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1. Introduction

This paper evaluates the impact of internal consumption habit on the empirical fit of new Key-

nesian dynamic stochastic general equilibrium (NKDSGE) models. Consumption habit is often superin-

duced in DSGE models to improve fit, but the role consumption habit has in a NKDSGE model is not

settled. For example, Del Negro, Schorfheide, Smets, and Wouters (2007) find that consumption habit

contributes to a NKDSGE model matching the hump-shaped response of output to a Taylor rule shock,

but Christiano, Eichenbaum, and Evans (2005) do not; instead they use a money growth shock.

This is not the case for real business cycle (RBC) models. Consumption habit is known to be

successful at closing the distance between RBC models and aggregate quantity and asset price moments

since the work of Boldrin, Christiano, and Fisher (2001).1 An explanation for this success, suggested

by Eichenbaum and Hansen (1990) and Heaton (1995), is that consumption habit is a real friction that

imposes costs when a household substitutes utility intertemporally.

We present an experiment using a log linearized Euler equation that studies the effects the utility

costs of internal consumption habit have in inducing intertemporal complementarity in consumption

growth from date t to date t+j, j > 1, instead of intertemporal substitution in the level of consumption

between dates t and t+1. The experiment shows that as internal consumption habit increases in

utility, the household reacts to a positive real interest rate shock by pushing the peak response in

its consumption growth from date t+1 to date t+j. The experiment also documents that frequency

by frequency the variance of consumption growth falls steadily across the entire spectrum holding

internal consumption habit fixed. As internal consumption habit increases, the spectral density (SD)

of consumption growth exhibits less and less amplitude frequency by frequency.2

Beyond this experiment, the implications of internal consumption habit for NKDSGE models are

studied using several population moments. Our analysis relies on population moments because, as

Geweke (2010) argues, confronting the predictive density of a DSGE model with a sufficiently large

vector of sample moments almost surely negates it. Geweke (2010) proposes the minimal econometric

interpretation (MEI) of DSGE models to address this problem. Under the MEI, priors on the DSGE model

yield a distribution for population moments, but neither for the actual data (i.e., the model’s likelihood)

1. Consumption habit is first grafted into a growth model by Ryder and Heal (1973). Nason (1988), Sundaresan (1989), and
Constantinides (1990) are early attempts at solving risk-free rate and equity premium puzzles with consumption habit. Pollak
(1976) shows that long-run utility with linear habit describes long-run behavior rather than long-run preferences. Rozen
(2010) gives an axiomatic treatment of linear intrinsic habit. An excellent survey of consumption habit in macro and finance
is Schmitt-Grohé and Uribe (2007); also see Nason (1997).
2. Otrok, Ravikumar, and Whiteman (2002) make a similar point using spectral utility analysis.
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nor for sample moments. We employ the MEI to evaluate 12 NKDSGE models on posterior and prior

population moments by adapting Bayesian Monte Carlo methods developed by DeJong, Ingram, and

Whiteman (1996), Geweke (1999), and McCausland (2004).3

This paper evaluates the fit of NKDSGE models with and without internal consumption habit

on permanent and transitory SDs of output and consumption growth. Our choice of these moments

is guided by earlier studies of the U.S. business cycle. Among others, Galí (1991) finds that the SD

of consumption growth is not flat, which violates the permanent income hypothesis (PIH). Cogley and

Nason (1995b) observe that RBC models cannot reproduce the SD of output growth because it peaks in

the business cycle frequencies. They show, along with Nason and Cogley (1994), that DSGE models fail

to duplicate output’s response to permanent and transitory shocks. Thus, we explore NKDSGE model

fit on moments known to have power to judge competing theories of the U.S. business cycle.

The identification of permanent and transitory SDs relies on output and consumption being

orthogonal to transitory nominal shocks in the long run. This long-run monetary neutrality (LRMN) re-

striction is used to identify posterior population SDs estimated from structural vector autoregressions

(SVARs) and prior population versions of the same moments that are generated by habit and non-habit

NKDSGE models. A NKDSGE model is evaluated by comparing its prior moments to the posterior mo-

ments. This comparison relies on the SVARs because these empirical models are used to compute the

prior moments on a NKDSGE model’s synthetic samples and posterior moments on the sample data.

We also study the impact various combinations of nominal frictions, monetary policy rules,

and internal consumption habit have on NKDSGE model fit. Motivation is provided by Christiano,

Eichenbaum, and Evans (CEE), Smets and Wouters (2007), and Dupor, Han, and Tsai (2009). CEE report

that a money growth shock is transmitted by sticky wages, but not by sticky prices. In contrast, Smets

and Wouters present evidence that sticky prices and wages have about the same effect on NKDSGE

model fit given that monetary policy is a Taylor rule. However, Dupor, Han, and Tsai obtain estimates

of a NKDSGE model identified by a productivity shock, instead of a Taylor rule shock, that point to

3. The MEI eschews estimation, but we recognize that estimating NKDSGE models with limited information estimators (LIEs)
and classical and Bayesian likelihood methods is useful. Nonetheless, estimation does not guarantee problem free evaluation of
NKDSGE models. For example, model misspecification is an issue for frequentists when evaluating NKDSGE models. Applying
a LIE to an incorrectly specified NKDSGE model yields estimates that are not robust to changing identification (or instruments),
as suggested by Dupor, Han, and Tsai (2009). A strength of Bayesian likelihood-based estimation is that it updates the priors of
NKDSGE model parameters, which is absent from the MEI of Geweke. Not updating priors can produce misleading measures of
model fit when these priors are badly constructed, but posterior distributions created by Bayesian likelihood-based estimation
suffer similar problems from poorly formed priors as discussed by Poirier (1998). Given these issues, we view the MEI as
providing analysis that complements studies that estimate NKDSGE models.
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flexible prices and durability in consumption rather than habit.

The Bayesian Monte Carlo experiments show that internal consumption habit improves the fit

of the NKDSGE models to the posterior SDs of output and consumption growth. However, this fit is

sensitive to (1) changes in the mix of nominal rigidities, (2) the choice of monetary policy rule, (3)

matching SDs on permanent total factor productivity (TFP) shocks, and (4) using the entire spectrum

rather than just the business cycle frequencies. These vulnerabilities reveal that the specification of

NKDSGE models is fragile.

The rest of the paper is constructed as follows. Section 2 discusses internal consumption habit

and NKDSGE models. Our approach to NKDSGE model evaluation is outlined in section 3. Results

appear in section 4. Section 5 concludes.

2. Internal Consumption Habit and NKDSGE Models

This section describes household preferences with internal consumption habit, studies the in-

ternal consumption habit propagation mechanism, and sketches the baseline NKDSGE model.

2.1 Internal consumption habit

Internal habit operates on lagged household consumption, unlike external habit, which assumes

that lags of aggregate consumption appear in utility; see Abel (1990).4 Household preferences are in-

tertemporally separable and separable across (net) consumption flow, labor disutility, and real balances

U
(
ct , ct−1, nt ,

Ht
Pt

)
= ln

[
ct − hct−1

]
− γ

1+ γn
1+ 1

γ
t + ln

[
Ht
Pt

]
, (1)

where ct , nt , h, γ, Ht , and Pt are household consumption, household labor supply, the internal con-

sumption habit parameter h ∈ (0, 1), the Frisch labor supply elasticity (γ > 0), household cash at the

end of date t−1, and the aggregate price level, respectively. Since internal consumption habit ties the

choice of ct to ct−1, the marginal utility of consumption is forward-looking,

λt =
1

ct − hct−1
− Et

{
βh

ct+1 − hct

}
,

assuming 0 < ct − hct−1 for all t, where the household discount factor β ∈ (0, 1) and Et{·} is the

mathematical expectation operator given date t information.

4. The appendix shows there is an observational equivalence for multiplicative internal and external consumption habit
using the onto mapping from additive to multiplicative consumption habit parameters that Dennis (2009) constructs. This
indicates little generality is lost by focusing on internal consumption habit. The appendix is available at http://hermes–
ir.lib.hit–u.ac.jp/rs/bitstream/10086/23297/1/070econDP12–08.pdf.
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2.2 The internal consumption habit propagation mechanism

Forward-looking marginal utility suggests internal habit acts as a propagation mechanism for

consumption. Intuition about this propagation mechanism is grounded in the Euler equation

λt = βEt

{
λt+1Rt+1

1+ ςt+1

}
,

where Rt is the nominal rate and 1+ςt+1 (= Pt+1/Pt) is date t+1 inflation.5 A log linear approximation

of the Euler equation and the marginal utility of consumption give a second order stochastic difference

equation for demeaned consumption growth, ∆̃ct , whose solution is

∆̃ct = ϕ1∆̃ct−1 +
(α∗ − βh)(α∗ − h)

α2ϕ2

∞∑
j=0

ϕ−j2 Etq̃t+j , (2)

where the stable and unstable roots are ϕ1 = hα∗−1 and ϕ2 = α∗(βh)−1, α∗ is steady-state growth,

the demeaned real interest rate is q̃t = R̃t − ς∗
1+ ς∗ ς̃t , and ς∗ is mean inflation.6

Equation (2) yields the response of ∆̃ct to a shock in q̃t by calibrating it, β, andα∗. The calibration

to quarterly data sets q̃t to a first-order autoregression, AR(1), with AR1 coefficient ρq = 0.87 and

[β α∗]′ = [0.993 exp(0.004)]′.7 Impulse response functions (IRFs) and SDs of ∆̃ct are produced using

equation (2), the calibration, h = [0.0 0.15 0.35 0.50 0.65 0.85], and a positive unit shock in q̃t .

The top window of figure 1 plots IRFs across h = [0.0 0.15 0.35 0.50 0.65 0.85]. As h increases

from 0.15 to 0.85, IRFs become more humped shaped with the peak in ∆̃ct moving from a horizon of one

quarter (the plain blue solid line) to quarter 6 (the purple solid line with the × symbol). Subsequently,

∆̃ct steadily falls, but the decay rate slows as h rises. These IRFs contrast with the IRF generated when

household preferences are not infected by internal consumption habit. The top window of figure 1

depicts the latter IRF with a (black) solid line with the symbol ♦. This IRF is not hump shaped and,

because it is equivalent to the autocorrelation function of q̃t , its slow decay is governed by powers of

ρq.8 Hence, internal habit by switching consumption from an intertemporal substitute at h = 0 to a

complement, given h ∈ (0, 1), creates an economically meaningful propagation mechanism.

5. Consumption-based asset pricing models with habit and local substitution through service are estimated by Eichenbaum
and Hansen (1990) and Heaton (1995). They reject the adjustment cost hypothesis in favor of services flows. However, the
data support habit if local substitutability operates at lower frequencies than the sampling frequency of consumption.
6. The appendix constructs equation (2), assuming a unit root TFP shock drives trend consumption. Also, R̃t is the demeaned
nominal federal funds rate, while ςt is set to the growth rate of the implicit GDP deflator.
7. The SIC selects an AR(1) for q̃t over any lag length up to 10 on a 1954Q1–2002Q4 sample. See the appendix for details.
8. The equivalence stems from a linear approximate Euler equation under h = 0 equating ∆̃ct to q̃t up to an Euler error.
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This internal consumption habit propagation mechanism is similar to the one discussed by CEE

using the NKDSGE models they estimate. Their baseline NKDSGE model, in which h is estimated to be

about 0.65, generates a hump-shaped response in output that peaks 6 quarters after an innovation to

a nominal shock. The top panel of figure 1 includes an IRF created using h = 0.65, the (aquamarine)

dot-dashed plot, that has similar dynamics with a peak at quarter 5. This shows that equation (2) can

produce an IRF that resembles those found using estimated NKDSGE models.

Another way to understand the role of internal consumption habit in consumption growth dy-

namics is the SD of ∆̃ct . The SD of ∆̃ct , which we denote SD∆̃c , decomposes the variance of ∆̃ct
frequency by frequency. The bottom panel of figure 1 shows that the SDs∆̃cs have the greatest power

at the long run (i.e., frequency zero), which indicates that the lowest frequencies contribute most to the

variance of ∆̃ct . The SD∆̃c indexed by no habit exhibits more power from frequency zero to about 4

years per cycle compared to the SD∆̃cs driven by internal consumption habit. Over these frequencies,

power declines monotonically for the SD∆̃c as h steps up from 0.15 to 0.85. Thus, greater internal

consumption habit lowers the power of SD∆̃cs from the lowest to the business cycle frequencies.

To summarize, internal consumption habit makes it more costly for the household to smooth

utility intertemporally. This dictates intertemporal complimentarity, which persuades the household

to push the peak in its consumption growth response to a shock further into the future. These utility

costs also produce SDs with less power in the lower frequencies as h rises. The rest of this paper uses

this intuition to study the implications of internal consumption habit for NKDSGE models.

2.3 A new Keynesian DSGE model

Besides internal consumption habit, the baseline NKDSGE model contains (a) capital adjustment

costs, (b) variable capital utilization, (c) fully indexed Calvo-staggered wage setting by monopolistic

households with heterogeneous labor supply, and (d) fully indexed Calvo-staggered price setting by

monopolistic final goods firms. Elements (a)–(c) contribute to the optimization problems faced by

households with addresses, ` ∈ [0, 1], on the unit circle. The budget constraint of household ` is

Ht+1

Pt
+ Bt+1

Pt
+ ct + xt + a(ut)kt + τt = rtutkt +

Wt(`)
Pt

nt(`)+
Ht
Pt
+ Rt

Bt
Pt
+ Dt
Pt
, (3)

where Bt+1 is the stock of government bonds carried from date t into date t+1, xt is investment, kt is

household capital at the end of date t−1, τt is a lump-sum government transfer, rt is the real rental rate
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of kt ,Wt(`) is the nominal wage of household `, Rt is the nominal return on Bt ,Dt is dividends received

from firms, ut ∈ (0, 1) is the capital utilization rate, and a(ut) is its cost function. A change in ut

forces household ` to forgo a(·) units of consumption per unit of capital. The investment adjustment

costs specification, which is adapted from CEE, is placed in the law of motion of household capital

kt+1 = (1 − δ)kt +
[

1− S
(

1
α
xt
xt−1

)]
xt , δ ∈ (0, 1), 0 < α, (4)

where δ is the capital depreciation rate and α (= lnα∗) is deterministic TFP growth. The cost function

S(·) is strictly convex, where S(1) = S′(1) = 0 and S′′(1) ≡$ > 0.

Given k0, B0, and c−1, the expected discounted lifetime utility function of household `

Et


∞∑
i=0

βiU
(
ct+i, ct+i−1, nt+i(`),

Ht
Pt

) (5)

is maximized by choosing ct , kt+1, Ht+1, Bt+1, andWt(`) subject to period utility (1), budget constraint

(3), the law of motion of capital (4), and downward sloping labor demand.

Households charge firmsWt(`) per unit of differentiated labor services in a monopolistic market

in which a Calvo-staggered nominal wage mechanism operates. Given θ is the wage elasticity, the labor

supply aggregator is Nt =
[∫ 1

0 nt(`)(θ−1)/θd`
]θ/(θ−1)

. Labor market monopoly imposes downward

sloping labor demand schedules, nt(`) =
[
Wt/Wt(`)

]θ
Nt , on firms, where the nominal wage index is

Wt =
[∫ 1

0 Wt(`)1−θd`
]1/(1−θ)

and its aggregator is Wt =
[
(1− µW )W 1−θ

c,t + µW (α∗ςt−1Wt−1)1−θ
]1/(1−θ)

.

This Calvo-staggered nominal wage mechanism has households updating their nominal wage to Wc,t

at probability 1−µW . At probability µW , households receive the date t−1 nominal wage indexed by

steady-state TFP growth, α∗, and ςt−1. In this case, the optimal nominal wage condition is

[Wc,t
Pt−1

]1+θ/γ
=

(
θ

θ − 1

) Et

∞∑
i=0

[
βµWα∗−θ(1+1/γ)

]i [[ Wt+i
Pt+i−1

]θ
Nt+i

]1+1/γ

Et

∞∑
i=0

[
βµWα∗(1−θ)

]i
λt+i

[
Wt+i
Pt+i−1

]θ [ Pt+i
Pt+i−1

]−1

Nt+i

. (6)

Equation (6) smooths nominal wage growth, which forces labor supply to absorb TFP and monetary

policy shocks. Since shifts in labor supply alter production and intra- and intertemporal margins,

shock volatility and persistence are realized, for example, as output and consumption fluctuations.

Monopolistically competitive firms produce final goods that households consume. The consump-

tion aggregator is ct =
[∫ 1

0 yD,t(j)(ξ−1)/ξdj
]ξ/(ξ−1)

, where yD,t(j) is household final good demand for
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the output of a firm with address j on the unit interval. The jth final good firm aims to meet this

demand with its output, yt(j), by mixing capital, Kt(j), rented and labor, Nt(j), hired from house-

holds net of fixed cost N0 given labor-augmenting TFP, At , in the constant returns to scale technology,[
utKt(j)

]ψ[[
Nt(j)−N0

]
At
]1−ψ

, ψ ∈ (0,1). Fixed labor cost N0 satisfies the needs of monopolistic

competition in the final goods market. For the NKDSGE model to have a permanent shock, TFP is a

random walk with drift, At = At−1 exp{α+ εt}, with its innovation, εt ∼N
(
0, σ 2

ε

)
.

Firm j maximizes profits by choosing its price Pt(j), subject to yD,t(j) =
[
Pt/Pt(j)

]ξ YD,t , where

ξ is the price elasticity, YD,t is aggregate demand, and the price index is Pt =
[∫ 1

0 Pt(j)1−ξ
]1/(1−ξ)

.

Calvo-staggered price setting restricts a firm to update its optimal price Pc,t at probability 1−µP . Or

with probability µP , firms are stuck with Pt−1 scaled by ςt−1, which defines the price aggregator Pt =[
(1− µP)P1−ξ

c,t + µP (ςt−1Pt−1)1−ξ
]1/(1−ξ)

. The firm’s problem yields the optimal forward-looking price

Pc,t
Pt−1

=
(
ξ

ξ − 1

) Et

∞∑
i=0

(
βµP

)i
λt+iφt+iYD,t+i ς

ξ
t+i

Et

∞∑
i=0

(
βµP

)i
λt+iYD,t+i ς

ξ−1
t+i

(7)

of a firm able to update its price. Inflation is smoothed by equation (7). The same responses are induced

in output and consumption in response to TFP and monetary policy shocks because of the reaction of

monopolistically competitive firms to variation in the aggregate price level.

We close the NKDSGE model with one of two monetary policy rules. CEE identify monetary policy

with a MA(∞) money growth process. It is equivalent to the AR(1) money growth rule (MGR)

mt+1 = (1− ρm)m∗ + ρmmt + µt ,
∣∣∣ρm∣∣∣ < 1, µt ∼N

(
0, σ 2

µ

)
, (8)

where mt+1 = ln(Mt+1/Mt) and m∗ is its mean. A model using the MGR (8) is labeled NKDSGE-MGR.

The mnemonic NKDSGE-TR refers to models closed by the Taylor rule (TR)

(1− ρRL)Rt = (1− ρR)
(
R∗ + aςEtςt+1 + aỸ Ỹt

)
+ υt ,

∣∣∣ρR∣∣∣ < 1, υt ∼N
(
0, σ 2

υ

)
, (9)

where R∗ = exp(m∗ − α)/β. The TR (9) assumes the Taylor principle, 1 < aς is obeyed, 0 < aỸ , and

expected inflation, Etςt+1, and transitory output, Ỹt , are computed without measurement errors.

The government finances Bt , interest on Bt , and a lump-sum transfer τt with new bond issuance

Bt+1−Bt , lump-sum taxes τt , and money creation,Mt+1−Mt . These sources and uses of funds give the
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government the budget constraint Ptτt = [Mt+1 −Mt] + [Bt+1 − (1 + Rt)Bt]. We assume government

debt is in zero net supply, Bt+1 = 0 and Ptτt = Mt+1 −Mt , along the equilibrium path at all dates t.

The decentralized economy requires goods, labor, and money markets to clear in equilibrium.

Equilibrium has Kt = kt given 0 < rt , Nt = nt given 0 < Wt , and Mt = Ht given 0 < Pt , Rt . The aggregate

resource constraint, Yt = Ct + It + a(ut)Kt , follows, where Ct = ct and It = xt .9

3. Bayesian Monte Carlo Strategy

Population moments are used to judge the fit of 12 variants of the NKDSGE model. Bayesian

Monte Carlo simulations are run that apply sample data, a structural vector moving average (SVMA),

its priors, and a Markov chain Monte Carlo (MCMC) simulator to create posterior distributions of SDs

of output growth, ∆Y , and consumption growth, ∆C . Prior distributions of SDs of ∆Y and ∆C are

approximated using a SVMA estimated on synthetic data that are simulated from NKDSGE models with

parameters drawn from independent priors. The econometric link between the posterior and prior SDs

and the sample data is the SVMAs. The multidimensional posterior and prior SDs are collapsed into

scalar Kolmogorov-Smirnov (KS ) goodness of fit statistics to compute the confidence interval criterion

(CIC) of DeJong, Ingram, and Whiteman (1996). A CIC measures the overlap of posterior and prior KS

statistic distributions. We use the CIC to quantify the fit of the NKDSGE models.

3.1 Output and consumption moments

The NKDSGE models are evaluated on permanent and transitory SDs of ∆Y and ∆C . The SDs

are grounded on SVMAs just-identified by the LRMN restriction embedded in the NKDSGE model and

orthogonality of permanent and transitory shock innovations. Given these restrictions, the SVMAs are

computed by applying the Blanchard and Quah (1989) decomposition to second-order VARs, VAR(2)s,

of [∆ lnYt ∆ lnPt]′ and [∆ lnCt ∆ lnPt]′. The Blanchard and Quah (BQ) decomposition identifies the

SVMAs because the TFP innovation εt is the permanent shock and the transitory shock is either the

MGR innovation µt or TR innovation υt .10 The identified ∆ lnYt–∆ lnPt (∆ lnCt–∆ lnPt) system recovers

a vertical long-run aggregate supply (PIH) curve and a serially correlated “output (consumption) gap.”

9. A rational expectations equilibrium equates, on average, firm and household subjective forecasts of rt , and At to the
objective outcomes produced by the decentralized economy. The list includes µt and Rt under the MGR (8) or υt for the TR
(9). A flexible price regime (spot labor market) adds Pt (Wt ).
10. The appendix of Blanchard and Quah (1989) includes a theorem that establishes necessary and sufficient conditions under
which bivariate ARs identify the correct responses to a permanent shock and a transitory shock when truth is that there are
several of these shocks. The BQ decomposition is satisfied, according to the theorem, when responses, say, of ∆Y and ∆P
to permanent or transitory shocks are equivalent up to a scalar lag operator. Since the shocks found in NKDSGE models are
often AR(1)s, the theorem predicts that adding these shocks to a NKDSGE model do not create spurious identification.
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As an example consider the SVMA ∆ lnYt

∆ lnPt

 = ∞∑
j=0

Bj

 εt−j

υt−j

 , where Bj =

 B∆Y ,ε,j B∆Y ,υ,j
B∆P,ε,j B∆P,υ,j

 , (10)

that equates the monetary policy shock with the innovation υt of the Taylor rule (9). Elements of Bj are

just-identified by imposing (i) orthogonality on εt and υt and (ii) the LRMN restriction B∆Y ,υ(1) = 0

(i.e., lnYt+j is independent of υt at the infinite horizon, j -→ ∞). These assumptions decompose the

SVMA (10) into univariate SMA(∞)s, B∆Y ,ε(L)εt and B∆Y ,υ(L)υt , for ∆Y . The former (latter) SMA(∞) is

the IRF of ∆Y with respect to the permanent shock εt (transitory shock υt).

We grab the SMA(∞) of B∆Y ,ε(L)εt and B∆Y ,υ(L)υt from the SVMA (10) to compute permanent

and transitory SDs of ∆Y . Since the SVMA (10) is also a Wold representation of [∆ lnYt ∆ lnPt]′, its SD

(at frequency ω) is SD[∆Y ∆P](ω) = (2π)−1Γ[∆Y ∆P] exp(−iω), where Γ[∆Y ∆P](l) = ∑∞j=0 BjB
′
j−l. The

convolution Γ[∆Y ∆P](l) is expanded at horizon j to obtain

BjB′j−l =

 B∆Y ,ε,jB∆Y ,ε,j−l + B∆Y ,υ,jB∆Y ,υ,j−l B∆Y ,ε,jB∆P,ε,j−l + B∆Y ,υ,jB∆P,υ,j−l
B∆P,ε,jB∆Y ,ε,j−l + B∆P,υ,jB∆Y ,υ,j−l B∆P,ε,jB∆P,ε,j−1 + B∆P,υ,jB∆P,υ,j−l

 .
The matrix’s off-diagonal entries are elements of the cross-covariance function of ∆Y and ∆P and,

therefore, map to co- and quad-spectra. The autocovariance function of ∆Y with respect to εt (υt) is the

upper left diagonal, B∆Y ,ε,jB∆Y ,ε,j−l (B∆Y ,υ,jB∆Y ,υ,j−l). We exploit the SMAs B∆Y ,ε(L)εt and B∆Y ,υ(L)υt ,
that are along the diagonal, to parameterize permanent and transitory SDs of ∆Y at frequency ω

SD∆Y ,ι(ω) = 1
2π

∣∣∣∣∣B∆Y ,ι,0 + B∆Y ,ι,1e−iω + B∆Y ,ι,2e−i2ω + . . .+ B∆Y ,ι,je−ijω + . . .
∣∣∣∣∣

2

, ι = ε, υ,

given the BQ decomposition assumption that the structural shock innovations have unit variances.

Before computing SD∆Y ,ι(ω), we truncate its polynomial at j = 40, or a 10-year horizon.11

3.2 The moments to match: Mean posterior distributions

We engage MCMC software of Geweke (1999) and McCausland (2004) to create posterior distri-

butions of SVMAs. These posterior distributions consist of J = 5000 SVMA parameter vectors that

are grounded on unrestricted VAR(2)s, LRMN, the BQ decomposition, priors, and a 1954Q1–2002Q4

sample (T = 196) of ∆Y , ∆C , and πt . These J vectors are used to calculate distributions of posterior

permanent and transitory SDs of ∆Y and ∆C . We label these posterior moments SDP,∆Y and SDP,∆C .

11. This approach to estimating SDs extends the ideas of Akaike (1969) and Parzen (1974).
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3.3 Bayesian simulation methods II: Prior distributions

It takes multiple steps to solve and simulate the NKDSGE models. Since these models have a

permanent TFP shock, stochastic detrending of optimality and equilibrium conditions is needed before

log-linearizing around deterministic steady states. We engage an algorithm of Sims (2002) to solve for

log linear approximate equilibrium laws. Synthetic samples are created by feeding sequences of the

shock innovations εt and µt or υt into the equilibrium laws of motion given initial conditions and draws

from the priors of NKDSGE model parameters. The appendix describes these procedures in detail.

Table 1 lists the priors of the NKDSGE models. These priors reflect our uncertainty about NKDSGE

model parameters. For example, the first item listed in table 1 is the consumption habit parameter h.

We give h an uninformative prior that is drawn from a uniform distribution with end points 0.05 and

0.95 in table 1. The uninformative prior reflects a belief that any h∈
[
0.05, 0.95

]
is as likely as another.

Non-habit NKDSGE models are defined by the degenerate prior h = 0.

Priors are also taken from earlier DSGE model studies.12 We set the means of the priors of[
β δ α ψ

]′
=
[
0.9930 0.0200 0.0040 0.3500

]′
that are consistent with the Cogley and Nason (1995b)

calibration. Uncertainty about
[
β γ δ α ψ

]′
is captured by 95 percent coverage intervals, which contain

values in Nason and Cogley (1994) and Hall (1996). We equate the prior of the investment cost of

adjustment parameter $ to estimates reported by Bouakez, Cardia, and Ruge–Murcia (2005).13 The

standard deviation of TFP shock innovations, σε, is endowed with a uniform prior because the DSGE

literature suggests that any draw from [0.0070, 0.0140] is equally likely. The source of the prior mean

of the Frisch labor supply elasticity, γ = 1.55, and its 95 percent coverage interval of [0.5, 2.6] is Kimmel

and Kniesner (1998). They estimate labor supply functions on U.S. panel data.

There are 4 sticky price and wage parameters to calibrate. The prior means are [ξ µP θ µw]
′ =[

12.0 0.55 15.0 0.7
]′

. The mean of ξ implies a steady-state price markup, ξ/(ξ−1), of 9 percent with a

95 percent coverage interval that runs from 5 to 33 percent. This coverage interval blankets estimates

found in Basu and Fernald (1997) and CEE. More uncertainty surrounds the priors of µP , θ, and µw .

Sbordone (2002), Nason and Slotsve (2004), Lindé (2005), and CEE suggest a 95 percent coverage interval

for µP of [0.45, 0.65]. Likewise, a 95 percent coverage interval of [0.04, 0.25] suggests substantial

uncertainty around the 7 percent prior mean household wage markup, θ/(θ − 1). The degenerate

12. Several priors are centered on sample means of the consumption-output ratio, labor input, federal funds rate, and inflation
using the 1954Q1–2002Q4 sample. We also fix N0 = 0.1678 and r∗ = 1.0050.
13. The capacity utilization rate, ut , and its cost function, a(·), are fixed at the steady state, u∗ = 1 and a(1)= 0. Determinate
solutions are achieved by setting a′′(1)/a′(1) = 1.174.
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mean of µw and its 95 percent coverage interval reveals stickier nominal wages than prices, as found

by CEE and Rabanal and Rubio-Ramírez (2005), but we imbue it with greater uncertainty.

The money growth rule (8) is calibrated to estimates from a 1954Q1–2002Q4 sample of the

monetary base. The point estimates are degenerate priors for
[
m∗ ρm σµ

]′
=
[
0.011 0.628 0.006

]′
.

We give these prior means less precision than found for the sample estimates. For example, the lower

end of the 95 percent coverage interval of ρm is near 0.46. CEE note that ρm ≈ 0.5 implies the AR(1)

money growth rule (8) mimics the persistence of their MA(∞) money growth shock policy process.

The calibration of the interest rate rule (9) obeys the Taylor principle and ay ∈ (0,1). The

degenerate prior of aπ is 1.80. We assign a small role to movements in transitory output, Ỹ , with a

prior mean of 0.05 for ay . The 95 percent coverage intervals of aπ and ay rely on estimates reported

by Smets and Wouters (2007). The interest rate rule (9) is also calibrated to smooth Rt given a prior

mean of 0.65 and a 95 percent coverage interval of [0.55, 0.74] that incorporates estimates found in

Guerron-Quintana (2010). Ireland (2001) is the source of the prior mean of the standard deviation of

the monetary policy shock, συ = 0.0051, and its 95 percent coverage interval, [0.0031, 0.0072]. We

assume all shock innovations are uncorrelated at leads and lags (i.e., E{εt+i υt+q} = 0, for all i, q).

Prior draws of NKDSGE model parameter are applied to its log linear approximation to generate

a synthetic sample of lengthM=W×T . We setW = 5 to approximate prior population distributions.

After estimating VAR(2)s on these samples, LRMN and the BQ decomposition are applied to construct

SVMAs.14 The SVMAs are employed to compute prior population permanent and transitory SDs of ∆Y
and ∆C . Since our uncertainty about the theory – the parameters of the NKDSGE models – is embedded

in these prior population moments, the subscript T is used to denote SDT,∆Y and SDT,∆C .

3.4 Measures of fit

An intermediate step in measuring NKDSGE model fit is to construct a KS goodness of fit statistic

similar to one used by Cogley and Nason (1995a). They evaluate the fit of a RBC model fit to the SD∆Y
with the KS. Since multidimensional SDs are mapped into a scalar KS statistic, it is an efficient metric

for summarizing the information in SDs when conducting a model evaluation exercise.

Bayesian Monte Carlo experiments produce distributions of permanent and transitory SDP,∆Y ,

SDP,∆C , SDT,∆Y , and SDT ,∆C . We convert the multidimensional SDs into scalar posterior and prior KS

statistics, KSP and KST . The first step normalizes permanent and transitory SDP,∆Y , SDP,∆C , SDT,∆Y
14. The appendix constructs the map from SVAR to SVMA. The SVARs satisfy the invertibility condition of Fernández-
Villaverde, Rubio-Ramírez, Sargent, and Watson (2007) across all Bayesian Monte Carlo simulations of the 12 NKDSGE models.
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and SDT,∆C on sample permanent and transitory SDs of ∆Y or ∆C , ŜD∆Y and ŜD∆C . The sample SDs are

calculated using a SVMA estimated on the actual data with length T . Define the normalizationRD,j(ω)

= ŜD(ω)/SDD,j(ω) at replication j and frequencyω, whereD = P, T . Next, compute the partial sum

VD,j
(
2πq/H

)
= 2πH−1

∑q
`=1RD,j

(
2π`/H

)
, whereH = T whenD= P andH =M otherwise. The

partial sums are used to construct the partial differenceBD,j(κ)= 0.5π−1
√

2H
[
VD,j(κπ)−κVD,j(π)

]
,

where κ ∈ [0,1] indicates BD,j(κ) is evaluated on the entire spectrum. The scalar KSD statistic at

replication j is calculated as the maximal absolute value of BD,j(κ), KSD,j = Maxκ∈[0,1]
∣∣∣BD,j(κ)∣∣∣.

Thus, a KSP,j (KST ,j) statistic measures the distance between a SDP (SDT ) and ŜD.

We engage the CIC to measure the fraction of J elements of a KST distribution that occupies

an interval defined by lower and upper quantiles of the associated KSP distribution at a 1−p percent

confidence level.15 Suppose a habit NKDSGE model generates a distribution of the permanent SDT,∆Y
that fills this interval with more than 30 percent of its elements (CIC > 0.3), but the corresponding

non-habit model does not (CIC ≤ 0.3). In this case (as DeJong, Ingram, and Whiteman (1996) imply in

their analysis of RBC models), the habit NKDSGE model is a more plausible match to the permanent

SDP,∆Y .16 Note that this match requires the SDT distribution to be “near” the SDP distribution at

several frequencies for a KST statistic distribution to cover more than 30 percent of the distribution

of a KSP statistics. Thus, a CIC constitutes a ‘joint test’ of NKDSGE model fit.

The KSP and KST statistics are computed on the entire spectrum (i.e., the long- to the short-run)

and the business cycle horizons of 8 to 2 years per cycle. By isolating the business cycle fluctuations,

we build on an insight of Diebold, Ohanian, and Berkowitz (1998). They focus on the business cycle

frequencies when model misspecification corrupts measurement of short- and long-run fluctuations.

We address this issue by limiting κ to frequencies between 8 and 2 years per cycle, κ ∈ [0.064, 0.25],

when compiling KSP and KST distributions. This mitigates discounting NKDSGE models that perform

well at business cycle horizons, but poorly on lower growth and higher short-run frequencies.

4. Habit and Non-Habit NKDSGE Model Evaluation

Before evaluating the fit of the NKDSGE models to posterior permanent and transitory SDP,∆Y s

15. As in DeJong, Ingram, and Whiteman (1996), the CIC of a KST statistic distribution is set to 1
1− p

∫ b
a

KST, j dj for a 1−p

percent confidence level, where a(b) is the lower 0.5p (upper 1−0.5p) quantile and is normalized by 1−p to equal
∫ b
a

KSP, j dj.

16. If the CIC of a NKDSGE model with internal consumption habit is larger than a NKDSGE model without it, the implication
is that Bayes factor supports the former model.
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and SDP,∆Cs, we study the means of these posterior moments. Figure 2 plots mean posterior permanent

and transitory SDP,∆Y and SDP,∆C . The mean SDP,∆Y (SDP,∆C ) decomposes variation in the average

response of ∆Y (∆C) to permanent and transitory shocks frequency by frequency.17 The top (bottom)

panel of figure 2 contains mean permanent (transitory) SDP,∆Y and SDP,∆C . Mean SDP,∆Y appear as

solid (blue) lines in figure 2 and mean SDP,∆C are depicted with (blue) ‘	’ symbols.

Mean permanent SDP,∆Y and SDP,∆C display the greatest power at frequency zero in the top

panel of figure 2. Subsequently, these SDs decay from the growth (i.e., more than 8 years per cycle)

into the highest frequencies (i.e., less than 2 years per cycle), which indicate these frequencies matter

less and less for variation in the permanent components of ∆Y and ∆C . Compared to the SDP,∆C , the

mean permanent SDP,∆Y exhibits about five times the power at the long run. This is consistent with

the PIH and other business cycle theories that predict greater volatility in ∆Y than in ∆C . However, the

PIH is not supported by the mean permanent SDP,∆C because it is not flat across the entire spectrum.

The lower panel of figure 2 presents mean transitory SDP,∆Y and SDP,∆C with disparate shapes.

The latter SD peaks around six years per cycle. Rather than a peak, the mean transitory SDP,∆C plateaus

from the growth frequencies to four years per cycle before dropping off in the high frequencies. Thus,

the transitory or “output gap” component of ∆Y exhibits greater periodicity in the business cycle

frequencies compared to the transitory component of ∆C .

Figure 2 summarizes the challenge for NKDSGE models. The models must produce permanent

SDT,∆Y and SDT,∆C that are not white noise, but instead have most power at the lowest frequencies,

to match the permanent SDPs displayed in the top panel of figure 2. The lower panel of figure 2 chal-

lenges NKDSGE models to generate transitory SDT,∆Y (SDT,∆C ) with the greatest power at the business

cycle (growth) frequencies. As a result, NKDSGE models need empirically and economically meaningful

propagation and monetary transmission mechanisms to match permanent and transitory SDP.

4.1 Quantifying NKDSGE model fit: CIC

Table 2 presents CIC that measures the overlap of distributions of KSP and KST statistics. The

CIC is calculated at a 95 percent confidence level, p = 0.05. The overlap of these distributions gauges

the fit of 12 NKDSGE models to permanent and transitory SDP,∆Y and SDP,∆C distributions.

The 12 NKDSGE models are defined by different combinations of nominal frictions as well as by

monetary policy rule. The first NKDSGE model is our baseline that includes sticky prices and wages.

17. A mean SDP is computed across an ensemble of SDP, j , j = 1, . . . , J , pointwise or frequency by frequency.
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From this baseline, two more NKDSGE models are created by stripping out one or the other nominal

rigidity.18 Baseline, sticky price (SPrice), and sticky wage (SWage) NKDSGE models have household

preferences with either no consumption habit, h = 0, or internal consumption habit, h ∈ [0.05, 0.95].

These six NKDSGE models are doubled by defining monetary policy with the MGR (8) or the TR (9).

The CIC of baseline, SPrice, and SWage non-habit NKDSGE models is listed in the top panel of

table 2. The lower panel contains CIC of habit NKDSGE models. The NKDSGE-MGR and NKDSGE-TR

models define monetary policy with the MGR (8) and the TR (9), respectively. Columns titled
[
0, π

]
and[

8, 2
]

report CIC quantifying the overlap of distributions of KSP and KST statistics on the entire fre-

quency domain (i.e., the long-run or frequency zero to the short-run) and the business cycle frequencies

that run from 8 to 2 years per cycle, respectively.

Table 2 contains CIC that indicates internal consumption habit improves the fit of NKDSGE

models. Habit NKDSGE models generate 18 CIC > 0.3 (or 37.5 percent) out of a possible 48 in the bottom

half of table 2, but the top half of the table shows that non-habit NKDSGE models are responsible for

only 9 CIC > 0.3 (or 18.75 percent). Thus, internal consumption habit contributes to permanent and

transitory SDT,∆Y and SDT,∆C that better replicate the posterior moments.

A striking feature of table 2 is the impact of the monetary policy rules on the fit of NKDSGE

models to transitory SDP,∆Y and SDP,∆C . In these models, the MGR (8) has few successes at transmitting

its shock innovation µt into ∆Y and ∆C fluctuations that resemble the posterior moments. According

to the CIC of table 2, only the SPrice habit NKDSGE-MGR model accomplishes this task and only on the

business cycle frequencies of 8 to 2 years per cycle.

The TR (9) improves NKDSGE model fit compared to the MGR (8). Of the 27 CIC > 0.3 found in

table 2, the TR (9) is tied to 22. In the top half of table 2, 8 of the 9 CIC > 0.3 are generated by non-habit

NKDSGE-TR models. Similarly, habit NKDSGE-TR models yield 14 of the 18 CIC > 0.3 in the bottom

half of table 2. Table 2 also indicates that, on the business cycle frequencies of 8 to 2 years per cycle,

habit and non-habit NKDSGE-TR models match transitory SDP,∆Y and SDP,∆C with CIC > 0.3 in all 12

possible cases. Thus, table 2 gives evidence that habit and non-habit NKDSGE models have empirically

useful monetary transmission mechanisms when initiated by the TR shock innovation υt . However,

only habit NKDSGE-TR models are able to replicate the transitory SDPs on the entire spectrum because

18. The sticky wage NKDSGE model requires the degenerate prior µP = 0 with fixed markup φ = (ξ−1)/ξ. When the nominal
wage is flexible, households set their optimal wage period by period in sticky price NKDSGE models. In this case, the markup
in the labor market is fixed at (θ − 1)/θ, which equals n−1/γ , given µW = 0.
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these models are responsible for 11 of 12 possible CIC > 0.33 in the bottom half of table 2.

The propagation mechanisms of the NKDSGE models are not held in similar regard by the per-

manent SDP,∆Y and SDP,∆C . These SDPs are matched only when permanent SDT,∆Y and SDT,∆C are

generated by SPrice habit and non-habit NKDSGE-MGR and -TR models. The bottom half of table 2

shows that a CIC > 0.3 appears in four of the four possible cases when SPrice habit NKDSGE-MGR and

-TR models are asked to propagate the TFP innovation shock εt into the business cycle frequencies of

8 to 2 years per cycle. The SPrice non-habit NKDSGE-MGR and -TR models are less successful at this

task. Only the permanent SDP,∆Y is duplicated by these models. When the propagation mechanisms of

these models are examined using the entire spectrum, a CIC > 0.3 is produced only for the permanent

SDP,∆Y . Nontheless, this shows that measuring model fit on the entire spectrum leads to otherwise

empirically relevant NKDSGE models being undervalued.

In summary, internal consumption habit confers a superior fit on NKDSGE models according to

the CIC of table 2. The improved fit of habit NKDSGE models is predicated, in part, on the TR (9), but

non-habit NKDSGE-TR models possess empirically and economically credible monetary transmission

mechanisms when asked to match transitory SDPs only on the business cycle frequencies of 8 to 2

years per cycle. Limiting the analysis to the business cycle frequencies improves the fit of SPrice habit

NKDSGE-MGR and -TR models when the match is to permanent SDP,∆Y and SDP,∆C .19

4.2 NKDSGE model dynamics: Internal consumption habit

The habit NKDSGE models provide a superior fit to the permanent and transitory SDP,∆Y s and

SDP,∆Cs, according to the CIC of table 2. Although moment matching is useful for assessing the fit of

the NKDSGE models, this evaluation process is not informative about the propagation and monetary

transmission mechanism dynamics of NKDSGE models. This section and the next explores NKDSGE

model dynamics by comparing mean permanent and transitory SDPs and SDT s.

We summarize evidence about NKDSGE model dynamics in figures 3, 4, and 5. The figures

consist of four rows and two columns of panels containing means of SDPs and SDT s. From top to

bottom, the rows of figures 3–5 plot mean permanent SD∆Y s, transitory SD∆Y s, permanent SD∆Cs, and

transitory SD∆Cs. The NKDSGE-MGR models are responsible for SDT s that appear in the left column of

19. The appendix reports results of Bayesian Monte Carlo experiments that substitute the Cramer-von Mises goodness of fit
statistic for the KS statistic to quantify NKDSGE model fit, estimate VAR(4)s instead of VAR(2)s, and replace the uniform prior,
h ∼ U(0.05, 0.95), with either h ∼ U(0.05, 0.499), h ∼ U(0.50, 0.95), or h ∼ β(0.65, 0.15). The latter prior implies a 95
percent coverage interval for h of [0.38, 0.88]. These experiments reinforce the message table 2 has for the impact of internal
consumption habit on NKDSGE model fit as well the vulnerabilities in the fit of NKDSGE models under different combinations
of the nominal frictions and monetary policy rules.
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figures 3–5. The right column of these figures present SDT s that are generated by NKDSGE-TR models.

Figures 3–5 display mean SDPs with solid (blue) lines, mean SDT s created by non-habit NKDSGE models

with (green) dotted lines, and mean SDT s tied to habit NKDSGE models with (red) dot-dashed lines.

The mean SDT s of baseline, SPrice, and SWage NKDSGE models are depicted in figures 3, 4, and 5,

respectively.

Figures 3–5 display mean permanent and transitory SDT,∆Y s and SDT,∆Cs, with (green) dotted

plots in figures 3–5, produced by non-habit NKDSGE models that often exhibit greater power than the

(red) dot-dash mean SDT s created by habit NKDSGE models. As a result, habit NKDSGE models generate

SDT s that are either closer to or intersect mean SDPs, especially at the business cycle frequencies.

These mean SDT s reproduce an important feature of the SD∆̃C plotted in the bottom window of

figure 1. Remember the SD∆̃C are computed using the linear approximate Euler equation (2) and from

top to bottom are indexed by h = 0 to 0.85. The bottom window of figure 1 shows the SD∆̃Cs converge

pointwise to the horizontal axis as h increases. Since the mean permanent and transitory SDT,∆Y s and

SDT,∆Cs of figures 3–5 often have the same ordering, the utility adjustment costs inherent in internal

consumption habit are responsible, in part, for propagation and monetary transmission in NKDSGE

models that replicate the mean permanent and transitory SDP,∆Y s and SDP,∆Cs of figure 2.

4.3 NKDSGE model dynamics: Mixing nominal frictions and monetary policy rules

This section explores the impact that different combinations of sticky prices, sticky wages, and

monetary policy rule have on propagation and monetary transmission in NKDSGE models. For example,

the first and third rows of figures 3–5 establish that there is no mix of nominal rigidities and monetary

policy rule in either habit or non-habit NKDSGE models that produce a credible facsimile of the mean

permanent SDP,∆Y and SDP,∆C . The large gaps between these posterior moments and mean permanent

SDT,∆Y s and SDT,∆Cs are not because the NKDSGE models lack powerful propagation mechanisms.

Instead, the top row of windows of figures 3–5 reveal the 12 NKDSGE models propagate the TFP shock

innovation εt into SDT,∆Y that often have greatest variation in the business cycle frequencies between

8 and 4 years per cycle. In comparison, the mean permanent SDP,∆Y has greatest power at the long run

before dropping off in the business cycle frequencies. Similarly, the third row of figures 3–5 displays

large gaps between the SDP,∆C and SDT,∆Cs.

The mean transitory SDT,∆Y and SDT,∆C of figures 3–5 show that the impact of inflation smooth-

ing implied by the optimal forward-looking price setting of equation (7) contributes, along with internal
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consumption habit and the TR (9), to economically credible monetary transmission. This is the SPrice

habit NKDSGE model whose mean transitory SDT,∆Y and SDT,∆C are depicted with (red) dot-dash plots

in the even numbered rows of figure 4’s right-hand column. Observe in the second row of figure 4 that

the mean SDT,∆Y peaks between 8 and 4 years per cycle, which echoes the shape of the mean transi-

tory SDP,∆Y . The SPrice habit NKDSGE model also generates a mean transitory SDT,∆C in the bottom

right window of figure 4 that reproduces the plateau in the growth frequencies of the mean transitory

SDP,∆C . The left-hand column of Figure 4 shows that dropping internal consumption habit or swapping

the MGR (8) for the TR (9) pushes mean transitory SDT s away from the mean posterior moments.

There is no NKDSGE with nominal wage smoothing generated by the optimal nominal wage

equation (6) that provides an economically meaningful monetary transmission mechanism. Figures 3

and 5 are clear that habit and non-habit NKDSGE models with sticky wages have difficulties reproducing

mean transitory SDP,∆Y and SDP,∆C . The baseline and SWage habit and non-habit NKDSGE models

often generate power in mean transitory SDT,∆Y s and SDT,∆Cs at the business cycle frequencies from

8 to 2 years a cycle, which is excessive compared to the mean transitory SDT,∆Y s and SDT,∆Cs. The

distance between SDPs and SDT s is repaired only in part by switching from the MGR (8) to the TR (9)

in baseline and SWage NKDSGE models. However, the bottom right window of figure 3 reports that the

baseline habit NKDSGE-TR model generates a mean transitory SDT,∆C with less power in the business

frequencies, which moves it closer to the SDP,∆Cs.

5. Conclusion

This paper studies the business cycle implications of internal consumption habit for NKDSGE

models. We examine the fit of 12 NKDSGE models that have different combinations of internal con-

sumption habit, Calvo-staggered prices, and nominal wages, along with several other real rigidities.

The NKDSGE models are confronted with posterior SDs of output and consumption growth identified

by permanent TFP and transitory monetary policy shocks.

The fit of NKDSGE models with and without internal consumption habit is explored by comparing

posterior population moments to theoretical prior population moments. Our analysis shows that the fit

of NKDSGE models with consumption habit is susceptible to (1) changing the mix of nominal rigidities,

(2) identifying SDs on permanent TFP shocks instead of transitory monetary policy shocks, and (3)

evaluating SDs on the entire spectrum rather than the business cycle frequencies.
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These results indicate that there are vulnerabilities in the specification of NKDSGE models. Not

unexpectedly, the new Keynesian monetary transmission mechanism is not the issue. There are com-

binations of sticky prices, sticky wages, and monetary policy rule that matches the posterior SDs of

output and consumption growth. Nonetheless, only when internal consumption habit, sticky prices,

and a Taylor rule are included in a NKDSGE model, does it transmit monetary policy shocks into em-

pirically plausible mean SDs of output and consumption growth. The vulnerabilities in NKDSGE model

fit are tied to the mix of nominal rigidities and judging fit on the entire spectrum when the moment

matching exercise is identified with the permanent TFP shock. Thus, the economic and empirical rel-

evance of the propagation mechanisms of NKDSGE models remains open to more research. We hope

this paper plays a part in inspiring further research into the role real and nominal rigidities play in

propagation as well as monetary transmission in NKDSGE models.
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Table 1: Bayesian Calibration of NKDSGE Models

Prior Standard 95 Percent
Distribution Mean Deviation Cover Interval

h Internal Consumption Habit Uniform — — [0.0500, 0.9500]

β H’hold Subjective Discount Beta 0.9930 0.0020 [0.9886, 0.9964]

γ Labor Supply Elasticity Normal 1.5500 0.5360 [0.4995, 2.6005]

δ Depreciation Rate Beta 0.0200 0.0045 [0.0122, 0.0297]

α Deterministic Growth Rate Normal 0.0040 0.0015 [0.0011, 0.0064]

$ Capital Adjustment Costs Normal 4.7710 1.0260 [2.7601, 6.7819]

ψ Capital’s Share of Output Beta 0.3500 0.0500 [0.2554, 0.4509]

σε TFP Growth Shock Std. Uniform — — [0.0070, 0.0140]

ξ Final Good Dmd Elasticity Normal 12.0000 4.0820 [3.9994, 20.0006]

µP No Price Change Probability Beta 0.5500 0.0500 [0.4513, 0.6468]

θ Labor Demand Elasticity Normal 15.0000 3.0800 [8.9633, 21.0367]

µW No Wage Change Probability Beta 0.7000 0.0500 [0.5978, 0.7931]

m∗ ∆ lnM Mean Beta 0.0114 0.0030 [0.0063, 0.0180]

ρm ∆ lnM AR1 Coef. Beta 0.6278 0.0800 [0.4653, 0.7767]

σµ ∆ lnM Shock Std. Beta 0.0064 0.0012 [0.0043, 0.0090]

aς Taylor Rule Etςt+1 Coef. Normal 1.8250 0.2300 [1.3742, 2.2758]

aŶ Taylor Rule Ŷt Coef. Normal 0.1000 0.0243 [0.0524, 0.1476]

ρR Taylor Rule AR1 Coef. Beta 0.6490 0.0579 [0.5317, 0.7578]

συ Taylor Rule Shock Std. Beta 0.0051 0.0016 [0.0025, 0.0087]

The calibration relies on existing DSGE model literature; see the text for details. For a non-informative
prior, the right most column contains the lower and upper end points of the uniform distribution. When
the prior is based on the beta distribution, its two parameters area = Γ i,n [(1− Γ i,n)Γ i,n/STD(Γi,n)2 − 1

]
and b = a(1− Γ i,n)/Γ i,n, where Γ i,n is the degenerate prior of the ith element of the parameter vector
of model n = 1, . . . ,4, and its standard deviation is STD(Γi,n).
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Table 2: CIC of Kolmogorov-Smirnov Statistics

∆Y w/r/t ∆Y w/r/t ∆C w/r/t ∆C w/r/t
Trend Sh’k Transitory Sh’k Trend Sh’k Transitory Sh’k

Model
[
0, π

] [
8, 2

] [
0, π

] [
8, 2

] [
0, π

] [
8, 2

] [
0, π

] [
8, 2

]
Non-Habit NKDSGE

Baseline
MGR 0.02 0.03 0.00 0.01 0.00 0.00 0.00 0.00
TR 0.01 0.00 0.12 0.71 0.00 0.00 0.08 0.68

SPrice
MGR 0.03 0.47 0.00 0.23 0.01 0.17 0.00 0.04
TR 0.40 0.57 0.00 0.76 0.01 0.16 0.00 0.49

SWage
MGR 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.06
TR 0.00 0.00 0.21 0.37 0.00 0.00 0.02 0.81

Habit NKDSGE

Baseline
MGR 0.00 0.04 0.16 0.18 0.02 0.16 0.13 0.18
TR 0.00 0.03 0.64 0.52 0.03 0.14 0.53 0.85

SPrice
MGR 0.14 0.64 0.11 0.59 0.09 0.44 0.29 0.49
TR 0.43 0.74 0.29 0.65 0.15 0.46 0.33 0.76

SWage
MGR 0.00 0.01 0.18 0.23 0.01 0.10 0.13 0.23
TR 0.00 0.05 0.55 0.45 0.03 0.13 0.44 0.77

Baseline NKDSGE models include sticky prices and sticky wages. The acronyms SPrice and SWage
represent NKDSGE models with only sticky prices or sticky nominal wages, respectively. The money
growth and Taylor rules of equations (8) and (9) are denoted by MGR and the TR, respectively. The
column headings

[
0, π

]
and

[
8, 2

]
indicate that the CIC quantifies the intersection of KSP and KST

statistic distributions computed from permanent and transitory SDs of ∆Y and ∆C with domains on
the entire spectrum (i.e., from frequency zero or the long run to the short run), and from 8 to 2 years
per cycle, respectively.
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Figure 1: ∆C and a Real Interest Rate Shock: Impulse Response Functions and SDs

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

IRF Horizon

 

 

IRF with h = 0.0

IRF with h = 0.15

IRF with h = 0.35

IRF with h = 0.50

IRF with h = 0.65

IRF with h = 0.85

0 8 4 2 1
0

2

4

6

Years per cycle

S
D

 o
f 


C

 

 

SD with h = 0.0

SD with h = 0.15

SD with h = 0.35

SD with h = 0.50

SD with h = 0.65

SD with h = 0.85

The top (bottom) window plots the impulse response functions (SDs) of ∆C generated from the solved linearized Euler (2) given a 1
percent shock to the forecast innovation of the AR(1) of the real rate, qt .



Figure 2: Mean Permanent and Transitory SDPs
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Mean permanent and transitory SDP,∆Y and SDP,∆C are averaged frequency by frequency across ensembles that consist of J of these
SDs. The SDs are constructed using SVMA(∞)s that rely on LRMN, the BQ decomposition, unrestricted VAR(2)s.



Figure 3: Mean Structural SDPs and SDT s of Baseline NKDSGE Models
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The habit and non-habit NKDSGE models generate ensembles of permanent and transitory SDT ,∆Y s and SDT ,∆Cs that are averaged
frequency by frequency to produce the mean SDT s. Otherwise, see the notes to figure 2.



Figure 4: Mean Structural SDPs and SDT s of SPrice NKDSGE Models
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See figure 3 for details.



Figure 5: Mean Structural SDPs and SDT s of SWage NKDSGE Models
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See the notes to figure 3.


