)

�1
[1� � (x)]� (1� �)

�2
� (x)

�
: (B10)

Thus (B1) reduces to
�y1��C � (G) = PL: (B11)

The left-hand-side of (B2) is

y1��C G1��
�
1� (1� �)

�1
[1� � (G)]G�1�(1��) � (1� �)

�2
� (G)G�2�(1��)

�
Using the identities

[1� � (x)]x�1�(1��) � 1� �
�
x�1
�
;

� (x)x�2�(1��) � �
�
x�1
�
;

it is rewritten as

y1��C G1��
�
1� (1� �)

�1

�
1� �

�
G�1

��
� (1� �)

�2
�
�
G�1

��
:
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Hence the condition (B2) reduces to

�y1��G �
�
G�1

�
= PU : (B12)

Dividing both sides of (B11) and (B12) generates an equation for G :

G1��
� (G�1)

� (G)
=
PU
PL

: (B13)

Substituting (B8) and (B9) back into (24), we obtain the expression (44)
for the shadow price of capital.

Appendix C. Derivation of the di¤erential equa-
tion (51)

Taking the partial derivatives of both sides of (50) in K, we get

rVK =
��
P
K��1Z � �

�
VK +

�
1

P
K�Z � �K

�
VKK

+�ZVKZ +
1

2
�2Z2VKZZ : (C1)

Using v (K;Z) � VK (K;Z) this can be rewritten as

0 = �
�
r + � � �

P
K��1Z

�
v +

�
1

P
K�Z � �K

�
vK

+�ZvZ +
1

2
�2Z2vZZ : (C2)

De�ning

y � Z1=(1��)

K
;

and letting v (K;Z) � q (y), the partial derivatives appearing in (C2) are:

vK (K;Z) = q0 (y)
@y

@K
= �yq0 (y)K�1

vZ (K;Z) = q0 (y)
@y

@Z
=

1

1� �
q0 (y) y�K��1

vZZ (K;Z) =
1

1� �
K��1

�
q00 (y) y�

@y

@Z
+ �q0 (y) y��1

@y

@Z

�
=

1

(1� �)2
K2��2 �q00 (y) y2� + �q0 (y) y2��1

	
:
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If we substitute these equalities into (C2) we obtain

0 = �
�
r + � � �

P
y1��

�
q (y)�

�
1

P
y1�� � �

�
yq0 (y) +

�

1� �
yq0 (y)

+
�2

2 (1� �)2
�
y2q00 (y) + �yq0 (y)

	
;

which is rewritten as (50).
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