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1 Introduction

Economic transactions are often threatened by moral hazard. Historically, many devices are

made to mitigate moral hazard, from face-to-face transactions to legal enforcement of contracts

and rights. As the transactions have become global and the age of Internet has come, such

traditional systems of moral enforcements may become less effective, because of the anonymity

of trade partners and the ease of entry to and exit from transactions. We believe, however, that

such social change does not destroy beneficial transactions but simply requires other forms of

moral enforcement. In this paper we analyze an evolutionary model of endogenous long-term

relationships with no information flow beyond the current partner and show a hitherto not

analyzed way to discipline players to cooperate.

We consider the following model. There is a large society of homogeneous players, who are

randomly matched to play a component game if they have no partner at the beginning of a

period. The component game is a repeated Prisoner’s Dilemma until either partner wants to

break up. We call this component game as “Voluntarily Separable Repeated Prisoner’s Dilemma

(VSRPD)”. If break-up occurs, each player finds a new partner by random match and starts

another VSRPD. When a pair of players start a new relationship, it is assumed that neither

player knows the past actions of the other. Therefore, a strategy is how to play a VSRPD,

starting from a null history each time with a new partner. Many transactional relationships

fit our model. Workers can shirk, quit, and find a new employer without telling the past, and

borrowers can move to another city after defaulting and find a new lender without telling the

true credit history.

In order to make a cooperative relationship, it is necessary to reduce the continuation payoff

of a defector. Ordinary trigger strategies do not work because the punishment cannot be applied

to a defector who can run away and restart with a new partner with no information flow. After a

break-up, the lifetime payoff starting from a new partnership is the continuation payoff, and thus

it must not be too large to deter defection. In the literature, matching friction (unemployment)

and gradual cooperation (trust building) have been introduced to lower the life-time payoff and

analyzed extensively.1 These mechanisms impose low payoff after a break-up or reduce initial

payoff of new matches and sustain symmetric (monomorphic) cooperative equilibria.

We show that there is a third disciplining device: co-existence of diverse strategies. If there

are different types of strategies in the population and if it is beneficial to match with the same

type but not with a different type, such polymorphic distribution sustains cooperation among

partnerships with the same type, because defection and break-up lead to a possible bad match.

1See Shapiro and Stiglitz (1984), and Okuno-Fujiwara (1987) for unemployment as a disciplining device and
Carmichael and MacLeod (1997), Datta (1996), Ghosh and Ray (1996), Kranton (1996a) and Watson (2002) for
gradual cooperation.
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Figure 1a: Ordinary random matching
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Figure 1b: Endogenous partnerships

Moreover, a polymorphic equilibrium is more efficient than any monomorphic equilibrium, since

the latter requires that everyone must build trust initially, while the former can include strategies

that start cooperating earlier. This is a substantially different conclusion compared to those of

the random matching games.

The existence and payoff superiority of a stable polymorphic equilibrium are thanks to the

nonlinearity of payoffs under endogenous length of the VSRPD. In the usual random matching

games, the component game’s length is exogenously fixed, and therefore the payoff of a strategy

is linear in the strategy-share distribution. Consider, for example, a random matching game

of a one-shot 2 by 2 coordination game. Let a and b be strategies and α be the fraction of

a-strategy in the population. The expected payoff of x-strategy (x = a, b) is linear in α such

that u(x;α) = αu(x, a)+(1−α)u(x, b). A numerical example2 is displayed in Figure 1a, and we

see that the mixed-strategy equilibrium is unstable and less efficient than (at least one) efficient

pure equilibrium.

In our model, however, the duration of VSRPD is endogenous. If there are different strategies

in the population and only a match with the same strategy would last, then the lifetime average

payoff becomes nonlinear, which can be intuitively explained as follows. Let c0 and c1 be

strategies and α be the fraction of c0-strategy in the population. Assume that if the same

strategies are matched, the partnership continues as long as they both live (with probability δ2

in each period), and a c0-pair earns higher payoff within the match than a c1-pair. However,

if different strategies are matched, c1-strategy exploits c0-strategy and the partnership ends

immediately. Let the per period average payoff of ct strategy within a match with ct′-strategy

be v(ct, ct′).

The lifetime average payoff of each strategy before knowing the new partner is the total

2Based on u(a, a) = 60 > u(b, b) = 40, u(a, b) = 30, and u(b, a) = 50.
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expected payoff divided by the total expected duration of matches;3

v(c0;α) =
α 1

1−δ2 v(c0, c0) + (1− α) · 1 · v(c0, c1)

α 1
1−δ2 + (1− α) · 1 ,

v(c1;α) =
α · 1 · v(c1, c0) + (1− α) 1

1−δ2 v(c1, c1)

α · 1 + (1− α) 1
1−δ2

.

Therefore they are non-linear in α. A numerical example is depicted in Figure 1b.

Moreover, we can show that the “victim” c0-strategy has a concave lifetime average payoff

and the exploiter c1-strategy has a convex lifetime average payoff as follows. Consider the effect

of decrease of α from 1 to 0 on the average payoff of c0-strategy. As the share of c1-strategy

increases, c0-strategy gets exploited more often, and thus its payoff decreases. Moreover, this

payoff decrease accelerates as α decreases, because (i) partnership dissolutions due to mismatch

occur more often, (ii) thus c0-strategy goes into the matching pool more often, and (iii) hence

c0-strategy meets c1-strategy more often. Therefore the average payoff of c0-strategy is concave

in α, as in Figure 1b.

Similarly, as α increases from 0 to 1, the average payoff of c1-strategy increases because

the share of victims increases. Moreover, the payoff is convex in α, since the matching rate with

the victims in its lifetime increases more as α increases, thanks to more frequent dissolution

of partnerships. In this way, the endogenous duration of partnerships implies convex/concave

payoff functions, which was not the case in ordinary random matching games.

The nonlinear payoff structure gives rise to a substantially different stability of strategy

distributions from the ordinary random matching games. In Figure 1b, there are two stable

equilibria; the monomorphic equilibrium of c1 (α = 0) and the bimorphic equilibrium where

α ≈ 0.88. The middle Nash equilibrium where α ≈ 0.5 is not stable. Furthermore, since both

payoff functions are increasing in the share of c0-strategy, the bimorphic equilibrium with a

large share of c0-strategy is more efficient than the most efficient monomorphic equilibrium,

consisting only of c1-strategy. (The monomorphic distribution of c0-strategy where α = 1 does

not constitute even a Nash equilibrium.)

This evolutionary stability of polymorphic distributions in a homogeneous population pro-

vides a foundation of incomplete information models such as Ghosh and Ray (1997) and Rob

and Yang (2005), because it illustrates that different “types” of strategies may appear sponta-

neously through evolutionary processes even if all players have the same characteristics (stage

game payoff function, information structure, and matching probabilities). In a bargaining con-

text, Abreu and Sethi (2003) have a similar motivation to ours to endogenize multiple behavior

rules through evolution. Their focus is to derive co-existence of rational and behavioral players,

while we give co-existence of different strategies among homogeneous players.
3See Section 2.2 for details.
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P1 \ P2 C D
C c, c `, g

D g, ` d, d

Table 1: Payoff of Prisoner’s Dilemma

This paper is organized as follows. In Section 2, we introduce the formal model and stability

concepts. In Section 3, we show various neutrally stable strategy distributions and that more

diversity implies higher equilibrium payoff. In Section 4 we discuss extensions, and in Section 5

we give concluding remarks.

2 Model and Stability Concepts

2.1 Model

Consider a society with a continuum of players. Each player may die in each period 1, 2, . . .

with probability 0 < (1 − δ) < 1. When players die, they are replaced by newborn players,

keeping the total population constant. Newborn players and players who do not have a partner

enter into the matching pool where players are randomly paired to play the following Voluntarily

Separable Repeated Prisoner’s Dilemma (VSRPD).

In each period, matched players play ordinary two-person, two-action Prisoner’s Dilemma,

whose actions are denoted as Cooperate and Defect. After observing the play action profile of

the period, they choose simultaneously whether or not they want to keep the match into the

next period (action k) or bring it to an end (action e). Unless both choose k, the match is

dissolved and players will have to start the next period in the matching pool. In addition, even

if they both choose k, one’s partner may die with probability 1 − δ which forces the surviving

player to go back to the matching pool next period. If both choose k and survive to the next

period, then the match continues, and the partners play Prisoner’s Dilemma again.

Assume that there is limited information available to play VSRPD. In each period, players

know the history of their current match but have no knowledge about the history of other

matches in the society.

In each match, a profile of play actions by the partners determines their one-shot payoffs.

We denote the payoffs associated with each play action profile as4: u(C, C) = c, u(C,D) = `,

u(D, C) = g, u(D, D) = d with the ordering g > c > d > ` and5 2c = g + `. (See Table 1.)

We assume that the innate discount rate is zero except for the possibility of death, hence

4The first coordinate is your own action.
5The assumption 2c = g + ` is to simplify the analysis by making the symmetric action profile (C, C) most

efficient. It is possible to construct equilibria to play (C, D) and (D, C) alternatingly when 2c < g+`. See Section
4.2.
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each player finds the relevant discount factor to be δ ∈ (0, 1). With this, lifetime payoff for each

player is well-defined given his own strategy (for VSRPD) and the strategy distribution in the

matching pool population over time.

Let t = 1, 2, . . . indicate the periods in a match, not the calendar time in the game. Under

the no-information-flow assumption, we focus on match-independent strategies that only depend

on t and the private history of actions in the Prisoner’s Dilemma within a match.6 Let Ht :=

{C, D}2(t−1) be the set of partnership histories at the beginning of t = 2 and let H1 := {∅}.

Definition: A pure strategy s of VSRPD consists of (xt, yt)∞t=1 where:

xt : Ht → {C, D} specifies an action choice xt(ht) ∈ {C, D} given the partnership history

ht ∈ Ht, and

yt : Ht × {C,D}2 → {k, e} specifies whether to keep or end the partnership, depending on the

partnership history ht ∈ Ht and the current period action profile.

The set of pure strategies of VSRPD is denoted as S and the set of all strategy distributions

in the population is denoted as P(S). We assume that each player uses a pure strategy, which

is natural in an evolutionary game and simplifies the analysis.

We investigate the evolutionary stability of stationary strategy distributions in the match-

ing pool. Although the strategy distribution in the matching pool may be different from the

distribution in the entire society, if the former is stationary, the distribution of various states of

matches is also stationary, thanks to the stationary death process.7

In addition to the stability of social states, stationarity in the matching pool allows us

to compute the lifetime payoff of each strategy explicitly, because it becomes recursive. (See

equation (1) in the next subsection.)

2.2 Lifetime and Average Payoff

When a strategy s ∈ S is matched with another strategy s′ ∈ S, the expected length of the

match is denoted as L(s, s′) and is computed as follows. Notice that even if s and s′ intend to
6The continuation decision is observable, but strategies cannot vary depending on combinations of {k, e} since

only (k, k) will lead to the future choice of actions. It is also possible to allow strategies to depend on a player’s
personal history, like Kandori (1992) and Ellison (1994). However, the cooperation using “contagion of defection”
in their models does not hold in our model of continuum of players.

7To explain, let a social state be the distribution of strategy pairs in the society classified according to the
“planned length” of the pair, i.e., when the pair intends to end the partnership if no death occurs, in a VSRPD.
A social state is determined by in-flows from matching pool and out-flows by the random death and the time
that passes. If the strategy distribution in the matching pool is stationary, the distribution of newly formed
strategy pairs are stationary. Each newly formed pair has a planned length of the partnership (possibly infinite)
determined by their strategies. Let n = 1, 2, 3, . . . ,∞ be all possible planned lengths of strategy pairs. Since the
random death applies to all pairs with the same probability in each period and the planned length of a partnership
becomes one period less for each pair after each period (except for n = ∞), the outflow from each group of pairs
with the same n is stationary, and newly formed pairs will join group n’s in a stationary manner. Therefore the
distribution of groups of pairs with the same n is stationary as well.
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maintain the match, it will only continue with probability δ2. Suppose that the planned length

of the partnership of s and s′ is T (s, s′) periods, if no death occurs. Then

L(s, s′) := 1 + δ2 + δ4 + · · ·+ δ2{T (s,s′)−1} =
1− δ2T (s,s′)

1− δ2
.

The expected total discounted value of the payoff stream of s within the match with s′ is

denoted as V (s, s′). The average per period payoff that s expects to receive within the match

with s′ is denoted as v(s, s′). Clearly,

v(s, s′) :=
V (s, s′)
L(s, s′)

, or V (s, s′) = L(s, s′)v(s, s′).

Next we show the structure of the lifetime and average payoff of a player endowed with

strategy s ∈ S in the matching pool, waiting to be matched randomly with a partner. When a

strategy distribution in the matching pool is p ∈ P(S) and is stationary, we write the expected

total discounted value of payoff streams s expects to receive during his lifetime as V (s; p) and

the average per period payoff s expects to receive during his lifetime as

v(s; p) :=
V (s; p)

L
= (1− δ)V (s; p),

where L = 1 + δ + δ2 + · · · = 1
1−δ is the expected lifetime of s.

Thanks to the stationary distribution in the matching pool, we can write V (s; p) as a recursive

equation. If p has a finite/countable support, then we can write

V (s; p) =
∑

s′∈supp(p)

p(s′)
[
V (s, s′)

+[δ(1− δ){1 + δ2 + · · ·+ δ2{T (s,s′)−2}}+ δ2{T (s,s′)−1}δ]V (s; p)
]
, (1)

where supp(p) is the support of the distribution p, the sum δ(1− δ){1 + δ2 + · · ·+ δ2{T (s,s′)−2}}
is the probability that s loses the partner s′ before T (s, s′), and δ2{T (s,s′)−1}δ is the probability

that the match continued until T (s, s′) and s survives at the end of T (s, s′) and goes back to

the matching pool. Note that the stationarity of p implies that the continuation payoff is always

V (s; p) after a match ends for any reason.

Let L(s; p) :=
∑

s′∈supp(p) p(s′)L(s, s′). By computation, (1) becomes

V (s; p) =
∑

s′∈supp(p)

p(s′)
[
V (s, s′) + {1− (1− δ)L(s, s′)}V (s; p)

]

=
∑

s′∈supp(p)

p(s′)V (s, s′) + {1− L(s; p)
L

}V (s; p). (2)

Hence the average payoff is a nonlinear function of the strategy share distribution p:

v(s; p) =
V (s; p)

L
=

∑

s′∈supp(p)

p(s′)
L(s, s′)
L(s; p)

v(s, s′), (3)

6



where the ratio L(s, s′)/L(s; p) is the relative length of periods that s expects to spend in a match

with s′. As noted in the Introduction, this nonlinearity is due to the endogenous duration of

partnerships. Note also that, if p is a strategy distribution consisting of a single strategy s′,

then v(s; p) = v(s, s′).

2.3 Nash Equilibrium

Definition: Given a stationary strategy distribution in the matching pool p ∈ P(S), s ∈ S is

a best reply against p if for all s′ ∈ S,

v(s; p) = v(s′; p),

and is denoted as s ∈ BR(p).

Definition: A stationary strategy distribution in the matching pool p ∈ P(S) is a Nash equi-

librium if, for all s ∈ supp(p), s ∈ BR(p).

Lemma 1. Any strategy distribution p ∈ P(S) such that all strategies in the support start with

C in t = 1 is not a Nash equilibrium.

Proof: Consider a myopic strategy d̃ which plays D at t = 1 and ends the partnership for any

observation at t = 1. For t = 2, which is off-path, specify arbitrary actions. Then any d̃-strategy

earns g as the average payoff under p, which is the maximal possible payoff. I.e., d̃ ∈ BR(p) and

s 6∈ BR(p) for all s ∈ supp(p).

Therefore, the C-trigger and C-tit-for-tat strategy of ordinary repeated Prisoner’s Dilemma

cannot constitute even a Nash equilibrium. Some fraction of players must play D in the first

period of a partnership, in any equilibrium.

By contrast, pd̃ consisting only of a “hit-and-run” d̃-strategy is a Nash equilibrium. Against

a d̃-strategy, any strategy must play one-shot Prisoner’s Dilemma. Hence, any strategy that

starts with C in t = 1 earns strictly lower average payoff than that of a d̃-strategy, and any

strategy that starts with D in t = 1 earns the same average payoff as that of a d̃-strategy.

2.4 Neutral Stability

Recall that in an ordinary 2-person symmetric normal-form game G = (S, u), a (mixed) strategy

p ∈ P(S) is a Neutrally Stable Strategy if for any q ∈ P(S), there exists 0 < ε̄q < 1 such that

for any ε ∈ (0, ε̄q), Eu(p, (1− ε)p + εq) = Eu(q, (1− ε)p + εq). (Maynard Smith, 1982.)

An extension of this concept to our extensive form game is to require a strategy distribution

not to be invaded by a small fraction of a mutant strategy who enters the matching pool in a

stationary manner.

7



Definition: A stationary strategy distribution p ∈ P(S) in the matching pool is a Neutrally

Stable Distribution (NSD) if, for any s′ ∈ S, there exists ε̄ ∈ (0, 1) such that for any s ∈ supp(p)

and any ε ∈ (0, ε̄),

v(s; (1− ε)p + εps′) = v(s′; (1− ε)p + εps′), (4)

where ps′ is the strategy distribution consisting only of s′.

If a monomorphic distribution consisting of a single strategy constitutes a NSD, the strategy

is called a Neutrally Stable Strategy (NSS). It can be easily seen that any NSD is a Nash

equilibrium.

A stronger notion of stability that requires strict inequality (which is used in the notion

of Evolutionary Stable Strategy) is too strong in our extensive-form model since any strategy

that is different in the off-path actions from the incumbent strategies can earn the same average

payoff as the incumbents’.

Similar to the ordinary “static” notion of evolutionary stability, our definition is based on the

assumption that mutation takes place rarely so that only single mutation occurs within the time

span in which a stationary strategy distribution is formed. However, unlike the ordinary notion

of neutral stability (or ESS) of one-shot games, we need to assume the expected length of the

lifetime of a mutant strategy in order to calculate its average payoff. In ordinary evolutionary

games, the length of the component game is exogenously fixed, and so is the length of the

lifetime of a mutant. In our model, by contrast, the length of the partnership is endogenous,

and thus there is no obvious way to define the lifetime of a mutant. Since the partnership can

potentially continue forever, we required that a stationary distribution of a mutant strategy to

be deterred. This is the strongest notion of stability, because any shorter-lived mutants can be

deterred. While we do not insist that the above definition is the best imaginable, it is tractable

and justifiable.

We show that any myopic d̃-strategy is not a NSS, even though it constitutes a monomorphic

Nash equilibrium.8 Hence NSD concept selects among Nash equilibria in our model.

Lemma 2. Any myopic d̃-strategy is not a NSS.

Proof: Consider the following c1-strategy.

t = 1: Play D and keep the partnership if and only if (D, D) is observed in the current period.

t = 2: Play C and keep the partnership if and only if (C, C) is observed in the current period.

8Note that repeated Defection itself can be sustained by some NSS, as later analysis shows. For example, a
strategy that always defects but keeps the partnership if and only if (D, D) is observed is a NSS.

8



For any ε ∈ (0, 1), let p := (1− ε)pd̃ + εpc1. From (3),

v(d̃; p) = d;

v(c1; p) = (1− ε)
L(c1, d̃)
L(c1; p)

v(c1, d̃) + ε
L(c1, c1)
L(c1; p)

v(c1, c1) > d,

since v(c1, d̃) = d, and v(c1, c1) = (1− δ2)d + δ2c > d.

2.5 Trust-building Strategies

The successful invader c1-strategy generates the most efficient symmetric outcome among those

that play D at least once. However, it may not constitute a symmetric Nash equilibrium if

the deviation payoff g is too large and the survival rate δ is too small. We thus focus on its

generalized versions called trust-building strategies, defined below.

Definition: For any T = 0, 1, 2, . . ., let a trust-building strategy with T periods of trust-building

(written as cT -strategy hereafter) be a strategy as follows:

t 5 T : Play D and keep the partnership if and only if (D, D) is observed in the current period.

t = T + 1: Play C and keep the partnership if and only if (C,C) is observed in the current

period.

The first T periods of cT -strategy are called trust-building periods and the periods afterwards

are called cooperation periods. A trust-building strategy continues the partnership if and only

if “acceptable” action profiles are played, and the acceptable action profile during the trust-

building periods is (D, D) only and during the cooperation periods is (C, C) only.

In this paper we are not trying to establish a folk theorem but instead we investigate how

much efficiency can be attained. Playing C forever after some point is desirable for efficiency.

Since a player can unilaterally end the partnership, ending the partnership is the maximal

punishment. Thus, the trust-building strategies are sufficient to look for the second best.

Needless to say, Nash equilibrium and NSD are proved by checking all other strategies in S

(not just among trust-building strategies).

3 Neutrally Stable Distributions

3.1 Monomorphic NSS

We first consider monomorphic strategy distributions, consisting of a single cT -strategy, as

a benchmark. The literature of endogenous partnerships has focused on symmetric strategy

distributions. In the literature, multiple-action Prisoner’s Dilemma was often used and thus

gradual increase of cooperation level was feasible. In our model, there are only two actions and

thus cT -strategy can be interpreted as a “gradual cooperation” strategy.

9



Let pT be the strategy distribution consisting only of cT -strategy. We first derive a condition

on T to warrant that pT is a Nash equilibrium. By the usual logic of dynamic programming,

it suffices to prove that the average payoff generated by one-shot deviation is not higher than

that of cT -strategy (i.e., use of a strategy that differ from cT in one-step in a VSRPD, followed

by cT -strategy from the next VSRPD on, do not fare better than cT -strategy). Note that in

our model, there are two phases that one can deviate, in the Prisoner’s Dilemma and in the

continuation decision phase.

It is straightforward to show that one-shot deviations to end the partnership after observing

on-path actions and one-shot deviations to play C during the trust-building periods do not

earn higher payoff than cT does. Therefore it is sufficient to deter one-shot deviation strategies

that play D when t = T + 1. During the cooperation periods, a one-shot deviation strategy

earns g immediately but then goes back to the matching pool if he survives. Therefore, the

(non-averaged) continuation payoff is

g + δV (cT ; pT ) = g + (L− 1)v(cT ; pT ).

By contrast, cT receives one-shot payoff c as long as the partners survive but goes back to the

matching pool if he outlives the partner. From (2), the continuation payoff is

c

1− δ2
+ {1− L(cT , cT )

L
}V (cT ; pT ) =

c

1− δ2
+ {L− 1

1− δ2
}v(cT ; pT ).

Hence one-shot deviations during the cooperation periods of a partnership is deterred if

g + (L− 1)v(cT ; pT ) 5 c

1− δ2
+ {L− 1

1− δ2
}v(cT ; pT )

⇐⇒ v(cT ; pT ) 5 1
δ2

[c− (1− δ2)g] =: vBR. (5)

We call (5) the Best Reply Condition for monomorphic distributions.

Since vBR is independent of the length T of trust-building periods and v(cT ; pT ) = v(cT , cT ) =

(1 − δ2T )d + δ2T c is a decreasing function of T , there is a lower bound to T above which (5)

is satisfied. To compute the lower bound explicitly, for any T , define δ(T ) as the solution to

v(cT ; pT ) = vBR, or
g − c

c− d
=

δ2(1− δ2T )
1− δ2

.

Then (5) is satisfied if and only if δ = δ(T ). It is easy to see that

δ(1) =
√

g − c

c− d
> · · · > δ(∞) =

√
g − c

g − d
.

Although δ(1) may exceed 1, δ(∞) < 1. Hence for any δ > δ(∞), there exists the minimum

length of trust building periods that warrants (5). For every δ > δ(∞), let

τ(δ) := argminτ∈R++{δ(τ) | δ = δ(τ)}.
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Then the Best Reply Condition (5) for monomorphic distributions is satisfied if and only if

T = τ(δ). The above argument is summarized as follows.

Proposition 1. For any δ ∈ (δ(∞), 1), the monomorphic strategy distribution pT consisting

only of cT -strategy is a Nash equilibrium if and only if T = τ(δ).

Two remarks are in order. First, τ is a decreasing function of δ, since δ is decreasing in T .

Second, in the ordinary infinitely repeated Prisoner’s Dilemma, the lower bound to the discount

factor (as δ2) that sustains the trigger-strategy equilibrium is
√

g−c
g−d = δ(∞). This means that

cooperation in VSRPD requires more patience.

Next we investigate when a Nash equilibrium pT is neutrally stable, i.e., cT -strategy is a

NSS. If a mutant s′ can invade a distribution p, for any ε̄ > 0, there exists ε ∈ (0, ε̄) such that

v(s; (1− ε)p + εps′) < v(s′; (1− ε)p + εps′).

By letting ε → 0, it must be an alternative best reply to p.

There are only two kinds of strategies that are possibly alternative best replies to pT . The

obvious ones are those that differ from cT -strategy off the play path. These will give the same

payoff as cT -strategy and therefore cannot invade pT . The other kind is the strategies that play

D at some point when the partner is in the cooperation periods. When T > τ(δ), however, such

strategies are not alternative best replies. Therefore cT -strategy is a NSS for this case.

When τ(δ) is an integer, the Nash equilibrium pτ(δ) has alternative best replies (all one-shot

deviations during the cooperation periods), among which cτ(δ)+1 earns the highest payoff when

meeting itself. It suffices to check if cτ(δ)+1-strategy cannot invade pτ(δ).

For any T , let pT+1
T (α) = αpT + (1 − α)pT+1 be a two-strategy distribution of cT and

cT+1. As we explained in the Introduction, the average payoff of cT strategy, v(cT ; pT+1
T (α)),

is strictly increasing and concave in α for any T , while the average payoff of cT+1-strategy,

v(cT+1; pT+1
T (α)), is strictly increasing and convex when T 5 τ(δ).

Lemma 3. For any δ ∈ (δ(∞), 1) and any T = 0, 1, 2 . . ., v(cT ; pT+1
T (α)) is a strictly increasing

and concave function of α.

Proof: By differentiation. See Appendix.

Lemma 4. For any δ ∈ (δ(∞), 1) and any T = 0, 1, 2 . . . such that T 5 τ(δ), v(cT+1; pT+1
T (α))

is a strictly increasing and convex function of α.

Proof: By differentiation. See Appendix.

By the definition of τ(δ), the average payoff of cτ(δ) and cτ(δ)+1-strategy coincide at α =

1. Thus, the convexity/concavity of the average payoff functions implies that cτ(δ)+1-strategy

11
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2 , and T = τ(δ) = 1.)

cannot invade pτ(δ) if and only if the slope of v(cτ(δ); p
τ(δ)+1
τ(δ) (α)) is strictly smaller than the slope

of v(cτ(δ)+1; p
τ(δ)+1
τ(δ) (α)) at α = 1. (See Figure 2.) This relationship of the slopes is warranted if

τ(δ) is not too large, because as T becomes larger, the merit of starting cooperation one period

earlier becomes smaller.

Lemma 5. Take any δ ∈ (δ(∞), 1). Let T = τ(δ). Then

∂v(cT ; pT+1
T (α))

∂α

∣∣∣
α=1

<
∂v(cT+1; pT+1

T (α))
∂α

∣∣∣
α=1

⇐⇒
{

1− δ2(T+1)
}

(g − `) < c− d. (6)

Proof: By computation. See Appendix.

Define τ̂(δ) implicitly as the solution to

{
1− δ2(T+1)

}
(g − `) = c− d. (7)

Then cτ(δ)+1-strategy cannot invade pτ(δ) if and only if τ(δ) < τ̂(δ). To interpret (6), notice

that L(cT , cT ) = 1 + δ2 + · · · and L(cT+1, cT ) = 1 + δ2 + · · · + δ2T , so that 1 − δ2(T+1) =

L(cT+1, cT )/L(cT , cT ). Hence the condition (6) is equivalent to

(g − `)L(cT+1, cT ) < (c− d)L(cT , cT ) (8)

at T = τ(δ). The RHS of (8) can be interpreted as the relative merit of cT -strategy against

cT+1-strategy (to start cooperating one period early when meeting itself) and the LHS is the

relative merit of cT+1-strategy when meeting cT -strategy.

As δ increases, T must increase to keep the equality (7). Thus τ̂ is a monotone increasing

function of δ. Recall that τ is a monotone decreasing function of δ. It is easy to show (see

12



Figure 3 in subsection 3.2) that there is a unique δ∗ ∈ (δ(∞), 1) such that

δ R δ∗ ⇐⇒ τ̂(δ) R τ(δ).

This δ∗ is the critical survival rate such that (6) is satisfied at T = τ(δ) if and only if δ > δ∗. In

summary, most of the monomorphic Nash equilibrium strategies are NSS except at boundary

values when δ < δ∗.

Proposition 2. (a) For any δ ∈ (δ∗, 1), cT -strategy is a NSS if and only if T = τ(δ).

(b) For any δ ∈ (δ(∞), δ∗], cT -strategy is a NSS if and only if T > τ(δ).

It is possible to select among the monomorphic NSS’s by cheap talk, under a slightly stronger

definition of stability. The idea is that entrants can use a neologism at the beginning of a match

to distinguish themselves from incumbents, imitate incumbents if the partner was an incumbent,

and shorten trust-building periods if the partner was an entrant. If we require that entrants

must be self-sustaining, i.e., the post-entry distribution must satisfy the Best Reply Condition,

then the most efficient NSS is the unique strategy that is robust against self-sustaining entrants.

3.2 Bimorphic NSD

The nonlinearity of average payoff functions indicates that they may intersect when both strate-

gies are present in the population, showing the potential for a bimorphic NSD consisting of two

trust-building strategies.

Most literature on voluntarily separable repeated games has concentrated on monomorphic

equilibria so that no voluntary break-up occurs, except for sorting out inherent defectors under

incomplete information case. (See Section 5.) In this subsection we go beyond monomorphic

equilibria and show the existence of bimorphic NSD. Since our model is of complete information

and with homogeneous players, the following analysis can be interpreted as an evolutionary

foundation of incomplete information models of diverse types of behaviors.

We focus on bimorphic distributions of the form pT+1
T (α) := αpT +(1−α)pT+1 and T < τ(δ).

In order to compare efficiency with monomorphic NSDs, it is sufficient to investigate whether cT -

strategy with T < τ(δ) can be played by a positive measure of players. Against a cT -strategy,

cT+k-strategies with k = 1 behave the same way and, among those, cT+1-strategy earns the

highest payoff when meeting itself. Therefore for efficiency analysis (which is done in the next

subsection 3.3), this class of bimorphic distributions are sufficient to consider.

For a bimorphic distribution to be a NSD, it needs to satisfy the following three conditions.

• All strategies in the support must earn the same average payoff.

13



• If the share of an incumbent strategy increases a little, its average payoff should be worse

than the other strategy’s and vice versa.

Then the strategy distribution cannot be invaded by strategies that have the same play

path as that of the incumbents.

• No strategy which differ in one step (on the play path) from some incumbent strategy can

invade the distribution for sufficiently small ε.

The first two conditions can be jointly formulated as follows:

Stable Payoff Equalization: there exists αT+1
T ∈ (0, 1) and a neighborhood U of αT+1

T such that

for any α ∈ U

α R αT+1
T ⇐⇒ v(cT+1; pT+1

T (α)) R v(cT ; pT+1
T (α)). (9)

To deter invasion of mutants with one-step different strategy on the play path, we divide the

mutants into two classes: those that play differently in the Prisoner’s Dilemma and those that

choose a different continuation decision.

First, consider mutants who play differently in Prisoner’s Dilemma on the play path. At

t 5 T , the incumbents will play D. If a mutant plays C, it receives ` and goes back to the

matching pool, while any incumbent receives d(> `) and has less periods to build trust. Thus

any incumbent has strictly larger continuation payoff than the mutant. At T + 1, any action

profile can occur on the play path, so we do not have to consider mutants. At t = T + 2, the

incumbents will play C. If a mutant plays D and follows cT+k-strategy (k = 0, 1) afterwards,

its continuation payoff is g + (L− 1)v(cT+k; pT+1
T (αT+1

T )), while cT+k itself has the continuation

payoff of
c

1− δ2
+ (L− 1

1− δ2
)v(cT+k; pT+1

T (αT+1
T )).

Combining with Stable Payoff Equalization, we can warrant that this type of mutants do strictly

worse than the incumbents if

g + (L− 1)v(cT+k; pT+1
T (αT+1

T )) <
c

1− δ2
+ (L− 1

1− δ2
)v(cT+k; pT+1

T (αT+1
T )) ∀k = 0, 1,

⇐⇒ v(cT ; pT+1
T (αT+1

T )) = v(cT+1; pT+1
T (αT+1

T )) < vBR. (10)

Note that if incumbents have strictly higher average payoff than a mutant, even if mutants enter

with a positive measure, for sufficiently small measure, they cannot earn higher average payoff

than any of the incumbents in the post-entry distribution.

Second, consider mutants who choose a different continuation decision on the play path.

When a symmetric action profile is observed, incumbents would choose k. If a mutant ends the

partnership, it goes back to the matching pool, and thus the continuation payoff is the payoff

14



starting from a null history, while the incumbents have at least one period less to build trust or

they are already in the cooperation periods, thus their continuation payoff is strictly larger.

When an asymmetric action profile is observed, incumbents would choose e. Even if a mutant

wants to keep the partnership, the outcome cannot be changed in a match with an incumbent.

In a match with another mutant, they do not observe an asymmetric action profile, thus their

play path do not differ from the incumbents’.

In sum, a bimorphic NSD exists if there exists αT+1
T ∈ (0, 1) and its neighborhood such that

(9) is satisfied and at that αT+1
T , the average payoff is less than vBR. For δ such that τ(δ) < τ̂(δ)

and T sufficiently close to but less than τ(δ), such αT+1
T exists.

The idea of the proof is essentially that as T decreases slightly below τ(δ), the situation

changes from Figure 2 to Figure 1b. Figure 2 shows that at T = τ(δ) < τ̂(δ), the average

payoff functions of cT and cT+1 intersect at α = 1 and at some α ∈ (0, 1) thanks to the

convexity/concavity. As T decreases from τ(δ), cT+1-strategy has higher average payoff than cT

at α = 1. However, since T < τ̂(δ) is warranted under δ > δ∗, the slope of v(cT+1; pT+1
T (1)) is

steeper than the slope of v(cT ; pT+1
T (1)), and hence by continuity of the average payoff functions

with respect to T , there are two intersections in (0, 1), and the larger intersection satisfies Stable

Payoff Equalization condition (9), as depicted in Figure 1b.

The strict Best Reply Condition (10) holds for any α which satisfies (9). If one-step deviation

after T +1 is better than following the incumbents, then it is better to deviate at T +1. However,

such strategy earns exactly the same payoff as that of cT+1, which is also the same as that of

cT under the payoff equalization. Therefore no one-step deviation during cooperation periods

of cT or cT+1 earns higher payoff.

Proposition 3. For any δ > δ∗, there exists τ2(δ) < τ(δ) such that for any T ∈ (τ2(δ), τ(δ))9 ,

there exists a bimorphic NSD with the support {cT , cT+1}.

Proof: See Appendix.

Figure 3 illustrates the regions of (T, δ) where a monomorphic or a bimorphic NSD exist. To

warrant an integer T , we need to restrict the payoff parameters G so that (τ2(δ), τ(δ)) contains

an integer. Figure 1b is based on a numerical example10 of such G that warrants a bimorphic

NSD with the support {c0, c1}, even though c0-strategy is never a NSS.

3.3 Higher Efficiency of Bimorphic NSD

For a given δ > δ∗, the shortest trust-building periods in the support of a bimorphic NSD is

at least one period less than any of monomorphic NSS. Let the shortest trust-building periods
9As T decreases further, the intersection becomes unique. The unique intersection does not satisfy (9). Thus

the sufficient range of T is an open interval.
10Namely, g = 60, c = 55, d = 0, ` = −1, and δ = 0.95.
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Figure 3: Parametric summary of monomorphic NSS and bimorphic NSD

of NSS be T + 1 and consider a bimorphic NSD with the support {cT , cT+1}. Let αT+1
T be the

fraction of cT -strategy of the bimorphic NSD. The average payoff of cT+1 strategy as a NSS is

v(cT+1; pT+1) = v(cT+1; pT+1
T (0)).

Since v(cT+1; pT+1
T (α)) is an increasing function of α,

v(cT+1; pT+1
T (0)) < v(cT+1; pT+1

T (αT+1
T )),

because αT+1
T > 0. (See Figure 1b.) Hence bimorphic NSDs, if they exist, are more efficient

than any monomorphic NSS under the same parameters, thanks to earlier cooperation, even

though equilibrium break-up occurs.

The intuition is as follows. Diverse strategies in the society make it valuable to maintain

a relationship with the same-type partner, and if it is an equilibrium, the earliest cooperators

(the “victims”) must have enough share in the population to help each other. Thus a significant

fraction of players can start cooperation early, which is more efficient than a monomorphic

distribution under which all players must build trust initially.

Eeckhout (2006) shows that there exists a correlated strategy profile which Pareto domi-

nates the best symmetric equilibrium, in a similar model to ours. His idea was to introduce a

correlation device, such as skin color, to selectively start cooperation after a random match. By

contrast, we have shown that correlation is not necessary to improve efficiency.
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3.4 Polymorphic NSD

We can extend the analysis of the bimorphic NSDs to general polymorphic NSDs with more than

two trust-building strategies in the support. However, finite-support NSDs are quite complex

to analyze, while infinite-support NSDs are simpler. Let us explain this first and then focus on

infinite-support NSDs.

Let us consider a trimorphic distribution with the support {cT , cT+1, cT+2}. There are two

ways to parameterize a trimorphic distribution. One parameterization is

αpT + βpT+1 + (1− α− β)pT+2, (11)

while another way is

αpT + (1− α)γpT+1 + (1− α)(1− γ)pT+2, (12)

where γ is the relative share of cT+1 as compared to that of cT+2, given the fraction α of cT -

strategy. The parameterization (12) is easier to use, since we can decompose the Stable Payoff

Equalization condition of three strategies into pairs, as follows. Given α, compare the payoffs

of cT+1 and cT+2. If these are equated and stability similar to (9) is satisfied, we can compare

the payoffs of cT and cT+1 (since cT+2 earns the same payoff as that of cT+1 against cT ). The

stability similar to (9) for the payoff-equalizing (αT+2
T , γT+2

T+1) is formulated as follows. (The Best

Reply Condition is derived in the same way as bimorphic NSD.)

In a neighborhood of (αT+2
T , γT+2

T+1), for any α, γ,

α R αT+2
T ⇐⇒ v(cT+1; pT+2

T (α, γT+2
T+1)) R v(cT ; pT+2

T (α, γT+2
T+1)) (13)

γ R γT+2
T+1 ⇐⇒ v(cT+2; pT+2

T (αT+2
T , γ)) R v(cT+1; pT+2

T (αT+2
T , γ)), (14)

where

pT+2
T (α, γ) = αpT + (1− α)γpT+1 + (1− α)(1− γ)pT+2.

Note that change in α does not affect the relative share of cT+1 and cT+2-strategies, and thus

we require (13). Change in the share of cT+k (k ∈ {1, 2}) affects the relative share γ, and thus

we require (14).

It is probably not impossible to find a sufficient condition on T to warrant the existence

of such (αT+2
T , γT+2

T+1) for the trimorphic case, but it is also easy to see that as the number of

strategies in the support increases, the existence problem worsens because of more inequality

conditions to satisfy. Therefore we do not pursue it here. (However, in Figure 4 we give a

numerical example of a trimorphic NSD.)

A notable feature of trimorphic distributions is that the average payoff of cT+1-strategy

under a trimorphic distribution with the support {cT , cT+1, cT+2} is strictly less than that of

cT+1 under a bimorphic distribution with the support {cT , cT+1}, since there is an exploiter
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cT+2-strategy. (See Figure 4.) This implies that if equilibrium αT+2
T exists, then it is larger than

the bimorphic equilibrium share αT+1
T . Thus, if exists, a trimorphic NSD is more efficient than

the bimorphic NSD with the same shortest trust-building periods T .

It turns out that strategy distributions with infinitely many trust-building strategies {cT , cT+1,

. . .} in the support are easier to analyze, since they require only one parameter to equalize the

payoffs. We first prove that the distribution must be “geometric” to equalize the payoffs of all

strategies in {cT , cT+1, . . .}.
Lemma 6. For any T < ∞, let p be a stationary strategy distribution with the support {cT , cT+1,

. . .}. If v(cT ; p) = v(cT+k; p) for all k = 1, 2, . . ., then there exists α ∈ (0, 1) such that the fraction

of cT+k-strategy is of the form α(1− α)k for each k = 0, 1, 2, . . ..

Proof: See Appendix.

Denote the geometric distribution of {cT , cT+1, . . .} as p∞T (α). We show that if p∞T (α) is

the stationary strategy distribution in the matching pool, for any α, the average payoff of cT -

strategy is greater than/equal to/less than that of cT+1-strategy if and only if the average payoff

of cT+k-strategy is greater than/equal to/less than that of cT+k+1-strategy, for any k = 1, 2, . . ..

The intuition is as follows. The behavioral outcomes for cT+1-strategy after the second period

is essentially the same as those for cT -strategy from the first period, i.e., T periods of trust-

building followed by permanent cooperation if the partner had the same strategy, while followed

by dissolution if the partner had a longer trust-building strategy. Similarly, the behavioral

outcomes for cT+2-strategy after the second period is essentially the same as those for cT+1-

strategy from the first period.. . . Therefore, if cT has higher/the same/lower average payoff than

cT+1-strategy does, so does cT+1 against cT+2 and so on.

Lemma 7. For any T < ∞ and any α ∈ (0, 1), v(cT ; p∞T (α)) R v(cT+1; p∞T (α)) if and only if

v(cT+k; p∞T (α)) R v(cT+k+1; p∞T (α)) for all k = 1, 2, . . ..

Proof: See Appendix.

A sufficient condition for one-step deviant mutants to be deterred is again the strict Best

Reply Condition, which is derived in the same way as the bimorphic case. Notice that for any

period after T , playing D (after the history consisting only of (D, D)) is an on-path action.

Hence the meaningful deviations are those that play D after the cooperation periods started

(that is, play D and keep the partnership for first T + k periods, play C at least once, and then

play D if the partnership continued). Such one-shot deviation during the cooperation periods

cannot invade the distribution if the continuation value at T + k + 2 satisfies

g + (L− 1)v(cT+k; p∞T (α)) <
c

1− δ2
+ (L− 1

1− δ2
)v(cT+k; p∞T (α))

⇐⇒ v(cT+k; p∞T (α)) < vBR. (15)
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(g = 60, c = 55, d = 0, ` = −1, δ = 0.95, and T = 0.)

It is also straightforward to see that mutants who choose different continuation decision from

the incumbents cannot invade the distribution.

Finally, mutants with the same play path as one of the cT+k-strategies should be considered.

However, stability under a geometric distribution is difficult to formulate, because change in the

fraction of one strategy affects the relative share of many strategies. To simplify, we postulate

that if the distribution changes from a geometric one, there will be evolutionary pressure to

restore the distribution to another payoff-equalizing geometric distribution in a rather short

time. Under this assumption, we show that there is a geometric distribution with α∞T ∈ (0, 1)

which is robust against small changes to another geometric distribution in the sense that there

is a neighborhood U of α∞T such that for any α ∈ U and any k = 1, 2, . . .,

α R α∞T ⇐⇒ v(cT+k; p∞T (α)) R v(cT ; p∞T (α)). (16)

The idea is that if mutants with the same play path as that of cT+k-strategy enter, the distri-

bution shifts to p∞T (α) with α < α∞T and (16) warrants that they will do worse than the earliest

cooperator cT -strategy, and vice versa.

By a slight abuse of our terminology, we call an infinite-support distribution p a NSD if it

satisfies (15) and (16). Note that if there is α∞T ∈ (0, 1) that satisfies (16) for k = 1, then Lemma

7 warrants (16) for any k = 1, 2, . . ..

Similar to the trimorphic case, the payoff of cT+1-strategy is lower under an infinite-support

distribution than that under a bimorphic distribution, since there are exploiters of cT+1- strategy

(namely, cT+k-strategies with k = 2). See Figure 4. Therefore the infinite-support NSD is more

efficient than the bimorphic NSD with the same shortest trust-building period T .

19



Proposition 4. For any δ > δ∗ there exists τ∞(δ) < τ(δ) such that for any T ∈ (τ∞(δ), τ(δ)),

there is a NSD of the form p∞T (α∞T ) for some α∞T ∈ (0, 1). Moreover,

v(cT ; pT+1
T (αT+1

T )) < v(cT ; p∞T (α∞T )),

i.e., the infinite-support NSD is more efficient than the bimorphic NSD with the same shortest

trust-building periods.

Proof: See Appendix.

In summary, diverse strategies in the support improves the equilibrium average payoff. This

is because the share of cT -strategy (the earliest cooperators) must increase to restore the balance,

when there are more exploiters in the distribution.

4 Extensions

4.1 Efficiency Wage and Matching Mechanism

Our model describes a society where players meet a stranger to play a Voluntarily Separable

Repeated Prisoner’s Dilemma. We analyzed how continuous cooperation becomes an equilibrium

behavior when deviation from cooperation induces appropriate social sanctions.

Sanctions consist of two parts. First, a player’s defection invokes the partner’s severance

decision, forcing him to start a new partnership with a stranger. Second, the payoff level he

expects with a stranger is less than what he expects in a continued partnership with the current

partner.

In the main text, we have identified two ways by which the payoff difference is generated;

positive trust-building periods and exploitation by strategies with longer trust-building periods.

There is an additional mechanism that reduces payoff after a break-up if we allow the match-

ing probability to be less than one: Even if cooperation can be established with a new partner

immediately, with a positive probability a player fails to find a partner in the matching pool

(i.e., the player may become “unemployed”). This is the logic which provides a work incentive in

the efficiency wage theory since the possibility of unemployment works as a disciplinary device

(see, e.g., Shapiro and Stiglitz, 1984). For completeness of the paper we briefly discuss how our

model can be extended to derive c0-strategy as a NSS when there is a positive unemployment

probability.

Suppose, in the matching pool, only with probability 1 − u ∈ (0, 1) one can find a new

partner and with probability u ∈ (0, 1) he spends the next period without a partner and receives

a normalized payoff of 0. With this possibility of “unemployment”, the average payoff that

cT -strategy player expects to receive in the matching pool (but before he finds a partner) is:

v0(cT ; pT , u) = (1− u)v(cT ; pT ),
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where v(cT ; pT ) is now interpreted as “the average payoff that cT expects to receive when a new

partnership is formed” (i.e., at the beginning of period 1 of a partnership).

By the same logic as in subsection 3.1, the Best Reply Condition is v0(cT ; pT , u) 5 vBR.

Clearly, if (5) is satisfied, this Best Reply Condition is also satisfied. Moreover, it can be satisfied

even for c0 for sufficiently large u, and cooperation without trust-building period becomes a self-

sustaining state.11

As noted in Shapiro and Stiglitz (1984) and Okuno-Fujiwara (1989), unemployment works

as a disciplinary device that deters moral hazard behavior. This observation suggests that the

matching mechanism is an important element in creating cooperative partnerships.

There are two ways to consider the details of matching mechanisms. One way is to distinguish

the reasons to be in the matching pool. In our setup, there are four reasons: new birth, death of

the partner, separation due to the partner’s deviation, and separation due to own deviation. In

this paper we analyzed the case where no distinction can be made among these due to the lack

of information. Higher efficiency is achieved if players can distinguish at least some reasons why

the newly matched partner came into the matching pool. (See Okuno-Fujiwara et al., 2007.)

Moreover, if players can find matches via their social network, before going to the random

matching pool, further efficiency gain is expected since the deviation incentive is smaller within

one’s social network.

The other way is to find mechanisms that generate sufficient matching friction as assumed in

the efficiency wage literature. Eeckhout (2006) shows that using personal characteristics (such

as skin color) as a correlation device is a way to generate the sufficient matching friction in a

monomorphic distribution.

4.2 Alternating-Action Equilibrium

If 2c < g + `, then repeating (C,C) is not the most efficient outcome. Among pure strat-

egy distributions, it is most efficient to alternate (C, D) and (D, C). By a similar logic to the

monomorphic equilibrium, the following two-strategy distribution constitutes a NSD for suffi-

ciently long trust-building periods.

Definition: For any T = 1, 2, . . ., aT -strategy is defined as follows.

t = 1, 2, . . . , T : Play D and keep the partnership if and only if (D, D) is observed.

t = T + 1: Play C, keep the partnership regardless of the current observation, and move to

Alternating-action regime if the partner played D. Move to C-trigger regime if the partner

played C.

• Alternating-action regime: In periods t = T + k (k = 2) such that k is even, play D and keep

the partnership if and only if the partner played C in the current period. When k is odd, play

11Carmichael and MacLeod (1997) have essentially the same idea by gift-giving instead of unemployment.
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C and keep the partnership if and only if the partner played D.

• C-trigger regime: Play C and keep the partnership if and only if the partner played C in the

current period.

Definition: For any T = 1, 2, . . ., bT -strategy is defined as follows.

t = 1, 2, . . . , T : Play D and keep the partnership if and only if (D, D) is observed.

t = T + 1: Play D, keep the partnership regardless of the current observation, and move to

Alternating-action regime if the partner played C. Move to C-trigger regime if the partner

played D.

• Alternating-action regime: In periods t = T + k (k = 2) such that k is even, play C and

keep the partnership if and only if the partner played D. When k is odd, play D and keep the

partnership if and only if the partner played C.

• C-trigger regime: Play C and keep the partnership if and only if the partner played C in the

current period.

If aT met aT , the play path is the same as cT meeting cT . If aT met bT , the play path

after T periods of trust-building alternates action profiles (C, D) and (D, C). If bT met bT , the

play path is the same as cT+1 meeting cT+1. Therefore if a stationary distribution of aT and

bT is stable, then a constant fraction of the population play the alternating action profiles after

certain periods of trust building.

There is no voluntary separation on the play path even though there are multiple strategies

in the society. Therefore the essential logic is the same as that of a monomorphic NSD. This

type of equilibrium can be interpreted as a “single-norm” equilibrium with coordinated action

profiles. The analysis will be useful for asymmetric stage games such as Hawk-Dove game, where

the efficient outcome is a coordinated action profile.

5 Conclusion and Related Literature

Several papers have previously analyzed voluntarily separable repeated games, though not as

fully as this paper does. We discuss two main points of our paper in relation to the literature:

the function of trust-building periods and the meaning of polymorphic equilibria.

First, the trust-building periods in our equilibria serve as a mechanism for sanction against

defection because they make the initial value of a new partnership small. In the literature,

the gift exchange of Carmichael and MacLeod (1997) and the gradual cooperation in Datta

(1996) and Kranton (1996a) have the same function. By contrast, the gradual cooperation

under incomplete information (Ghosh and Ray, 1996, and Kranton, 1996a) is to sort types out

and thus has a different meaning.12

12Repeated games with a quitting option (Watson, 2002, Blonski and Probst, 2001, and Furusawa and
Kawakami, 2006) also display gradual cooperation to sort types.
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Our model is based on more basic primitives than these previous works: the game is of

complete information, the stage game is an ordinary prisoner’s dilemma with two actions, and

there is no gift exchange prior to the partnership. We show that it is still possible to construct

a punishment mechanism. Furthermore, we consider evolution of behaviors within a society

as a whole, rather than restricting attention to behaviors within a single partnership given a

(monomorphic) strategy distribution in the society. We are also able to provide fuller charac-

terizations of monomorphic trust-building strategy NSDs, such as identifying the condition (in

terms of the survival rate and payoffs of stage game) for the existence of a NSD with a particular

length of trust-building periods.

Eeckhout (2006) analyzes a very similar model to ours, except that his does not have a ran-

dom death and he does not consider evolutionary stability. Since the most efficient monomorphic

equilibrium does not generically attain the constrained optimal payoff vBR, Eeckhout (2006) in-

troduced a public randomization to improve the payoffs. By contrast, we noticed the nonlinearity

of payoffs under asymmetric strategy distributions and thus did not have to resort to correlated

strategies to improve the payoffs. In general, allowing correlated strategies requires the existence

of a public randomization device, which is an extra assumption to the model.

Second, the existence and higher efficiency of polymorphic equilibria than monomorphic

equilibria is a totally new result. The logic that early start of long-term cooperation is sustained

because of possible exploitation in a future partnership is similar to the equilibrium of Rob and

Yang (2005), written independently from our paper. In their model, there are three types of

players; a bad type who always plays D, a good type who always plays C, and the rational

type who tries to maximize their payoff. Existence of bad type players makes it valuable to (1)

keep and cooperate with either good or rational type partners, and (2) to find out bad type

partners as soon as possible. Thus, a rational player should cooperate from the beginning to be

distinguished from the bad-type.

Our result is much starker than Rob and Yang’s. Our model does not rely on heterogeneous

“type” and incomplete information. Instead, bad (longer trust-building) strategy emerges en-

dogenously as a polymorphic NSD. We also show that there are equilibria with a variety of (even

infinitely many) heterogeneous strategies.

The higher efficiency of polymorphic equilibria is an interesting result. One might think

that late cooperators create unstable partnerships and thus reduce social welfare. However, in

equilibrium there should be enough early cooperators to help each other, and the benefit of

partially early cooperation is greater than uniformly delayed cooperation.
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6 Appendix: Proofs

Proof of Lemma 3: Let us rearrange v(cT ; pT+1
T (α)) to highlight the effect of α.

v(cT ; pT+1
T (α))

=
αL(cT , cT )v(cT , cT ) + (1− α)L(cT , cT+1)v(cT , cT+1)

αL(cT , cT ) + (1− α)L(cT , cT+1)
= µT (α)v(cT , cT ) + {1− µT (α)}v(cT , cT+1),

where

µT (α) :=
αL(cT , cT )

αL(cT , cT ) + (1− α)L(cT , cT+1)
.

This is the only part that α is involved in v(cT ; pT+1
T (α)). Thus

v(cT ; pT+1
T (α)) = v(cT , cT+1) + µT (α){v(cT , cT )− v(cT , cT+1)}. (17)

By differentiation,

∂µT (α)
∂α

=
L(cT , cT )L(cT , cT+1)

[L(cT , cT+1) + α{L(cT , cT )− L(cT , cT+1)}]2 > 0,

and, since L(cT , cT )−L(cT , cT+1) = 1
1−δ2 − 1−δ2(T+1)

1−δ2 > 0, the derivative is decreasing in α. Note

also that

v(cT , cT )− v(cT , cT+1)

= (1− δ2T )d + δ2T c− (1− δ2T )d + δ2T (1− δ2)`
1− δ2(T+1)

=
(1− δ2T ){1− δ2(T+1) − 1}d + δ2T {(1− δ2(T+1))c− (1− δ2)`}

1− δ2(T+1)

=
δ2T {(1− δ2)(c− `) + δ2(1− δ2T )(c− d)}

1− δ2(T+1)
> 0.

Hence v(cT , pT+1
T (α)) is strictly increasing and concave in α.

Proof of Lemma 4: By the same logic as Lemma 3, let

µT+1(α) :=
αL(cT+1, cT )

αL(cT+1, cT ) + (1− α)L(cT+1, cT+1)
.

Then

v(cT+1; pT+1
T (α)) = v(cT+1, cT+1) + µT+1(α){v(cT+1, cT )− v(cT+1, cT+1)}. (18)

Note that by computation

v(cT+1, cT )− v(cT , cT )

=
1

1− δ2(T+1)

[
(1− δ2T )d + δ2T (1− δ2)g − (1− δ2(T+1))(1− δ2T )d− (1− δ2(T+1))δ2T c

]

=
δ2T

1− δ2(T+1)

[
(1− δ2)(g − c)− δ2(1− δ2T )(c− d)

]
= 0, (19)
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if T 5 τ(δ). (This fact will be useful in Proposition 3 as well.) Hence

v(cT+1, cT )− v(cT+1, cT+1)

= {v(cT+1, cT )− v(cT , cT )}+ {v(cT , cT )− v(cT+1, cT+1)} > 0, (20)

since cT starts cooperation earlier than cT+1 (thus the second bracket is positive).

By differentiation,

∂µT+1(α)
∂α

=
L(cT+1, cT )L(cT+1, cT+1)

[L(cT+1, cT+1) + α{L(cT+1, cT )− L(cT+1, cT+1)}]2 > 0.

However, notice that L(cT+1, cT )− L(cT+1, cT+1) = 1−δ2(T+1)

1−δ2 − 1
1−δ2 < 0 so that the derivative

is increasing in α. Therefore v(cT+1; pT+1
T (α)) is strictly increasing but convex in α.

Proof of Lemma 5: From (17) in the proof of Lemma 3 and (18) in the proof of Lemma 4,

∂v(cT ; pT+1
T (α))

∂α
= µ′T (α){v(cT , cT )− v(cT , cT+1)},

∂v(cT+1; pT+1
T (α))

∂α
= µ′T+1(α){v(cT+1, cT )− v(cT+1, cT+1)}.

As α → 1,

µ′T (α) =
L(cT , cT )L(cT , cT+1)

[αL(cT , cT ) + (1− α)L(cT , cT+1)]2
→ L(cT , cT+1)

L(cT , cT )
= 1− δ2(T+1),

µ′T+1(α) =
L(cT+1, cT )L(cT , cT+1)

[αL(cT+1, cT ) + (1− α)L(cT+1, cT+1)]2

→ L(cT+1, cT+1)
L(cT+1, cT )

=
L(cT , cT )

L(cT , cT+1)
=

1
1− δ2(T+1)

.

At δ = δ(T ),

v(cT ; pT+1
T (1)) = v(cT , cT ) = v(cT+1; pT+1

T (1)) = v(cT+1, cT ).

Therefore, at δ = δ(T ),

∂v(cT ; pT+1
T (α))

∂α

∣∣∣
α=1

− ∂v(cT+1; pT+1
T (α))

∂α

∣∣∣
α=1

=
L(cT , cT+1))
L(cT , cT )

{v(cT , cT )− v(cT , cT+1)} − L(cT , cT )
L(cT , cT+1)

{v(cT+1, cT )− v(cT+1, cT+1)},

= (1− δ2(T+1))
δ2T (1− δ2)(g − `)

1− δ2(T+1)
− 1

1− δ2(T+1)
δ2T (1− δ2)(c− d)

= δ2T (1− δ2)
{

(g − `)− c− d

1− δ2(T+1)

}
.

Proof of Proposition 3: We introduce a useful notation first. For any T, T ′ ∈ N, define

Γ(cT , cT ′) := L(cT , cT ′){v(cT , cT ′)− vBR}.
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Then for any T, T ′ ∈ N such that T, T ′ = 1,

Γ(cT , cT ′) = V (cT , cT ′)− L(cT , cT ′)vBR

= d + δ2V (cT−1, cT ′−1)− {1 + δ2L(cT−1, cT ′−1)}vBR

= d− vBR + δ2Γ(cT−1, cT ′−1). (21)

Lemma 8. For any T, T ′ ∈ N, Γ(cT , cT ) = Γ(cT+1, cT ).

Proof of Lemma 8: We prove this by induction. The definition of vBR is equivalent to

vBR

[
1

1− δ2
− 1

]
=

c

1− δ2
− g.

Hence we have that

[L(c0, c0)− L(c1, c0)]vBR = L(c0, c0)v(c0, c0)− v(c1, c0)L(c1, c0).

That is,

Γ(c0, c0) = Γ(c1, c0).

Next suppose that Γ(cT−1, cT−1) = Γ(cT , cT−1) holds. From (21),

Γ(cT , cT ) = d− vBR + Γ(cT−1, cT−1)

= d− vBR + Γ(cT , cT−1)

= Γ(cT+1, cT ).

Lemma 9. For any δ > δ∗, there exists τ2(δ) < τ(δ) such that for any T ∈ (τ2(δ), τ(δ)), there

are two solutions in (0, 1) to

v(cT ; pT+1
T (α)) = v(cT+1; pT+1

T (α)).

Proof of Lemma 9: By the definition, at T = τ(δ),

v(cT ; pT+1
T (1)) = v(cT+1; pT+1

T (1)).

Note also that for any T ,

v(cT ; pT+1
T (0)) = v(cT , cT+1) < v(cT+1, cT+1) = v(cT+1; pT+1

T (0)).

Recall that the average payoff of cT is concave in α (Lemma 3), that of cT+1 is convex in α

(Lemma 4), and δ > δ∗ warrants that the slope of the average payoff of cT+1 is steeper than

that of cT -strategy at α = 1. Hence there are two intersections of the average payoff functions

when T = τ(δ); one at α = 1 and one within (0, 1). (See Figure 2.)
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From (19) we have that, for T < τ(δ),

v(cT ; pT+1
T (1)) = v(cT , cT ) < v(cT+1, cT ) = v(cT+1; pT+1

T (1)),

but the slope of the average payoff of cT+1 is still steeper than that of cT -strategy at α = 1.

Therefore, by the continuity of the average payoff functions with respect to T , for T sufficiently

close to τ(δ), there are two intersections of the average payoff functions in (0, 1).

Let the larger solution be αT+1
T . At αT+1

T , the average value of cT+1 intersects with that of

cT from below. (See Figure 1b.) Hence there exists a neighborhood of αT+1
T in which

α R αT+1
T ⇐⇒ v(cT+1; pT+1

T (α)) R v(cT ; pT+1
T (α)).

To complete the proof of Proposition, we show that The Best Reply Condition is satisfied

with strict inequality at αT+1
T .

Let α∗T (vBR) and α∗T+1(v
BR) be the fractions of cT -strategy which solve v(cT ; pT+1

T (α)) =

vBR and v(cT+1; pT+1
T (α)) = vBR respectively. By the continuity of the average payoff functions

with respect to T , it suffices to prove13

α∗T+1(v
BR) < α∗T (vBR).

Notice that v(cT ; pT+1
T (α)) = vBR is equivalent to

L(cT ; pT+1
T (α)){v(cT ; pT+1

T (α))− vBR} = 0

⇐⇒ V (cT ; pT+1
T (α))− L(cT ; pT+1

T (α))vBR = 0

⇐⇒ αL(cT , cT )v(cT , cT ) + (1− α)L(cT , cT+1)v(cT , cT+1) − L(cT ; pT+1
T (α))vBR = 0

⇐⇒ αΓ(cT , cT ) + (1− α)Γ(cT , cT+1) = 0.

Therefore, α∗T (vBR) is the solution to

H∗
T (α) := αΓ(cT , cT ) + (1− α)Γ(cT , cT+1) = 0. (22)

Similarly, α∗T+1(v
BR) is the solution to

H∗
T+1(α) := αΓ(cT+1, cT ) + (1− α)Γ(cT+1, cT+1) = 0. (23)

By Lemma 8, H∗
T (1) = Γ(cT , cT ) = Γ(cT+1, cT ) = H∗

T+1(1). Let us compare the slope of these

linear functions:

∂H∗
T

∂α
= Γ(cT , cT )− Γ(cT , cT+1)

∂H∗
T+1

∂α
= Γ(cT , cT )− Γ(cT+1, cT+1).

13α∗T+1(v
BR) < α∗T (vBR) also holds when the smaller solution α to v(cT ; pT+1

T (α)) = v(cT+1; p
T+1
T (α)) has the

average payoff greater than vBR. However, when T = τ(δ), v(cT ; pT+1
T (α)) < vBR. Therefore for T sufficiently

close to τ(δ), it cannot be that v(cT ; pT+1
T (α)) > vBR.
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In parameters,

Γ(cT+1, cT+1) =
1

1− δ2

{
(1− δ2(T+1))d + δ2(T+1)c− vBR

}

Γ(cT , cT+1) =
1− δ2T

1− δ2
d + δ2T `− 1− δ2(T+1)

1− δ2
vBR.

Hence,
{

Γ(cT+1, cT+1)− Γ(cT , cT+1)
}

(1− δ2)

= δ2T (1− δ2)(d− `) + δ2(T+1)(c− vBR) = δ2T (1− δ2)(d− ` + g − c) > 0. (24)

Therefore the slope of H∗
T is steeper than that of H∗

T+1 for any α. This implies that H∗
T (α) <

H∗
T+1(α) for all α < 1, and thus

α∗T+1(v
BR) < α∗T (vBR).

This completes the proof of the proposition.

Proof of Lemma 6: Consider ct-strategy for an arbitrary t ∈ {T, T + 1, T + 2, . . .} and the

beginning of period t + 1 in a match, when ct-strategy is about to start cooperation. (That is,

the partnership has continued up to t + 1-th period so that the possibility that the partner has

a shorter trust-building than t is excluded.)

Let αt be the conditional probability that the partner is the same strategy. The conditional

probability is 1 − αt that the partner has a longer trust-building period. The (non-averaged)

continuation payoff of ct-strategy at the beginning of t + 1 is

V (ct; p, t + 1) = αt{ c

1− δ2
+

δ(1− δ)
1− δ2

V (ct; p)}+ (1− αt){` + δV (ct; p)}. (25)

On the other hand, the continuation payoff of ct+1-strategy is

V (ct+1; p, t + 1) = αt{g + δV (ct+1; p)}
+(1− αt){d + δ(1− δ)V (ct+1; p) + δ2V (ct+1; p, t + 2)}. (26)

Notice that the payoff structure for ct+1-strategy at the beginning of period t + 2 when it

just finished the trust building is the same as that of ct-strategy at t + 1, i.e.,

V (ct+1; p, t + 2) = V (ct; p, t + 1).

Therefore (26) becomes

V (ct+1; p, t + 1) = αt{g + δV (ct+1; p)}
+(1− αt){d + δ(1− δ)V (ct+1; p) + δ2V (ct; p, t + 1)}

⇐⇒ V (ct+1; p, t + 1) =
1

1− (1− αt)δ2

[
αt{g + δV (ct+1; p)}

+(1− αt){d + δ(1− δ)V (ct+1; p)}]. (27)
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From the assumption that the average payoffs of ct and ct+1 are the same,

V (ct; p) = V (ct+1; p). (28)

Then, since the payoff until t is the same for both ct and ct+1, we also have

V (ct; p, t + 1) = V (ct+1; p, t + 1). (29)

(29) implies that the RHS of (25) and (27) must be the same. Using (28) and letting V ∗(p) =

V (ct; p) = V (ct+1; p), αt must satisfy

αt{ c

1− δ2
+

δ(1− δ)
1− δ2

V ∗(p)}+ (1− αt){` + δV ∗(p)}

=
αt{g + δV ∗(p)}+ (1− αt){d + δ(1− δ)V ∗(p)}

1− (1− αt)δ2
.

Since this equation does not depend on t, we have established that αt = α for all t = T, T +1, . . .,

i.e., the fraction of cT+k-strategy is of the form α(1− α)k.

Proof of Lemma 7: For any T, T ′ < ∞, α ∈ [0, 1] and v ∈ <, define

Γ̂(cT , cT ′ , v) := L(cT , cT ′){v(cT , cT ′)− v};
Γ̂(cT , p∞T (α), v) := L(cT ; p∞T (α)){v(cT ; p∞T (α))− v}.

Then, by (3),

L(cT ; p∞T (α)){v(cT ; p∞T (α))− v}
= αL(cT , cT )v(cT , cT ) + (1− α)L(cT , cT+1)v(cT , cT+1)− {αL(cT , cT ) + (1− α)L(cT , cT+1)}v
= αΓ̂(cT , cT , v) + (1− α)Γ̂(cT , cT+1, v). (30)

Similarly,

L(cT+1; p∞T (α)){v(cT+1; p∞T (α))− v}
= αΓ̂(cT+1, cT , v) + (1− α){αΓ̂(cT+1, cT+1, v) + (1− α)Γ̂(cT+1, cT+2, v)}; (31)

and L(cT+2; p∞T (α)){v(cT+1; p∞T (α))− v}
= αΓ̂(cT+2, cT , v) + (1− α)[αΓ̂(cT+2, cT+1, v)

+(1− α){αΓ̂(cT+2, cT+2, v) + (1− α)Γ̂(cT+2, cT+3, v)}], (32)

and so on. Note that by a generalization of (21), for any T, T ′ and v ∈ <,

Γ̂(cT+1, cT ′+1, v) = d− v + δ2Γ̂(cT , cT ′ , v).
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Hence (31) becomes

L(cT+1; p∞T (α)){v(cT+1; p∞T (α))− v}
= αΓ̂(cT+1, cT , v) + (1− α)[d− v + δ2{αΓ̂(cT , cT , v) + (1− α)Γ̂(cT , cT+1, v)}]
= αΓ̂(cT+1, cT , v) + (1− α)[d− v + δ2Γ̂(cT , p∞T , v)]. (33)

Since cT+1 and cT+2 behave the same way against cT , Γ̂(cT+2, cT , v) = Γ̂(cT+1, cT , v). Thus (32)

becomes

L(cT+2; p∞T (α)){v(cT+1; p∞T (α))− v}
= αΓ̂(cT+1, cT , v) + (1− α)

[
(d− v) + δ2Γ̂(cT+1, p

∞
T (α), v)

]
. (34)

Subtracting (33) from (34), we get

Γ̂(cT+2, p
∞
T (α), v)− Γ̂(cT+1, p

∞
T (α), v) = (1− α)δ2

{
Γ̂(cT+1, p

∞
T (α), v)− Γ̂(cT , p∞T (α), v)

}
. (35)

Let v = v(cT+1; p∞T (α)). Then Γ̂(cT+1, p
∞
T (α), v) = 0 so that (35) is equivalent to

L(cT+2; p∞T (α)){v(cT+2; p∞T (α))− v(cT+1; p∞T (α))}
= −(1− α)δ2L(cT ; p∞T (α)){v(cT ; p∞T (α))− v(cT+1; p∞T (α))}.

Therefore, for any α ∈ (0, 1),

v(cT ; p∞T (α)) R v(cT+1; p∞T (α))

⇐⇒ v(cT+1; p∞T (α)) R v(cT+2; p∞T (α)).

This argument can be continued for any cT+k-strategy.

Proof of Proposition 4: We first prove the Stable Payoff Equalization and local stability of

cT and cT+1-strategy, which also implies that all strategies in the support have the same average

payoff and satisfy the stability by Lemma 7.

Lemma 10. For any δ > δ∗, there exists τE∞(δ) < τ(δ) such that for any T ∈ (τE∞(δ), τ(δ)),

there exists α∞T (δ) ∈ (0, 1) such that

α R α∞T ⇐⇒ v(cT+1; p∞T (α)) R v(cT ; p∞T (α)). (36)

Proof of Lemma 10: We use a similar logic to the one for the existence of bimorphic NSD,

although the average payoff of cT+1-strategy is no longer convex. First, notice that for any T, α,

v(cT ; pT+1
T (α)) = v(cT ; p∞T (α)).

30



The average payoff of cT+1 can be decomposed as follows.

v(cT+1; p∞T (α)) = µ10(α)v(cT+1, cT ) + µ11(α)v(cT+1, cT+1) + {1− µ10(α)− µ11(α)}v(cT+1, cT+2)

= v(cT+1, cT+2) + µ10(α){v(cT+1, cT )− v(cT+1, cT+2)}
+µ11(α){v(cT+1, cT+1)− v(cT+1, cT+2)},

where

µ10(α) :=
αL(cT+1, cT )

L(cT+1; p∞T (α))
;

µ11(α) :=
(1− α)αL(cT+1, cT+1)

L(cT+1; p∞T (α))
;

L(cT+1; p∞T (α)) = αL(cT+1, cT ) + (1− α)αL(cT+1, cT+1) + (1− α)2L(cT+1, cT+2).

By computation

∂µ10

∂α
=

L(cT+1, cT )
L(cT+1; p∞T (α))2

[
α2{L(cT+1, cT+1)− L(cT+1, cT+2)}+ L(cT+1, cT+2)

]
> 0,

∂µ11

∂α
=

L(cT+1, cT+1)
L(cT+1; p∞T (α))2

[
α2{L(cT+1, cT+2)− L(cT+1, cT )}+ (1− 2α)L(cT+1, cT+2)

]
.

Therefore, for any T ,

∂v(cT+1; p∞T (α))
∂α

∣∣∣
α=1

=
L(cT , cT )

L(cT+1, cT )
{v(cT+1, cT )− v(cT+1, cT+1)} =

∂v(cT+1; pT+1
T (α))

∂α

∣∣∣
α=1

.

Recall that by Lemma 5, for any T < τ̂(δ),

∂v(cT+1; pT+1
T (α))

∂α

∣∣∣
α=1

>
∂v(cT ; pT+1

T (α))
∂α

∣∣∣
α=1

.

For any δ > δ∗, we have that τ(δ) < τ̂(δ). Hence for any T < τ(δ),

∂v(cT+1; p∞T (α))
∂α

∣∣∣
α=1

>
∂v(cT ; p∞T (α))

∂α

∣∣∣
α=1

.

Moreover, at T = τ(δ),

v(cT+1; p∞T (1)) = v(cT ; p∞T (1)),

and for any T < τ(δ),

v(cT+1; p∞T (1)) = v(cT+1, cT ) > v(cT , cT ) = v(cT ; p∞T (1)).

Thus, by continuity of the average payoff with respect to T , for T sufficiently close to τ(δ),

v(cT+1; p∞T (α)) crosses with v(cT ; p∞T (α)) from below, i.e., (36) holds.

Next, we show the Best Reply condition with strict inequality.
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Lemma 11. For any δ > δ∗ there exists τ∞(δ) ∈ [τE∞(δ), τ(δ)) such that for any T ∈ (τ∞(δ), τ(δ)),

v(cT ; p∞T (α∞T (δ))) < vBR.

Proof of Lemma 11: Recall that α∗T (vBR) is defined by

v(cT ; pT+1
T (α)) = vBR,

Define α∞T+1(v
BR) implicitly by v(cT+1; p∞T (α)) = vBR. Then it is sufficient to prove

α∞T+1(v
BR) < α∗T (vBR).

Recall that α∗T (vBR) is the (unique) solution to

H∗
T (α) := αΓ(cT , cT ) + (1− α)Γ(cT , cT+1) = 0. (37)

By the same logic, α∞T+1(v
BR) is a solution to

F (α) := αΓ(cT+1, cT ) + (1− α)αΓ(cT+1, cT+1) + (1− α)2Γ(cT+1, cT+2) = 0. (38)

By computation,

F (1) = Γ(cT+1, cT ) = Γ(cT , cT ), from Lemma 8,

F ′(α) = Γ(cT , cT ) + Γ(cT+1, cT+1)− 2Γ(cT+1, cT+2)− 2α{Γ(cT+1, cT+1)− Γ(cT+1, cT+2)},
F ′(0) = Γ(cT , cT ) + Γ(cT+1, cT+1)− 2Γ(cT+1, cT+2) > 0,

(since Γ(cT , cT ) > Γ(cT+1, cT+1) > Γ(cT+1, cT+2))

F ′(1) = Γ(cT , cT )− Γ(cT+1, cT+1) > 0.

Hence F is a strictly increasing, concave function for α ∈ [0, 1] and F (α) = 0 has a unique

solution in [0, 1]. Note also that H∗
T (0) = Γ(cT , cT+1) and H∗

T (1) = Γ(cT , cT ) = F (1).

Since H∗
T is linear in α and F is concave, if the slope of H∗

T at α = 1 is steeper than the

slope of F at α = 1, then for T close to but less than τ(δ), H∗
T intersects with the horizontal

axis at a larger α than F does.14 (See Figure 5.)

In fact, F ′(1) = Γ(cT , cT )−Γ(cT+1, cT+1) < Γ(cT , cT )−Γ(cT , cT+1) = H∗′
T (1) since Γ(cT+1, cT+1) >

Γ(cT , cT+1) from (24). Therefore, for T sufficiently close to τ(δ) (and not less than τE∞(δ) so

that α∞T (δ) exists), α∞T+1(v
BR) < α∗T (vBR).

Lemma 12. The average payoff of cT+1-strategy under p∞T (α) is lower than the one under

pT+1
T (α) when v(cT+1; p∞T (α)) 5 vBR.

14For δ > δ∗, H∗
T (0) = Γ(cT , cT+1) > Γ(cT+1, cT+2) = F (0). Thus H∗

T is not uniformly below F .
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Figure 5: Proof of α∞T+1(v
BR) < α∗T (vBR) for T sufficiently close to τ(δ)

Proof of Lemma 12: For any T ∈ N and any (α, v) ∈ (0, 1)×<, define

Γ̂(cT+1, p
T+1
T (α), v) := L(cT+1; pT+1

T (α)){v(cT+1; pT+1
T (α))− v}

= αΓ(cT+1, cT ) + (1− α)Γ(cT+1, cT+1)

{αL(cT+1, cT ) + (1− α)L(cT+1, cT+1)}(vBR − v).

Recall also

Γ̂(cT+1, p
∞
T (α), v) := L(cT+1; p∞T (α)){v(cT+1; p∞T (α))− v}

= αΓ(cT+1, cT ) + (1− α)αΓ(cT+1, cT+1) + (1− α)2Γ(cT+1, cT+2)

+
{

αL(cT+1, cT ) + (1− α)αL(cT+1, cT+1)

+(1− α)2L(cT+1, cT+2)
}

(vBR − v). (39)

By computation, for any T ,

{Γ(cT+1, cT+1)− Γ(cT+1, cT+2)}(1− δ2) = δ2(T+1){δ2(c− vBR) + (1− δ2)(c− `)} > 0.

Then for any α ∈ (0, 1) and any v 5 vBR,

Γ̂(cT+1, p
T+1
T (α), v)− Γ̂(cT+1, p

∞
T (α), v) = (1− α)2[Γ(cT+1, cT+1)− Γ(cT+1, cT+2)

+{L(cT+1, cT+1)− L(cT+1, cT+2)}(vBR − v)] > 0.

Now, consider

L(cT+1; pT+1
T (α))[{v(cT+1; pT+1

T (α))− v} − {v(cT+1; p∞T (α))− v}]
= Γ̂(cT+1, p

T+1
T (α), v)− Γ̂(cT+1, p

∞
T (α), v)

−{L(cT+1; pT+1
T (α)− L(cT+1; p∞T (α))}{v(cT+1; p∞T (α))− v}.
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Note also L(cT+1; pT+1
T (α))−L(cT+1; p∞T (α)) = (1−α)2{L(cT , cT )−L(cT+1, cT+2)} > 0. There-

fore,

v(cT+1; p∞T (α)) 5 vBR ⇒ v(cT+1; pT+1
T (α)) > v(cT+1; p∞T (α)).

Lemma 12 implies that the infinite-support NSD is more efficient than the bimorphic NSD.

This completes the proof of Proposition 4.
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