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Abstract
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1. Introduction

In some recent microeconometric applications many instrumental variables have been

used in estimating important structural equations. This feature may be due to the pos-

sibility of using a large number of cross sectional data and other instrumental variables.

One empirical example of this kind often cited in econometric literature is Angrist and

Krueger (1991); there is some discussion by Bound et al. (1995). Because there are some

distinctive aspects when the number of instrumental variables is large, we investigate the

basic properties of the standard estimation methods of microeconometric models. The

new development suggests reconsidering the traditional estimation methods. There is a

growing recent literature on related problems; see Bekker (1994), Newey and Smith (2004),

and Chao and Swanson (2005), for instance, among many others.

The study of estimating a single structural equation in econometric models has led

to developing several estimation methods as alternatives to the least squares estimation

method. The classical examples in the econometric literature are the limited informa-

tion maximum likelihood (LIML) method and the instrumental variables (IV) method

including the two-stage least squares (TSLS) method (Anderson and Rubin (1949, 1950)).

See Anderson and Sawa (1979), Anderson, Kunitomo, and Sawa (1982), Mariano (1982),

Morimune (1985), and Davidson and MacKinnon (1993), for studies of their finite sample

properties, for instance. As semi-parametric estimation methods, the generalized method

of moments (GMM) estimation, originally proposed by Hansen (1982), which is essentially

the same as the estimating equation (EE) method, has been used in econometric applica-

tions. Also the maximum empirical likelihood (MEL) method has been proposed and has

received attention (see Owen (2001)). For sufficiently large sample sizes the LIML and the

TSLS estimators have approximately the same distribution in the standard large sample

asymptotic theory, but their exact distributions can be quite different for the sample sizes

occurring in practice. Although the GMM and the MEL estimators have approximately

the same distribution under the more general heteroscedastic disturbances in the stan-

dard large sample asymptotic theory, their exact distributions can be quite different for

the sample sizes occurring in practice.

The main purpose of this paper is to give information about the small sample proper-

ties of the exact cumulative distribution functions (cdf’s) of these four different estimators
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for a wide range of parameter values; they have some asymptotic optimalities. We shall

pay special attention to the finite sample properties of alternative estimators when we have

many instruments in the simultaneous equations. Since it is quite difficult to obtain the

exact densities and cdf’s of these estimators, the numerical information makes possible the

comparison of properties of alternative estimation methods. We intentionally use the clas-

sical estimation setting of a linear structural equation when we have a set of instrumental

variables, but also we shall mention to some heteroscedastic models and nonlinar models

for illustrations. It is our intention to make precise comparisons of alternative estimation

procedures in the possible simplest case which has many applications. It is possible to

generalize our formulation into several directions including many types of nonlinearities

and heteroscedasticities as our examples. The present paper corresponds to the second

part of our work on the problem and the first part (Anderson, Kunitomo and Matsushita

(2007)) gave the asymptotic justification by the finite sample findings.

An important approach to the study of the finite sample properties of alternative

estimators is to obtain asymptotic expansions of the exact distributions in normalized

forms. The leading term in the asymptotic expansions in the standard large sample theory

is the same for all estimators, but the higher-order terms are different. See Fujikoshi et

al. (1982), Takeuchi and Morimune (1985), Anderson, Kunitomo and Morimune (1986),

Kunitomo (1987) and their citations for the LIML and the TSLS estimators, and Kunitomo

and Matsushita (2006) for the MEL and the GMM estimators. Newey and Smith (2004)

considered the bias and the mean squared errors of some estimators in more general

nonlinear cases. It should be noted, however, that the mean and the mean squared errors

of the exact distributions of estimators are not necessarily the same as the mean and the

mean squared errors of the asymptotic expansions of the distributions of estimators. In

fact the LIML estimator does not possess any moment of positive integer order. (See

Mariano and Sawa (1972) and Phillips (1980)). We shall investigate the exact cumulative

distributions of the LIML, MEL, GMM, and TSLS estimators directly in a systematic

way. We shall compare the estimators on the basis of probabilities of statistical interest,

such as significance levels and confidence intervals.

In Section 2 we state the models and alternative estimation methods of unknown pa-

rameters. Then in Section 3 we shall explain our tables and figures of the finite sample

distributions of alternative estimators and discuss their finite sample properties including
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simple heteroscedastic cases and nonlinear cases. In Section 4 we shall discuss the approx-

imations of the distribution functions based on their asymptotic expansions. Then the

conclusions of our study will be given in Section 5. Tables and figures are gathered in the

Appendix.

2. Model and Alternative Estimation Methods of A Structural Equation

with Instruments

Let a single linear structural equation in the econometric model be given by

y1i = β
′
2y2i + γ

′
1z1i + ui (i = 1, · · · , n),(2.1)

where y1i and y2i are a scalar and vector G2 × 1 of endogenous variables, z1i is a vector

of K1 included exogenous variables in (2.1), γ1 and β2 are K1 × 1 and G2 × 1 vectors of

unknown parameters, and ui are mutually independent disturbance terms with E(ui) = 0

and E(u2
i ) = σ2 (i = 1, · · · , n). We assume that (2.1) is one equation in a system of 1 + G2

endogenous variables y
′
i = (y1i, y

′
2i)

′
. The vector of K(= K1 + K2) instrumental variables

zi satisfies the orthogonal condition E [ziui] = E [zi(y1i−β
′
2y2i−γ

′
1z1i)] = 0 (i = 1, · · · , n).

The reduced form is

Y = ZΠ + V ,(2.2)

where Y = (y
′
i) is the n× (1 + G2) matrix of endogenous variables, Z = (Z1,Z2) = (z

′
i) is

the n×K matrix of K1+K2 instrument vectors zi = (z
′
1i, z

′
2i)

′
, V = (v

′
i) is the n×(1+G2)

matrix of disturbances with E(vi) = 0 and the (positive definite) covariance matrix

Ω =

 ω11 ω12

ω21 Ω22

 ,(2.3)

and Π is the (K1 + K2) × (1 + G2) matrix of coefficients. The relation between the

coefficients in (2.1) and (2.2) is

Π

 1

−β2

 =

 π11 Π12

π21 Π22

  1

−β2

 =

 γ1

0

(2.4)

and (π21,Π22) is a K2 × (1 + G2) matrix of coefficients.
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The maximum empirical likelihood (MEL) estimator for the vector of parameters θ in

(2.1) is defined by maximizing the Lagrange form

L∗
1n(ν,θ) =

n∑
i=1

log(npi) − µ(
n∑

i=1

pi − 1) − nν
′

n∑
i=1

pizi

[
y1i − γ

′
1z1i − β

′
2y2i

]
,

where µ and ν are a scalar and a vector of Lagrange multipliers, and pi (i = 1, · · · , n) is

the weighted probability function to be chosen. The above maximization is the same as

maximizing

L1n(ν, θ) = −
n∑

i=1

log
{
1 + ν

′
zi [y1i − γ

′
1z1i − β

′
2y2i]

}
,(2.5)

where µ̂ = n and [np̂i]−1 = 1 + ν
′
zi[y1i − γ

′
1z1i − β

′
2y2i] (see Qin and Lawless (1994)

or Owen (2001)). By differentiating (2.5) with respect to ν and combining the resulting

equation for p̂i (i = 1, · · · , n), we have the relations
∑n

i=1 p̂izi(n)
[
y1i − γ̂

′
1z1i − β̂

′

2y2i

]
= 0

and ν̂ = [
∑n

i=1 p̂iu
2
i (θ̂)ziz

′
i]
−1[ 1

n

∑n
i=1 ui(θ̂)zi] , where ui(θ̂) = y1i − γ̂

′
1z1i − β̂

′

2y2i and

θ̂
′
= (γ̂

′
1.EL, β̂

′

2.EL) is the maximum empirical likelihood (MEL) estimator of the vector

of unknown parameters θ = (γ
′
1, β

′
2)

′
. The MEL estimator of θ in the linear models can

be written as the solution of the equations ν̂
′ ∑n

i=1 p̂izi[−(z
′
1i,y

′
2i)] = 0 , which implies

[
n∑

i=1

p̂i(
z1i

y2i

)z
′
i][

n∑
i=1

p̂iui(θ̂)2ziz
′
i]
−1[

1
n

n∑
i=1

zi y1i](2.6)

= [
n∑

i=1

p̂i(
z1i

y2i

)z
′
i][

n∑
i=1

p̂iui(θ̂)2ziz
′
i]
−1[

1
n

n∑
i=1

zi(z
′
1i,y

′
2i)](

γ̂1.EL

β̂2.EL

) .

The GMM estimator can be written as the solution of (2.6) when ui(θ̂) is replaced by

ui(θ̃), θ̃ is a consistent initial estimator of θ (TSLS was used) and the fixed probability

weight functions as pi = 1/n (i = 1, · · · , n) (see Hayashi (2000), for instance).

In order to relate the MEL and GMM estimators and the LIML and TSLS esti-

mators, we consider the homogeneity condition
∑n

i=1 piui(θ)2ziz
′
i = σ2 1

n

∑n
i=1 ziz

′
i and

(1/n)
∑n

i=1 u2
i (θ) = σ2. The resulting maximization problem under the homogeneity re-

strictions requires ν̂ = (1/σ̂2)[
∑n

i=1 ziz
′
i]
−1[

∑n
i=1 ui(θ̂)zi] (ui(θ̂) = y1i − γ̂

′
1z1i − β̂

′

2y2i).

Then by using the approximation log(1 + x) ∼ x, (2.5) becomes approximately

L2n(θ) = (−n)

[
n∑

i=1

z
′
i(y1i − γ

′
1z1i − β

′
2y2i)

] [
n∑

i=1

ziz
′
i

]−1 [
n∑

i=1

zi(y1i − γ
′
1z1i − β

′
2y2i)

]
n∑

i=1

(y1i − γ
′
1z1i − β

′
2y2i)2

,

(2.7)
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which is (−n) times the variance ratio in turn. The minimum of the variance ratio gives

the LIML estimator β̂LI (= (1,−β̂
′

2.LI)
′
) of β = (1,−β

′
2)

′
, which is the solution of

(
1
n
G − 1

n − K
λH)β̂LI = 0 ,(2.8)

where n − K > 0 and λ is the smallest root of |(1/n)G − l(1/(n − K))H| = 0. Here we

use the notation G = Y
′
Z2.1A−1

22.1Z
′
2.1Y, H = Y

′
(
In − Z(Z

′
Z)−1Z

′
)
Y, A22.1 = Z

′
2.1Z2.1,

Z2.1 = Z2 − Z1A−1
11 A12 and

A =

 Z
′
1

Z
′
2

 (Z1,Z2) =

 A11 A12

A21 A22

 ,(2.9)

which is a nonsingular matrix (a.s.). The TSLS estimator β̂TS = (1,−β̂
′

2.TS)
′

of β =

(1,−β
′
2)

′
is given by

Y
′
2Z2.1A−1

22.1Z
′
2.1Y

 1

−β̂2.TS

 = 0 .(2.10)

It minimizes the numerator of the variance ratio L2n and corresponds to the GMM esti-

mator if we put p̂i = 1/n (i = 1, · · · , n) and the homogeneity condition.

The statistical methods of the LIML and TSLS estimation were originally developed by

Anderson and Rubin (1949, 1950) and it is the (classical) maximum likelihood estimation

method with the limited information on instrumental variables. When the disturbances

are homoscedastic and normally distributed, G and H are sufficient statistics; the LIML

and TSLS estimators depend only on them. The nonlinear LIML estimator can be defined

by substituting ui(θ) = fi(y1i, z1i,y2i, θ) for ui(θ) = y1i−γ
′
1z1i−β

′
2y2i (i = 1, · · · , n) and

minimizing the variance ratio in (2.7). (The nonlinear TSLS estimator in the same way.

The alternative or standard nonlinear LIML and TSLS extensions have been discussed in

Chapter 8 of Amemiya (1985).)

3. Evaluation of Exact Distribution Functions and Tables

3.1 Parameterization

The evaluation of the cdf’s of estimators we have used is based on simulation. In order

to describe our evaluation method, we use an expanded formulation and notation of the
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classical study of Anderson et. al. (1982) except that here the sample size is n. We

concentrate on the comparison of the estimators of the coefficient parameter of the en-

dogenous variables and we shall investigate the finite sample distributions of the estimator

expressed as

F (x) = Pr
(

1
σ

[
Π′

22A22.1Π22
]1/2 (β̂2 − β2) ≤ x

)
(3.1)

for x = (x1, · · · , xG2). The limit of (3.1) in the large sample asymptotics is NG2(0, IG2)

for any (asymptotically) efficient estimator under the homoscedasticity assymption. It

is easier to interpret the distribution functions in this form rather than with some other

normalization. We use the notation of the noncentrality

∆ = Ω−1/2
22 Π

′
22A22.1Π22Ω

−1/2
22(3.2)

and the standardized vector of coefficients

α =
1√

ω11.2

Ω1/2
22 (β2 − Ω−1

22 ω21) ,(3.3)

where ω11.2 = ω11 − ω12Ω−1
22 ω21.

When G2 = 1 in particular, Anderson et al. (1982) have utilized the fact that the

explicit distributions of (3.1) for the normalized LIML estimator and normalized TSLS

estimator under the standard case (that is, the disturbances are homoscedastic and nor-

mally distributed) depend only on the key parameters K2, n − K, α and δ2 = ∆. (See

Anderson (1974) for the details.) Notice that Ω−1
22 ω21 is the regression coefficient of v1i

on v2i and ω11.2 is the conditional variance of v1i given v2i. When G2 = 1, we rewrite

η = −α/
√

1 + α2 = (ω12−ω22β2)/[σ
√

ω22] (ω22 = Ω22), which is the correlation coefficient

between the two random variables ui and v2i (or y2i) and it is the coefficient of simultane-

ity in the structural equation of the simultaneous equations system. The numerator of the

noncentrality parameter δ2 represents the additional explanatory power due to y2i over

z1i in the structural equation and its denominator is the error variance of y2i . Hence the

noncentrality δ2 determines how well the equation is defined in the simultaneous equations

system, and n−K is the degrees of freedom of H which estimates Ω in the LIML method;

it is not relevant to the TSLS method. The normalization part in (3.1) can also be written

as the square root of
[
δ2/(1 + α2)

]
× [ω22/ω11.2]. The distribution of (3.1) does not depend

on the units of measurements of y1i and y2i.
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Some econometricians use the terminology many weak instruments for the cases when

K2 is large while δ2 is not that large as n such that δ2/n → 0 and δ2/K2 → a (> 0). We

have tried to choose the key parameter values to make useful interpretations.

3.2 Simulation Procedure

By using Monte Carlo simulations we obtain empirical cdf’s of estimators of the coefficients

of the endogenous variables in the structural equation as follows. We generate a set of

random numbers by using a system of (2.1) and

y2i = Π
′
2zi + v2i ,(3.4)

where zi ∼ N(0, IK), ui ∼ N(0, σ2), Π2 is a K × G2 matrix of coefficients and v2i ∼

NG2(0,Ω22) with E(uiv2i) = ω21−Ω22β2 (i = 1, · · · , n). Since the model of (2.1) and (3.4)

is consistent with the reduced form (2.2), we have ui = v1i − β
′
2v2i, σ2 = ω11 − 2β

′
2ω12 +

β
′
2Ω22β2, and zi are independent of ui and v2i (i = 1, · · · , n) in the homoscedastic case.

We take a set of true values of parameters β2, γ1, σ2, Ω to satisfy the restrictions in (2.1)

and (3.4) given the value of α, and then we control the elements of ∆ by setting values

for the (1 + K2)-vectors Π2 = (π2j). 1

Following Owen (2001) the maximization in the MEL estimation has been done in

2-steps; the inner loop for the numerical calculation of Lagrange multiplier in (2.5) and

the outer loop for the minimization with respect to the unknown parameters. We have

used the derivative based maximization routine in the inner loop and a simplex-method

based optimization algorithm in the outer loop by utilizing (2.6). There is a non-trivial

computational problem on the MEL estimation when the noncentrality parameter is near

to zero, which is pointed out by Mittelhammer et al. (2006), for instance. Therefore

we have made computations for cases where we did not have a problem in numerical

convergence. 2 For the LIML and TSLS estimators as (2.8) and (2.10), there are simple

ways to express β̂2−β2 in terms of two matrices G and H (see Anderson et al. (1982) for

instance). For each simulation we generated a set of random variables from the disturbance

terms and exogenous variables. In each simulation the number of repetitions was 5,000.
1 In order to examine whether our results strongly depend on the specific values of parameters, however,

we have done several simulations for other values of parameters.
2 The numerical convergence of the outer loop is not guaranteed in the MEL estimation (Owen (2001))

and we have confirmed that there can be some problems in the extreme cases.
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As an illustration we give Figure 1A for the distribution functions of estimators in

normalized terms when G2 = 2 and the disturbances are normally distributed. They are

given in terms of two marginal distributions of (3.1); F1(x1) = F (x1,∞) and F2(x2) =

F (∞, x2), respectively. Each limiting distribution is N(0, 1). 3 In this example we have

set the parameters : n − K = 300,K2 = 30, α = (1, 1)
′

(ω12 = (ρ, ρ), ρ = −1/
√

3),

Ω22 = I2 and

∆ =

 100 1.5

1.5 50

 .

Although we have investigated aspects of the distributions of four estimators when G2 > 1

as in Figure 1A, each depends on many parameters and we may require too many tables

and figures to obtain useful information in a systematic way. Thus, from now on, we shall

give tables (Tables 1A-9A) and figures (Figures 2A-11A, 1B-3B) only for G2 = 1. We

control the values of key parameters in order to compare the distributions of estimators

in a limited number of cases in a systematic way.

In order to investigate the effects of nonnormal disturbances on the distributions of

estimators, we used many nonnormal distributions, but we only report two cases when

the distributions of the disturbances are skewed or fat-tailed. As the first case we have

generated a set of random variables (y1i,y2i, zi) by using (2.1) and (3.4), ui = −(χ2
i (3) −

3)/
√

6 , and χ2
i (3) are χ2−random variables with 3 degrees of freedom. As the second

case, we took the t-distribution with 5 degrees of freedom for the disturbance terms.

Also in order to investigate the effects of heteroscedastic disturbances on the distributions

of estimators, we have considered the form of E(u2
i ) = σ2(zi) and in particular ui =

∥zi∥u∗
i (i = 1, · · · , n), and u∗

i (i = 1, · · · , n) are homoscedastic disturbance terms as the

typical example.

The empirical cdf’s of estimators are consistent for the corresponding true cdf’s. In

addition to the empirical cdf’s we have used a smoothing technique of cubic spline func-

tions to estimate their percentiles. The distributions are tabulated in standardized terms

because this form of tabulation makes comparisons and interpolation easier. Each table

includes three quartiles, the 5 and 95 percentiles and the interquartile range of the distri-

bution. To evaluate the accuracy of our estimates based on the Monte Carlo experiments,

we compared the empirical and exact cdf’s of the Two-Stage Least Squares (TSLS) es-
3 It is possible to give figures for each components of coefficient vectors. Then the normalizations for

the components become messy and the comparison with the limiting distribution may become less clear.
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timator, which corresponds to the GMM estimator when û2
i is replaced by a constant

(namely σ2), that is, the variance-covariance matrix is homoscedastic and known. The

exact distribution of the TSLS estimator has been studied and tabulated extensively by

Anderson and Sawa (1979). We do not report the details of our results, but we have found

that the differences between the exact cdf and its estimate are less than 0.005 in most

cases and the maximum difference is about 0.008. Hence our estimates of the cdf’s are

quite accurate; we have accuracy to two digits.

3.3 Distributions of the MEL and LIML Estimators

For α = 0, the densities of the LIML and MEL estimators are close to symmetric. (See

Table 8A and Figure 9A). As α increases there is some slight asymmetry, but the median is

very close to zero. For given α, K2, and n, the lack of symmetry decreases as δ2 increases.

(See Tables 1A-3A and Figures 2A-4A.) For given α, δ2, and n, the asymmetry increases

with K2. The main finding from the tables is that the distributions of the MEL and LIML

estimators are roughly symmetric around the true parameter value and they are almost

median-unbiased. This finite sample property holds even when K2 is fairly large. At

the same time, their distributions have relatively long tails. As δ2 → ∞, the distributions

approach N(0, 1); however, for small values of δ2 there are appreciable probabilities outside

the range of 3 or 4 times ASD(asymptotic standard deviation)’s. (When δ2 is extremely

small, we cannot ignore the tail probabilities for practical purposes. See Table 9A.) As

δ2 increases, the spread of the normalized distribution decreases. Also the distribution of

the LIML estimator has slightly tighter tails than that of the MEL estimator. For given

α,K2, and δ2, the spread decreases as n increases and it tends to increase with K2 and

decrease with α .

Also we have found that some of our findings on the MEL estimator are also pointed

out by Guggenberger (2005) in this subsection.

3.4 Distributions of the GMM and TSLS Estimators

We have included tables of the distributions of the GMM and TSLS estimators. However,

since they are quite similar in most cases, we have included only the distribution of the

GMM estimator in many figures. The most striking feature of the distributions of the

GMM and TSLS estimators is that they are skewed towards the left for α > 0 (and
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towards the right for α < 0), and the distortion increases with α and K2 . The MEL and

LIML estimators are close to median-unbiased in each case while the GMM and TSLS

estimators are biased. As K2 increases, this bias becomes more serious; for K2 = 10, 30

and 100 , the median is less than -1.0 ASD’s. If K2 is large, the GMM and TSLS estimators

substantially underestimate the true parameter. This fact definitely favors the MEL and

LIML estimators over the GMM and TSLS estimators. However, when K2 is as small as

3, the GMM and TSLS estimators are very similar to the MEL and their distributions

have tighter tails.

The distributions of the MEL and LIML estimators approach normality faster than

the distribution of the GMM and TSLS estimators, due primarily to the bias of the

latter. In particular when α ̸= 0 and K2 = 10 ∼ 100 (Figures 3A, 4A and 3B), the

actual 95 percentiles of the GMM estimator are substantially different from 1.96 of the

standard normal. This implies that the conventional hypothesis testing about a structural

coefficient based on the normal approximation to the distribution is very likely to seriously

underestimate the actual significance. The 5 and 95 percentiles of the MEL and LIML

estimators are much closer to those of the standard normal distribution even when K2

is large. These observations on the distributions of the MEL estimator and the GMM

estimator are analogous to the earlier findings on the distributions of the LIML estimator

and the TSLS estimator by Anderson et al. (1982) and Morimune (1983) under the normal

disturbances in the same setting of the linear simultaneous equations system.

3.5 Effect of the difference between the structural coefficient and the

error regression

Before the development of inference for the model of simultaneous equations, the structural

coefficient, say, β2, was estimated by the sample regression y1 on y2, that is, by Ordinary

Least Squares (OLS). That estimation procedure could result in very biased estimates.

The LIML and TSLS estimators were developed to improve the OLS estimator, but the

TSLS estimation ignores the information on Ω in (2.3).

Table 8A and Figure 9A compare estimation procedures for some different values of

α. The bias of the (normalized) TSLS increases with α; the median goes from 0 at α = 0

to −2.22 for α = 5. The interquartile range goes from 1.19 at α = 0 to .86 at α = 5

as compared to LIML (from 1.56 to 1.37). However, the 95 percentile goes from 1.46 to
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−1.02; that is, if α is as large as 1, the probability of a negative estimator is greater than

.95 when α is large. In effect, α is a nuisance parameter. It can have a large effect on the

bias of the TSLS estimator. In a sense the TSLS has the defect of the OLS estimator, but

not as extreme.

3.6 Effects of Nonnormality and Heteroscedasticity

Because the distributions of estimators depend on the distributions of the disturbance

terms, we have investigated the effects of nonnormality and heteroscedasticity of distur-

bances in the form of E(u2
i ) = σ2(zi). We use the normalization

F (x) = Pr
([

Π′
22Q22.1Π22

]1/2 (β̂2 − β2) ≤ x
)

,(3.5)

where Q22.1 = Z
′
2

[
R − RZ1(Z

′
1RZ1)−1Z

′
1R

]
Z2, R = Z(Z

′
ΣZ)−1Z

′
and Σ = (diag σ2(zi)).

(When σ2(zi) = σ2, we have Q22.1 = σ−2A22.1 in (3.1).) The limit of (3.5) is NG2(0, IG2)

for the MEL and GMM estimators in the large sample asymptotics. In this case the asymp-

totic variance-covariance matrix for the LIML and TSLS estimators could be slightly larger

than those of the MEL and GMM estimators.

Among many tables we show Tables 5A-7A and Figures 7A-8A as the representative

heteroscedastic cases (σ2(zi) = ∥zi∥2) by following Hayashi (2000). Also we show Table 4A

and Figures 5A-6A as the representative nonnormal disturbances which we have chosen

(a χ2−type and t distributions). From our tables the comparison of the distributions

of four estimators are approximately valid even if the distributions of disturbances are

different from normal and they are heteroscedasitic in the sense we have specified above.

The bias and skewness of the distributions have relatively large effects and they often

dominate the nonnormality and heteroscedasticity. Thus the effects of heteroscedasticity

and nonnormality of disturbances on the exact distributions of alternative estimators have

the secondary importance in our setting.

When the disturbance terms are heteroscedastic with many instruments, Anderson,

Kunitomo and Matsushita (2007) assumed the 6th order moments condition for the dis-

turbances and the key condition

plim
n→∞

1
n

n∑
i=1

[
p
(n)
ii − cn

]2
= 0 ,(3.6)

where p
(n)
ii = (Z2.1A−1

22.1Z
′
2.1)ii and cn = K2/n. They have shown that the LIML esti-

mator has still desirable asymptotic properties. The typical (two) examples satisfying
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this condition are (i) the case of cn → 0 (p(n)
ii → 0) and (ii) the case when we have

dummy variables which have 1 or −1 in their all components so that (1/n)A22.1 = IK2

and p
(n)
ii = K2/n (i = 1, · · · , n). When (3.6) is not satisfied with many instruments, the

LIML estimator may have some biases in extreme cases. Kunitomo (2008) has considered

some modifications of the LIML estimation. 4

3.7 On Nonliner LIML Estimator

There is an interesting question if our observations on alternative estimators are specific

for the linear structural equation models or not. Although there can be many possible

nonlinear models, we shall report only some results on two nonlinear cases with two

endogenous variables (y1i, y2i; i = 1, · · · , n). The first case of nonlinearity is a linear

structural equation with nonlinear instruments

E

 wi

w⊗2

i

 (y1i − β2 y2i)|wi

 = 0 ,(3.7)

where y2i = (wi
′
,w⊗2

i )Π2 + v2i, wi = (w1i, · · · , wmi)
′
, w⊗2

i = (w2
1i, · · · , w2

mi)
′
, wi follows

N(0, IK) and E [ · |wi] is the conditional expectation given wi. We have set m = 5 and

then the number of instruments K = 10.

As the second nonlinear example, we have a nonlinear structural equation

E
[
zi(y1i − β2 y2

2i)|zi

]
= 0 ,(3.8)

where y2i = zi
′
Π2 + v2i, zi follows d(1, · · · , 1)

′
+ NK(0,Ωz) (d is a constant) and

Ωz =

 0 0
′

0 IK−1

 .

In this case we have set the number of instruments K = 10 and used z⊗
2

i as the instru-

mental variables in the nonlinear estimation.
4 When we have time series data for the simultaneous equations model, some parametric models for the

heteroscedasticities of disturbances have been developed as one referee has pointed out. We have examined

some possibilities including the stationary GARCH models and have found that the essential conclusions on

alternative estimators are unchanged. In order to obtain the limiting normality for the LIML estimator,

we need to require some moment conditions for the disturbances and thus we need careful analysis on

the stationarity, for instance. Since the problem is related to the vast growing concerns in time series

econometrics, we did not discuss them in detail. See McAleer (2005), for instance.
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We have used the nonlinear LIML, MEL and GMM estimators which are mentioned at

the end of Section 2. We give the cdfs of the nonlinear LIML, MEL and GMM estimators

for Case 1 and Case 2 as Figures 10A and 11A, respectively. We have normalized the

estimators of the coefficient β2 as in the linear cases such that we can compare the finite

sample properties of the alternative estimators. (As the parameters, α was constructed as

before and δ2 has been constructed so that the resulting normalized LIML estimator has

the limiting N(0,1) distribution in the large sample asymptotics, for instance.) Since the

evaluation methods of cdfs are basically the same as the linear cases,we have omitted the

details.

The most important observation is the fact that the finite sample properties of the

nonlinear LIML, MEL and GMM estimators are similar to the ones we have discussed for

the linear cases.

4. Discussion on Distributions of Estimators

4.1 The Moments and Monte Carlo Experiments

We have mentioned the fact that some estimators do not necessarily have the exact mo-

ments under reasonable assumptions. The first moment of a scalar random variable X

is said to be infinite or is said not to exist if for any given positive constant c there is a

constant a such that ∫ a

−a
|x|dF (x) > c ,

where F (·) is the cdf of X. In this case E(X) is not defined as a finite number. However,

nevertheless a Monte Carlo experiment can be conducted and the sample mean of the

sample calculated. What kind of conclusion can be drawn ? As a simple illustration of

the problem of interpreting Monte Carlo experiments, we take i.i.d. observations Xi (i =

1, · · · , n) from N(θ−1, 1) when θ ̸= 0. As a reasonable estimator of θ we take θ̂ = X̄−1
n

and X̄n = n−1 ∑n
i=1 Xi. Then

√
n

[
θ−2

] [
X̄−1

n − θ
] d→ N (0, 1) , but we can calculate

the sample bias and MSE in Monte Carlo experiments even though we know that MSE

is +∞. We have confirmed the fact in our experiments that the sample bias and MSE

of θ̂ calculated from Monte Carlo experiments are not stable and they are not reliable

quantities even on average with many replications. The extension of the above example
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to the problem of estimating simultaneous equations can be made. However, it suggests

that before conducting a Monte Carlo experiment a mathematical study should be carried

out to verify that the parameter being estimated actually exists. (See Mariano and Sawa

(1972) as an early development.)

Our method of analysis in this paper is free from this issue because we compare the

estimators on the basis of probabilities.

4.2 Approximations of Finite Sample Distributions

The exact distribution functions of alternative estimators in the general case are very

complicated, but it is possible to derive the asymptotic expansions of the density functions

of alternative estimators as shown by Anderson (1974), Anderson and Sawa (1973), and

Kunitomo and Matsushita (2006). Although the asymptotic expansions in the general case

(G2 ≥ 1) look complicated even for the linear simultaneous equations, they give some useful

information in particular when G2 = 1 and the disturbances are normally distributed. In

the (standard) large sample asymptotics, the noncentrality (or concentration) parameter

divided by n is assumed to approach a limit as n −→ ∞. It is convenient to use the

noncentrality parameter given by

µ2 = (1 + α2)
Π

′
22A22.1Π22

ω22
= (1 + α2)δ2(4.1)

and the semi-parametric parameter given by

τ = 2
1 + α2

ω22
(1,0)Q−1

11 QD
′
FDQQ−1

11 (
1

0
) ,(4.2)

where Q = (D
′
MD)−1, Q11 =

(
Π

′
22M22.1Π22

)−1
, M22.1 = plimn→∞n−1A22.1, M =

plimn→∞n−1 ∑n
i=1 ziz

′
i, F = plimn→∞n−1 ∑n

i=1 ziz
′
i

[
M−1 − D(D

′
MD)−1D

′
]
ziz

′
i and a

(K1 + K2) × (G2 + K1) coefficient matrix D =
[
Π2, (IG2 ,O)

′
]
. We need this semi-

parametric factor because we estimate the variance-covariance matrix in the MEL and

GMM estimation.

For the GMM estimator, an asymptotic expansion of its distribution function as n →

∞ (K2 is fixed) when the disturbances are normally distributed (N(0, σ2)) and µ2 is

proportional to n is given by

P


√

Π′
22A22.1Π22

σ
(β̂2.GMM − β2) ≤ x

(4.3)
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= Φ(x) +
{
−α

µ
[x2 − (K2 − 1)]

− 1
2µ2

[(τ + (K2 − 1)2α2 − (K2 − 1))x + (1 − 2K2α
2)x3 + α2x5]

}
ϕ(x) + O(µ−3) .

For the MEL estimator, an asymptotic expansion of its distribution function as n → ∞

(K2 is fixed) is given by

P


√

Π′
22A22.1Π22

σ
(β̂2.MEL − β2) ≤ x

(4.4)

= Φ(x) +
{
−α

µ
x2 − 1

2µ2
[(τ + K2 − 1)x + (1 − 2α2)x3 + α2x5]

}
ϕ(x)

+O(µ−3),

where Φ(·) and ϕ(·) are the cdf and the density function of the standard normal distribu-

tion, respectively.

The asymptotic expansions of the distributions of the TSLS and LIML estimators are

(4.3) and (4.4), respectively, with τ = 0. See Anderson and Sawa (1973) and Anderson

(1974). They agree with Fujikoshi et al. (1982) for the LIML and TSLS estimators

(G2 ≥ 1). Because τ > 0, the contribution due to the semiparametric methods is that

we have the additional term τ/µ2 to the asymptotic mean squared errors (AMSE). As

a numerical illustration we give Figures 1B in Appendix ), which show the finite sample

distributions and the approximate distributions of the LIML, MEL and GMM estimators

in normalized forms as (3.1). Since the limiting distributions of the above estimators are

N(0, 1) in the large sample asymptotics, they are denoted by ”o” as the bench mark.

4.3 An Alternative Approximation

As we have shown in Anderson, Kunitomo and Matsushita (2007) (Part-I of our study),

there is an alternative asymptotic theory for the case when the number of excluded in-

struments K2 (say K2n) is dependent on the sample size n. (Kunitomo (1980, 1982) and

Morimune (1983) were the earlier developers of this theory. For more recent developments,

see Bekker (1994), and Chao and Swanson (2005), for instance.) We consider a typical

approximation when K2n/n → c (0 ≤ c < 1) (and µ2/n is approximately a constant) as

n → ∞. For the LIML estimator, an asymptotic expansion of its distribution function
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when G2 = 1 as n → ∞ is

P
(√

n(β̂2.LI − β2) ≤ x
)

= ΦΨ(x) +
1√
n

{
−|Ω|1/2

σ2
αx2

}
ϕΨ(x) + O(n−1),(4.5)

where Ω = E(viv
′
i), ΦΨ(·) and ϕΨ(·) are the cdf and the density function of N(0, Ψ),

respectively,

Ψ = σ2Φ−1
22.1 + c∗Φ−1

22.1|Ω|Φ−1
22.1 ,(4.6)

c∗ = c/(1 − c), and Φ22.1 = limn→∞(1/n)Π
′
22A22.1Π22.

By setting x = 0 in (4.3) for the GMM estimator, we have 1/2 + α(K2 − 1)/[µ
√

2π] +

O(µ−3). By setting x = 0 in (4.4) and (4.5) for the MEL and LIML estimators, we have

1/2+O(µ−3) and 1/2+O(n−1), respectively. When α ̸= 0, the bias of the GMM estimator

(and the TSLS estimator) is proportional to K2/µ, which increases rapidly if K2 is large

in comparison to the noncentrality µ2. If µ2 is proportional to K2, for instance, the left

hand side of probability is far from 1/2 whenever α ̸= 0. On the other hand, the MEL

and the LIML estimators are almost median-unbiased and this property holds even if K2n

is proportional to n. As numerical illustrations, we give the approximations based on

the asymptotic expansions in (4.5) up to O(n−1/2) as A.exp (large-K2) in Table 1B and

Figures 2B-3B, which gives several approximations of the finite sample distributions of the

LIML estimator when K2 is relatively large. As we may expect, in these cases the normal

approximation based on large-K2 theory (discussed in Part-I) is better than the normal

approximation based on the standard large sample theory. (In Table 1B and Figures 2B-3B

we have used h = 1 + (n/µ2) [K2/(n − K)] , which is approximately Ψ× Φ22.1/σ2, for the

normalized variance for the limiting distribution.) Also we find that the approximations

based on (4.5) are even better than the normal approximations. This observation gives an

important implication for the testing problem (see Matsushita (2006)).

5. Conclusions

First, the distributions of the MEL and GMM estimators are asymptotically equivalent

in the sense of the limiting distributions in the standard large sample asymptotic theory,

but their exact distributions are substantially different in finite samples. The relation of

their distributions are quite similar to the distributions of the LIML and TSLS estimators.

The MEL and LIML estimators are to be preferred to the GMM and TSLS estimators
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if K2 is large. In some microeconometric models and models on panel data, it is often a

common feature that K2 is fairly large. For such situations we have shown (Anderson,

Kunitomo and Matsushita (2007)) that the LIML estimator has asymptotic optimality

in the large K2−asymptotics sense. It seems that we need some stronger conditions for

the MEL estimator, but its finite sample properties are often similar to the corresponding

LIML estimator 5 .

Second, the large-sample normal approximation in the large K2 asymptotic theory is

relatively accurate for the MEL and LIML estimators. Hence the usual methods with

asymptotic standard deviations give often reasonable inferences. On the other hand, for

the GMM and TSLS estimators the sample size should be very large to justify the use of

procedures based on normality when K2 is large, in particular.

Third, it is recommended to use the probability of concentration as a criterion of

comparisons because some estimators do not possess any (exact) moments and hence we

expect to have unstable and unreliable values of the sample bias and mean squared errors of

such estimators in Monte Carlo simulations. This is the reason why we directly considered

the finite sample distribution functions of alternative estimation methods. The probability

criterion we have adopted roughly corresponds to the bounded loss function.

To summarize the most important conclusion from the study of small sample distribu-

tions of four alternative estimators is that the GMM and TSLS estimators can be badly

biased in some cases and in that sense their use is risky. The MEL and LIML estimator, on

the other hand, may have a little more variability with some chance of extreme values, but

its distribution is centered at the true parameter value. The LIML estimator has tighter

tails than those of the MEL estimator and in this sense the former would be attractive to

the latter. Besides the computational burden for the LIML estimation is not heavy.

It is interesting that the LIML estimation was initially invented by Anderson and

Rubin (1949,1950). Other estimation methods including the TSLS, the GMM, and the

MEL estimation methods have been developed with several different motivations and

purposes. Now we have some practical situations in econometric applications where the

LIML estimation has advantage over other estimation methods. 6

5 We have reported the results for estimation problem, but they have a number of important implications

for testing problem. See Morimune (1989), Matsushita (2006), and Anderson and Kunitomo (2007), for

instance.
6 Although we have investigated the nonlinear models and the heteroscedastic models to some extents,
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APPENDIX : TABLES AND FIGURES

Notes on Tables

In Tables 1A-9A the distributions are tabulated in the standardized terms, that is, of (3.1) or (3.5). The

tables include three quartiles, the 5 and 95 percentiles and the interquartile range of the distribution for

each case. Since the limiting distributions of (3.1) or (3.5) for the MEL and GMM estimators in the

standard large sample asymptotic theory are N(0, 1) as n → ∞, we added the standard normal case as

the bench mark. In Table 1B we also give the normal approximations based on the large-K2 theory and

the approximations based on the asymptotic expansions.

Notes on Figures

In Figures the cdf’s of the LIML, MEL and GMM estimators are shown in the standardized terms, that

is, of (3.1) or (3.5) in linear models. (The cdf of the TSLS estimator is quite similar to that of the

GMM estimator in all cases and it was omitted in many cases.) Figure 1A with G2 = 2 gives two

marginal distributions in (3.1) or (3.5) and other figures are with G2 = 1. The dotted lines were used

for the distributions of the GMM estimator. For the comparative purpose we give the standard normal

distribution as the bench mark for each case. In Figures 2B-3B we also give the normal approximations

based on the large-K2 theory and the approximations based on the asymptotic expansions. We have used

the similar method for heteroscedastic cases and nonlinear cases.
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Table 1A: n − K = 30,K2 = 3, α = 1
δ2 = 30 δ2 = 100

normal LIML MEL TSLS GMM LIML MEL TSLS GMM
X05 -1.65 -1.40 -1.52 -1.55 -1.64 -1.47 -1.54 -1.59 -1.63
L.QT -0.67 -0.64 -0.66 -0.83 -0.85 -0.65 -0.67 -0.77 -0.79

MEDN 0 0.00 -0.01 -0.24 -0.26 0.00 0.01 -0.14 -0.14
U.QT 0.67 0.76 0.80 0.44 0.47 0.71 0.75 0.55 0.57
X95 1.65 2.14 2.37 1.64 1.66 1.90 1.98 1.71 1.74
IQR 1.35 1.40 1.46 1.27 1.31 1.36 1.42 1.32 1.36

Table 2A: n − K = 100,K2 = 10, α = 1
δ2 = 50 δ2 = 100

normal LIML MEL TSLS GMM LIML MEL TSLS GMM
X05 -1.65 -1.49 -1.68 -1.98 -2.09 -1.54 -1.61 -1.97 -2.04
L.QT -0.67 -0.66 -0.74 -1.31 -1.33 -0.66 -0.72 -1.17 -1.22

MEDN 0 0.00 0.01 -0.77 -0.77 0.00 -0.01 -0.59 -0.61
U.QT 0.67 0.76 0.83 -0.18 -0.15 0.73 0.81 0.05 0.08
X95 1.65 2.11 2.35 0.76 0.89 1.90 2.11 1.06 1.18
IQR 1.35 1.42 1.57 1.12 1.19 1.39 1.53 1.22 1.30

Table 3A: n − K = 300,K2 = 30, α = 1
δ2 = 50 δ2 = 100

normal LIML MEL TSLS GMM LIML MEL TSLS GMM
X05 -1.65 -1.63 -1.82 -2.88 -2.95 -1.56 -1.77 -2.76 -2.87
L.QT -0.67 -0.75 -0.79 -2.28 -2.30 -0.69 -0.75 -2.10 -2.14

MEDN 0 0.00 0.02 -1.85 -1.85 0.00 0.02 -1.60 -1.59
U.QT 0.67 0.85 0.97 -1.40 -1.37 0.77 0.86 -1.07 -1.02
X95 1.65 2.48 2.94 -0.67 -0.60 2.08 2.38 -0.21 -0.12
IQR 1.35 1.60 1.76 0.88 0.94 1.46 1.61 1.03 1.11

Table 4A: n − K = 100,K2 = 10, α = 1, δ2 = 50
ui = −(χ2(3) − 3)/

√
6 ui = t(5)

normal LIML MEL TSLS GMM LIML MEL TSLS GMM
X05 -1.65 -1.52 -1.53 -2.06 -1.96 -1.51 -1.55 -2.02 -1.97
L.QT -0.67 -0.67 -0.67 -1.32 -1.24 -0.62 -0.67 -1.28 -1.22

MEDN 0 -0.01 -0.01 -0.77 -0.69 0.02 0.01 -0.75 -0.69
U.QT 0.67 0.75 0.76 -0.17 -0.09 0.77 0.83 -0.18 -0.12
X95 1.65 2.17 2.24 0.78 0.82 2.12 2.33 0.78 0.86
IQR 1.35 1.42 1.43 1.14 1.15 1.39 1.50 1.10 1.10

Table 5A: α = 1, δ2 = 100, ui = ‖Zi‖εi

n − K = 30,K2 = 3 n − K = 100,K2 = 10
normal LIML MEL TSLS GMM LIML MEL TSLS GMM

X05 -1.65 -1.39 -1.51 -1.52 -1.57 -1.52 -1.64 -1.96 -2.03
L.QT -0.67 -0.60 -0.66 -0.73 -0.78 -0.67 -0.70 -1.20 -1.22

MEDN 0 0.02 -0.02 -0.14 -0.17 -0.04 0.03 -0.65 -0.60
U.QT 0.67 0.70 0.71 0.52 0.51 0.70 0.83 -0.03 0.07
X95 1.65 1.93 2.05 1.62 1.70 1.97 2.20 1.03 1.09
IQR 1.35 1.29 1.36 1.25 1.29 1.37 1.53 1.18 1.29
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Table 6A: n − K = 300,K2 = 30, α = 1, ui = ‖Zi‖εi

δ2 = 50 δ2 = 100
normal LIML MEL TSLS GMM LIML MEL TSLS GMM

X05 -1.65 -1.62 -1.77 -2.90 -2.97 -1.56 -1.70 -2.76 -2.83
L.QT -0.67 -0.72 -0.77 -2.30 -2.31 -0.70 -0.74 -2.14 -2.14

MEDN 0 0.02 0.03 -1.87 -1.86 0.00 0.01 -1.63 -1.60
U.QT 0.67 0.89 0.97 -1.43 -1.39 0.79 0.88 -1.10 -1.05
X95 1.65 2.55 2.97 -0.76 -0.68 2.13 2.34 -0.25 -0.14
IQR 1.35 1.61 1.73 0.87 0.92 1.49 1.61 1.04 1.09

Table 7A: n − K = 1000,K2 = 100, α = 1, δ2 = 100
ui = N(0, 1) ui = ‖Zi‖εi

normal LIML TSLS GMM LIML TSLS GMM
X05 -1.65 -1.82 -4.46 -4.51 -1.84 -4.44 -4.49
L.QT -0.67 -0.78 -3.89 -3.92 -0.81 -3.91 -3.93

MEDN 0 0.00 -3.53 -3.53 0.01 -3.54 -3.53
U.QT 0.67 0.89 -3.14 -3.12 0.93 -3.17 -3.12
X95 1.65 2.39 -2.57 -2.49 2.51 -2.59 -2.51
IQR 1.35 1.67 0.75 0.80 1.74 0.75 0.81

Table 8A: n − K = 300,K2 = 30, δ2 = 100
α = 0 α = 5

normal LIML MEL TSLS GMM LIML MEL TSLS GMM
X05 -1.65 -1.90 -2.16 -1.44 -1.53 -1.43 -1.52 -3.14 -3.24
L.QT -0.67 -0.78 -0.90 -0.60 -0.66 -0.64 -0.69 -2.63 -2.65

MEDN 0 0.00 -0.02 0.00 -0.01 0.00 -0.02 -2.22 -2.22
U.QT 0.67 0.78 0.86 0.60 0.64 0.73 0.76 -1.77 -1.73
X95 1.65 1.93 2.14 1.46 1.56 1.98 2.14 -1.02 -0.96
IQR 1.35 1.56 1.76 1.19 1.30 1.37 1.45 0.86 0.92

Table 9A: α = 1
n − K = 100,K2 = 3, δ2 = 5 n − K = 100, K2 = 10, δ2 = 10

normal LIML MEL TSLS GMM LIML MEL TSLS GMM
X05 -1.65 -1.78 -1.84 -1.66 -1.68 -1.72 -2.16 -2.04 -2.09
L.QT -0.67 -0.70 -0.73 -0.95 -0.97 -0.77 -0.90 -1.47 -1.59

MEDN 0 -0.08 -0.10 -0.51 -0.52 -0.06 -0.14 -1.09 -1.08
U.QT 0.67 0.81 0.80 0.02 0.02 1.00 0.94 -0.68 -0.64
X95 1.65 4.37 4.71 1.16 1.22 4.45 4.40 0.02 0.11
IQR 1.35 1.51 1.53 0.97 0.99 1.77 1.84 0.79 0.85
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Figure 1A: CDF of Standardized estimators: n − K = 300,K2 = 30, α = (1, 1)′,∆ =
(100, 1.50; 1.50, 50), ui ∼ N(0, 1)
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Figure 2A: n − K = 30,K2 = 3, α = 1, δ2 = 30
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Figure 3A: n − K = 100,K2 = 10, α = 1, δ2 = 100
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Figure 4A: n − K = 300,K2 = 30, α = 1, δ2 = 100
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Figure 5A: n − K = 100,K2 = 10, α = 1, δ2 = 50, ui = −χ2(3)−3√
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Figure 6A: n − K = 100,K2 = 10, α = 1, δ2 = 50, ui = t(5)
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Figure 7A: n − K = 100,K2 = 10, α = 1, δ2 = 100, ui = ‖zi‖εi
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Figure 8A: n − K = 1000,K2 = 100, α = 1, δ2 = 100, ui = ‖zi‖εi
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Figure 9A: n − K = 300,K2 = 30, α = 0, δ2 = 100
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Figure 10A: Nonlinear case I: n − K = 100,K2 = 10, α = 1, δ2 = 50
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Figure 11A: Nonlinear case II: n − K = 100,K2 = 10, α = 1, δ2 = 50
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n − K = 300,K2 = 30, α = 1, δ2 = 50
LIML MEL GMM N(0, 1) N(0, h) A.exp Difference

x (large-K2) (large-K2) (”A.exp”-LIML)
-3 0.000 0.002 0.042 0.001 0.005 0.000 0.000

-2.5 0.003 0.010 0.165 0.006 0.015 0.000 -0.003
-2 0.019 0.034 0.417 0.023 0.041 0.011 -0.008

-1.4 0.085 0.110 0.736 0.081 0.112 0.080 -0.005
-1 0.170 0.195 0.870 0.159 0.193 0.169 -0.001

-0.8 0.227 0.248 0.918 0.212 0.244 0.226 -0.001
-0.6 0.291 0.308 0.950 0.274 0.301 0.291 -0.001
-0.4 0.359 0.369 0.971 0.345 0.364 0.359 0.000
-0.2 0.430 0.432 0.983 0.421 0.431 0.430 0.000
0 0.500 0.494 0.991 0.500 0.500 0.500 0.000

0.2 0.567 0.556 0.996 0.579 0.569 0.568 0.001
0.4 0.630 0.616 0.998 0.655 0.636 0.631 0.000
0.6 0.687 0.670 1.000 0.726 0.699 0.688 0.001
0.8 0.739 0.718 1.000 0.788 0.756 0.739 0.000
1 0.783 0.756 1.000 0.841 0.807 0.783 0.000

1.4 0.852 0.822 1.000 0.919 0.888 0.855 0.003
2 0.920 0.895 1.000 0.977 0.959 0.928 0.008

2.5 0.953 0.931 1.000 0.994 0.985 0.964 0.011
3 0.972 0.953 1.000 0.999 0.995 0.985 0.013

X05 -1.63 -1.82 -2.95 -1.65 -1.90 -1.59 0.04
L.QT -0.75 -0.79 -2.30 -0.67 -0.78 -0.72 0.03

MEDN 0.00 0.02 -1.85 0.00 0.00 0.00 0.00
U.QT 0.85 0.97 -1.37 0.67 0.78 0.85 0.00
X95 2.48 2.94 -0.60 1.65 1.90 2.27 -0.21
IQR 1.60 1.76 0.93 1.35 1.56 1.57 -0.03

See Section 4.2.

Table 1B:
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Figure 1B: n − K = 100,K2 = 10, α = 1, δ2 = 100
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Figure 2B: n − K = 300,K2 = 30, α = 1, δ2 = 50
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Figure 3B: n − K = 1000,K2 = 100, α = 1, δ2 = 100
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