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1 Introduction

The stochastic volatility (SV) models have been widely used to model a changing variance of
time series in financial econometrics (e.g., Ghysels et al. (2002), Shephard (2005)). Various
generalizations of the standard SV model have emerged and their model-fittings have been in-
vestigated especially in high-frequency financial data. Among such generalizations, the leverage
effect, jump components and heavy-tailed errors in asset returns are well-known to be impor-
tant in the recent literature (Chib et al. (2002), Jacquier et al. (2004), Yu (2005), Omori et al.
(2007), Berg et al. (2004)). It has been pointed out in many empirical studies that asset returns
data have heavier tails than those of normal distributions. The SV model with Student-t errors
(SVt) is one of the most popular basic models to account for heavier tailed returns. However,
it has been found insufficient to express the tail fatness of returns, and the jump components,
which may be correlated, have recently been introduced to explain the tail behavior (Eraker
et al. (2003)). The jump component is considered to be a discretization of a Lévy process which
is also widely used in the continuous time modelling of financial asset pricing. Eraker (2004)
showed the empirical performance of jump diffusion models of stock price dynamics and ap-
plied them to options and returns data. Chernov et al. (2003) and Raggi and Bordignon (2006)
compares various different specifications of jump diffusions in the SV model in their empirical
studies. We also refer to another remarkable jump specification in GARCH model, discussed by
Chan and Maheu (2002) and Maheu and McCurdy (2004), which incorporates the autoregressive
conditional jump intensity parameterization.

Focusing the estimation method, Kim et al. (1998) develops a fast and reliable Markov chain
Monte Carlo (MCMC) algorithm for the SV model. Their impressive method, called mixture
sampler, has been widely used in the SV literatures and extended in various ways. In the context
of the extension of their method, Chib et al. (2002) estimates the SV model with jumps and
Student-t errors (SVJt) (but without leverage effect). The leverage effect refers to the increase
in volatility following a previous drop in stock returns, and modelled by the negative correlation
coefficient between error terms of stock returns and the volatility (e.g. Black (1976), Nelson
(1991), Yu (2005), Omori et al. (2007)). The SV model with leverage effect (SVL) is also called
the asymmetric stochastic volatility model. Omori et al. (2007) constructs the efficient MCMC
estimation method for the SV model with leverage effect and Student-t errors (SVLt) (but
without jumps) and demonstrates some empirical results.

In the line of developing the mixture sampler of Kim et al. (1998) for more suitable models
to detect the complicated empirical structure in financial market, this paper discusses the SV
models with leverage, jump components and heavy-tailed errors (SVLJt) jointly.

We consider the SV model given by

yt = ktγt +
√

λtεt exp(ht/2), t = 1, . . . , n, (1)

ht+1 = µ + φ(ht − µ) + ηt, t = 1, . . . , n− 1, (2)
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where yt is a response, ht is an unobserved log-volatility, |φ| < 1, h1 ∼ N(0, σ2/(1− φ2)),

(
εt

ηt

)
∼ N(0, Σ), and Σ =

(
1 ρσ

ρσ σ2

)
.

The leverage effect measured by the correlation coefficient ρ is expected to be negative as reported
in several empirical studies (Yu (2005), Omori et al. (2007)). The correlation coefficient ρ = 0
implies the SV model without leverage effect. The ktγt represents a jump component in the
measurement equation (1). The γt is a jump flag defined as a Bernoulli random variable such
that

π(γt = 1) = κ, π(γt = 0) = 1− κ, 0 < κ < 1,

and the kt is a jump size specified by

ψt ≡ log(1 + kt) ∼ N(−0.5δ2, δ2), (3)

following Andersen et al. (2002), Chib et al. (2002) where the jump parameter κ and δ are
unknown and to be estimated. We denote the SV and SVL models with jumps as the SVJ and
SVLJ models respectively.

The measurement error
√

λtεt is assumed to follow the heavy-tailed Student-t distribution
with unknown degrees of freedom ν by letting

λ−1
t ∼ Gamma(ν/2, ν/2). (4)

We may also assume log λt ∼ N(−0.5τ2, τ2) to obtain the lognormal scale mixture as in Omori
et al. (2007), but we illustrate our algorithm using Gamma scale mixture given by (4). When
λt ≡ 1 for all t, the model reduces to the SV or SVL model with normal errors.

The contribution of this paper comprises two parts. First, we develop the efficient and fast
MCMC parameter estimation method for the SVLJt model (SV model with leverage, jumps and
Student-t errors) extending Chib et al. (2002) and Omori et al. (2007). Second, we extend it to
the SV model with correlated jumps, which have recently been popular in financial literatures.

We illustrate our approach using simulated data and apply it to the stock returns data of
S&P500 index and TOPIX (Tokyo Stock Price index). Using Bayesian approach of marginal
likelihood computation, we compare various candidate models over the class of SV model with
jumps, leverage and heavy-tails. The superposition model is also considered.

The rest of paper is organized as follows. In Section 2 we discuss the MCMC estimation
for our SV model with jumps, leverage and heavy-tails. Section 3 illustrates our method using
simulated data. In Section 4, we extend it to the SV model with correlated jumps. In Section 5,
we apply our proposed method to the daily asset returns data of S&P500 and TOPIX. Section
6 concludes the paper.
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2 SV model with jumps, leverage and heavy-tails

The well-known difficulty of estimating the discrete-time SV model is that the likelihood function
is not easily available. It is possible to compute the likelihood using a simulation-based method
for a given set of parameters, which is called a particle filter. But it requires a computational
burden since we need to repeat the particle filter many times to evaluate the likelihood function
for each set of parameters until we reach the maximum. To overcome this difficulty, we take
Bayesian estimation approach and propose the MCMC methods (e.g., Chib and Greenberg
(1996)) for a precise and efficient estimation of the SVLJt model.

2.1 Auxiliary mixture sampler

Following Omori et al. (2007), we define y∗t = log(yt − ktγt)2 − log λt, dt = sign(yt − ktγt) =
I(εt > 0)− I(εt ≤ 0), which rewrites equation (1) as

y∗t = ht + ξt, (5)

where ξt = log ε2
t . Omori et al. (2007) proposes to approximate the bivariate conditional density

of (ξt, ηt)|dt by a K-components mixture of bivariate Gaussian densities, which is an exhaustive
extension Kim et al. (1998) approach for the SV model with leverage effect. The key essence
of their approach is that the model (5) and (2) is approximated to a linear Gaussian state
space model conditioned on the mixture component indicator st ∈ {1, 2, . . . ,K}. Given s =
{s1, . . . , sn}, this permits us to sample the latent variable h = {h1, . . . , hn} in one block from its
joint distribution using the simulation smoother for a linear Gaussian state space model (de Jong
and Shephard (1995), Durbin and Koopman (2002a)). We estimate the mixture approximation
model

(
y∗t

ht+1

)
=

(
ht

µ + φ(ht − µ)

)
+

(
ξt

ηt

)
, (6)

where
{(

ξt

ηt

)
|dt, (st = i)

}
L=

(
mi + viz1t

dtρσ(ai + biviz1t) exp(mi/2) + σ
√

1− ρ2z2t

)
,

(
z1t

z2t

)
∼ N(0, I2),

for i = 1, 2, . . . , K. Omori et al. (2007) proposes the approximation based on K = 10 and
lists the selection of pi ≡ Pr(st = i) and the mixture component parameters (mi, vi, ai, bi) for
i = 1, . . . , 10, which we reproduced in Table 1. Note that (mi, vi, ai, bi) do not depend on model
parameters θ ≡ (φ, σ, ρ) and µ.
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i pi mi v2
i ai bi

1 0.00609 1.92677 0.11265 1.01418 0.50710
2 0.04775 1.34744 0.17788 1.02248 0.51124
3 0.13057 0.73504 0.26768 1.03403 0.51701
4 0.20674 0.02266 0.40611 1.05207 0.52604
5 0.22715 −0.85173 0.62699 1.08153 0.54076
6 0.18842 −1.97278 0.98583 1.13114 0.56557
7 0.12047 −3.46788 1.57469 1.21754 0.60877
8 0.05591 −5.55246 2.54498 1.37454 0.68728
9 0.01575 −8.68384 4.16591 1.68327 0.84163
10 0.00115 −14.65000 7.33342 2.50097 1.25049

Table 1: Selection of (pi,mi, v
2
i , ai, bi).

2.2 MCMC algorithm

Let y = {yt}n
t=1, y∗ = {y∗t }n

t=1, d = {dt}n
t=1, k = {kt}n

t=1, γ = {γt}n
t=1, λ = {λt}n

t=1 and we
set the prior probability density π(θ), π(µ), π(κ), π(δ), π(ν) for θ, µ, κ, δ, ν. Then, we draw
sample from the posterior distribution

π(θ, µ, κ, δ, ν, s, h, k, γ, λ|y)

by the MCMC technique. Let us reparameterize kt by ψt ≡ log(1 + kt) and denote ψ =
{ψt}n

t=1, ψ(0) = {ψt|t = 1, . . . , n, s.t. γt = 0}, ψ(1) = {ψt|t = 1, . . . , n, s.t. γt = 1}. We propose
the following sampling algorithm:

1. Initialize θ, µ, κ, δ, ν, s, h, ψ, γ and λ.

2. Sample (θ, µ, h)|s, y∗, d by

(a) Sampling θ|s, y∗, d,

(b) Sampling (µ, h)|θ, s, y∗, d.

3. Sample ψ(1)|θ, µ, δ, h, γ, λ, y.

4. Sample (δ, ψ(0))|ψ(1), γ by

(a) Sampling δ|ψ(1), γ,

(b) Sampling ψ(0)|δ, γ.

5. Sample (γ, s)|θ, µ, κ, h, ψ, λ, y by

(a) Sampling γ|θ, µ, κ, h, ψ, λ, y,

(b) Sampling s|θ, µ, h, y∗, d.

6. Sample κ|γ.
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7. Sample (λ, ν)|θ, µ, s, h, ψ, γ, y by

(a) Sampling λ|θ, µ, ν, s, h, ψ, γ, y,

(b) Sampling ν|λ.

8. Go to 2.

Although we draw samples from the posterior distribution for the approximated model (6), they
can be reweighted to obtain the moments of the exact posterior distribution for the original SV
model (1) and (2) as we will show. In the following subsections, we give a brief description of
each sampling step (see Appendix A for the details).

2.2.1 Sampling volatility parameters (θ, µ, h)

The conditional posterior probability density function of (θ, µ, h) is

π(θ, µ, h|s, y∗, d) ∝ π(θ|s, y∗, d)× π(µ, h|θ, s, y∗, d),

where

π(θ|s, y∗, d) ∝ f(y∗|θ, s, d)π(θ),

π(µ, h|θ, s, y∗, d) ∝ π(µ|θ, s, y∗, d)π(h|µ, θ, s, y∗, d),

and f is the conditional likelihood of the approximated model. Note that the conditional poste-
rior probability density π(θ|s, y∗, d) is marginalized over µ. Integrating µ from the joint posterior
density π(θ, µ|s, y∗, d) provides a good acceleration of the convergence in our procedure. We can
evaluate the conditional likelihood f(y∗|θ, s, d) through the augmented Kalman filter (see Ap-
pendix B and de Jong (1991), Durbin and Koopman (2002b)). In Step 2a, we find θ̂ = (φ̂, σ̂, ρ̂)
which maximizes (or approximately maximizes) the posterior probability density π(θ|s, y∗, d),
and generate a candidate θ∗ from a normal distribution N(θ∗, Σ∗) truncated over the region
R = {θ : |φ| < 1, σ > 0, |ρ| < 1}, where

θ∗ = θ̂ + Σ∗
∂ log π(θ|s, y∗, d)

∂θ

∣∣∣∣
θ=θ̂

, Σ−1
∗ = − ∂ log π(θ|s, y∗, d)

∂θ∂θ′

∣∣∣∣
θ=θ̂

. (7)

We use the Metropolis-Hastings (M-H) algorithm (see e.g. Chib and Greenberg (1995)) with
this proposal density to accept or reject θ∗. In Step 2b, we straightforwardly sample µ from
a normal distribution using the by-products of the augmented Kalman filter, and sample h by
the simulation smoother (de Jong and Shephard (1995), Durbin and Koopman (2002a)) given
(µ, θ).
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2.2.2 Sampling jump parameters (δ, ψ)

In Step 3, we sample from the conditional posterior probability density π(ψ(1)|δ, ω1, γ, y) where
we marginalized the posterior probability density over s to accelerate the convergence, and
ω1 = (θ, µ, h, λ). Note that the density does not depend on ψ(0), since ψ(0) and ψ(1) are
conditionally independent given (ω1, δ, γ, y). To sample ψ(1), we use the M-H algorithm. The
reparameterization ψt ≡ log(1 + kt) yields a useful proposal density. Since we use returns (yt’s)
measured in decimals in empirical study, the kt’s are expected to be small. When kt is small,
kt = eψt − 1 may be well approximated by ψt. We have exactly ψt ∼ N(−0.5δ2, δ2), and
approximately

yt ≈ ψtγt +
√

λtεt exp(ht/2). (8)

Then a candidate for ψ
(1)
t can be drawn from the normal density N(ψ̂t, σ

2
ψt

) where

ψ̂t = σ2
ψt

(
−0.5 +

γt(yt −
√

λtρ exp(ht/2){(ht+1 − µ)− φ(ht − µ)}/σ)
λt(1− ρ2)eht

)
, (9)

σ2
ψt

=

(
δ−2 +

γ2
t

λt(1− ρ2)eht

)−1

.

In Step 4, we sample (δ, ψ(0)) in one block conditional on ψ(1). Noting that ψt vanishes in the
measurement equation (1) if γt = 0, we can express

π(δ, ψ(0)|ψ(1), ω1, γ, y) ∝ π(δ|ψ(1), γ)× π(ψ(0)|δ, γ).

In Step 4a, we draw a sample from the posterior distribution

π(δ|ψ(1), γ) ∝ g(ψ(1)|δ, γ)π(δ),

using the Acceptance-Rejection M-H (A-R M-H) algorithm (see e.g. Tierney (1994), Chib and
Greenberg (1995)). In Step 4b, ψ

(0)
t |δ, γ is directly drawn from the normal distribution,

ψ
(0)
t |δ, γ ∼ N(−0.5δ2, δ2).

Instead of Steps 3 and 4, we may first sample δ given ψ and then sample ψ given δ. However,
when sampling in such an order, we found the conditional distribution of δ to produce MCMC
samples with larger autocorrelations.

The key feature is that the posterior distribution for ψ
(1)
t is marginalized over st. We found

that this marginalization works to increase the acceptance rate of ψ
(1)
t in the M-H step and to

decrease the inefficiency in sampling δ. We find that sampling ψ
(1)
t is sensitive to the conditioned

st. When the state st whose probability (pst) is very small is conditioned, the conditional
posterior density for ψ

(1)
t is irregularly changed and the draw of ψ

(1)
t is overwhelmingly affected.
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To remove this effect of the st, we provide the marginalization of the conditional posterior
distribution for ψ

(1)
t .

2.2.3 Sampling mixture state and heavy-tailed parameters (γ, s, κ, λ, ν)

Since the γt and st are conditionally independent for t = 1, . . . , n, we can obtain independent
samples from their conditional posterior distribution. The posterior distribution of γ which we
draw from is also marginalized over s, similar to δ and ψ in Steps 3 and 4. Step 5a requires only
to evaluate Bernoulli distribution π(γt|θ, µ, h, κ, ψ, λ, y) where γt = 0, 1. In Step 5b we evaluate
a K-point discrete distribution π(st = i|θ, µ, h, y∗, d) for i = 1, . . . , K. If we use a beta prior for
κ,

κ ∼ Beta(nκ1, nκ0),

then we draw a sample κ|q from Beta(nκ1 + n1, nκ0 + n0), where n0 and n1 are the numbers of
time such that γt = 0 and γt = 1 respectively.

Finally, we sample from the conditional posterior distribution of (λ, ν) where the joint prob-
ability density is

π(λ, ν|θ, µ, s, h, ψ, γ, y) ∝ f(y|θ, µ, s, h, ψ, γ)g(λ|ν)π(ν).

In Step 6a, we sample λt by M-H algorithm using a proposal distribution λ−1
t ∼ Gamma(ν/2, ν/2)

independently for t = 1, . . . , n. Step 6b requires the A-R M-H algorithm for ν used in sampling
δ.

2.2.4 Reweighting to correct for mixture-approximation error

The normal mixture provides a good approximation as shown in Omori et al. (2007), though
we can correct a minor error of approximation and obtain samples from the exact posterior
distribution as follows. Let ϑ = (θ, µ, κ, δ, ν, h, k, γ, λ) and ϑj denote the j-th sample. To obtain
sample from the posterior distribution for the original SV model, denoted by π̃(ϑ|y), we resample
the j-th sample drawn from the approximated posterior density π(ϑ|y∗, d) =

∑
s π(ϑ, s|y∗, d) with

the weights proportional to

wj =
w∗j∑M

i=1 w∗i
, w∗j =

π̃(ϑj |y)
π(ϑj |y∗, d)

=
f̃(y|ϑj)

f(y∗|ϑj , d)
,

for j = 1, . . . , M where f̃ is a likelihood for the original SV model, f is a likelihood marginalized
over s for the approximate mixture model and M is the sample size. To estimate the posterior
mean of a function of the parameter g(ϑ),

E{g(ϑ)|y} =
∫

g(ϑ)π̃(ϑ|y)dϑ =
∫

g(ϑ)
π̃(ϑ|y)

π(ϑ|y∗, d)
π(ϑ|y∗, d)dϑ,
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we obtain the reweighted estimate as

Ê{g(ϑ)|y∗, d} =
M∑

j=1

g(ϑj)wj .

3 Illustrative example

This section illustrates our estimation procedure using the simulated data. We generated 3,000
observations from the SVLJt model given by equations (1) and (2) with φ = 0.97, σ = 0.1,
ρ = −0.3, exp(µ/2) = 0.01, κ = 0.005, δ = 0.04 and ν = 15. These values are based on the
empirical estimates for daily returns data (e.g. Chib et al. (2002), Omori et al. (2007)). As
suggested by Kim et al. (1998) and Omori et al. (2007), we take y∗t = log((yt − ktγt)2 + c)
where c is the offset for the case where (yt − ktγt)2 is too small. We set c = 10−7 in this paper
throughout. The following prior distributions are assumed:

φ + 1
2

∼ Beta(20, 1.5), σ−2 ∼ Gamma(2.5, 0.025),

ρ ∼ U(−1, 1), µ ∼ N(−10, 1),

κ ∼ Beta(2, 100), log(δ) ∼ N(−2.5, 0.15), ν ∼ Gamma(16, 0.8).

The beta prior distributions for (φ+1)/2 and κ imply means and standard deviations are (0.86,
0.11) for φ and (0.02, 0.01) for κ. The gamma priors for (σ−2, ν) and lognormal prior for δ have
means and standard deviations (100,63.2) for σ−2, (0.09, 0.04) for δ and (20, 5) for ν. These
prior distributions reflect the values obtained in the past literature to a certain extent.

We draw M = 5, 000 sample after the initial 10,000 samples are discarded. The number of
discarding samples is selected using time series plots of the marginal averages of samples for
each parameter. Figure 1 shows the sample autocorrelation function, the sample paths and the
posterior densities for each parameters. After discarding samples in burn-in period, the sample
paths look stable and the sample autocorrelations drop very quickly, indicating our sampling
method efficiently produces uncorrelated samples.

Table 2 gives the estimates for posterior means, standard deviations and the 95% credible
intervals. All estimated posterior means are close to the true values and the true values are
contained in their corresponding 95% credible intervals. The inefficiency factors are also reported
to check the performance of our sampling efficiency. The inefficiency factor is defined as 1 +
2

∑∞
s=1 ρs where ρs is the sample autocorrelation function at lag s. It is the ratio of variance

of the posterior mean from the correlated draws to the one from the hypothetical uncorrelated
sample, which measures the loss of sampling efficiency in our correlated MCMC draws (see e.g.
Chib (2001)). Similarly to the result of Kim et al. (1998), Chib et al. (2002) and Omori et al.
(2007), the inefficiency factors in Table 2 take very low values except ν, compared with those
of conventional MCMC samplers used in the estimation of SV models. This suggests that we
are successful in extending their method to the SVLJt model without loss of sampling efficiency.
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Thus the proposed algorithm in which we marginalized conditional posterior densities provides
the reliable and efficient MCMC sampling.

The relatively high inefficiency factor of ν is assumed to be caused from the A-R M-H
algorithms, which provides a high acceptance rate in the M-H step but produces the highly
correlated sample as seen in Figure 1. Further the conditional posterior distribution for ν

depends only the latent variables λ, which makes the inefficiency factor higher. On the other
hand, we also apply the A-R M-H algorithm for δ, but the inefficiency factor for δ in not so
high. This is the successful result of the marginalization and the order of sampling as discussed
in Section 2.
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Figure 1: Estimation result of simulation data (SVLJt model). Sample autocorrelations (top),
sample paths (middle) and posterior densities (bottom).

Parameter True Mean Stdev. 95% interval Inefficiency
φ 0.97 0.9477 0.0160 [0.9111, 0.9735] 38.33
σ 0.1 0.1463 0.0292 [0.0969, 0.2114] 56.24
ρ -0.3 -0.2269 0.0914 [-0.4045, -0.0473] 6.63

exp(µ/2) 0.01 0.0103 0.0004 [0.0096, 0.0111] 25.35
κ 0.005 0.0054 0.0259 [0.0002, 0.0268] 32.58
δ 0.04 0.0937 0.0564 [0.0207, 0.2425] 37.28
ν 15 11.939 2.1361 [8.9594, 17.230] 159.44

Table 2: Estimation result of simulation data (SVLJt model).
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4 SV model with correlated jumps

A correlated-jump SV model has been started to receive widespread attention in the recent
literature (e.g. Eraker et al. (2003), Kobayashi (2006)) to investigate the simultaneous jumps
in the observations and volatilities. Based on the SV model with leverage and jumps discussed
in the previous subsections, we extend it to the SV model with correlated jumps (SVLCJ)
formulated as

yt = ktγt + εt exp(ht/2), t = 1, . . . , n, (10)

ht+1 = µ + φ(ht − µ) + jtγt + ηt, t = 0, . . . , n− 1. (11)

To model jumps that occur concurrently both in return and in volatility with probability π(γt =
1) = κ, the joint distribution of jump sizes is assumed to be

jt ∼ Exp(µJ),

kt|jt ∼ N(µk + βJjt, σ2
k),

where Exp denotes the exponential distribution, Gamma(1, µJ). The correlation between jump
sizes in return and in volatility is considered through the parameter βJ . Additionally to the
specification for the SVLJ model, we assume the prior π(µJ), π(βJ), π(µk), π(σk). We can
explore the posterior distribution

π(θ, µ, κ, µJ , βJ , µk, σk, s, h, k, j, γ|y),

where k = {kt}n
t=1, j = {jt}n

t=1, by drawing samples by the corresponding MCMC procedure
as below, letting k(1) = {kt|t = 1, . . . , n, s.t. γt = 1}, k(0) = {kt|t = 1, . . . , n, s.t. γt = 0},
j(1) = {jt|t = 1, . . . , n, s.t. γt = 1} and j(0) = {jt|t = 1, . . . , n, s.t. γt = 0};

1. Initialize θ, µ, κ, µJ , βJ , µk, σk, s, h, k, j and γ.

2. Sample (θ, µ, h)|s, j, y∗, d.

3. Sample (k(1), j(1))|θ, µ, µJ , βJ , µk, σk, h, γ, y.

4. Sample (µJ , βJ , µk, σk, k
(0), j(0))|k(1), j(1), γ by

(a) Sampling µJ |j(1), γ,

(b) Sampling (βJ , µk)|k(1), j(1), σk, γ,

(c) Sampling σk|k(1), j(1), βJ , µk, γ,

(d) Sampling (k(0), j(0))|µJ , βJ , µk, σk, γ.

5. Sample (γ, s)|θ, µ, κ, h, k, j, y by
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(a) Sampling γ|θ, µ, κ, h, k, j, y,

(b) Sampling s|θ, µ, h, j, y∗, d.

6. Sample κ|γ.

7. Go to 2.

Throughout, this algorithm is a straightforward extension from the one of the SVLJt model.
We remark several points in details. In Step 3, we sample (kt, jt) for time t such that γt = 1
from its conditional density by the M-H algorithm with the proposal distribution based on the
original equation (10) and (11), which produces the candidate (k∗t , j∗t )′ ∼ N(µkjt , Σkjt)[j∗t >0]

where

µkjt =

(
yt

(ht+1 − µ)− φ(ht − µ)

)
, Σkjt =

(
exp(ht) ρ exp(ht/2)σ

ρ exp(ht/2)σ σ2

)
.

In Step 4a, we sample µJ by M-H algorithm with the proposal point drawn as µ∗J ∼ Exp( 1
n

∑
γt=1 jt).

In Step 4b, if µk ∼ N(µk0 , σ
2
k0

), βJ ∼ N(µβ0 , σ
2
β0

), the conditional posterior density for (µk, βJ)
is the normal distribution. Thus we can sample directly from the posterior distribution. In Step
4c, if σ−2

k ∼ Gamma(vk0 , Sk0), the conditional posterior density for σ2
k is the inverse-Gamma

distribution, which also enables us to have a direct draw.

5 Application to stock returns data

5.1 Data

1970 1975 1980 1985 1990 1995 2000

−0.2

−0.1

0.0

S&P 500 (1970−2003)

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

−0.05

0.00

0.05

TOPIX (1992−2004)

Figure 2: Return data for S&P500 and TOPIX.
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We apply our MCMC estimation method to daily stock returns data, the S&P500 index from
January 1, 1970 to December 31, 2003, and the TOPIX (Tokyo stock price index) from January
6, 1992 to December 30, 2004. The log-difference returns are computed as yt = log Pt− log Pt−1

where Pt is the closing price on day t. The sample size is 8,869 for S&P500 and 3,203 for TOPIX.
Table 3 summarizes the descriptive statistics of the returns data including the count of positive
and negative returns, and Figure 2 plots the series of returns for S&P500 and TOPIX. The
largest negative impact on S&P500 corresponds to the crash of October 1987.

S&P500 (1970/1/1 - 2003/12/31)
Obs. Mean Stdev. Max. Min. pos.(+) neg.(-)
8,869 0.0003 0.010 0.087 -0.227 4,762 4,107

TOPIX (1992/1/6 - 2004/12/30)
Obs. Mean Stdev. Max. Min. pos.(+) neg.(-)
3,203 -0.0001 0.013 0.073 -0.066 1,563 1,640

Table 3: Summary statistics for S&P500 and TOPIX returns data.

5.2 Estimation results

5.2.1 SV models with jumps, leverage effects and heavy-tails

We first consider the following four candidate SV models with leverage effect to be fitted to the
data:

(i) Model SVL: the SV model with leverage effect and no jump. The error terms in the
measurement equation (1) is assumed to follow normal distribution (λt ≡ 1 for all t).

(ii) Model SVLt: the SV model with leverage effect and no jump. The error terms in the
measurement equation (1) is assumed to Student-t distribution with unknown degrees of
freedom.

(iii) Model SVLJ: the SV model with leverage effect and jumps. The error terms in the mea-
surement equation (1) is assumed to follow normal distribution.

(iv) Model SVLJt: the SV model with leverage effect and jumps. The error terms in the
measurement equation (1) is assumed to Student-t distribution with unknown degrees of
freedom.

The prior specifications are same as the simulation study in the previous section. The number of
MCMC iterations is 5,000 and the initial 10,000 samples are discarded. Table 4 and 5 reports the
estimation result; the posterior means, standard deviations, 95% intervals and the inefficiency
factors for TOPIX data and S&P500 data respectively. Figure 3 plots the sampling result for
the Model SVLJt on the S&P500 series.
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The estimates of the volatility parameters (φ, σ, ρ, exp(µ/2)) are consistent with the results
of the previous literatures (e.g. Chib et al. (2002), Omori et al. (2007)). The posterior mean of
φ is close to one, which indicates the well-known high persistence of volatility on asset returns.
The estimates of σ for the Models SVLt and SVLJt are slightly lower than those for the Models
SVL and SVLJ. The models allowing the heavy-tail errors seem to explain the excess returns as
a realization of the disturbance εt, which decreases the variance of the volatility process. The
parameter ρ is estimated significantly negative, implying that there exists the leverage effect in
daily stock returns.

Parameter SVL SVLt SVLJ SVLJt
φ 0.9812 (0.0029) 0.9878 (0.0020) 0.9819 (0.0028) 0.9875 (0.0022)

[0.9752, 0.9866] [0.9837, 0.9916] [0.9763, 0.9870] [0.9828, 0.9913]
7.07 18.51 7.37 18.98

σ 0.1452 (0.0102) 0.1111 (0.0083) 0.1423 (0.0103) 0.1132 (0.0084)
[0.1263, 0.1667] [0.0950, 0.1278] [0.1227, 0.1635] [0.0978, 0.1304]

12.51 32.49 9.85 33.88
ρ -0.4970 (0.0379) -0.5718 (0.0402) -0.5019 (0.0382) -0.5641 (0.0418)

[-0.5682, -0.4186] [-0.6489, -0.4916] [-0.5757, -0.4275] [-0.6441, -0.4798]
3.34 7.83 6.37 12.66

exp(µ/2) 0.0089 (0.0003) 0.0084 (0.0004) 0.0089 (0.0003) 0.0084 (0.0004)
[0.0082, 0.0096] [0.0077, 0.0092] [0.0083, 0.0096] [0.0077, 0.0092]

1.31 3.44 1.29 8.29
κ 0.0013 (0.0049) 0.0008 (0.0027)

[0.0001, 0.0062] [0.0000, 0.0037]
14.44 11.53

δ 0.1076 (0.0695) 0.0971 (0.0619)
[0.0252, 0.3184] [0.0223, 0.2988]

74.86 62.94
ν 11.180 (1.3056) 11.812 (1.3333)

[9.4423, 13.339] [9.2692, 14.376]
164.93 191.20

The first row: posterior mean and standard deviation in parentheses.

The second row: 95% credible interval in square brackets.

The third row: inefficiency factor.

Table 4: Estimation result for S&P500 return.

In the Models SVLJ and SVLJt, the posterior means of the jump probabilities, κ’s, are very
low, around 0.1% for the S&P500 series and around 0.3% for the TOPIX series. When the jump
probability κ is very small, most of the jump sizes ψt’s vanish from the likelihood. The posterior
densities of the jump intensity parameters, δ’s, are widely spread, suggesting that we would fail
to extract enough information of jump intensities from rare jump events.

The magnitude of tail-fatness is measured by the parameter ν in the Models SVLt and
SVLJt. The posterior means of ν’s are around 10 for the S&P500 returns and 20 for the TOPIX
returns. This indicates that measurement errors of stock returns have heavy-tailed distributions
as pointed out in the past literature.
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Parameter SVL SVLt SVLJ SVLJt
φ 0.9675 (0.0073) 0.9747 (0.0064) 0.9678 (0.0073) 0.9749 (0.0063)

[0.9518, 0.9800] [0.9605, 0.9859] [0.9522, 0.9811] [0.9611, 0.9857]
6.25 19.69 7.12 14.15

σ 0.1908 (0.0184) 0.1623 (0.0182) 0.1899 (0.0185) 0.1621 (0.0177)
[0.1634, 0.2190] [0.1291, 0.1999] [0.1564, 0.2281] [0.1298, 0.1994]

15.13 35.66 8.98 27.66
ρ -0.4464 (0.0577) -0.4832 (0.0626) -0.4499 (0.0576) -0.4842 (0.0619)

[-0.5322, -0.3290] [-0.5994, -0.3539] [-0.5324, -0.3382] [-0.6002, -0.3572]
6.21 11.70 14.12 7.98

exp(µ/2) 0.0106 (0.0005) 0.0100 (0.0006) 0.0106 (0.0005) 0.0101 (0.0006)
[0.0096, 0.0118] [0.0089, 0.0112] [0.0096, 0.0111] [0.0089, 0.0112]

1.46 11.20 2.11 12.33
κ 0.0031 (0.0091) 0.0029 (0.0125)

[0.0002, 0.0188] [0.0001, 0.0161]
29.02 21.57

δ 0.0921 (0.0538) 0.1019 (0.0659)
[0.0252, 0.2499] [0.0248, 0.2667]

24.33 89.12
ν 18.352 (4.4163) 18.501 (4.2324)

[11.830, 27.864] [11.940, 28.223]
152.76 220.80

The first row: posterior mean and standard deviation in parentheses.

The second row: 95% credible interval in square brackets.

The third row: inefficiency factor.

Table 5: Estimation result for TOPIX return.
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Figure 3: Estimation result for S&P500 returns (SVLJt model). Sample autocorrelations (top),
sample paths (middle) and posterior densities (bottom).
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5.2.2 SV model with correlated jumps

For the SV model with correlated jumps (SVLCJ), we additionally specify the prior as

µJ ∼ Exp(0.2), βJ ∼ N(0, 1),

µk ∼ N(0, 1), σ−2
k ∼ Gamma(2.5, 0.025).

The exponential prior distribution for µJ implies a mean and a standard deviation is (5, 5). The
gamma prior for σ−2

k has a mean and a standard deviation (100, 63.2). Applying the MCMC
algorithm to the S&P500 daily return data (from 1970 to 2003), we draw M = 5, 000 samples
after the initial 10,000 samples are discarded. The posterior estimates are reported in Figure
6. Since inefficiency factors are low, all parameters are sampled efficiently. One remark should
go to the estimate of βJ . Although the posterior mean of βJ is negative, its 95% confidence
interval contains zero. We estimated the SVLCJ models using other 5 series of S&P500 and
TOPIX return data in Section 5.3 and found all the estimates of βJ are negative but their 95%
confidence interval contain zero, too. This result indicates that the two jump sizes in return and
in volatility may be not so strongly correlated.

Parameter Mean Stdev. 95% interval Inefficiency
φ 0.9835 0.0025 [0.9783, 0.9882] 5.58
σ 0.1298 0.0093 [0.1122, 0.1485] 8.82
ρ -0.5243 0.0378 [-0.5960, -0.4462] 6.48

exp(µ/2) 0.0088 0.0003 [0.0082, 0.0095] 5.40
κ 0.0006 0.0003 [0.0002, 0.0013] 36.42
µJ 1.3152 0.9171 [0.3338, 3.5807] 12.10
βJ -0.0978 0.4846 [-1.0685, 0.8861] 1.27
µk -0.0061 0.5235 [-1.0877, 1.0743] 1.08
σk 0.4338 0.1501 [0.2474, 0.8297] 9.98

Table 6: Estimation result of the SVLCJ model for S&P500 return.

5.2.3 Superposition model

For model comparisons, we also consider the superposition model which has become popular
and discussed as a flexible dynamic volatility model in the SV literatures (e.g. Omori et al.
(2007)). It is formulated as

yt = εt exp(ht/2), t = 1, . . . , n,

ht = α1t + α2t, t = 1, . . . , n,

α1,t+1 = µ + φ1(α1t − µ) + η1t, t = 0, . . . , n− 1,

α2,t+1 = φ2α2t + η2t, t = 0, . . . , n− 1,
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where



εt

η1t

η2t


 ∼ N(0, Σ), and Σ =




1 ρ1σ1 ρ2σ2

ρ1σ1 σ2
1 0

ρ2σ2 0 σ2
2


 ,

|φ1| < 1, |φ2| < 1, and ρ2
1 + ρ2

2 < 1. For identifiability, we assume that φ1 > φ2.
Although this model doesn’t have the jump and heavy-tail components, the log-volatility

consists of two independent autoregressive processes, each with a different persistence level and
leverage effect, which is considered to play an effective role to grasp the complicated volatility
dynamics in financial time series.

Let αt = (α1t, α2t)′ for t = 0, . . . , n, and α = {αt}n
t=0. Following Omori et al. (2007), the

MCMC implementation for the Bayesian inference of the superposition model is given as follows:

1. Initialize θ = (φ1, φ2, σ1, σ2, ρ1, ρ2), µ, s, α.

2. Sample (θ, µ, α)|s, y∗, d by

(a) Sampling θ|s, y∗, d,

(b) Sampling (µ, α)|θ, s, y∗, d.

3. Sample s|θ, µ, α, y∗, d.

4. Go to 2.

The algorithm is simple except sampling θ with several constraints. We implement Step
2a with the M-H algorithm. We generate a candidate point from the normal distribution after
transforming the parameters θ1 = log(1+φ1)− log(1−φ1), θ2 = log(1+φ2)− log(φ1−φ2), θ3 =
log σ2

1, θ4 = log σ2
2, θ5 = log(1+ρ1)− log(1−ρ1) and θ6 = log(

√
1− ρ2

1 +ρ2)− log(
√

1− ρ2
1−ρ2).

This transformation widens the parameter space to all the domain of R6 in sampling procedure,
which clears the parameter constraints and makes it easier to evaluate the marginal likelihood.
Through Step 2, we can construct the linear Gaussian state space form with bivariate state
variable αt and conduct the corresponding augmented Kalman filter. We assume priors

(φ2 + 1)/2 ∼ Beta(10, 10), (ρ2 + 1)/2 ∼ Beta(10, 10), σ−2
2 ∼ Gamma(2.5, 0.025),

for additional parameters. The beta prior distribution for (φ2 + 1)/2 and (ρ2 + 1)/2 has a mean
and standard deviation (0, 0.22). The gamma prior for σ−2

2 has a mean and standard deviation
(100, 62.3).

Table 7 shows the estimation result for the superposition model (SVLSP) using the S&P500
return (from 1970 to 2003). It is remarkable that the first component of volatility, α1t, empirically
has the high persistence and highly negative leverage of volatility, and the second one has less
persistence and leverage effect. These estimates show the log-volatility process would be divided
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into the two volatility components: one is the high-persistence autoregressive process and the
other is almost the i.i.d. process with a larger variance.

Parameter Mean Stdev. 95% interval Inefficiency
φ1 0.9888 0.0020 [0.9848, 0.9926] 4.45
φ2 0.0169 0.0864 [-0.1554, 0.2258] 15.99
σ1 0.1058 0.0084 [0.0900, 0.1226] 6.25
σ2 0.5299 0.0329 [0.4498, 0.5917] 21.09
ρ1 -0.5401 0.0443 [-0.6173, -0.4479] 3.30
ρ2 -0.1004 0.0389 [-0.1888, -0.0248] 12.33

exp(µ/2) 0.0086 0.0004 [0.0079, 0.0095] 1.91

Table 7: Estimation result of the superposition model for S&P500 return.

5.3 Model comparisons

This subsection conducts comparisons of those models we discussed in the previous sections
using the marginal likelihoods. Twelve competing models are considered. In addition to four
SV models with leverage (SVL, SVLt, SVLJ, SVLJt) in the empirical study above, we have
corresponding four SV models without leverage (SV, SVt, SVJ, SVJt). Focusing on the heavy-
tail behavior of return, we propose an alternative heavy-tail modelling in relation to Student-t
error. As estimated in Omori et al. (2007), we also introduce the Gamma scale mixture SV model
with leverage (labeled SVLg, SVLJg), where we assume log λt ∼ N(−0.5τ2, τ2) and estimated τ

instead of ν by the M-H algorithm as sampling ν. The τ2 ∼ Gamma(1, 1) is assumed for a prior
density, whose mean and standard deviation is (1, 1). The SV model with correlated jumps
(SVLCJ) and the superposition model (SVLSP) are also considered.

In a Bayesian framework we compare several competing models and find the evidence in the
data using the posterior probabilities of the models. The posterior probability of each model
is proportional to the prior probability of the model times the marginal likelihood. The ratio
of two posterior probabilities is also well-known as a Bayes factor. If the prior probabilities are
assumed to be equal, we choose the model which yields the largest marginal likelihood. The
marginal likelihood is defined as the integral of the likelihood with respect to the prior density
of the parameter. Following Chib (1995), we estimate the log of marginal likelihood m(y), as

log m(y) = log f(y|ϑ) + log π(ϑ)− log π(ϑ|y∗, d). (12)

where f(y|ϑ) is a likelihood, π(ϑ) is a prior probability density and π(ϑ|y∗, d) is a posterior
probability density. This equality holds for any ϑ, but we usually use the posterior mean of ϑ to
obtain a stable estimate of m(y). The prior probability density is easily calculated, though the
likelihood and posterior part requires a simulation evaluation. For the SV class, the likelihood
can be estimated by the particle filter (e.g., Pitt and Shephard (1999), Chib et al. (2002), Omori
et al. (2007)). We run 10 replications of the particle filter to estimate the standard error of
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the likelihood. We can evaluate the posterior density at the point ϑ through the additional but
reduced MCMC iterations using the method of Chib (1995), Chib and Jeliazkov (2001, 2005).
The reduced MCMC sampling for the posterior part is iterated for 5,000 draws.

We use six series of daily return data for the model comparisons. In addition to the datasets
used for the previous parameter estimation, we used the datasets of the S&P500 series from 1970
to 1985 and from 1990 to 2003, and the TOPIX series from 1970 to 1985 and from 1990 to 2004.
We considered two long-period (about thirty years) data and four short-period (about fifteen
years) data. We select these short periods such that the crash of October 1987 is excluded,
because this critical event could affect the model selection between models with and without
jumps.

S&P500 1970-2003 1970-1985 1994-2003
Model Log-ML Ranking Log-ML Ranking Log-ML Ranking
SV 29543.69 (2.23) 12 14178.18 (0.48) 11 8363.04 (0.44) 11
SVt 29601.06 (1.68) 10 14185.51 (0.98) 8 8373.40 (0.74) 9
SVJ 29561.59 (1.72) 11 14171.88 (1.10) 12 8357.51 (0.89) 12
SVJt 29602.11 (1.30) 9 14178.46 (1.05) 10 8363.13 (0.77) 10
SVL 29605.67 (2.04) 8 14198.89 (0.49) 4 8406.06 (0.37) 5
SVLt 29659.72 (2.89) 2 14204.31 (0.76) 1 8413.49 (0.48) 1
SVLg 29660.83 (1.86) 1 14202.75 (0.50) 2 8413.06 (0.62) 2
SVLJ 29623.93 (2.06) 6 14189.00 (1.19) 7 8402.85 (1.08) 7
SVLJt 29658.21 (1.91) 3 14196.10 (0.43) 5 8406.38 (0.70) 4
SVLJg 29655.07 (1.60) 4 14192.89 (1.00) 6 8403.96 (0.88) 6
SVLCJ 29608.27 (1.83) 7 14184.87 (1.10) 9 8396.74 (1.15) 8
SVLSP 29654.98 (1.75) 5 14199.66 (0.53) 3 8408.75 (0.50) 3

TOPIX 1970-2004 1970-1985 1992-2004
Model Log-ML Ranking Log-ML Ranking Log-ML Ranking
SV 32385.53 (2.08) 11 17598.87 (1.30) 8 9716.88 (0.22) 11
SVt 32400.13 (1.54) 9 17597.14 (1.66) 9 9723.69 (0.73) 9
SVJ 32382.33 (1.98) 12 17591.68 (1.17) 10 9712.10 (0.55) 12
SVJt 32396.28 (1.69) 10 17589.48 (0.85) 12 9717.35 (0.69) 10
SVL 32461.14 (3.10) 6 17626.79 (0.94) 2 9738.27 (0.32) 4
SVLt 32475.55 (1.53) 2 17624.79 (1.63) 3 9744.55 (1.00) 1
SVLg 32470.36 (0.82) 3 17623.92 (1.13) 4 9742.74 (0.51) 2
SVLJ 32457.96 (1.77) 7 17618.18 (1.43) 6 9734.03 (0.66) 6
SVLJt 32468.35 (2.33) 4 17618.84 (1.57) 5 9735.50 (0.59) 5
SVLJg 32464.09 (2.08) 5 17617.45 (2.00) 7 9732.24 (0.37) 7
SVLCJ 32431.76 (5.40) 8 17590.98 (3.45) 11 9727.26 (0.95) 8
SVLSP 32498.88 (1.91) 1 17627.33 (1.02) 1 9739.46 (0.30) 3

*The values are based on log scale and standard error in parentheses.

Table 8: Marginal likelihood (ML) for S&P500 (top) and TOPIX (bottom) returns data.

Table 8 reports the estimated marginal likelihoods, standard errors and rankings for all
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competing models. The most adequate model to fit the S&P500 data is the SVLg model for
the period 1970-2003, the SVLt model for the period 1970-1985 and 1994-2003, and that of the
TOPIX data is the SVLSP model for the period 1970-2004 and 1970-1985, the SVLt model
for the period 1992-2004. These three models, the SVLt, SVLg and SVLSP model, are ranked
high for all periods, and taking the standard errors into consideration, these models are almost
equivalent to explain the daily return series over our datasets.

As for the model fitting of the jump models, the advantage of the jump component can be
seen only when the model has the normal-distributed error and the sample data contains the
crash of 1987. Between the SV and SVJ model, the SVJ model dominates the SV model for
sample data which contain the crash of 1987 (period 1970-2003) of S&P500, on the other hand,
the SV model dominates SVJ model for sample data which exclude the crash (period 1970-1985,
1994-2003 of S&P500 and period 1970-1985, 1992-2004 of TOPIX). However, between the SVt
and SVJt model, the SVt model outperforms the SVJt model for all sample period except the
period 1970-2003 of S&P500. We found the same contribution of the jump component for the
models with leverage. For the SVL, SVLJ, SVLt, SVLJt model, the jump model can beat the
no-jump model only for the case where the model has normal-distributed error and the sample
data contains the crash of 1987. In other cases, the jump models are outperformed by the no-
jump models. Thus we conclude that the jump models can have an advantage (in the sense of
model-fitting) when the disturbance of the model follows normal distribution and the very large
shock exists in the data. If we allow the disturbance of the model to follow the heavy-tailed
distribution (e.g. Student-t error), the incorporation of the jump component into the model
does not improve marginal likelihoods. The jump component would not be necessary when the
model has leverage effects and Student-t errors.

One of our aim in this paper is to investigate whether the heavy-tailed error distribution or
jump component can capture the rare excess returns over the sample period in regard with model
fitting. We consider the result of model comparison indicates that the jump component doesn’t
have enough additional information in the empirical study and heavy-tailed distribution for the
disturbance in observation equation is favored, even when the jump component is rearranged to
correlated jumps for both observation and volatility equations.

Similar to the result of Raggi and Bordignon (2006), the SVLCJ models are not favored over
the SVLJ models for all series. On the marginal likelihood estimated for our return data, the
additional benefit to model jumps for capturing rare tail events are not so large as the cost to
add the parameters for the jump component. It is obvious that a huge excess return such as the
crash of 1987 can be easily classified as a jump in the estimation, but relatively smaller excess
returns may be captured as a tail event of the disturbance. How to capture the excess return
is a relative matter. Our findings may imply that the consideration of jumps is rather costly to
separate the jump event from the tail event of the error distribution over our empirical return
data. This is probably because the additional new parameters in the SVLJ models were not very
useful to increase the likelihood. The SVLSP model mostly outperforms the jump models and
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some heavy-tailed models. As claimed by Omori et al. (2007), the SVLSP models are considered
to explain the heavy-tailness of asset returns by double sequences of volatility.

5.4 Prior sensitivity analysis

We conduct the prior sensitivity analysis to investigate the robustness of our empirical results in
the previous subsection. Since we took the commonly used values for the prior hyperparameters
of (φ, σ2, ρ, µ) in the basic SVL model, we focus on the parameters of our interests in this paper,
i.e., the jump parameters (κ, δ) and heavy-tail parameter ν to study the prior sensitivity.

The following alternative priors are considered in addition to the prior in the previous esti-
mations (Prior #1).

Prior #1: κ ∼ Beta(2, 100), log(δ) ∼ N(−2.5, 0.15), ν ∼ Gamma(16, 0.8),

Prior #2: κ ∼ Beta(2, 100), log(δ) ∼ N(−3, 0.5), ν ∼ Gamma(16, 0.8),

Prior #3: κ ∼ Beta(2, 40), log(δ) ∼ N(−2.5, 0.15), ν ∼ Gamma(16, 0.8),

Prior #4: κ ∼ Beta(2, 40), log(δ) ∼ N(−3, 0.5), ν ∼ Gamma(16, 0.8),

Prior #5: κ ∼ Beta(2, 40), log(δ) ∼ N(−3, 0.5), ν ∼ Gamma(24, 0.6).

The prior means and standard deviations are

Prior #1: κ : (0.02, 0.01), δ : (0.09, 0.04), ν : (20, 5),

Prior #2: κ : (0.02, 0.01), δ : (0.06, 0.05), ν : (20, 5),

Prior #3: κ : (0.05, 0.03), δ : (0.09, 0.04), ν : (20, 5),

Prior #4: κ : (0.05, 0.03), δ : (0.06, 0.05), ν : (20, 5),

Prior #5: κ : (0.05, 0.03), δ : (0.06, 0.05), ν : (40, 8),

respectively. We estimated parameters by the proposed MCMC algorithm and computed marginal
likelihoods for TOPIX data (1992/1/6 - 2004/12/30) using these alternative priors. Tables 9–
11 report the result of parameter estimates and Table 12 listed the model comparison for the
alternative priors among the major models (SVL, SVLt, SVLJ, SVLJt, SVLSP). Overall, the
estimates of the parameters, (φ, σ, ρ, exp(µ/2)), are basically unchanged, while the jump param-
eters and heavy-tail parameters appear to be more or less affected by the priors.

Table 9 shows the estimation result for the SVLJ model. To see the effect of the prior for
the jump probability κ, we compare the the posterior estimates for Priors #1 and #3 (or Priors
#2 and #4) where the prior mean is larger for Priors #3 (Prior #4). The posterior mean of κ

becomes larger for Prior #3 (Prior #4) than the one for Prior #1 (Prior #2) . The posterior
mean of δ becomes larger for Prior #3 (Prior #4) as well. The larger prior mean for κ seems to
result in the larger posterior means of κ and δ, but their magnitude of changes might be small
as in Prior #4 depending on the prior distribution of δ.
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With respect δ, we compare the results for Priors #1 nd #2 (or Priors #3 and #4). There
is no clear direction of the changes corresponding to the changes in prior distributions of δ. It
seems to depend on the combination of prior distributions of κ and δ.

SVLJ model
Parameter Prior #1 Prior #2 Prior #3 Prior #4

φ 0.9678 (0.0073) 0.9679 (0.0075) 0.9687 (0.0075) 0.9680 (0.0073)
[0.9522, 0.9811] [0.9519, 0.9809] [0.9522, 0.9818] [0.9523, 0.9808]

7.12 4.62 5.36 4.31
σ 0.1899 (0.0185) 0.1885 (0.0188) 0.1860 (0.0203) 0.1890 (0.0188)

[0.1564, 0.2281] [0.1523, 0.2262] [0.1468, 0.2287] [0.1552, 0.2270]
8.98 8.36 11.21 11.00

ρ -0.4499 (0.0576) -0.4457 (0.0588) -0.4494 (0.0603) -0.4476 (0.0589)
[-0.5324, -0.3382] [-0.5570, -0.3282] [-0.5614, -0.3263] [-0.5595, -0.3595]

14.12 5.34 4.27 5.08
exp(µ/2) 0.0106 (0.0005) 0.0106 (0.0006) 0.0107 (0.0006) 0.0106 (0.0006)

[0.0096, 0.0111] [0.0096, 0.0117] [0.0096, 0.0119] [0.0096, 0.0117]
2.11 2.39 3.67 2.30

κ 0.0031 (0.0091) 0.0043 (0.0210) 0.0100 (0.0385) 0.0047 (0.0228)
[0.0002, 0.0188] [0.0001, 0.0238] [0.0001, 0.1309] [0.0001, 0.0297]

29.02 18.36 21.26 19.28
δ 0.0921 (0.0538) 0.1151 (0.0683) 0.1944 (0.1609) 0.1422 (0.0887)

[0.0252, 0.2499] [0.0245, 0.2621] [0.0156, 0.6883] [0.0211, 0.3145]
24.33 32.49 24.59 81.60

Table 9: Prior sensitivity for the SVLJ model (estimation result for TOPIX return data).

SVLt model
Parameter Prior #1 Prior #5

φ 0.9747 (0.0064) 0.9716 (0.0069)
[0.9605, 0.9859] [0.9566, 0.9839]

19.69 7.28
σ 0.1623 (0.0182) 0.1756 (0.0186)

[0.1291, 0.1999] [0.1420, 0.2146]
35.66 15.98

ρ -0.4832 (0.0626) -0.4715 (0.0582)
[-0.5994, -0.3539] [-0.5810, -0.3554]

11.70 8.56
exp(µ/2) 0.0100 (0.0006) 0.0103 (0.0006)

[0.0089, 0.0112] [0.0092, 0.0114]
11.20 3.71

ν 18.352 (4.4163) 34.3792 (8.1372)
[11.830, 27.864] [22.062, 52.523]

152.76 169.46

Table 10: Prior sensitivity for SVLt model (estimation result for TOPIX return data).

The first row: posterior mean and standard deviation in parentheses.

The second row: 95% credible interval in square brackets.

The third row: inefficiency factor.
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For the SVLt model in Table 10, the posterior mean of ν for Prior #5 is estimated larger
than the one for Prior #1 because the prior mean of Prior #5 for ν is 40 which is as twice as that
of Prior #1. Such a sensitivity of the tight prior on ν is also reported in Chib et al. (2002) in the
case of no-leverage model. As an additional estimation regarding this point, we estimated the
SVLt model using a very flat prior, ν ∼ Gamma(1, 0.05), whose mean and standard deviation
are (20, 20) respectively. Using this prior, the posterior mean of ν is around 17, which implies
that the density of Prior #1 for ν is matched to be centered around the posterior mean using
the less informed prior. Prior #5 for ν is rather concentrated around 40 for the prior mean,
which results in the large posterior mean as shown in Table 10.

SVLJt model

Parameter Prior #1 Prior #2 Prior #3 Prior #4 Prior #5

φ 0.9749 (0.0063) 0.9750 (0.0061) 0.9748 (0.0063) 0.9746 (0.0065) 0.9722 (0.0065)
[0.9611, 0.9857] [0.9617, 0.9858] [0.9607, 0.9856] [0.9604, 0.9860] [0.9520, 0.9807]

14.15 11.66 10.77 13.24 5.05

σ 0.1621 (0.0177) 0.1612 (0.0169) 0.1631 (0.0178) 0.1630 (0.0191) 0.1736 (0.0185)
[0.1298, 0.1994] [0.1286, 0.1956] [0.1301, 0.2005] [0.1287, 0.2021] [0.1561, 0.2283]

27.66 30.62 18.07 25.99 12.84

ρ -0.4842 (0.0619) -0.4827 (0.0603) -0.4842 (0.0613) -0.4883 (0.0633) -0.4687 (0.0590)
[-0.6002, -0.3572] [-0.5935, -0.3579] [-0.6005, -0.3592] [-0.6048, -0.3550] [-0.5814, -0.3485]

7.98 8.30 3.36 11.40 4.13

exp(µ/2) 0.0101 (0.0006) 0.0101 (0.0006) 0.0101 (0.0006) 0.0102 (0.0007) 0.0104 (0.0006)
[0.0089, 0.0112] [0.0090, 0.0112] [0.0090, 0.0114] [0.0072, 0.0121] [0.0093, 0.0117]

12.33 14.94 8.21 10.24 8.21

κ 0.0029 (0.0125) 0.0021 (0.0044) 0.0082 (0.0323) 0.0099 (0.0460) 0.0139 (0.0475)
[0.0001, 0.0161] [0.0001, 0.0110] [0.0001, 0.0862] [0.0001, 0.1203] [0.0001, 0.1754]

21.57 15.21 19.63 34.94 22.61

δ 0.1091 (0.0659) 0.0957 (0.0511) 0.1393 (0.0914) 0.1609 (0.1118) 0.1537 (0.1214)
[0.0248, 0.2667] [0.0262, 0.2110] [0.0142, 0.3616] [0.0149, 0.4294] [0.0138, 0.4434]

89.12 39.73 116.38 109.69 125.65

ν 18.501 (4.2324) 19.252 (4.2013) 19.764 (3.8080) 21.221 (5.3824) 39.212 (7.9436)
[11.940, 28.223] [10.584, 28.517] [13.914, 28.591] [14.532, 35.102] [26.039, 57.026]

220.80 214.51 177.80 150.33 143.53

The first row: posterior mean and standard deviation in parentheses.
The second row: 95% credible interval in square brackets.
The third row: inefficiency factor.

Table 11: Prior sensitivity for SVLJt model (estimation result for TOPIX return data).

In the SVLJt model, the effects of the prior distributions (Priors #1∼#4) of κ and δ in Table
11 are similar to those for the SVLJ model in Table 9. The posterior distributions of δ seem
to be a little affected also by introducing the parameter ν in the SVLJt model. The posterior
distributions of the jump probability, κ, seem to shift to the left in the SVLJt model for Priors
#1∼#3, and the posterior means tend to be large as those of ν become large.

For Priors #4 and #5, when the prior mean of the ν is larger (assuming less fat-tailed errors),
the posterior mean of ν becomes larger, and at the same time, the posterior mean of κ becomes
larger. This is probably because the Student-t error distribution with large ν cannot describe
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excess observations sufficiently and the jump component is used instead to explain such a tail
behaviour. This result indicates that there would be an essential trade-off between the roles of
the heavy-tailed error distribution and the jump component to explain excess returns in the SV
model. We further estimated the SVLJt model replacing the prior for ν in Prior #1 by the prior
ν ∼ Gamma(1, 0.05) again. Similar to the estimation result for Prior #4, the posterior mean of
ν is found to be 23.8.

Prior #1 Prior #2 Prior #3

Model Log-ML Ranking Log-ML Ranking Log-ML Ranking

SVL 9738.27 (0.32) 3 9738.27 (0.32) 3 9738.27 (0.32) 3
SVLt 9744.55 (1.00) 1 9744.55 (1.00) 1 9744.55 (0.79) 1
SVLJ 9734.03 (0.66) 5 9727.90 (0.82) 5 9713.87 (1.17) 5
SVLJt 9735.50 (0.59) 4 9736.93 (0.99) 4 9725.64 (1.00) 4
SVLSP 9739.46 (0.30) 2 9739.46 (0.30) 2 9739.46 (0.30) 2

Prior #4 Prior #5

Model Log-ML Ranking Log-ML Ranking

SVL 9738.27 (0.32) 3 9738.27 (0.32) 3
SVLt 9744.55 (1.00) 1 9742.25 (0.79) 1
SVLJ 9726.09 (2.25) 4 9726.09 (2.25) 4
SVLJt 9719.45 (2.36) 5 9710.40 (2.14) 5
SVLSP 9739.46 (0.30) 2 9739.46 (0.30) 2

*The values are based on log scale and standard error in parentheses.

Table 12: Prior sensitivity: marginal likelihoods (ML) for TOPIX return data.

We investigate the prior sensitivity for marginal likelihoods in Table 12. For the jump models
(SVLJ and SVLJt models) the marginal likelihoods decrease under Priors #4 and #5, which
would be affected by the prior distributions for δ. Except these two models the rankings of
the models are not altered. In the comparison of the SVLJt model under Priors #4 and #5,
we presume that the higher posterior mean of ν for Prior #5 is related to its lower marginal
likelihood because there would be less chances for the heavy-tail error distribution to capture
the excess returns.

In conclusion, we observed: (i) the jump probability κ tends to become lower when Student-t
error is incorporated, (ii) the posterior density of ν may be affected by the tight prior such as
Prior #5, though the posterior estimates based on Prior #1 are stable even when the fairly flat
prior is used, (iii) when the prior mean of the jump probability κ is set larger, the posterior
mean also becomes larger and the excess return is explained more by the jump component, which
tends to make the heavy-tail parameter ν to be stochastically larger. However, the effect of the
prior density of κ is small regarding the ranking of models based on the marginal likelihoods.
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5.5 Alternative jump size specification

The result in the previous sections indicates that the jump component in the SV model does not
contribute much to the improvement of the marginal likelihood. In this section, we consider the
alternative specification of the jump size in more detail and discuss whether such a specification
could improve the marginal likelihood. The specification for jump size (kt) given by equation
(3) depends on just one parameter (δ). To investigate the effect of this parameterization, we
consider a jump size distribution with two parameters: ψt ≡ log(1 + kt) ∼ N(µψ, σ2

ψ). We
denote such models by the SVLNJ and SVLNJt models. Using the priors µψ ∼ N(0, 1) and
σ−2

ψ ∼ Gamma(2.5, 0.025), we estimated the parameters and marginal likelihoods of these models
for S&P500 (1970-2003) and TOPIX (1992-2004) data.

S&P500 (1970-2003) TOPIX (1992-2004)
Parameter SVLNJ SVLNJt SVLNJ SVLNJt

φ 0.9818 (0.0029) 0.9877 (0.0020) 0.9680 (0.0071) 0.9753 (0.0062)
[0.9756, 0.9870] [0.9835, 0.9915] [0.9527, 0.9805] [0.9622, 0.9862]

5.38 21.67 6.68 11.54
σ 0.1422 (0.0103) 0.1121 (0.0085) 0.1889 (0.0183) 0.1605 (0.0175)

[0.1231, 0.1629] [0.0960, 0.1291] [0.1557, 0.2268] [0.1284, 0.1987]
7.69 36.95 7.23 25.43

ρ -0.4969 (0.0376) -0.5711 (0.0415) -0.4458 (0.0570) -0.4868 (0.0618)
[-0.5672, -0.4212] [-0.6469, -0.4855] [-0.5549, -0.3299] [-0.6052, -0.3601]

6.00 16.01 7.53 8.22
exp(µ/2) 0.0089 (0.0004) 0.0084 (0.0004) 0.0106 (0.0005) 0.0100 (0.0006)

[0.0082, 0.0096] [0.0077, 0.0092] [0.0096, 0.0117] [0.0088, 0.0111]
1.81 8.54 1.05 6.64

κ 0.0003 (0.0002) 0.0002 (0.0002) 0.0007 (0.0005) 0.0007 (0.0005)
[0.0000, 0.0008] [0.0000, 0.0007] [0.0001, 0.0019] [0.0001, 0.0019]

1.74 1.68 0.99 1.14
µψ -0.0813 (0.7854) -0.0298 (0.9361) -0.0088 (0.9602) -0.0031 (0.9664)

[-1.6917, 1.7824] [-1.9114, 1.9173] [-1.9292, 1.8591] [-1.9396, 1.9452]
0.99 2.38 1.32 1.54

σψ 0.1161 (0.0484) 0.1197 (0.0519) 0.1187 (0.0522) 0.1200 (0.0532)
[0.0608, 0.2348] [0.0633, 0.2523] [0.0627, 0.2546] [0.0623, 0.2472]

1.26 0.76 0.72 1.30
ν 11.3340 (1.5412) 15.9215 (2.7006)

[9.0096, 14.883] [11.237, 21.615]
275.77 198.67

The first row: posterior mean and standard deviation in parentheses.
The second row: 95% credible interval in square brackets.

The third row: inefficiency factor.

Table 13: Estimation result of the SVLNJ and SVLNJt model.

The results are reported in Table 13. The estimation results for (φ, σ, ρ, exp(µ/2)) are basi-
cally unchanged for both the SVLNJ and SVLNJt models. The posterior means of µψ for the
SVLNJ model are slightly lower than those for the SVLNJt model, but the differences are small
when taking the large posterior standard deviations into consideration. TFhe estimates of the
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standard deviations of the jump size, σψ, are found to be about the same for both models. As a
prior sensitivity analysis, we also estimated these models under alternative priors, µψ ∼ N(0, 1)
and σ−2

ψ ∼ Gamma(5, 0.05), and obtained results of jump parameters are found to be about the
same.

Table 14 reports the marginal likelihoods for the S&P500 and TOPIX return data. In fact,
the SVLNJ and SVLNJt models are outperformed by the SVLJ and SVLJt models respectively
except the SVLNJt model for TOPIX return data whose marginal likelihood is still smaller than
that of SVLt model in Table 8.

Model S&P500 (1970-2003) TOPIX (1992-2004)
SVLJ 29623.93 (2.06) 9734.03 (0.66)
SVLNJ 29605.80 (3.26) 9732.77 (0.67)
SVLJt 29658.21 (1.91) 9735.50 (0.59)
SVLNJt 29650.13 (2.89) 9738.57 (1.13)

*The values are based on log scale and standard error in parentheses.

Table 14: Marginal likelihood (ML) for S&P500 and TOPIX returns data.

6 Conclusion

In this paper, we developed a fast and efficient MCMC sampling procedure for a Bayesian
inference of the SV model with jumps, leverage and heavy-tail, and the SV model with corre-
lated jumps. Our proposed method is illustrated using a simulation data and applied to daily
stock returns data, the S&P500 index and the TOPIX. We further provided the overall model
comparisons using the marginal likelihood of the nested candidate SV models with jumps and
heavy-tails. The empirical result implies that the heavy-tailed SV model with leverage (SVLt
and SVLg) and superposition model (SVLSP) fits to data better than other models during our
data period.
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Nakatsuma, Sylvia Frühwirth-Schnatter, Alan Gelfand, James LeSage and Wolfgang Polasek
for their helpful comments and suggestions. The computational results are generated using
Ox version 3.40 (see Doornik (2002)). This work is partially supported by Grants-in-Aid for
Scientific Research 18330039 from the Japanese Ministry of Education, Science, Sports, Culture
and Technology.

26



Appendix A. MCMC algorithm for SVLJt model

We show the details of sampling scheme for the SVLJt model in this appendix. Our proposed
algorithm is as follows.

1. Initialize θ, µ, κ, δ, ν, s, h, ψ, γ and λ

2. Sample (θ, µ, h)|s, y∗, d by

(a) Sampling θ|s, y∗, d
To sample θ from the posterior distribution π(θ|s, y∗, d) ∝ f(y∗|θ, s, d)π(θ) by M-H
algorithm, we evaluate f(y∗|θ, s, d) using an augmented Kalman filter as shown in
Appendix B. We compute θ∗ and Σ∗ in equation (7) and generate a candidate θ∗

from the distribution N(θ∗, Σ∗) truncated over R = {θ : |φ| < 1, σ > 0, |ρ| < 1}. Let
θ0 denote the current point of θ. We accept the candidate θ∗ with probability

α(θ0, θ
∗|s, y∗, d) = min

{
π(θ∗|s, y∗, d)fN (θ0|θ∗, Σ∗)
π(θ0|s, y∗, d)fN (θ∗|θ∗, Σ∗) , 1

}
,

where fN denotes the density of the truncated normal distribution for the proposal
above. If the candidate θ∗ is rejected, we take the current value θ0 as the next draw.

(b) Sampling (µ, h)|θ, s, y∗, d
First we generate

µ|θ, s, y∗, d ∼ N(Q−1
n+1qn+1, Q−1

n+1),

where qn+1 and Qn+1 are computed using the by-products of the augmented Kalman
filter (see Appendix B). Next we can sample h|µ, θ, s, y∗, d in one block using the
simulation smoother (de Jong and Shephard (1995), Durbin and Koopman (2002a)).
Given st = i, our approximating linear Gaussian state space model is formed by

y∗t = mi + ht + Gtut,

ht+1 = dtρσai exp(mi/2) + (1− φ)µ + φht + Htut,

where ut ∼ N(0, I2),

Gt = (vi, 0), Ht =
(

dtρσbivi exp(mi/2), σ
√

1− ρ2

)
. (13)

3. Sample ψ(1)|θ, µ, δ, h, γ, λ, y

The conditional posterior density for ψ
(1)
t is given by

π(ψ(1)
t |θ, µ, δ, h, γ, λ, y)
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∝
K∑

i=1

qi · 1
vi

exp

{
−(y∗t − ht −mi)2

2v2
i

}

× exp

[
−{(ht+1 − µ)− φ(ht − µ)−Di(y∗t )}2

2σ2(1− ρ2)

]
exp

{
−(ψt + 0.5δ2)2

2δ2

}
,

where y∗t = log(yt − (eψt − 1)γt)2 − log λt and

Di(y∗t ) = dtρσ {ai + bi(y∗t − ht −mi)} exp
(

mi

2

)
.

In the case of t = n, the second exp[·] term is omitted. We marginalize the posterior
density over st = i (i = 1, . . . , K) and conduct the M-H algorithm for sampling ψ

(1)
t .

Under the assumption that kt is small, kt = eψt − 1 may be well approximated by ψt. We
generate the candidate in the M-H algorithm based on the equation (8) which produces
the proposal density N(ψ̂t, σ

2
ψt

) where ψ̂t and σ2
ψt

is given by the equation (9). We accept
or reject the candidate using the M-H algorithm as in sampling θ.

4. Sample (δ, ψ(0))|ψ(1), γ by

(a) Sampling δ|ψ(1), γ

The conditional posterior distribution for δ is given by

π(δ|ψ(1), γ) ∝
∏

γt=1

1√
2πδ

exp

{
−(ψ(1)

t + 0.5δ2)2

2δ2

}
π(δ).

We sample δ by A-R M-H algorithm (Tierney (1994), Chib and Greenberg (1995)).
Let δ̂ denote the mode (or approximate mode) of the conditional posterior density
π(δ|ψ(1), γ), and let `(δ) = log π(δ|ψ(1), γ). Applying Taylor expansion to `(δ) around
δ̂ as

`(δ) ≈ `(δ̂) + `′(δ̂)(δ − δ̂) +
1
2
`′′(δ̂)(δ − δ̂)2 ≡ h(δ),

where `′(δ̂) and `′′(δ̂) are the first and second derivative of `(δ) evaluated at δ = δ̂.
We construct the approximating density N(µδ, σ

2
δ ) truncated over (0,∞), where µδ =

δ̂ − `′(δ̂)/`′′(δ̂) and σ2
δ = −1/`′′(δ̂). We sample δ by the following two steps.

i. A-R step
Generate a candidate δ∗ ∼ N(µδ, σ

2
δ ) truncated over (0,∞) and accept δ∗ with

probability min (1, exp{`(δ∗)− h(δ∗)}). If it is rejected, generate δ∗ again till the
candidate is accepted.

ii. M-H step
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Let δ0 denote the current point of δ. Accept δ∗ with probability

min
{

exp(`(δ∗))min{exp(`(δ0)), exp(h(δ0))}
exp(`(δ0))min{exp(`(δ∗)), exp(h(δ∗))} , 1

}
.

If δ∗ is rejected here, δ0 is retained as the next value.

(b) Sampling ψ(0)|δ, γ
We sample simply as

ψ
(0)
t |δ, γ ∼ N(−0.5δ2, δ2),

independently for t = 1, . . . , n when γt = 0.

5. Sample (γ, s)|θ, µ, κ, h, ψ, λ, y by

(a) Sampling γ|θ, µ, κ, h, ψ, λ, y

We sample γt using the probability mass function

Pr(γt = 1|θ, µ, κ, h, ψ, λ, y) ∝ κ
K∑

i=1

qi
1
vi

exp

{
−(y∗(1)

t − ht −mi)2

2v2
i

}

× exp

[
−{(ht+1 − µ)− φ(ht − µ)−Di(y

∗(1)
t )}2

2σ2(1− ρ2)

]
,

Pr(γt = 0|θ, µ, κ, h, ψ, λ, y) ∝ (1− κ)
K∑

i=1

qi
1
vi

exp

{
−(y∗(0)

t − ht −mi)2

2v2
i

}

× exp

[
−{(ht+1 − µ)− φ(ht − µ)−Di(y

∗(0)
t )}2

2σ2(1− ρ2)

]
,

for t = 1, . . . , n− 1, and for t = n the second exp[·] term is omitted, where

y
∗(1)
t = log(yt − (eψt − 1))2 − log λt,

y
∗(0)
t = log y2

t − log λt.

This posterior density is also marginalized over st as sampling ψ
(1)
t in step 3.

(b) Sampling s|θ, µ, h, y∗, d

To sample st, we compute

π(st = i|θ, µ, h, y∗, d)

∝ qi · 1
vi

exp

{
−(y∗t − ht −mi)2

2v2
i

}
exp

[
−{(ht+1 − µ)− φ(ht − µ)−Di(y∗t )}2

2σ2(1− ρ2)

]
,

for i = 1, . . . , K. We sample st the K-point discrete distribution independently for
t = 1, . . . , n. In the case of t = n, the second exp[·] term is omitted.
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6. Sample κ|γ.

We sample κ by

κ|γ ∼ Beta(nκ1 + n1, nκ0 + n0),

where n0 and n1 are the numbers of time such that γt = 0 and γt = 1 respectively.

7. Sample (λ, ν)|θ, µ, s, h, ψ, γ, y by

(a) Sampling λ|θ, µ, ν, s, h, ψ, γ, y

We assume λ−1
t ∼ Gamma(ν/2, ν/2), then the conditional posterior density for (λ, ν)

is given by

π(λ, ν|θ, µ, s, h, ψ, γ, y) ∝ π(ν)
n∏

t=1

(
ν
2

) ν
2

Γ
(

ν
2

)λ
−( ν

2
+1)

t exp

{
− ν

2λt
− (log λt − µλt)

2

2σ2
λt

}
,

where

µλt = log(yt − ktγt)2 −mi − ht

−dtρbiv
2
i exp(mi/2){ht+1 − φht − (1− φ)µ− dtρσai exp(mi/2)}

σ{(1− ρ2) + ρ2b2
i v

2
i exp(mi)} ,

σ2
λt

=
v2
i (1− ρ2)

1− ρ2 + ρ2b2
i v

2
i exp(mi)

,

given st = i, for t = 1, . . . , n− 1 and µλn = log(yn− knγn)2−mi−hn, σ2
λn

= v2
i . The

conditional posterior distribution for λt is given by

π(λ|θ, µ, ν, s, h, ψ, γ, y) ∝ λ
−( ν

2
+1)

t exp

{
− ν

2λt
− (log λt − µλt)

2

2σ2
λt

}
,

We sample λt using the M-H algorithm with the candidate drawn by (λ∗t )−1 ∼
Gamma(ν/2, ν/2).

(b) Sampling ν|λ
The conditional posterior distribution for ν is given by

π(ν|λ) ∝ π(ν)
(

ν
2

)nν
2

Γ
(

ν
2

)n

n∏

t=1

λ
− ν

2
t exp

(
−ν

2

n∑

t=1

λ−1
t

)
.

We sample ν by the A-R M-H algorithm as in sampling δ in step 4.
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Appendix B. Augmented Kalman filter

To find θ that maximizes π(θ|s, y∗, d), we need to evaluate a likelihood f(y∗|θ, s, d). In the
following, we assume θ = (φ, σ, ρ) is fixed. Based on de Jong (1991), we conduct an augmented
Kalman filter and calculate the likelihood function.

Consider a state space model

yt = Xtβ + Ztαt + Gtut, t = 1, . . . , n,

αt+1 = Wtβ + Ttαt + Htut, t = 0, 1, . . . , n,

where Xt, Zt, Wt, Tt, Gt,Ht (t = 1, . . . , n), X0,H0 are constants, and

• β = b + Bµ, µ ∼ N(c, C). b is fixed and B has full column rank. µ is an m× 1 vector. C

is nonsingular unless C = O. Cov(y) = Σ (y = (y′1, y′2, . . . , y′n)′) is nonsingular if C = O.

• ut ∼ NID(0, I) for t = 0, 1, . . . , n. α0 = 0. µ and ut’s are uncorrelated.

In our approximated state space form of the SVLJt model, we set Zt = 1, Tt = φ, µ ∼ N(µ0, σ
2
µ0

),
b = (1, 1, 0)′, B = (0, 0, 1 − φ)′, Xt = (mi, 0, 0), Wt = (0, dtρσai exp(mi/2), 1) for t = 1, . . . , n,
and W0 =

(
0, 0, 1

1−φ

)
, where µ0 and σ2

µ0
are hyperparamters of the prior for µ. The Gt,Ht’s

are given in equation (13) and yt corresponds to y∗t here.
When µ is fixed, the Kalman filter is the recursion

Dt = ZtPt|t−1Z
′
t + GtG

′
t, Kt = (TtPt|t−1Z

′
t + HtG

′
t)D

−1
t ,

Pt+1|t = TtPt|t−1L
′
t + HtJ

′
t, Lt = Tt −KtZt,

et = yt −Xtβ − Ztat|t−1, at+1|t = Wtβ + Ttat|t−1 + Ktet,

for t = 1, . . . , n, where Jt = Ht − KtGt and a1|0 = W0β, P1 = H0H
′
0. Further, we consider

additional equations

ft = yt −Xtb− Zta
∗
t|t−1, a∗t+1|t = Wtb + Tta

∗
t|t−1 + Ktft,

Ft = XtB − ZtA
∗
t|t−1, A∗t+1|t = −WtB + TtA

∗
t|t−1 + KtFt,

for t = 1, . . . , n, where a∗1|0 = W0b, A∗1|0 = −W0B. Note that

et = ft − Ftµ, at+1|t = a∗t+1|t −A∗t+1|tµ.

Then the log likelihood given µ is

log f(y|µ) = −1
2

{
n log 2π + log |Σ|+ (y −Xb)′Σ−1(y −Xb)− 2q′µ + µ′Qµ

}
,

where log |Σ| =
∑n

t=1 log |Dt|, (y − Xb)′Σ−1(y − Xb) =
∑n

t=1 f ′tD
−1
t ft, q =

∑n
t=1 F ′

tD
−1
t ft and

Q =
∑n

t=1 F ′
tD

−1
t Ft. On the other hand, the posterior distribution of µ given y is N(Q−1

n+1qn+1, Q
−1
n+1)
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where

qt+1 = qt + F ′
tD

−1
t ft, q1 = C−1c,

Qt+1 = Qt + F ′
tD

−1
t Ft, Q1 = C−1,

for t = 1, . . . , n. Thus we obtain the likelihood of y as

log f(y) = log f(y|µ) + log π(µ)− log π(µ|y)

= const.− 1
2

{
n∑

t=1

log |Dt|+ log |Qn+1|+
n∑

t=1

f ′tD
−1
t ft + c′C−1c− q′n+1Q

−1
n+1qn+1

}
.
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