CIRJE-F- 508. Omori, Yasuhiro and Toshiaki Watanabe, "Block Sampler and Posterior Mode Estimation for A Nonlinear and Non-Gaussian State-space Model with Correlated Errors", August 2007.

This article introduces a new efficient simulation smoother and disturbance smoother for general state-space models where there exists a correlation between error terms of the measurement and state equations. The state vector is divided into several blocks where each block consists of many state variables. For each block, corresponding disturbances are sampled simultaneously from their conditional posterior distribution. The algorithm is based on the multivariate normal approximation of the conditional posterior density and exploits a conventional simulation smoother for a linear and Gaussian state space model. The performance of our method is illustrated using two examples (1) stochastic volatility models with leverage effects and (2) stochastic volatility models with leverage effects and state-dependent variances. The popular single move sampler which samples a state variable at a time is also conducted for comparison in the first example. It is shown that our proposed sampler produces considerable improvement in the mixing property of the Markov chain Monte Carlo chain.