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tions under which the estimator converges globally with probability
one, and exhibit the asymptotic distribution of the error. Our esti-
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1 Introduction

This paper proposes a new strategy for simulating marginal distributions,
stationary distributions, and expectations of functions of the state. The
methods we propose are general and can be applied in any economic
model that can be formulated as stochastic dynamic programming prob-
lem with Markovian shocks.

Our strategy for computing distributions involves simulating densities.
Densities are more useful than cumulative distribution functions or prob-
ability measures, partly because they can be used in applications such as
maximum likelihood estimation, and partly because computing distribu-
tions from densities is straightforward, while computing densities from
(empirical) distributions is ill-posed.1

We treat the problem of computing a density as an estimation problem,
and propose a simulation-based estimator using conditional Monte Carlo.
We prove that our density estimator, referred to below as the Generalized
Look Ahead Estimator (GLAE), converges with probability one to the true
invariant density under some weak regularity conditions on the data gen-
erating process. We also characterize the asymptotic distribution of the
error in density space. Finally, we provide asymptotic approximations to
the true density that can be used to bound the approximation errors of any
measurable set for a given length of the simulation.

The GLAE has a wide range of applications. It can be applied in situations
where shocks have either finite support or continuous support and can be
applied both when the dynamics are stationary and non-stationary. We
provide two versions of our estimator. The Generalized Time-series Look
Ahead Estimator (GTLAE) works well in environments where the stochas-
tic process eventually settles into a stationary distribution. The General-
ized Cross-Sectional Look Ahead Estimator (GCLAE) can be used to es-
timate densities for finite k-period ahead events. This estimator is thus
well-suited for use in nonstationary environments.

1In essence, this is because the first operation involves integration, while the second
requires differentiation.
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GLAE has some attractive properties as compared to other approaches
for computing densities. GLAE is accurate. We show that GLAE pro-
vides estimates of the density that are more accurate than other existing
simulation-based approaches using the same data. GLAE is also fast. It
produces estimates to a given precision in less time than other approaches.

We consider two substantive economic applications. First, we illustrate
the properties of GTLAE and GCLAE to estimate the density of capital in
the neoclassical growth model with continuous shocks. GTLAE is shown
to be more accurate than a Gaussian kernel estimator, producing L1 errors
that are 5 to 10 percent lower when calculating the stationary density. The
improvements are much larger when using the GCLAE to estimate finite
k-step ahead densities and range from 68-75 percent.

Our second application is estimating the labor productivity-asset density
for an income fluctuations problem. The particular problem we consider
is that of a household that faces uninsured shocks to labor-productivity,
is able to save at a constant real interest rate but is subject to borrowing
constraints as in Aiyagari (1994). Following Aiyagari (1994), we discretize
the shocks to labor-productivity using Tauchen’s (1986) methodology and
solve a discrete dynamic programming problem. We compare GTLAE
with a Monte Carlo Estimator (MCE). In this application GTLAE produces
L1 errors that are from 32 - 49 percent lower when shocks to labor produc-
tivity are persistent. In the presence of transient shocks to labor productiv-
ity the accuracy gains are even larger. MCE requires fewer computations
and is thus faster than GTLAE for a given sample size. However, once we
control for accuracy we find that GTLAE is faster at computing a solution
to a pre-specified level of accuracy than MCE and that the benefits of using
GTLAE increase with the size of the state space.

We also compare the speed of GTLAE with two other common approaches
for computing the labor productivity-asset density. The first approach
uses Gaussian elimination (see e.g. Stachurski, 2009). The second ap-
proach iterates on the transition matrix (see e.g. Ljungqvist and Sargent,
2004). In our example GTLAE is as much as 600 times faster than Gaussian
elimination and as much as 100 times faster than iterating on the transition
matrix.
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The benefits of GTLAE are particularly significant in settings with large
numbers of state variables. Indeed, many researchers are now using spaces
of such high dimension that Gaussian and iterative methods are computa-
tionally infeasible. (For discrete state spaces, computational time for both
Gaussian elimination and iterative solutions is of order N3, where N is the
size of the state space.) We illustrate how this problem can arise and il-
lustrate how our approach can be used to calculate the population density
and to estimate it quickly and accurately.

The current solution to this problem is to use traditional Monte Carlo es-
timation. However, GTLAE is more efficient than Monte Carlo estimation
and provides substantially greater accuracy per unit of CPU time than tra-
ditional Monte Carlo methods.

In many applications, the object of interest is an expectation of a function
of the state, and not the complete density. A second and distinct contribu-
tion of the paper is that we develop look-ahead techniques for computing
expectations of functions of the state variable. This is convenient because
it can be applied in situations when proper densities do not exist due to
stochastic singularities. We show that our estimator has lower asymptotic
variance than the usual Monte Carlo estimator. And provide examples
that illustrate the magnitude of the efficiency gains in practical applica-
tions.

Our research is most closely related to Stachurski and Martin (2008) and
Henderson and Glynn (2001). They provide asymptotic results for the
look-ahead estimator (LAE). They assume that the conditional distribu-
tion of the future state given the current state can be represented by a
density. This assumption rules out applying their results to many inter-
esting dynamic programming applications, which have the property that
the conditional distribution is degenerate along one or more dimensions.2

Our methods are tailored to deal directly with this situation. Second this
previous research limits attention to the case of Lebesgue measure. We

2To illustrate how this problem arises, consider for example the Brock-Mirman (1972)
model with serially correlated shocks. In this setting, the equilibrium law of motion is
a bivariate process in capital and the productivity shock. This law of motion lacks full
stochastic rank because the number of state variables exceeds the number of innovations
(i.e., one).
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consider a general measure here that allows shocks to have either discrete
or continuous support.

Our method for calculating expectations extends similar ideas of condi-
tional Monte Carlo and Rao-Blackwellization developed by McKeague
and Wefelmeyer (2000). In particular, we relax two assumptions made in
that work (uniform ergodicity and the detailed balance condition) which
rarely hold in economic applications.

The remainder of the paper is organized as follows. In Section 2 we pro-
pose the GTLAE estimator and derive its asymptotic properties. Then in
Section 3 we report results for two applications of this estimator. In Sec-
tion 4 we propose a look-ahead approach to computing expectations of
functions of the state and describe applications of this approach. In Sec-
tion 5 we propose the GCLAE estimator and describe an application of
this estimator. Section 6 contains our concluding remarks.

2 Computing Stationary Densities

Consider the following scenario. Suppose that the laws of motion for an
economic system can be formulated as

Xt+1 = F(Xt, ξt+1), (ξt)t≥1
IID∼ φ (1)

where Xt and ξt take values in spaces X and Z respectively. Typically, Xt is
a vector of endogenous and exogenous state variables, while ξt is a vector-
valued shock. In the interest of generality, we assume only that (X, X ) is
a measurable space where X is countably generated, and (Z, Z ) is any
measurable space.3

The process (ξt)t≥1 is defined on a probability space (Ω, F , P), and as-
sumed to be IID with common distribution φ. (Serially correlated shocks
are incorporated in this setting by appending them to the state space—see

3The function F : X×Z→ X is (X ⊗Z , X ) measurable. (In section 5, we allow F to
depend explicitly on time in order to accommodate nonstationary environments.)
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below.) As a result, (Xt)t≥0 is Markovian, and its dynamics can also be
represented in terms of the stochastic kernel

P(x, B) = φ{z ∈ Z : F(x, z) ∈ B} =
∫
1B[F(x, z)]φ(dz) (2)

which gives the probability P(x, B) of moving from x ∈ X into set B ∈
X in one step. Here 1B is the indicator function of B. The sequence of
marginal distributions (ψt)t≥0 for (Xt)t≥0 is known to satisfy

ψt+1(B) =
∫

P(x, B)ψt(dx) (B ∈ X , t ≥ 0) (3)

Letting P(X) denote the set of probability measures on (X, X ), a distri-
bution ψ∗ ∈P(X) is called stationary for (1) if, for all B ∈ X , we have

ψ∗(B) =
∫

P(x, B)ψ∗(dx) (4)

In view of (3), if Xt has distribution ψ∗, then so does Xt+k for all k ≥ 0.
Throughout this section, we assume that ψ∗ exists and is unique. In this
case, our interest is in computing quantities related to ψ∗.

An ideal setting is where the conditional distribution P(x, dy) can be rep-
resented by a density for each x. This is the full stochastic rank case.
One can then show that ψ∗ can likewise represented by a density, and
efficient “look-ahead” methods for computing this density via simula-
tion exist (Henderson and Glynn, 2001, Stachurski and Martin, 2008). In
most economic environments, however, serial correlation and other fac-
tors mean that realistic models fall outside this ideal setting.

Problem 2.1. Consider an optimization problem of the form

max
σ∈Σ

E

[
∑
t≥0

βtv(kt, σ(kt, zt), zt)

]

subject to kt+1 = σ(kt, zt) ∈ Γ(kt, zt) ⊂ Rm
+ and zt+1 = h(zt, εt+1) ∈ R`

+,
where Σ is the set of feasible policy functions4 and (εt)t≥1 is an IID se-
quence. Assume the existence of an optimal policy σ. Letting Xt :=

4That is, σ is measurable and σ(k, z) ∈ Γ(k, z) for all state pairs (k, z).
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(kt, zt) ∈ Rm×`
+ =: X and ξt := εt ∈ Rj =: Z, the state evolves according

to

Xt+1 :=
[

kt+1
zt+1

]
=
[

σ(kt, zt)
h(zt, εt+1)

]
=: F(Xt, ξt+1) (5)

which is a special case of (1). This problem nests a large class of indi-
vidual optimization problems as in, e.g., Guvenen and Smith (2006), firm
problems as in, e.g., Khan and Thomas (2008), and recursive competitive
equilibria as in Hansen and Prescott (1995). An important feature of the
problem is that the transition rule in (5) typically exhibits deficient stochas-
tic rank. The mapping z 7→ F(x, z) takes values in a measure-zero subset
of X.

However, it may be that our interest lies in only a subset of the state vari-
ables, or in some other variables depending on the state, such as prices
or consumption. A setting which nests these problems is one where we
seek to compute the density of a measurable function Yt = τ(Xt) of the
state. When the dimension of Yt is not large relative to the dimension of
the shock, we show that generalized look-ahead estimators for the density
of Yt can often be constructed, and that these estimators have excellent
asymptotic properties.5

Let us give a more precise problem statement for this section. Let ψ∗ be
the unique stationary distribution of P. Let X∗ be a random variable on
X with distribution ψ∗, and let Y∗ := τ(X∗), where τ is any measurable
function from (X, X ) to σ-finite measure space (Y, Y , µ).6 We wish to
compute the density f ∗ of Y∗ on Y whenever it exists. In doing so, we
cannot sample directly from the unknown distribution ψ∗, but we may
generate sequences (Xt)t≥0 from the model (1).

Here f ∗ is a density with respect to µ. That is,
∫

B f ∗dµ = P{Y∗ ∈ B}
for all B ∈ Y .7 This formulation nests two common cases. First, it nests

5Even when the dimension condition is not satisfied and densities do not exist, we
provide efficient look-ahead type estimators for computing probabilities and expecta-
tions. See section 4.

6In addition to σ-finiteness, we require Y is countably generated.
7A necessary and sufficient condition for existence of such an f ∗ is that the probability

measure B 7→ P{Y∗ ∈ B} is absolutely continuous with respect to µ.
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the standard case where Y is a subset of Rk, Y is the Borel sets, and µ

is the Lebesgue measure. The other case is when Y is discrete, Y is the
set of all subsets, and µ is the counting measure. In this case, integration is
summation, and densities with respect to µ are probability mass functions.

In order for the density approximation problem treated in this section to
be well-defined, we need an assumption which guarantees that f ∗ exists.
Our condition is stated in terms of the conditional probability

P{Yt+1 ∈ B |Xt = x} = φ{z ∈ Z : τ[F(x, z)] ∈ B}
= φ{z ∈ Z : F(x, z) ∈ τ−1(B)} = P(x, τ−1(B))

Assumption 2.1. This conditional distribution can be represented by a
density on Y with respect to the dominating measure µ. In particular,
there exists a measurable8 function q : Y×X→ R+ satisfying∫

B
q(y | x)µ(dy) = P(x, τ−1(B)) (x ∈ X, B ∈ Y ) (6)

Note that in the discrete case, where µ is the counting measure, this as-
sumption is trivially satisfied. Any distribution on Y can be represented
by a discrete density (i.e., probability mass function).9

Given assumption 2.1, the density f ∗ exists. Indeed,

f ∗(y) :=
∫

q(y | x)ψ∗(dx) (y ∈ Y) (7)

is a density representing Y∗ (i.e.,
∫

B f ∗dµ = P{Y∗ ∈ B} for all B ∈ Y ). To
see this, fix B ∈ Y . By Fubini’s theorem, (6) and (4),∫

B

∫
q(y | x)ψ∗(dx)µ(dy) =

∫ ∫
B

q(y | x)µ(dy)ψ∗(dx)

=
∫

P(x, τ−1(B))ψ∗(dx) = ψ∗(τ−1(B))

But ψ∗(τ−1(B)) = P{X∗ ∈ τ−1(B)} = P{Y∗ ∈ B}, as was to be shown.

8Measurability with respect to the product σ-field Y ⊗X .
9This is because µ(B) = 0 implies that B = ∅, so all distributions on (Y, Y ) are

absolutely continuous with respect to µ.
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In order to compute f ∗ from (Xt)t≥0, we require that P is ergodic. In other
words, for any h : X→ R and any initial condition X0 = x0 ∈ X we have∫

|h(x)|ψ∗(dx) < ∞ implies lim
n→∞

1
n

n

∑
t=1

h(Xt) =
∫

h(x)ψ∗(dx) (8)

P-almost surely. To compute f ∗ we propose a generalized time-series
look-ahead estimator (GTLAE) defined by

f ∗n (y) :=
1
n

n

∑
t=1

q(y |Xt) (y ∈ Y) (9)

where (X1, . . . , Xn) is a time-series simulated from (1), and the initial con-
dition X0 is either given or chosen arbitrarily.10 Algorithm 1 demonstrates
how to obtain an observation of f ∗n (y) for fixed y ∈ Y.

Algorithm 1: Time series look-ahead estimate of f ∗(y)
X0 ← x, where x ∈ X is arbitrary ;
for t in 1 to n do

draw ξ ∼ φ ;
Xt ← F(Xt−1, ξ) ;

end
return f ∗n (y) := 1

n ∑n
i=1 q(y |Xt)

The pointwise properties of the GTLAE are easily described. In particular,
if y ∈ Y is fixed, then

lim
n→∞

f ∗n (y) := lim
n→∞

1
n

n

∑
t=1

q(y |Xt) =
∫

q(y | x)ψ∗(dx) = f ∗(y) (10)

P-almost surely as n → ∞, where the first equality is by definition, the
second is by (8), and the last is due to (7). In this sense we have consistency

10The GTLAE nests the standard look-ahead estimator discussed in Henderson and
Glynn (2001) and Stachurski and Martin (2008). In particular, if (Y, Y ) is a subset of Rk

paired with its Borel sets, if µ is Lebesgue measure, and if τ is the identity map (so that
Yt = Xt), then q(y | x) is just the conditional (Lebesgue measure) density of Xt given Xt−1.
In this case, (9) reduces to the definition used in Stachurski and Martin (2008).
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at each point in the domain Y. However, this result does not generally
imply that f ∗n → f pointwise with probability one, since (10) holds on
the complement of a null set dependent on y, and uncountable families of
null sets are not generally null. To obtain global convergence results we
will switch to a function-space point of view, beginning in section 2.3.

2.1 An Example with Continuously Distributed Shocks

To illustrate the application of GLAE density estimates in a setting with
continuous shocks consider the variant of the stochastic growth model of
Nelson and Plosser (1982). This variant of the stochastic growth model is
convenient because it admits a closed form solution.

Example 2.1. Consider the following special case of problem 2.1,

v(k′, k, z) = ln(k′ − Akαz) and Γ(k, z) = [0, Akαz]

In this case, optimality implies that the capital stock evolves according to

kt+1 = Aβαkα
t zt+1

We suppose further that the exogenous shock process (zt) is determined
by

ln zt+1 = ρ ln zt + εt+1, (εt)t≥1
IID∼ N(0, σ2)

We take (kt, zt) as the state, and seek to compute the distribution of Yt :=
ln(kt/k̄) when k̄ := (Aβα)1/(1−α). Here Yt takes values in (Y, Y , µ) =
(R, B, λ), where B is the Borel subsets of R and λ is Lebesgue measure.
The function τ is given by τ(k, z) = ln(k/k̄). Some manipulations show
that

Yt = ln kt − ln k̄ = α(ln kt−1 − ln k̄) + ρ ln zt−1 + εt

It follows that the conditional density of Yt given Xt−1 = (k, z) is

q(y | k, z) =
1√
2πσ

exp
{
− (y− α(ln k− ln k̄)− ρ ln z)2

2σ2

}
(11)

Hence assumption 2.1 is satisfied. For this model, the GTLAE is formed
by simulating a series (kt, zt)n

t=1 and evaluating n−1 ∑n
t=1 q(y | kt, zt).

The fact that the density of Y∗ can be calculated analytically makes this
example a useful test case for the numerical experiments conducted below.
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2.2 An Example with Discrete Shocks

Now suppose that X is finite, and that we wish to compute the station-
ary distribution ψ∗ (i.e, the distribution of X∗). Since we are interested
in the state variable X∗ rather than some function of X∗, τ is the identity
mapping. In the present setting, (Y, Y , µ) = (X, X , c), where X is all
subsets of X, and c is the counting measure. Let p be the transition matrix
corresponding to (1), so that p(x, y) = φ{z ∈ Z : F(x, z) = y} gives the
probability of transitioning from x ∈ X to y ∈ X in one step. The condi-
tional density q(y|x) in assumption 2.1 is just p(x, y), as p(x, y) satisfies (6)
for any B ⊂ X and any x ∈ X:∫

B
p(x, y)c(dy) = ∑

y∈B
p(x, y) = P(x, B) = P(x, τ−1(B))

In this finite setting, the distribution ψ∗ can be represented as the solution
to a system of linear equations,11 and solved using Gaussian elimination
or similar techniques. Such techniques are typically of order O(n3), where
n = card(X). As a result they are slow or infeasible for large n, and other
techniques for generating approximate solutions must be employed.

The standard alternative is to compute empirical frequencies using Monte
Carlo. Let (Xt)t≥1 be a simulated time series generated from the model.
Employing (8) with h(x) = 1{x = y}, we obtain

1
n

n

∑
t=1

1{Xt = y} → ∑
x∈X

1{x = y}ψ∗(x) = ψ∗(y) (n→ ∞) (12)

Evaluating the expression on the left for each y ∈ X gives an approx-
imation to ψ∗. However, estimates of low frequency events tend to be
unstable. We propose instead to use the GTLAE, which in this case is

f ∗n (y) =
1
n

n

∑
t=1

q(y |Xt) =
1
n

n

∑
t=1

p(Xt, y) (y ∈ X) (13)

As shown in (10), this estimator is also consistent. Moreover, we will show
below in Section 4 that its asymptotic variance is lower than that of the
standard Monte Carlo estimator, independent of the model p.

11See, e.g., Stachurski (2009, section 4.3.1).
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Example 2.2. As a particular illustration, consider the incomplete market
economy of Aiyagari (1994). Following Aiyagari (1994), we begin with the
consumption smoothing problem of an individual who insures against id-
iosyncratic earnings risk by saving at a risk free rate of r. In this model
both the real interest rate and the wage rate w are constant but total earn-
ings are random due to idiosyncratic variations in labor productivity. Each
individual also faces a borrowing constraint that rules out uncollateralized
borrowing.

The household’s problem can be described by the Bellman equation

V(a, z) = max
c,a′

{
u(c) + βE[V(a′, z′) | z]

}
subject to

0 ≤ a′ ≤ wz + a(1 + r)− c

The serially correlated shock to labor productivity evolves according to

ln z′ = ρ ln z + σ
√

1− ρ2ε, ε ∼ N(0, 1) (14)

One common approach to solving this problem is to discretize the produc-
tivity process using Tauchen’s method (1986), obtaining a grid {z1, ..., zM}
and an M×M stochastic matrix R that represents the dynamics (14) on the
grid.12 Assuming that assets also lie on a finite grid {a1, ...aL}, the solution
to Bellman’s equation is an L×M matrix of saving policies a′ = g(a, z).

Given the solution to the individual’s problem, we are interested in mak-
ing inferences about the stationary labor productivity-asset density. The
path of assets and productivity shocks evolves according to at+1 = g(at, zt)
with (zt)t≥0 generated by R. Taking Xt := (at, zt) as the state variable, the
transition probabilities from state x = (a, z) to state y = (a′, z′) are given
by

p(x, y) :=: p((a, z), (a′, z′)) := 1{g(a, z) = a′}R(z, z′) (15)

In view of (13), the GTLAE of the stationary productivity-asset density is

f ∗n (a′, z′) =
1
n

n

∑
t=1

1{g(at, zt) = a′}R(zt, z′) (16)

12In particular, P{zt+1 = z′ | zt = z} = R(z, z′) for any z, z′ ∈ {z1, . . . , zM}.
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Implementation proceeds by drawing a sequence of n realizations of labor
productivity from the matrix R, and using the policy function g to derive
n associated values of assets. The resulting sequence (at, zt)n

t=1 is then
inserted into (16), and this expression is evaluated at all a′ ∈ {a1, . . . , aL}
and z′ ∈ {z1, . . . , zM}.

2.3 Asymptotic Properties of the GTLAE

The convergence result in (10) is pointwise, pertaining to fixed y ∈ Y. Our
interest is in the global properties of the estimators, and generalizing from
these local results to global results is not straightforward. Instead, we start
from a global perspective, within the setting of random functions in Ba-
nach space. This technique leads to a relatively complete characterization
of the global properties.

To begin, recall that P in (2) is called V-uniformly ergodic (V-UE) if it is φ-
irreducible, aperiodic (see Meyn and Tweedie, 1993, for definitions) and,
moreover, there is a function V : X 7→ [1, ∞) such that the sublevel sets
CV,α := {x ∈ X : V(x) ≤ α} are P-small for all real α, as well as nonnega-
tive constants λ < 1 and L < ∞ satisfying∫

V(y)P(x, dy) =
∫

V[F(x, z)]φ(dz) ≤ λV(x) + L, x ∈ X (17)

Under the V-UE assumption, a unique stationary distribution ψ∗ exists,
and

∫
Vdψ∗ < ∞.13 Moreover, the ergodicity in (8) holds, as does the

central limit theorem for a broad class of functions. The V-UE condition
has been shown to hold in a range of economic and econometric applica-
tions.14

Since (Y, Y , µ) is σ-finite and Y is countably generated, it follows that the
Banach spaces Lp(Y, Y , µ) :=: Lp(µ) of p-integrable real-valued functions

13See, in particular, Meyn and Tweedie (1993, lemma 15.2.8 and theorem 16.1.2). A set
C ∈ X is P-small if there exists a nontrivial measure ν and k ∈ N such that Pk(x, B) ≥
ν(B) for all B ∈ X and all x ∈ C.

14See, for example, Kristensen (2007) or Nishimura and Stachurski (2005).
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on Y are separable for all p ∈ [1, ∞). As usual, Lp(µ) is endowed with the
norm

‖g‖p :=
(∫

gpdµ

)1/p
(g ∈ Lp(µ))

with ‖g‖∞ being the essential supremum. We use q ∈ (1, ∞] to denote the
conjugate index of p (i.e., 1/p + 1/q = 1), so that Lq(µ) is (isometrically
isomorphic to) the norm dual of Lp(µ) for 1 ≤ p < ∞. For such p and q,
let

〈g, h〉 :=
∫

ghdµ :=:
∫

g(y)h(y)µ(dy) (g ∈ Lp(µ), h ∈ Lq(µ))

If p = q = 2 then this inner product gives rise to the Hilbert space L2(µ).

Let U be a random variable taking values in Lp(µ), and defined on prob-
ability space (Ω, F , P). The (vector-valued) expectation of U is the point
EU ∈ Lp(µ) such that

E〈U, h〉 = 〈EU, h〉 for every h ∈ Lq(µ)

It follows from the Reisz representation theorem that if E‖U‖p is finite,
then EU exists and is unique. A random variable U is called centered Gaus-
sian on Lp(µ) if, for every h ∈ Lq(µ), the real-valued random variable
〈U, h〉 is centered Gaussian on R.

Let X∗ ∼ ψ∗. Fixing y ∈ Y, the term q(y |X∗) is a random variable in R.
The GTLAE estimate f ∗n (y) := n−1 ∑n

t=1 q(y |Xt) is the sample analogue of
the expectation Eq(y |X∗). Moreover, the definition of f ∗ in (7) implies that
for any fixed y ∈ Y we have Eq(y |X∗) = f ∗(y). This drives the pointwise
consistency result in (10).

Repeating this argument in the function space setting yields global con-
sistency results. To begin, observe that q(· |X∗) is a random variable in
L1(µ), and the GTLAE f ∗n = n−1 ∑n

t=1 q(· |Xt) is the sample analogue of
the expectation Eq(· |X∗). Moreover, it is proved in the appendix that

Lemma 2.1. If X∗ ∼ ψ∗, then Eq(· |X∗) = f ∗.

Continuing with this logic leads us to the following results.
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Theorem 2.1. If P is ergodic, then the GTLAE f ∗n is globally consistent for f ∗,
in the sense that f ∗n → f ∗ in L1(µ) as n→ ∞ P-almost surely. If, in addition, P
is V-UE and ∫

q(y | x)2µ(dy) ≤ V(x) ∀ x ∈ X

then
√

n( f ∗n − f ∗) converges in distribution to a centered Gaussian on L2(µ)
with covariance operator C defined by

〈g, Ch〉 = E〈g, q(· |X∗1)− f ∗〉〈h, q(· |X∗1)− f ∗〉

+
∞

∑
t≥2

E〈g, q(· |X∗1)− f ∗〉〈h, q(· |X∗t )− f ∗〉

+
∞

∑
t≥2

E〈h, q(· |X∗1)− f ∗〉〈g, q(· |X∗t )− f ∗〉

where (X∗t )t≥0 is a stationary P-Markov sequence.

From this theorem it can be shown directly that ‖ f ∗n − f ∗‖2 = OP(n−1/2).

3 Applications of the GTLAE

We now illustrate the numerical properties of GTLAE and GCLAE using
the three examples we described in Section 2 These examples illustrate
that these estimators not only have attractive statistical properties but are
also quite fast and accurate in practical applications.

3.1 Optimal Growth, Stationary Density

Our first computational experiment concerns the benchmark stochastic
growth model with a log-linear optimal capital accumulation policy de-
scribed in example 2.1. For this log-linear model, the stationary distribu-
tion for Yt := ln(kt/k̄) can be obtained explicitly, and has the form

f ∗ = N(0, v) for v :=
σ2(1 + ρα)

(1− ρ2)(1− α2)(1− ρα)
(18)
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The GTLAE of this density is

f ∗n (y) =
1
n

n

∑
t=1

q(y | kt, zt) (y ∈ R)

where q is given by (11) and (kt, zt) is a time series generated by (i.e.,
simulated from) the model. The performance of the GTLAE will be com-
pared against that of the standard nonparametric kernel density estimator
(NPKDE)

pn(y) =
1

nδn

n

∑
t=1

K
(

y−Yt

δn

)
(y ∈ R)

where (Yt)n
t=1 is simulated from the model, K is a Gaussian kernel (i.e.,

standard normal density) and the bandwidth δn is chosen using Silver-
man’s rule.15 These are widely used defaults for the NPKDE.

The performance of the two estimators is measured in terms of the L1 de-
viation between a particular estimate and the stationary density (18). That
is,

E(hn) =
∫
|(hn(y)− f ∗(y))| dy (19)

where hn is either the GTLAE f ∗n or the NPKDE pn. Note that E(hn) is a
real-valued random variable, and we approximate its expectation by aver-
aging over m independent replications.16

15That is, δn = n−1/51.06sn, where sn is the standard deviation of the sample.
16A word is in order as to why we use the L1 distance to assess the fit of density es-

timators. First, the L1 measure of distance has the desirable property that it is always
finite. (Other measures of distance such as the L2 norm do not have this property absent
additional assumptions.) Second, the L1 distance between densities f and g equals

2× sup
B∈Y

∣∣∣∣∫B
f (x)µ(dx)−

∫
B

g(x)µ(dx)
∣∣∣∣

Thus, if the L1 distance between f and g is less than ε, then the deviation in probability
assigned to arbitrary B by f and g is less than ε/2. This provides a natural quantitative
interpretation. Finally, L2 is insensitive to divergence in the tails. This has led Devroy and
Lugosi (2001) to argue that L2 distances are be avoided when analyzing nonparametric
density estimates. Our comparisons of L1 and L2 distances led us to the same conclusion.
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Table 1: L1 errors, Generalized Time Series Look-Ahead Estimator
(GCLAE) and Nonparametric Kernel Density Estimator (NPKDE).

Sample size (n) 1000 1500 2000 2500 3000 3500 4000
NPKDE 0.149 0.127 0.11 0.101 0.094 0.085 0.081
GTLAE 0.141 0.118 0.102 0.092 0.084 0.076 0.073
Ratio (GTLAE/NPKDE) 0.95 0.93 0.92 0.91 0.9 0.9 0.9
Notes

1) Results are averages across 100 replications for each given sample size.

The present set up is almost ideal for the NPKDE pn, and hence the com-
parison of the GTLAE f ∗n against pn provides a rigorous test of the GT-
LAE’s performance. The reasons that pn should perform strongly are as
follows. First, the target density f ∗ is known to be Gaussian, matching
the Gaussian kernel, and Silverman’s rule is optimal for a Gaussian tar-
get density. Hence the choices for both the kernel and the bandwidth use
strong prior information which is not generally available in applications.
Second, in contrast to the GTLAE, the rate of convergence for the NPKDE
slows as the dimension of Y increases. Hence our one-dimensional state
space favors the NPKDE.

Table 1 shows average L1 errors for the two estimators for different sample
sizes, n. The first row gives values of n. The second row gives an average
of E(pn) over 100 replications for each different n. The third row gives
the same for E( f ∗n ). The fourth row gives the ratio of the third row to
the second. The parameter values in the experiment are A = 5, α = 0.5,
β = 0.9, ρ = 0.9 and σ = 0.1. The results show that the GTLAE generally
outperforms the NPKDE for these values of n, despite the set up being
favorable to the NPKDE. The errors for the GTLAE are between 5 and
10 percent lower than those for the NPKDE, with larger sample size (i.e.,
larger n) increasing the reduction in error achieved by the GTLAE.

It should be noted that for very small values of n, we found that the GT-
LAE had higher mean errors than the NPKDE. This is due to the high
variance of the sequence (zt), which appears in the GTLAE but not in the
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NPKDE.17 We proved above in Theorem 2.1 that the error for the GTLAE
converges to zero at the parametric rate OP(n−1/2), which is faster than
the rate for the NPKDE. Hence the GTLAE outperforms the NPKDE even-
tually (i.e., for large n), even in a applications suited to the NPKDE (such
as the one in question).

3.2 Aiyagari Model

As a second application, we use the GTLAE to compute the joint distribu-
tion of assets and labor-productivity in the heterogeneous agent economy
analyzed by Aiyagari (1994). We parameterize the model using one of the
parameterizations reported in Aiyagari (1994). The relative risk-aversion
parameter is set to µ = 3, the preference discount rate is β = 0.96, the real
interest rate is r = 0.0129 and the wage rate is 1.3712. Labor productiv-
ity is assumed to follow the AR(1) process (14). We report results for two
different values of the serial correlation parameter for labor productivity:
ρ = 0.3 and ρ = 0.9. The variance of labor productivity is set to 0.4.

The method for implementing the GTLAE was discussed in example 2.2.
We compare results over different grid sizes, with M (the size of the grid
over productivity shock space) equal to either 10 or 15, and L (the size of
the grid over the asset space) ranging between 812 and 5,469.

We first compare the accuracy of the GTLAE estimates of this joint distri-
bution with the Monte Carlo estimator (MCE) described in (12). The MCE
tabulates the frequency of each outcome over n Monte Carlo realizations of
assets and labor productivity. Results for the two estimators are reported
in Table 2. All of the results are based on n = 106 pseudo realizations of
assets and labor productivity. The criteria used to compare the accuracy
of the GTLAE and MCE is the L1 error criterion. Since there is no closed
form solution for the exact invariant distribution in this application, we

17The sequence has relatively high variance because of the high value of the correlation
coefficient ρ we discuss this point in more detail in Section 4.2 below.
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Table 2: Accuracy comparison of GTLAE and Monte Carlo estimator of
asset-productivity distribution in Aiyagari model with discrete shocks.

Grid size      

(assets x 

productivity)

Persistence L1 error
CPU 

Time
 L1 error

CPU 

Time

(812 x 10) rho=0.9 0.026 0.8 0.038 0.5

(1568 x 10) rho=0.9 0.034 0.8 0.052 0.5

(5058 x 15) rho=0.9 0.056 1.3 0.109 0.8

(877 x 10) rho=0.3 0.011 0.8 0.026 0.6

(1695 x 10) rho=0.3 0.015 0.9 0.037 0.6

(5469 x 15) rho=0.3 0.026 1.4 0.083 0.9

Notes
1) The sample length is fixed at 1,000,000 for all runs after dropping the first 500 observations.

2) Time is measured in seconds. 

3) For the specifications with 10 productivity nodes L1 erros are calculated 

    using the solution from Gaussian elimination as the true density.

4) For the specification with fifteen productivity nodes

    the true density is computed using a GTLAE simulation of length  3000e+6.

5) The same time series data is used for GTLAE and Monte Carlo estimation.

6) CPU Time and L1 errors are averages across 100 replications.

GTLAE Monte CarloSpecification

use Gaussian elimination methods to compute it numerically.18 For the
two specifications with the largest number of nodes (15 nodes for labor
productivity and over 5000 nodes for assets), Gaussian elimination is not
feasible due to insufficient core memory. Instead we appeal to our theo-
retical results, which establish the global convergence of the GTLAE and
calculate the true density by conducting a GTLAE simulation of length
3000e+06.

The first thing to notice about Table 2 is that the GTLAE is more accurate
than MCE. The GTLAE yields lower L1 errors than MCE for all choices
of the grid size and both settings of the persistence parameter for labor
productivity. The accuracy of both estimators declines as we increase the
size of the grid. Notice though that the relative accuracy of the GTLAE
compared to MCE increases with the number of grid points. For the largest

18Calculations were performed using an HP workstation with two quad4 Intel proces-
sors and 16 gigabytes of RAM. The programs to perform these calculations are written in
Matlab and are available from the authors upon request.
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grid, the GTLAE is about twice as accurate as the Monte Carlo estimator
when the persistence of labor productivity is 0.9 and it is about 3 times as
accurate when the persistence is of labor productivity is set to 0.3.

The second noteworthy feature about Table 2 is that the MCE is faster than
the GTLAE. This follows from the fact that there are more calculations in-
volved in computing conditional densities than in calculating frequencies.
MCE is about 60 percent faster than the GTLAE when labor productivity
is persistent. The gap is a bit smaller when the persistence of labor pro-
ductivity is 0.3.

To further explore the trade off between speed and accuracy we report
simulation results in Table 3 that assess the speed of each estimator in
achieving a pre-specified L1 error of 0.025. The results for the GTLAE
are reported in column three and results for the Monte Carlo estimator
are reported in column four.19 These results indicate that if we control for
accuracy, the GTLAE is faster than the MCE for all choices of the grid size.
Moreover, the advantages of the GTLAE as compared to the MCE once
again increase with the grid size. For the largest grid size, the GTLAE is
three times faster than Monte Carlo when the persistence parameter is 0.9
and eight times faster than Monte Carlo when the persistence parameter is
0.3. For the smallest grid, the speed advantage of the GTLAE ranges from
36 to 300 percent.

Table 3 also provides results for two other common methods used for cal-
culating invariant distributions of Markov chains. The transition matrix
iteration method operates on the transition equation (3) from an initial
guess of the labor productivity-asset distribution, ψ0, until the L1 error is
less than 0.025 (see Ljungqvist and Sargent (2004), chapter 2 for more de-
tails on this method). Gaussian elimination applies elementary matrix op-
erations to the transition matrix to calculate the invariant distribution di-
rectly (see Stachurski (2009), section 4.3.1 for more details on this method).
The GTLAE is much faster than either of these two methods. Once gain its
speed advantage increases with the size of the grid. The reason for this is

19The time for these calculations is not directly comparable with those reported in Table
2 because the programs here we have an additional loop that checks for convergence.
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Table 3: Speed Comparison of GTLAE, Monte Carlo, Transition Matrix
Iteration, and Gaussian Elimination for labor productivity-asset distribu-
tion in Aiyagari model with discrete shocks.

GTLAE
Monte 

Carlo

Transition 

Matrix 

iteration

Gaussian 

Elimination

Grid size     

(assets x 

productivity)

Persistence CPU Time  CPU Time CPU time CPU time

(812 x 10) rho=0.9 2.5 3.4 39.1 94.9
(1568 x 10) rho=0.9 5.3 8.9 149.7 563.5
(5058 x 15) rho=0.9 41.0 127.0 NA NA
(877 x 10) rho=0.3 0.5 1.7 42.4 106.2
(1695 x 10) rho=0.3 1.1 4.8 150.7 699.3
(5469 x 15) rho=0.3 7.7 63.3 NA NA

Notes
1) Time is measured in seconds.

2) GTLAE, Monte Carlo estimation and transition matrix iteration 

    schemes are all stopped when the L1 error equals 0.025.

3) The same time series data is used for GTLAE and Monte Carlo schemes.

4) For GTLAE and Monte Carlo CPU times are the average across 100 replications and

     in each replication the first 500 observations are dropped.

Specification

that the number of calculations involved in implementing Gaussian elim-
ination and transition matrix iteration grow in a nonlinear way with the
size of the grid.

This result illustrates a further important advantage of the GTLAE. Both
Gaussian elimination and transition matrix iteration eventually become
infeasible due to memory requirements associated with storing and oper-
ating on the transition matrix.20 The GTLAE and MCE avoid this problem
by treating the computation of the invariant distribution as an estimation
problem.

Taken together, these results show that the GTLAE is also an attractive
method for computing stationary densities in settings where the dynamics
of the model can be represented as a Markov chain. These benefits are
most significant in settings with multiple shocks and/or state variables,

20These problems can be ameliorated by using sparse Arnoldi methods but this does
not avoid the curse of dimensionality.
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or in situations where one needs to compute a density many times such as
when estimating structural parameters of the model.

4 Computing Expectations

Let us now return to the general stochastic model with law of motion (1)
and stochastic kernel P defined in (2). As above, we assume that P is
V-uniformly ergodic for some V : X→ R+, with unique stationary distri-
bution ψ∗, and consider the distribution of Y∗ = τ(X∗) when X∗ ∼ ψ∗.
However, we now drop assumption 2.1, in which case Y∗ does not always
have a density which represents its distribution.

In this setting, the problem of computing the density of Y∗ does not make
sense. At the same time, one can still consider the problem of computing
EY∗ when Y∗ is real-valued (i.e., Y ⊂ R). This nests several important
sub-problems. For example, if τ(x) = xk, then EY∗ is the k-th moment
of the stationary distribution. Such moments are regularly calculated in
calibration exercises. Alternatively, if τ(x) = 1B(x) for some B ∈ Y , then
EY∗ = E1B(X∗) = ψ∗(B), which is the probability of event B under the
stationary distribution.

4.1 Asymptotic Theory

To simplify notation, we introduce a common shorthand. Letting h : X →
R be an integrable function, we set

Ph(x) :=
∫

h(y)P(x, dy) (x ∈ X)

Alternatively, Ph can be expressed as

Ph(x) = E[h(Xt+1) |Xt = x] =
∫

h[F(x, z)]φ(dz)

Note that for the stationary distribution ψ∗ we have

h : X→ R and
∫
|h|dψ∗ < ∞ =⇒

∫
Phdψ∗ =

∫
hdψ∗ (20)
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This can be proved directly. Alternatively, see Stachurski (2009, thm. 9.2.15).

To compute EY∗ = Eτ(X∗) =
∫

τdψ∗, let (Xt)t≥0 be a simulated observa-
tion of our process (1) starting from any initial condition X0 = x ∈ X, and
consider the two estimators

Enτ :=
1
n

n

∑
t=1

τ(Xt)

and

EnPτ :=
1
n

n

∑
t=1

Pτ(Xt) :=
1
n

n

∑
t=1

∫
τ[F(Xt, z)]φ(dz) (21)

The first estimator is the standard Monte Carlo estimate, consistency of
which follows immediately from (8). The second is a look-ahead estima-
tor. It is also strongly consistent by the same ergodicity property and (20),
which gives

EnPτ :=
1
n

n

∑
t=1

Pτ(Xt)→
∫

Pτdψ∗ =
∫

τdψ∗ P-a.s.

Assuming that the integral in (21) can be calculated accurately, EnPτ is
a better estimator than Enτ because its asymptotic variance is lower. An
earlier result along these lines was obtained by by McKeague and We-
felmeyer (2000). Their proof used the assumptions of uniform ergodicity
and detailed balance, neither of which holds in most economic applica-
tions. We now show that an analogous result holds in our more general
setting.

Theorem 4.1. Let P be V-uniformly ergodic, and let τ : X→ R be a measurable
function satisfying τ2 ≤ V. Then n1/2(Enτ − ψτ) and n1/2(EnPτ − ψτ) both
converge in law to centered Gaussian distributions on R, with variances v1 and
v2 respectively. Moreover, v2 ≤ v1 always holds.

We now turn to some applications of this result.

4.2 Applications

We have shown that GTLAE is weakly more efficient than MCE when cal-
culating expectations. Before describing an economic application first pro-
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vide a time-series example that illustrates when the efficiency gains are
large and when they are small.

Let us specialize (1) to the real-valued, linear AR(1) process

Xt+1 = F(Xt, ξt+1) = µ + ρXt + ξt+1 (22)

where (ξt)t≥1 is IID with common distribution φ, and Eξ1 = 0. Let τ(x) =
x, so that the object of estimation is the unconditional mean. The GTLAE
estimates the unconditional mean by

1
n

n

∑
t=1

∫
τ[F(Xt, z)]φ(dz) =

1
n

n

∑
t=1

∫
(µ + ρXt + z)φ(dz) = µ + ρ

1
n

n

∑
t=1

Xt

while MCE estimates the unconditional mean as 1
n ∑n

t=1 Xt. Letting V de-
note the variance operator, the variance (across replications) of the GTLAE
estimator of the mean is given by

V(µ + ρ
1
n

n

∑
t=1

Xt) = ρ2V(
1
n

n

∑
t=1

Xt) (23)

while the variance of the Monte Carlo estimator of the mean is

V(
1
n

n

∑
t=1

Xt) (24)

Inspection of these formulas shows that the relative efficiency of GTLAE
compared to MCE is largest when persistence is low. As ρ is reduced to-
wards zero, the conditional expectation tends to the unconditional expec-
tation and the efficiency gains of GTLAE are large. Alternatively, as ρ is in-
creased towards one, the standard deviation of the GTLAE estimator also
increases and tends towards the MCE estimator of the standard deviation.

Next we compare the relative efficiency GTLAE and MCE in estimating
moments in the Aiyagari model with discrete shocks. Table 4 reports the
relative efficiency of GTLAE to MCE in estimating the first three moments
of consumption and the first three cross-moments of consumption with
labor productivity.
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Table 4: Efficiency of GTLAE relative to MCE in estimating moments of
consumption.

E(c) E(c^2) E(c^3) E(cz) E(c^2z^2) E(c^3z^3)

rho=0.3

  n=1,000 0.92 0.93 0.93 0.60 0.56 0.50

  n=1,000,000 0.91 0.92 0.92 0.60 0.56 0.51

rho=0.9

  n=1,000 0.97 0.97 0.97 0.93 0.92 0.90

  n=1,000,000 0.97 0.97 0.97 0.93 0.92 0.90
Notes

1 The results are based on 200 replications of simulations of length n. For

    each replication the first 1000 observations are dropped.

2. Results report the ratio of the GTLAE  standard deviation across replications 

Results are reported for two simulation lengths n = {1e3, 1e6} and two
settings of the persistence of labor productivity ρ = {0.3, 0.9}. Consider
first the results for the case where ρ = 0.3. The efficiency gain asso-
ciated with using GTLAE ranges between 7 and 9 percent for the first
three moments of individual consumption. The efficiency gains associated
with using GTLAE to estimate cross-moments of consumption and labor-
productivity are substantially higher. The standard deviation of GTLAE
in some cases is half the size of the MCE standard error.

An important factor that limits the overall efficiency benefits of GTLAE
is the persistence of consumption. Consumption smoothing considera-
tions imply that consumption is more persistent than labor productivity.
Increasing the persistence of labor-productivity also increases the persis-
tence of individual consumption and this reduces the efficiency benefits of
GTLAE. In our simulations the first order serial correlation of individual
consumption is 0.89 when ρ = 0.3 and it rises to 0.97 when ρ = 0.9. When
ρ = 0.9 the maximum improvement in efficiency from using the GTLAE
estimator is correspondingly smaller: 3 percent for the own moments of
consumption and 10 percent for the cross-moments.

The fact that the dynamic system being considered is not full rank can also
affect the relative efficiency of GTLAE when estimating moments. In our
example, the one step ahead conditional density of assets, for instance, is
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degenerate. In this situation GTLAE assigns all probability mass to the
value of assets given by the asset policy function and the calculation of
average assets reduces to the Monte Carlo estimator.

As a final application we illustrate that the computation of the invariant
distribution in a model with discrete shocks can also be reformulated as
a problem of computing an expectation. To see why this is the case note
that when we are computing densities with discrete shocks, the value of
the density:

f (y) = PXt = y

can be expressed as P {Xt = y} = E1 {Xt = y}.21 To apply Theorem 4.1
fix y and set τ(x) = 1 {Xt = y}. Then we have

Enτ = (1/n)
n

∑
t=1

1 {Xt = y}

which is the discrete Monte Carlo density estimator (13). Observe next
that

Pτ :=
∫

τ(z)P(x, dz) = ∑
z

τ(z)p(x, z) = ∑
z
1 {z = y} p(x, z) = p(x, y)

so that

EnPτ = (1/n)
n

∑
t=1

p(Xt, y)

which is the discrete GTLAE density estimator (12). Then from Theo-
rem 4.1 it follows that the discrete GTLAE density estimator has a lower
asymptotic variance than the discrete Monte Carlo density estimator. Thus,
the improved accuracy of the GTLAE density estimator compared to the
Monte Carlo density estimator documented Table 2 is an example of a
more general result.

5 Nonstationary Environments

So far we have considered results for the stationary setting only. In non-
stationary environments the marginal distributions do not converge, and

21We are exploiting the discrete structure of the shock process here. In the continuous
case with Lebesque measure, the equality is not valid.
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one thinks instead of computing the marginal distribution of Yt = τ(Xt)
at a given point in time T. The model we consider here is the same as (1),
but we now permit the transition rule to depend explicitly on t:

Xt+1 = Ft(Xt, ξt+1), (ξt)t≥1
IID∼ φ (25)

We replace assumption 2.1 with a nonstationary version:

Assumption 5.1. For every t ≥ 0, there exists a measurable function qt
from Y×X into R+ satisfying∫

B
qt(y | x)µ(dy) = φ{z ∈ Z : τ[Ft(x, z)] ∈ B} (26)

for all x ∈ X and all B ∈ Y .

Given this assumption, the distributions in the sequence (Yt)t≥1 can all be
represented by densities with respect to µ. In particular, the function ft
defined by

ft(y) :=
∫

qt−1(y | x)ψt−1(dx) (y ∈ Y) (27)

represents Yt for any given t ≥ 1. (Here ψt−1 is the distribution of Xt−1.
The proof is similar to the justification given for (7) in section 2, and hence
is omitted.) Our interest is in computing fT for fixed T ∈ N. For this
purpose we propose a generalized cross-sectional look-ahead estimator
(GCLAE), defined by

f n
T (y) :=

1
n

n

∑
i=1

qT−1(y |Xi
T−1) (y ∈ Y) (28)

where (X1
T−1, . . . , Xn

T−1) is n independent copies of XT−1. Algorithm 2
indicates how to obtain an observation of f n

T (y) for fixed y ∈ Y.

5.1 Asymptotic theory

Regarding the pointwise properties of f n
T , pick any y ∈ Y. Observe that

f n
T (y) is the sample mean of n independent copies of the real-valued ran-

dom variable qT−1(y |XT−1). Hence f n
T (y) is unbiased and consistent for
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Algorithm 2: Cross-sectional look-ahead estimate of fT(y)
for i in 1 to n do

set X ← X0 (X0 is determined in the problem domain);
for t in 1 to T − 1 do

draw ξ ∼ φ and set X ← Ft−1(X, ξ) ;
end
set Xi

T−1 ← X ;
end
return f n

T (y) = 1
n ∑n

i=1 qT−1(y |Xi
T−1)

the expectation of this random variable. In view of (27), this expectation is

EqT−1(y |XT−1) =
∫

qT−1(y | x)ψT−1(dx) = fT(y)

Thus, f n
T (y) is unbiased and consistent for fT(y). Let us now extend this

pointwise result to a global result, analogous to theorem 2.1:

Theorem 5.1. Fix T ∈ N. The estimator f n
T is a globally unbiased estimator of

fT, in the sense that E f n
T exists in L1(µ) and is equal to fT for every n ∈ N.

It is also globally consistent, in the sense that ‖ f n
T − fT‖1 → 0 almost surely as

n→ ∞. If there exists a ψT−1-integrable function V : X→ R such that∫
q(y | x)2µ(dy) ≤ V(x), ∀ x ∈ X

then
√

n( f n
T − fT) converges in distribution to a centered Gaussian on L2(µ).

5.2 Application: Optimal Growth

In the previous example the target density f ∗ was Gaussian, an optimal
setting for the standard NPKDE with Gaussian kernel and default choice
of bandwidth. In applications where distributions must be calculated nu-
merically, the target density is almost never Gaussian. (If it were then
analytical solutions would typically be available.) In the next experiment
we compare the generalized look-ahead estimator with the NPKDE in a
non-Gaussian environment.
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Table 5: Average L1 errors of Generalized Cross-sectional Look-Ahead Es-
timator (GCLAE) and NPKDE for period T capital density in neoclassical
growth model.

Sample size (n) 1000 1500 2000 2500 3000 3500 4000

NPKDE 0.11 0.098 0.087 0.08 0.076 0.071 0.068

GCLAE 0.035 0.029 0.025 0.022 0.02 0.019 0.017

Ratio (GCLAE/NPKDE) 0.32 0.29 0.29 0.27 0.27 0.26 0.25

Notes

1) Results are averages across 100 replications for each given sample size

Since the stationary density f ∗ is always Gaussian, we consider instead
the marginal densities fT at a fixed point in time T, which is non-Gaussian
when the initial distribution for y0 is non-Gaussian. In particular, we
assume that the density f0 of y0 is a mixture of two normal densities:
f0 = g/2 + g′/2, where g = N(µ, v) and g′ = N(µ′, v′). Mixing two
normal densities gives a non-Gaussian marginal fT which can still be cal-
culated analytically (and hence compared against the different estimates).

The marginal density fT can be approximated either by the GCLAE f n
T in

(28) or by a cross-sectional NPKDE of the form

pn(y) =
1

nδn

n

∑
i=1

K

(
y− k̂i

T
δn

)
(y ∈ R)

where (ki
T)n

i=1 is n independent (simulated) observations of kT. Here the
kernel is again Gaussian and the bandwidth is chosen by Silverman’s rule.

To simplify calculations further the correlation parameter ρ is set to zero,
so that shocks in the growth model are IID N(0, σ2). The parameters are
thus A = 5, α = 0.5, β = 0.9, ρ = 0.0 and σ = 0.1. The simple nature of the
model and the mixed Gaussian initial conditions are admittedly contrived,
but they do help to illustrate the strong performance of the GCLAE relative
to the NPKDE in settings that are less optimal for the latter.

Table 5 gives results for the same values of n as in table 1, and all rows
have the same interpretations as in that table. The percentage reductions
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Figure 1: Relative performance, n = 200

in error achieved by the GCLAE over the NPKDE are very large. As before,
the relative accuracy of the GCLAE increases as n gets larger.

Observations of the deviations between the GCLAE, the NPKDE and the
exact marginal fT are presented in figures 1 and 2. In the first figure n =
200, while in the second n = 2000. Although the accuracy of the GCLAE
relative to the NPKDE is visually more apparent when n = 200 (i.e., in
figure 1), the percentage reduction in error achieved by the GCLAE over
the NPKDE is in fact larger in figure 2 (69.5% versus 53.2%).

To conclude this section we note that the performance of the NPKDE can
probably be improved for this particular experiment by a different choice
of the bandwidth and kernel. However, it is not immediately obvious how
to do this in the present setting, and even less so in applications where the
target density is unknown. In contrast, the GCLAE automatically incorpo-
rates all available information about the model into the estimator.
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Figure 2: Relative performance, n = 2000

6 Conclusion

In this paper we have proposed a generalized look-ahead approach for
estimating densities and computing expectations of functions of the state
in economic models. Our methods are applicable to a broad class of eco-
nomic problems that can be expressed as a dynamic programming prob-
lem with Markovian shocks. We have provided asymptotic results for our
estimators. Our estimators exploit the parametric assumptions that are
typically imposed on the shock processes in economic applications and
are thus more efficient than standard Monte Carlo estimators of densities
and expectations.

We have also shown that GLAE can offer significant computational speed
advantages in practical applications. GLAE is a particularly attractive op-
tion for estimating densities and expectations in models with multiple en-
dogenous state variables and/or shocks or in situations where computa-
tions have to be repeated many times as when e.g. estimating parameters.
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7 Technical Appendix

Proof of lemma 2.1. That q(· |X∗) is an element of L1(µ) for each realization
of X∗. That it is also a random variable (i.e., a measurable map) follows
easily from separability of L1(µ).22 To show that Eq(· |X∗) = f ∗, we must
prove that E〈q(· |X∗), h〉 = 〈 f ∗, h〉 for all h ∈ L∞(µ). This follows from
Fubini’s theorem, because

E〈q(· |X∗), h〉 =
∫ ∫

q(y | x)h(y)µ(dy)ψ∗(dx)

=
∫

h(y)
∫

q(y | x)ψ∗(dx)µ(dy) =
∫

h(y) f ∗(y)µ(dy) = 〈h, f ∗〉

Proof of theorem 2.1. Regarding consistency, let P be ergodic, let (Xt)t≥0 be
P-Markov and let X∗ ∼ ψ∗. Define Q(x) := q(· | x)− f ∗, which is a mea-
surable function from X to L1(µ). Note that EQ(X∗) = 0 by lemma 2.1.
We need to show that

lim
n→∞
‖ f ∗n − f ∗‖ = lim

n→∞

∥∥∥∥∥ 1
n

n

∑
t=1

Q(Xt)

∥∥∥∥∥ = 0 (P-almost surely) (29)

Our proof is an extention of that for the IID Banach space LLN, as given
in Bosq (2000, thm. 2.4). To begin, fix ε > 0 and choose a partition {Bj}
of L1(µ) such that each Bj has diameter less than ε. For any L1(µ)-valued
random variable Y, we let LJY := ∑J

j=1 bj1{Y ∈ Bj}. We use the following
fact, a proof of which can be found in Bosq (2000, pp. 27-28):

∃ J ∈N with E‖Q(X∗)− LJQ(X∗)‖ < 2ε (30)

Our first claim is that

lim
n→∞

∥∥∥∥∥ 1
n

n

∑
t=1

LJQ(Xt)− ELJQ(X∗)

∥∥∥∥∥ = 0 (P-almost surely) (31)

22See, in particular, Bosq (2000, lemma 1.2).
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To establish (31), we can use the real ergodic law (8) to obtain

1
n

n

∑
t=1

LJQ(Xt) =
J

∑
j=1

bj
1
n

n

∑
t=1

1{Q(Xt) ∈ Bj}

→
J

∑
j=1

bjP{Q(X∗) ∈ Bj} = ELJQ(X∗)

almost surely, where the last equality follows immediately from the defi-
nition of E . Thus (31) is established.

Returning to (29), we have∥∥∥∥∥ 1
n

n

∑
t=1

Q(Xt)

∥∥∥∥∥ ≤ 1
n

n

∑
t=1
‖Q(Xt)− LJQ(Xt)‖

+

∥∥∥∥∥ 1
n

n

∑
t=1

LJQ(Xt)− ELJQ(X∗)

∥∥∥∥∥+ ‖ELJQ(X∗)‖

Using real-valued ergodicity again, as well as (31), we get

lim sup
n→∞

∥∥∥∥∥ 1
n

n

∑
t=1

Q(Xt)

∥∥∥∥∥ ≤ E‖Q(X∗)− LJQ(X∗)‖+ ‖ELJQ(X∗)‖

But the fact that EQ(X∗) = 0 now gives

‖ELJQ(X∗)‖ = ‖EQ(X∗)− ELJQ(X∗)‖ ≤ E‖Q(X∗)− LJQ(X∗)‖

In view of (30) we then have

lim sup
n→∞

∥∥∥∥∥ 1
n

n

∑
t=1

Q(Xt)

∥∥∥∥∥ ≤ 4ε (P-almost surely)

Since ε is arbitrary, the proof of (29) is now done.

Regarding the asymptotic normality result, this follows immediately from
the Hilbert space CLT of Stachurski (2009, theorem 3.1), where x 7→ q(· | x)
corresponds to T0 in that theorem. The only point that needs checking vis-
a-vis that CLT is that Eq(· |X∗) = f ∗, and this has already been verified in
lemma 2.1.
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Proof of theorem 4.1. We make use of the following fact: By the Markov
property, for our state process (Xt)t≥0 and integrable h : X→ R we have

Eth(Xt+k) = Pkh(Xt)

where Et is expectation conditional on σ(X0, . . . , Xt), and Pk is the k-th
iterate of the mapping h 7→ Ph. For convenience, let h̄ := h−

∫
hdψ∗ for

any h : X→ R. By the Markov chain CLT for V-uniformly ergodic kernels
(Meyn and Tweedie, 1993, p 411), if g : X→ R with g2 ≤ V, then

n−1/2
n

∑
t=1

ḡ(Xt)→ N(0, v)

in distribution, where

v =: Eḡ2(X∗1) + 2 ∑
t≥2

Eḡ(X∗1)ḡ(X∗t ) (32)

Here (X∗t )t≥0 is a stationary version of the process (1). Regarding the stan-
dard Monte Carlo estimator Enτ, it now follows that

n1/2(Enτ −
∫

τdψ∗) = n−1/2
n

∑
t=1

τ̄(Xt)→ N(0, v1)

where v1 is given by

v1 =: Eτ̄2(X∗1) + 2 ∑
t≥2

Eτ̄(X∗1)τ̄(X∗t ) (33)

Regarding the look-ahead estimator, we claim that n1/2(EnPτ−
∫

τdψ∗)→
N(0, v2), where

v2 =: EP̄τ
2(X∗1) + 2 ∑

t≥2
EP̄τ(X∗1)P̄τ(X∗t ) (34)

To show this, observe that

n1/2(EnPτ −
∫

τdψ∗) = n1/2(EnPτ −
∫

Pτdψ∗) = n−1/2
n

∑
t=1

P̄τ(Xt)

where the second equality follows from (20).
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Now note that P is also V̂-UE, where V̂ := λV + L. To see this, observe
that the drift inequality (17) holds with V̂ in place of V, because P is V-UE,
and hence

PV̂ = λPV + L ≤ λ(λV + L) + L = λV̂ + L

Second, the sublevel sets {V̂ ≤ α} are P-small, because the sublevel sets V
are P-small, and

{V̂ ≤ α} = {λV + L ≤ α} = {V ≤ (α− L)/λ}

Thus the CLT claim for n1/2(EnPτ−
∫

τdψ∗) will hold if we can show that
(Pτ)2 ≤ V̂. Using Jensen’s inequality, τ2 ≤ V and the drift condition (17),

(Pτ)2 ≤ Pτ2 ≤ PV ≤ λV + L =: V̂

It remains only to show that v2 ≤ v1. To see this, consider first the term
EP̄τ

2(X∗1). Writing ψ∗τ for
∫

τdψ∗ and using Jensen’s inequality for con-
ditional expectations, we obtain

E(Pτ(X∗1)− ψ∗τ)2 = E(E1(τ(X∗2)− ψ∗τ))2

≤ EE1(τ(X∗2)− ψ∗τ)2

= E(τ(X∗2)− ψ∗τ)2 = E(τ(X∗1)− ψ∗τ)2

where the last step is by stationarity. In other words, EP̄τ
2(X∗1) ≤ Eτ̄2(X∗1).

To complete the proof that v2 ≤ v1, then, it is sufficient to show that the
autocovariance terms in v1 and v2 are equal. That is, for any t ≥ 2,

E(Pτ(X∗1)− ψ∗τ)(Pτ(X∗t )− ψ∗τ) = E(τ(X∗1)− ψ∗τ)(τ(X∗t )− ψ∗τ)

To see this, observe that

E(Pτ(X∗1)− ψ∗τ)(Pτ(X∗t )− ψ∗τ) = E(E1τ(X∗2)− ψ∗τ)(Etτ(X∗t+1)− ψ∗τ)
= EE1Et(τ(X∗2)− ψ∗τ)(τ(X∗t+1)− ψ∗τ)
= E(τ(X∗2)− ψ∗τ)(τ(X∗t+1)− ψ∗τ)
= E(τ(X∗1)− ψ∗τ)(τ(X∗t )− ψ∗τ)

The proof is done.
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Proof of Theorem 5.1. Unbiasedness of the estimator f n
T is equivalent to the

claim that EqT−1(· |XT−1) = fT. The proof is almost identical to that for f ∗

given in the proof of lemma 2.1, and hence is omitted. Regarding consis-
tency, the Banach-space law of large numbers (cf., e.g., Bosq, 2000, Theo-
rem 2.4) implies that if (Ui)i≥1 is an IID sequence in L1(µ) with expectation
EU, then ∥∥∥∥∥ 1

n

n

∑
i=1

Ui − EU

∥∥∥∥∥
1

→ 0 P-a.s. as n→ ∞

Letting Ui = qT−1(· |Xi
T−1), where (Xi

T−1)i≥1
IID∼ ψT−1, this becomes

‖ f n
T − fT‖1 → 0 P-a.s. as n→ ∞

which is consistency result that we seek.

Finally, consider the issue of asymptotic normality. From Bosq (2000, the-
orem 2.7), we can deduce that if (Ui)i≥1 is an IID sequence in L2(µ) such
that E‖U‖2

2 is finite, then

n1/2

(
1
n

n

∑
i=1

Ui − EU

)
(n ≥ 1)

converges in distribution to a centered Gaussian on L2(µ). Once again we
take Ui = qT−1(· |Xi

T−1), where (Xi
T−1)i≥1

IID∼ ψT−1. From the condition
in Theorem 5.1 we have∫

qT−1(y | x)2µ(dy) ≤ V(x) < ∞ (x ∈ X)

As a consequence, U takes values in L2(µ). Moreover, E‖U‖2
2 < ∞, be-

cause

E

∫
qT−1(y |XT−1)2µ(dy) ≤ EV(X) =

∫
VdψT−1 < ∞

Using E‖U‖2 ≤ E‖U‖2
2 + 1 < ∞, one can show that EU is well-defined in

L2(µ), and EU = fT. It now follows from the definitions that

n1/2( f n
T − fT) = n1/2

(
1
n

n

∑
i=1

Ui − EU

)
converges in distribution to a centered Gaussian on L2(µ).
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