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Abstract

We propose a quantity-based ‘dual’ version of the gravity equation that yields an

estimating equation with both cross-sectional interdependence and spatially lagged

error terms. Such an equation can be concisely estimated using spatial econometric

techniques. We illustrate this methodology by applying it to the Canada-U.S. data set

used previously, among others, by Anderson and van Wincoop (2003) and Feenstra

(2002, 2004). Our key result is to show that controlling directly for spatial interdepen-

dence across trade flows, as suggested by theory, significantly reduces border effects

because it captures ‘multilateral resistance’. Using a spatial autoregressive moving

average specification, we find that border effects between the U.S. and Canada are

smaller than in previous studies: about 8 for Canadian provinces and about 1.3 for

U.S. states. Yet, heterogeneous coefficient estimations reveal that there is much vari-

ation across provinces and states.
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“Improved econometric techniques based on careful consideration of the error

structure are likely to pay off. Recent literature on spatial econometrics [. . .] may be

helpful.” (Anderson and van Wincoop, 2004, p.713)

1 Introduction

The gravity equation is a remarkably good predictor for bilateral trade flows. Having been

derived from various formal trade models under a wide range of modeling assumptions, it

is nowadays firmly rooted in mainstream economic theory and has, as such, become an

essential part of every applied trade theorist’s tool box.1 Despite its wide applicability

and excellent fit, the gravity equation suffers from several well-know and from several less

well-known shortcomings. The former category comprises mainly empirical issues, such as

the treatment of zero trade flows, the construction of own absorption, the measurement

of internal distances, and concerns about the theoretical plausibility of various parameter

estimates. These problems have been extensively discussed in the literature (see Anderson

and van Wincoop, 2004, pp.729-733, for a recent overview) and we have nothing new to

add to the debate. We instead focus on one of the less well-known theoretical problems

that plagues the gravity equation: how to take into account the interdependence between

trade flows and estimate, as consistently as possible, the general equilibrium system?

Anderson and van Wincoop (2003) have recently argued that accounting for the inter-

action structure is important when estimating the gravity equation. They show that the

proper inclusion of multilateral resistance terms, i.e., terms which capture the fact that bi-

lateral trade flows do not only depend on bilateral trade barriers but also on trade barriers

across all trading partners, is crucial for the results one obtains.2 In other words, bilateral

predictions do not readily extend to a multilateral world because of complex indirect inter-

actions linking all the trading partners. Although such a finding is hardly surprising in a

general equilibrium setting, it has been largely neglected until now in applied work. Inter-

dependence has, however, to be somehow controlled for in the gravity equation to obtain

consistent estimates. Some previous studies aim at doing so by including ad hoc remote-

ness indices, even if there is no theoretical foundation to such an approach. Other studies

try to capture interdependence among trade flows with the help of origin- and destination-

specific importer-exporter fixed effects. The disturbing common feature of both of these

approaches resides in the implicit assumption that trade flows between two trading partners

1For various instances of the gravity equation see, e.g., Anderson (1979), Helpman and Krugman (1985),

Feenstra (2002, 2004), Anderson and van Wincoop (2003), and Melitz and Ottaviano (2005).
2The omission of the multilateral resistance terms leads to biased estimates and incorrect comparative

static results. Their inclusion allows to partly solve the ‘border effect puzzle’ (McCallum, 1995) and to

obtain smaller estimates of the distance elasticities.
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are independent from what happens to the rest of the sample. This is clearly a very strong

assumption that is not likely to hold and, therefore, may lead to biased and inconsistent

estimates of the gravity equation.

This paper offers a methodological contribution to the rapidly expanding literature

on the theory-based estimation of gravity equations. Building upon the observation that

the consistent estimation of a CES-based gravity equation crucially hinges on the correct

treatment of the unobservable price indices, our modeling strategy consists in taking a

‘dual’ approach that relies on observable trade flows only. More concretely, we derive

a gravity equation from the quantity-based version of the CES model by exploiting the

property that the price indices are themselves implicit functions of trade flows. Using an

appropriate linearization of the resulting equilibrium system allows us to recover, quite

naturally, an econometric specification in which bilateral trade flows between two regions

depend on trade flows involving all the other trading partners. Put differently, the model

displays a spatial autoregressive structure in trade flows. Since goods are gross substitutes,

the sales from any region into a market negatively depend on the sales from the other

regions into that market, which themselves depend on the whole distribution of bilateral

trade barriers. Controlling for such interdependencies with the help of spatial econometric

techniques amounts to control for multilateral resistance and yields consistent estimates of

the gravity equation. Although the idea of applying spatial econometrics to the gravity

equation has been in the air recently we provide, to the best of our knowledge, the first

attempt at doing so starting from a theory-based trade model.3 On top of controlling

directly for cross-sectional interdependence across trade flows, our approach has several

additional desirable properties. First, it reveals that all coefficients, including the spatial

autoregressive ones for both the spatially lagged endogenous variable and the error terms,

are generally region-specific. Hence, a fully theory-based estimation of the model requires

the use of local techniques that can deal with parameter heterogeneity. Our approach

allows us to do so and provides statistical inference on region-specific border effects and

distance elasticities. Second, it allows us to model more carefully the error structure,

thereby controlling for cross-sectional correlations in the error terms. Third, it does not

require an a priori estimate for the elasticity of substitution and provides, as a by-product,

3See Anselin and Bera (1998) for an overview of spatial econometrics. The asymptotic properties of some

spatial estimators have been derived by Kelejian and Prucha (1998) and Lee (2004). Spatial econometric

techniques have been applied to a wide range of topics including growth and convergence (Moreno and

Trehan, 1997; Ertur and Koch, 2007), spatial patterns of foreign direct investment (Bloningen et al., 2004,

2005), retail price competition (Pinkse et al., 2002), and interactions between local governments (Case et

al., 1993; Brueckner, 1998). To the best of our knowledge there are, until now, no applications to trade

and the gravity equation, which may be due to the fact that origin-destination interdependencies have not

yet been much developed in the spatial econometrics literature (yet, see LeSage and Pace, 2006, for an

extension of the standard theory to origin-destination interactions in a migration context).
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an intuitive measure of ‘spatial competition’.

We illustrate our methodology by applying it to the well-known Canada-U.S. dataset

used by Anderson and van Wincoop (2003) and Feenstra (2002, 2004). Since estimating the

model with heterogeneous coefficients is a daunting task, as standard estimation routines

are not available, we use an incremental approach and estimate as a first step a simple spec-

ification where all coefficients are constrained to be identical across regions (homogeneous

coefficient case). Doing so simplifies the econometric implementation and yields results that

are comparable with those in the literature. In a second step, we then provide estimates for

a model with region-specific coefficients, except for the spatial autoregressive ones which

we assume to be country specific (heterogeneous coefficient case).

Our key results may be summarized as follows. First, we show that there remains a

significant amount of spatial autocorrelation in the OLS residuals of the gravity equation,

even when including origin- and destination-specific importer-exporter fixed effects. Put

differently, OLS estimates are at best inefficient and at worst inefficient and biased, because

the fixed effects fail to capture the spatial interdependence among trade flows. This finding

vindicates the use of spatial econometric techniques and a more careful modeling of the

error structure. Second, we estimate the homogeneous coefficient specification of the model

and show that, as predicted by theory, there is a significant negative spatial autocorrelation

between trade flows.4 Once this autocorrelation is controlled for, the border effects between

the U.S. and Canada are shown to be smaller than in previous studies: about 8 for Canadian

provinces and about 1.3 for U.S. states. Our approach thus shows how spatial econometrics

allows to deal with the ‘border effect puzzle’ by controlling for multilateral resistance in

a novel way. Last, we provide results for the heterogeneous coefficient specification of the

model under the restriction of country-specific autoregressive parameters. Our estimates

reveal significant variations in both distance elasticities and border effects across provinces

and states. Whereas border effects for most U.S. states are statistically insignificant and

small, those for Canadian provinces are statistically significant and generally larger.

The remainder of the paper is organized as follows. In Section 2, we present the model

and derive the theoretical gravity equation, whereas in Section 3 we briefly review previous

estimation methods. We then propose, in Section 4, a spatial econometric estimating

equation derived from the linearized version of the theoretical model. We also show how

we can theoretically decompose and retrieve the border effects. Our empirical results are

presented in Section 5. Section 6 finally concludes.

4It is worth pointing out that, although the possibility of negative spatial autocorrelation is recognized

in the literature, such a correlation is usually treated as a curious theoretical construct. The reason is that

it is never derived from a structural model and, therefore, hard to interpret convincingly. This contrasts

starkly with theory where the existence of negative interdependence in, for example, exchange networks is

fairly well known and has been established experimentally (see, e.g., Bonacich, 1987).
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2 A ‘dual’ gravity model

In this section, we present a novel way of deriving a gravity equation that does not depend

on unobservable price indices yet encapsulates the general equilibrium interdependence of

the full trading system. The idea is to get rid of prices and price indices by using the inverse

demand functions and by exploiting the fact that price indices depend on trade flows. This

allows us to obtain an implicit equation system that depends on observables only and that

can be estimated with spatial econometric techniques. In a nutshell, whereas Anderson and

van Wincoop (2003) derive a gravity equation subject to a system of nonlinear constraints

in the unobservable price indices, we derive an unconstrained gravity equation in which

the observable trade flows are spatially autocorrelated. To do so, we build upon a CES

trade model à la Dixit and Stiglitz (1977) and Krugman (1980) with an arbitrary number

n of regions. Every region i is endowed with Li consumers/workers, who each supply

inelastically one unit of labor. Labor is the only production factor and Li stands for both

the size of, and the aggregate labor supply in, region i.

2.1 Preferences

All consumers have identical preferences over a continuum of horizontally differentiated

product varieties. A representative consumer in region j solves the following problem:5

max Uj =
∑

i

∫

Ωi

qij(v)
σ−1

σ dv subject to
∑

i

∫

Ωi

qij(v)pij(v)dv = yj,

where σ > 1 denotes the constant elasticity of substitution between any two varieties; yj

stands for individual income in region j; pij(v) and qij(v) denote the consumer (i.e., the

delivered) price and per capita consumption of variety v produced in region i; and where

Ωi denotes the set of varieties produced in region i. Since all varieties produced in the same

region can be treated symmetrically in what follows, we alleviate notation by dropping the

variety index v. Let mk stand for the measure of Ωk (i.e., the mass of varieties produced in

region k). It is readily verified that the aggregate inverse demand functions for each variety

are then given by

pij =
Q

−1/σ
ij∑

k mkQ
1−1/σ
kj

Yj, (1)

5Following previous work by Anderson (1979), Anderson and van Wincoop (2003) derive a gravity

equation from a CES expenditure system with goods that are differentiated by region of origin and the

supply of which is fixed. We instead prefer the monopolistic competition specification with free entry, since

it allows us to control for factor price differences in the empirical part. Note also that including home bias

parameters in the utility function is irrelevant for the empirical analysis as they cannot be separated from

population size and trade costs.
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where Qij ≡ Ljqij denotes the aggregate demand in region j for a variety produced in

region i; and where Yj ≡ Ljyj stands for the aggregate income in region j.

2.2 Technology

Each firm produces only a single product variety. Thus, there is a one-to-one correspondence

between varieties and firms and mk also stands for the mass of firms operating in region k.

To produce q units of output requires cq+F units of labor, where c is the constant marginal

and F is the fixed input requirement. Shipping varieties both within and across regions is

costly. More precisely, shipping one unit of any variety between regions j and k requires to

dispatch τjk > 1 units from the region of origin, while the rest ‘melts away’ in transportation

(the so-called ‘iceberg’ cost). It is worth pointing out that we need not to make a priori

any assumption on either the value of intraregional trade costs τii, or on symmetry of trade

costs across regions.6

A firm located in country j maximizes its profit, given by

πj =
∑

k

(pjk − cwjτjk)Qjk − Fwj,

with respect to the quantities Qjk and subject to the inverse demand schedule (1). Because

price and quantity competition are equivalent when there is a continuum of firms, the profit

maximizing prices display as always a constant markup over marginal cost: pjk = τjkpj ,

where pj ≡ cwjσ/(σ−1) stands for the producer (i.e., the mill) price in region j. Free entry

and exit drive profits to zero, which implies that each firm must produce the break-even

quantity

∑

k

τjkQjk =
F (σ − 1)

c
≡ Q, (2)

irrespective of the region j it is located in.7

2.3 Equilibrium

To derive the gravity equation requires to determine the value of trade flows from i to j.

This is given by Xij ≡ mipijQij which, using (1) can be expressed as follows:

Xij = mi

Q
1−1/σ
ij∑

k mkQ
1−1/σ
kj

Yj. (3)

6Assumptions often made are that trade within each region is costless (τii = 1) and that trade costs

are pairwise symmetric across regions (τij = τji). Though theoretically convenient, neither of these two

assumptions is particularly appealing from an applied perspective.
7Strictly speaking, this equilibrium condition only holds for interior equilibria. In what follows, we focus

exclusively on such equilibria as they are the empirically relevant ones for our subsequent analysis.
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Aggregate income constraints, the equilibrium prices, and the zero profit condition (2) then

imply that

Yi =
∑

k

mipikQik = mipiQ.

Solving for mi = Yi/(piQ) and substituting into (3), we can eliminate the unobservable

mass of firms to obtain

Xij = YiYj

Q
1−1/σ
ij∑

k
pi

pk
YkQ

1−1/σ
kj

. (4)

By definition of the trade flows Xij and the mass of firms mi, it must be that

Qij =
Xij

mipij
=

XijQ

Yiτij
. (5)

Plugging (5) into (4) and simplifying then yields

Xij = YiYj

(
XijQ

Yiτij

)1−1/σ

∑
k

pi

pk
Yk

(
XkjQ

Ykτkj

)1−1/σ
= Yj

τ
1/σ−1
ij

(
Xij

Yi

)1−1/σ

∑
k

Lk

Li
τ

1/σ−1
kj

(
Xkj

Yk

)1−1/σ
, (6)

where we have used the equilibrium relationship pi/pk = wi/wk and the aggregate income

constraint wi = Yi/Li. Expression (6) can be rewritten as follows:

Xij = Y σ
j

[
∑

k

Lk

Li

(
τkj

τ ij

Yk

Yi

)1/σ−1

X
1−1/σ
kj

]−σ

∀i, j (7)

which defines a system of implicit equations describing the interdependence of all trade

flows towards region j. To close the general equilibrium system finally requires to impose

the aggregate income constraints

Yi −
∑

k

Xik = 0. (8)

As can be seen from expressions (7) and (8), the GDP Yi ≡ fi(L, σ,T) of each region can

generally be expressed as a function of technology fi, the vector of endowments L = (Li),

preferences σ, and the matrix of trade frictions T = (τij). As can be further seen from

(7) and (8), all trade flows Xij (including own absorption Xii) are linked in equilibrium,

both directly (since goods are gross substitutes) and indirectly (via the aggregate income

constraints). Formally, one may think about such a system in terms of a directed graph,

where the Xij are the flows between regions (the ‘nodes’) along trading routes (the ‘edges’),

and where the Yi play the role of flow conservation constraints. Figure 1 illustrates the

equilibrium relationships in a simple three-region world.
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Insert Figure 1 about here.

As is clear from Figure 1, a meaningful comparative static exercise on either Yi or Xij

should take into account the equilibrium interdependence of the trade flows and GDPs.

This seems especially relevant for gravity equations, since the estimated coefficients are

usually interpreted as providing precisely these comparative static results for the flows Xij .

Yet, taking into account all of these interdependencies unfortunately yields an equilibrium

system that does not allow for any tractable empirical specification.8 In what follows,

we therefore only control for a part of the interdependencies, namely those between the

different trade flows Xij . We thus stick closely to the existing literature which considers

that regional GDPs are exogenous to the analysis.9

3 Some previous estimation methods

A first estimation method is based upon the admittedly strong assumption that trade

flows are independent : estimating the determinants of Xij can be done without taking into

account any information contained in Xkl. McCallum (1995), among others, makes this

assumption to estimate by OLS the following empirical gravity equation for Canada-U.S.

interregional trade:

ln Xij = α1 + α2 ln Yi + α3 ln Yj + α4 ln dij + α5 bij + εij. (9)

The novelty with respect to previous approaches is that McCallum includes a dummy vari-

able bij , which equals one for interprovincial trade and zero for state-province trade. This

variable is, therefore, intended to capture the trade-reducing impacts of the international

border. Quite surprisingly, McCallum obtains paradoxically large values for the coefficient

α5, ranging from 3.07 to 3.30. Consequently, Canadian provinces seem to trade 21.5 to 27

times more with themselves than with U.S. states of equal size and distance, a seemingly

unrealistically large value for the border effect between two well-integrated and culturally

similar countries like Canada and the U.S.

8It has been realized since a long time that the full interdependence of the system should be somehow

taken into consideration. Bergstrand (1985, p.474) argues that “the gravity equation is a reduced form

from a partial equilibrium subsystem of a general equilibrium model”. Anderson and Smith (1999, p.29)

claim that “SUR is an appropriate econometric technique”, yet they do not estimate the gravity equation

using this methodology because of problems with handling own absorption Xii.
9As argued by Bergstrand (1985), exogeneous GDPs amount to assuming that regions are small enough

so that they cannot affect GDPs by any one trade flow. Although this is the case for the Xij , the same

does not hold true for the Xii. These constitute indeed a quite large share of GDP for most regions, so

that changes in them are bound to affect regional GDPs. To the best of our knowledge, this issue has not

been dealt with until now in the literature where own absorption is usually disregarded.

8



McCallum’s ‘border effect puzzle’ has triggered a substantial amount of subsequent

research intended to explain these seemingly paradoxical values. As recently shown by

Anderson and van Wincoop (2003), McCallum’s estimates are biased by the omission of

multilateral resistance terms. Anderson and van Wincoop build on the ‘price version’ of the

CES model presented in Section 2 and derive the following instance of the gravity equation,

assuming symmetric trade costs which are a log-linear function of bilateral distance and

the existence of an international border between i and j:

ln

(
Xij

YiYj

)
= k + a1 ln dij + a2(1 − bij) − ln P̃

1−σ
i − ln P̃

1−σ
j + εij, (10)

where k ≡ −YW is a constant, with YW the ‘world’ GDP; and where P̃
1−σ
i and P̃

1−σ
j are

the multilateral resistance terms of regions i and j, which, apart from unitary income

elasticities, represent the key difference with equation (9) estimated by McCallum. These

multilateral resistance terms are implicitly defined by a system of non-linear equations

involving all regions’ expenditure shares and the whole trade cost distribution:

P̃
1−σ
i =

∑

k

Yk

YW

P̃
σ−1
k ea1 ln dik+a2(1−bik) ∀i. (11)

Equations (10) and (11) reveal that the determinants of Xij cannot be consistently esti-

mated without taking into account the conditions prevailing in the origin and destination

markets i and j, as captured by a simple transformation of the CES price indices. These

price indices depend themselves on the inverse demands and, therefore, on the different

trade flows.10 Hence, the independence assumption underlying the McCallum-type esti-

mates is clearly invalid and biases the results.

Anderson and van Wincoop (2003) estimate equation (10) using nonlinear least squares,

where the multilateral resistance terms are solved for in a first step using (11). While

this procedure accounts for interdependence, it has at least three drawbacks. First, it

requires symmetric trade costs. Although this assumption holds when one uses simple

distance data, it may prevent the elaboration and the use of more complex trade cost

measures which are likely to be asymmetric. Second, as the multilateral resistance terms

are solved for numerically, they do not allow for statistical inference and significance tests.

Furthermore, an a priori estimate of the elasticity of substitution σ is required as it cannot

10Despite their central theoretical role, price indices have been largely neglected in empirical applications

of the gravity equation. The main reason for this is that they are unobservable, so that most studies

have tried to somehow eliminated them. Notable exceptions are given by Bergstrand (1985) and Baier and

Bergstrand (2001), who retain the price indices as explanatory variables using published price data, namely

GDP deflators. This method suffers from severe data constraints, especially at subnational levels for which

regional GDP deflators are not available. Furthermore, the theoretical link between published price indices

and the CES price aggregators is unclear.
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be estimated separately because it enters in multiplicative form the trade cost parameters a1

and a2. Last, as argued by Feenstra (2002, 2004), Anderson and van Wincoop’s estimation

procedure requires custom programming of the minimization algorithms to obtain estimates

of the coefficients and of the standard errors.

A simpler alternative estimation method, suggested by Anderson and van Wincoop

(2003) and Feenstra (2002) and used, among others, by Rose and van Wincoop (2001),

leads to replace the multilateral resistance terms with region-specific importer-exporter

fixed effects. In thise case, (10) can be written as:

ln

(
Xij

YiYj

)
= k + a1 ln dij + a2(1 − bij) + βi

1δ
i
1 + βj

2δ
j
2 + εij , (12)

where δi
1 denotes an indicator variable that equals one if region i is the exporter, and zero

otherwise; and where δj
2 denotes an indicator variable that equals one if region j is the

importer, and zero otherwise. The coefficients βi
1 = (σ−1) ln P̃i and βj

2 = (σ−1) ln P̃j then

provide estimates of the multilateral resistance terms.11

Although the fixed effects procedure yields theoretically consistent estimates of the

average border effect (see Feenstra, 2002), it amounts to disregarding a significant part of

the spatial interdependence. Hence, while the fixed effects method has the advantage of

being simple to implement, as OLS can be used under the traditional assumptions on the

error term εij, its main drawback is that it does not fully capture the spatial interactions of

the model. This point will be made more clearly in our subsequent developments where we

show that, even after controlling for multilateral resistance by using region-specific importer-

exporter fixed effects, there remains a significant amount of spatial autocorrelation in the

OLS residuals. Hence, OLS estimates are at best inefficient and at worst inefficient and

biased as fixed effects fail to capture the full spatial interdependence among trade flows.12

4 Econometric specification

We now propose a novel method for estimating the gravity equation, which builds on the

foregoing observation that trade flows are spatially interdependent and that this interde-

pendence needs to be somehow taken into account. Our approach draws quite naturally

11Note that equation (10) features only a single multilateral resistance term per region, whereas there

are two fixed effects in equation (12). The reason is that Anderson and van Wincoop (2003, p.175) make a

symmetry assumption on trade costs (in the general case, there are two terms per region given by expressions

(10) and (11) on p.175 of their paper).
12Note that Anderson and van Wincoop (2003, p.180) also emphasize that the fixed-effects estimator could

be less efficient than the non-linear least squares estimator, which uses information on the full structure of

the model. We furthermore show in this paper that it could also be biased. One should keep in mind that

fixed effects allow to control for heterogeneity, but not for interdependence. This fact is often overlooked

in the literature, even when more complex fixed effects specifications are used (e.g., Baltagi et al., 2003).
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on spatial econometric techniques, which are precisely designed to deal with cross-sectional

interdependence. When compared to other estimation methods, we believe that ours offers

a series of distinct advantages:

1. it accounts for cross-sectional interdependence among trade flows, as implied by the

model, and thus directly controls for multilateral resistance;

2. it uses a more careful modeling of the error structure, thereby controlling for possible

cross-sectional interdependence in the error terms;

3. it reveals that all coefficients are generally region-specific, and allows for statistical

inference on estimated regional border effects and distance elasticities;

4. it does not require an a priori value for σ and provides, as a by-product, an intuitive

measure of ‘spatial competition’.

4.1 Linearization and matrix form

We start with the theory-based specification of the model. Taking equation (7) in logarith-

mic form, we readily obtain:13

ln Xij = σ ln Yj − σ ln

[
∑

k

Lk

Li

(
τkjYk

τijYi

) 1

σ
−1

X
1− 1

σ

kj

]
≡ f(σ), (13)

which describes an implicit nonlinear relationship between the trade flows towards market j.

There is clearly spatial interdependence as Xij depends negatively on the nominal sales of

the other regions in market j (recall that all varieties are gross substitutes). To obtain a

specification that is estimable with the help of spatial econometric techniques, we linearize

f around σ = 1.14 As shown in Appendix A, this yields the following equation:

ln Xij = σ
∑

k

Lk

L
ln

Lk

L
+ σ ln Yj − (σ − 1)

[
ln τij −

∑

k

Lk

L
ln τkj

]
(14)

−σ

[
ln wi −

∑

k

Lk

L
ln wk

]
+

[
ln Yi −

∑

k

Lk

L
ln Yk

]
− (σ − 1)

∑

k

Lk

L
ln Xkj,

13As recently argued by Santos Silva and Tenreyro (2006), the log-linearization may bias some estimates

in the presence of heterogeneity. Yet, the Poisson pseudo maximum likelihood estimator these authors

suggest cannot be readily implemented in our specification with lagged endogenous variables. Whether

the omission of spatial interdependence is preferable to the log-linearization of the estimating equation is

unclear and beyond the scope of this paper. Yet, it is worth emphasizing that our weight matrix gives more

weight to larger regions (as measured by Li/L) which, as argued by Santos Silva and Tenreyro (2006) is

desirable because trade data for larger regions is usually more accurate.
14Similar linearizations have been used previously for estimating CES production functions, although

many authors have considered second-order approximations (e.g., Kmenta, 1967).

11



where L ≡
∑

k Lk denotes the total population. Expression (14) reveals the essence of

spatial interdepencence in the gravity equation: the trade flow Xij from region i to region j

also depends on all the trade flows from the other regions k to region j. Hence, trade flows

cannot be analyzed as isolate observations though this is predominantly done in empirical

applications of the gravity equation.

Several comments are in order. First, as expected, trade flows from i to j increase with

destination GDP Yj. Yet, by contrast to traditional gravity equations, the coefficient on

partner GDP exceeds unity. Second, trade flows from i to j are affected by relative trade

barriers, as measured by the deviation of bilateral trade barriers τij from the population

weighted average (third term in brackets). Put differently, relative accessibility matters.

Third, trade flows from i to j are negatively affected by wages wi in the origin region,

measured again by the deviation from the population weighted average (fourth term in

brackets). Above-average wages raise production costs and make region i’s firms less com-

petitive in market j. Fourth, trade flows from i to j increase in own GDP Yi, yet again only

as measured by the deviation from the population weighted average (fifth term in brackets).

The intuition is that a larger region hosts more firms, because of the ‘home market effect’,

yet that the presence of other large regions reduces that mass by providing equally attrac-

tive export bases (see Behrens et al., 2005). Last, trade flows from i to j decrease with the

value of sales Xkj from any third region k into the destination market, because goods are

gross substitutes. This effect is stronger the closer substitutes the varieties are (i.e., the

larger the value of σ). Since the spatial interdependence will be captured by the spatial

autoregressive coefficient in our estimating equation, this coefficient can quite intuitively

be interpreted as a measure of ‘spatial competition’.

To make notation more compact, we recast (14) into matrix form as follows:

X = σζ1I + σYd + (I −W)Yo︸ ︷︷ ︸
≡ Ỹo

−(σ − 1) (I− W)τ︸ ︷︷ ︸
≡ τ̃

−σ (I −W)w︸ ︷︷ ︸
≡ w̃

−(σ − 1)WX. (15)

In expression (15), we define:

X ≡ (lnXij) as the n2 × 1 vector of the logarithms of trade flows;

ζ ≡
∑

k
Lk

L
ln Lk

L
, which is the entropy of the population distribution;

1I as the n2 × 1 vector whose components are all equal to 1;

Yd ≡ (Yj) as the n2 × 1 vector of the logarithms of destination GDPs;

I as the n2 × n2 identity matrix;

W as the n2 × n2 spatial weight matrix, whose expression is given below;
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Yo ≡ (Yi) as the n2 × 1 vector of the logarithms of origin GDPs;

τ ≡ (ln τij) as the n2 × 1 vector of the logarithms of trade costs;

w ≡ (ln wi) as the n2 × 1 vector of the logarithms of origin wages.

Note from expressions (14) and (15) that all variables superscripted with a tilde are mea-

sured as deviations from their population weighted averages. We stick to this notational

convention in the remainder of the paper to ease the exposition. Some simple algebraic

manipulations show that the structure of the theory-based spatial weight matrix is given

by: W = [S diag (L)] ⊗ In, where S is the n × n matrix whose elements are all equal to 1;

where ⊗ denotes the Kronecker (tensor) product; and where diag(L) is defined as the n×n

diagonal matrix of the Lk/L terms. It is worth pointing out that, by construction, W is

row-standardized.

Turning to the functional form of trade costs, we follow standard practice by assuming

that τij is a log-linear function of distance and border effects as follows:15

τij ≡ dγ
ije

ξbij (16)

where dij denotes the distance between regions i and j, and where bij is a dummy variable

taking the value 1 if the flow Xij crosses the Canada-U.S. border, and 0 otherwise. Taking

logarithms of (16), we can rewrite this expression in matrix form as follows:

τ = γd + ξb, (17)

where d ≡ (ln dij) is the n2 × 1 vector of the logarithms of distance; and where b is the

n2 × 1 vector of dummy variables for cross-border flows. Substituting (17) into (15) then

yields the following estimating equation:

X = β01I + β1Yd + β2Ỹo + β3d̃ + β4w̃ + θb̃ + ρWX, (18)

where β0 ≡ σζ < 0 is the constant term; β1 ≡ σ > 1 is the coefficient for destination

GDP; β2 ≡ 1 is the coefficient for origin GDP; β3 ≡ −(σ − 1)γ < 0 is the distance

coefficient (which, because of the implicit structure of the model, differs from the true

distance elasticity); and where β4 ≡ −σ < 1 is the coefficient for wage in the origin

region. Note that β2, β3 and β4 all capture deviations from population weighted averages,

as explained in the foregoing. Turning to the border effects, their coefficient is given by

θ ≡ −(σ − 1)ξ < 0. How to precisely compute and decompose the border effects into intra-

and international components is analyzed in Section 5. Finally, the spatial autoregressive

coefficient ρ ≡ −(σ − 1) < 0 is the smaller the closer substitutes the varieties are. Hence,

ρ provides an intuitive measure of ‘spatial competition’.

15Henderson and Millimet (2006) show that this linearity assumption cannot be rejected.

13



4.2 Spatial econometric specification

To obtain a specification that can be estimated by spatial econometric techniques requires

to rewrite (18) in explicit form, i.e., to move all of the lnXij terms to the left-hand side.

Let Wdiag ≡ diag (L) ⊗ In denote the matrix containing only the diagonal elements of W,

each repeated n times by block. Recalling that ρ ≡ −(σ − 1), equation (18) can then be

rewritten as follows:

(I − ρWdiag)X = β01I + β1Yd + β2Ỹo + β3d̃ + β4w̃ + θb̃ + ρ (W − Wdiag)X.

Because I − ρWdiag is, by construction, an invertible diagonal matrix, we can premultiply

by its inverse to obtain the following expression:

X = β01I + β1Yd + β2Ỹo + β3d̃ + β4w̃ + θb̃ + ρ (W −Wdiag)X. (19)

The n elements between positions i × n + 1 and (i + 1) × n of (I − ρWdiag)
−1, given by[

1 + (σ − 1)Li

L

]−1
, depend on the origin index i only which is fixed and identical for all

destinations. In expression (19), the components of the transformed (overlined) vectors of

coefficients are thus given by:

β1i ≡ σ [1 − ρ(Li/L)]−1 > 0, β2i ≡ [1 − ρ(Li/L)]−1 > 0,

β3i ≡ ρ [1 − ρ(Li/L)]−1 γ < 0, β4i ≡ −β1i < 0,

θi ≡ ρ [1 − ρ(Li/L)]−1 ξ < 0, ρi ≡ ρ [1 − ρ(Li/L)]−1 < 0,

which shows that we obtain a specification with one set of parameters for each region.

The full model, therefore, has a ‘club’ structure since all parameters (including the spatial

autoregressive ones) must be estimated locally for each region. Quite naturally, we refer

to this model as the heterogeneous coefficients model. Since it is econometrically quite

complicated to handle, we will first estimate a simpler benchmark in which we constrain all

coefficients to be identical across regions, which we refer to as the homogeneous coefficients

model. Formally, constraining the coefficients to be identical amounts to assuming that the

diagonal elements of W are equal to zero in equation (18). In that case, the model becomes

simpler and can readily be estimated using standard spatial econometric techniques.

Before turning to the estimation proper, we need to make precise the error structure

underlying the model. Though fundamental to the analysis, this modeling aspect has

received only little attention until now. This is quite surprising because when the error terms

are introduced into the econometric specification via the trade costs τij or the trade flows

Xij , as usual in the literature, one must take into account the fact that “the multilateral

resistance variables also depend on these error terms” (Anderson and van Wincoop, 2004,

p.713). The same holds true for the border effects, since these effects in any region depend
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in a complex way on a spatially weighted average of the effects in all the other regions.

Consequently, the error terms will exhibit some form of cross-sectional correlation that has

to be dealt with. To the best of our knowledge, this point has largely gone unnoticed until

now in the gravity literature.16 Although “errors can enter the model in many [. . .] ways of

course, about which the theory has little to say” (Anderson and van Wincoop, 2003, p.180),

it is likely that the exact way the error terms are introduced into the model is crucial for

the consistency of the estimates one obtains.

In what follows, we introduce the error terms via the trade flows Xij . Doing so can be

justified on the basis that regional trade flows are observed imperfectly. Let Xreal
ij ≡ Xobs

ij eεij

stand for the unobserved ‘real’ trade flow, where Xobs
ij denotes the observed trade flow and

εij is an i.i.d. normal error term. Introducing this error specification into (19) yields:

X = β01I + β1Yd + β2Ỹo + β3d̃ + β4w̃ + θb̃ + ρ (W − Wdiag)X + u (20)

where X now stands for the vector of observed trade flows and where

u = −ε + D
(
ρ ⊗ [W − Wdiag]

)
ε (21)

stands for the error term. Note from (21) that the error terms εij are spatially correlated

under the form of a first-order moving average with correlation coefficients ρi that are

region-specific. We hence obtain, quite naturally, cross-sectional interdependence in the

error terms. Although moving averages are quite common in structural econometric models,

especially in time series, they are less so in spatial econometrics. A first explanation of this

fact is the clear lack of structural models. A second explanation is that the combined

estimation of a moving average error structure with an autoregressive part (the so-called

SARMA model; Huang, 1984) is uncommon and scarcely used.

5 Empirical results

In what follows, we apply our methodology to the well-known Canada-U.S. dataset used

by Anderson and van Wincoop (2003) and Feenstra (2002, 2004). We first estimate the

OLS benchmark, both with and without importer-exporter fixed effects, and show that the

residuals are in all cases spatially autocorrelated. This finding vindicates the use of spatial

econometric techniques for estimating such equations because OLS estimators are at best

inefficient and at worst inefficient and biased. We then estimate our preferred theory-based

16As pointed out by Anderson and van Wincoop (2004, p.713), such interdependencies give rise to

complex problems since “[structural estimation techniques] would have to be modified since the multilateral

resistance variables also depend on these error terms.” While introducing origin–destination fixed effects

allows to circumvent this problem by using standard estimation techniques (Feenstra, 2002, 2004) we

propose, in the remainder of this paper, to explicitly take into account the more complicated error structure.

15



specification, namely the SARMA model, under the assumption of homogeneous coeffi-

cients. We also run a series of robustness checks by estimating the model under alternative

error structures. As will become clear, the empirical results strongly back the theoreti-

cal specification. Finally, we estimate the SARMA model with heterogeneous coefficients.

Since estimating the fully heterogeneous model is too complicated, because it requires es-

timating as many spatial autoregressive coefficients for the endogenous lagged variable and

the error terms as there are regions, we restrict ourselves to the simpler case in which we

estimate only country-specific autoregressive coefficients. The technical details underlying

this procedure are relegated to Appendix D.17

5.1 Data and controls

The dataset features bilateral trade flows Xij , regional GDPs Yi, internal absorption Xii

(all measured in million US$), and distances dij in km between regional and provin-

cial capitals for 32 U.S. states and 8 Canadian provinces. It is publicly available from

Robert C. Feenstra’s homepage at the following URL (under the heading ‘Chapter 5’):

http://www.econ.ucdavis.edu/faculty/fzfeens/textbook.html. Unlike most gravity

equations, which disregard own absorption Xii, we require a measure of internal trade costs

because we have to take into account the full structure of spatial interdependence. Follow-

ing Redding and Venables (2004), we measure internal trade costs as τii ≡ κ
√

surfacei/π,

where the regional surface data is taken from the ArcView database and has been converted

into square kilometers. As estimation results are known to be somewhat sensitive to the

measure of internal distance (see, e.g., Head and Mayer, 2002) we use the values 1/3, 2/3

and 1 for the parameter κ as robustness checks in what follows.18 Hourly wages are ob-

tained from Statistics Canada for the Canadian provinces, and from the Bureau of Labor

Statistics for the U.S. states. All wage data is for 2005 and the Canadian values have been

converted to US$ using the average 2005 exchange rate.

Since our estimation method requires the whole information contained in the sample to

account for spatial interdependence, we further have to deal with the well-known problem

of zero trade flows. Indeed, there are 49 zero observations out of 1600, which requires

an appropriate treatment. Since there is no generally agreed-upon method for doing so

(Anderson and van Wincoop, 2004; Disdier and Head, 2005), we control for the potential

zero flow outliers by including a dummy variable in all regressions. Although this is an

admittedly crude way of controlling for zero trade flows, alternative methods like truncating

17To the best of our knowledge, ours are the first estimations of SARMA models with heterogeneous

autoregressive coefficients.
18Note that we did not try more complex measures of interregional distance as suggested in, e.g., Helliwell

and Verdier (2001) or Head and Mayer (2002). We conjecture that our main results are relatively robust

to the use of such more complex measures.

16



the sample are not known to perform better or to be theoretically more sound.19

5.2 Homogeneous coefficient regressions

We start with the simplest possible specification in which all coefficients are constrained

to be identical across regions. We first estimate McCallum-type OLS regressions of the

form (9) as our benchmark, the results of which are summarized in Table 1 (columns 1–3).

To stay as closely as possible to the original analysis, we define the border effects as in

Anderson and van Wincoop (2003). Hence, we introduce two sets of dummy variables,

bordCAij and bordUSij , for Canada-U.S. and U.S.-Canada flows, respectively. The implied

border effects can, as always, be retrieved as the exponential of minus the coefficient of

bordCAij and bordUSij. As can be seen from Table 1, all coefficients have the correct sign,

reasonable magnitudes, and are precisely estimated. Results for the distance elasticity are

somewhat sensitive to the definition of internal distance, which is a well-known result in

the literature. As can be further seen from Table 1, the magnitude of the border effects for

Canadian provinces ranges from about 14.5 to 16, depending on the definition of internal

distance. These estimates are in line with the McCallum-type regressions of Anderson and

van Wincoop (2003, Table 1, p.173), which obtain border effects of about 15.7.20

Insert Table 1 about here.

As can be seen from the last line of Table 1, not a single OLS specification passes Moran’s I

test for the absence of spatial autocorrelation of the residuals (Cliff and Ord, 1981). Stated

differently, there remains a significant amount of spatial autocorrelation in the OLS resid-

uals, which leads at best to inefficient and at worst to both inefficient and biased estimates

(with omitted variable bias because of the missing spatially lagged variable). The same

finding holds true for gravity equations including origin and destination importer-exporter

fixed effects à la Feenstra (2002, 2004), the results of which are summarized in Table 1

(columns 4–6). This finding suffices to show that fixed effects capture at best some het-

erogeneity but do not capture spatial interdependence. Hence, although fixed effects allow

to partly control for border effects, they are by no means sufficient from both a theoretical

and from an econometric point of view.

We next turn to our preferred theory-based specification, namely the SARMA model

(20) and (21) which takes into account the spatial interdependence among both trade flows

19See Felbermayr and Kohler (2006) for a recent discussion on the various treatments of zero trade flows.

They argue that the neglect of zero trade flows is at the heart of the “puzzling persistance of distance” and

they estimate a gravity equation with corner solutions using a Tobit estimator.
20It is worth pointing out that the slight differences between our OLS estimates and those of Anderson

and van Wincoop (2003) are due to: (i) inclusion of own trade flows Xii; (ii) accounting for intra-regional

distances; and (iii) controlling for zero trade flows.
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and error terms. Columns 1–3 of Table 2 summarize the estimation results obtained under

homogeneous coefficients in the unconstrained specification.

Insert Table 2 about here.

As can be seen from Table 2 (columns 1–3), all coefficients, including the spatial autore-

gressive ones, have the correct signs, plausible magnitudes, and are precisely estimated. To

begin with, note that, as predicted by the model, the coefficient for origin GDP, as measure

by the deviation from population weighted average (I − W) lnYi, remains close to unity.

As further predicted by the model, the coefficient on destination GDP lnYj clearly exceeds

unity. The distance coefficient, measured again as deviation from population weighted av-

erage (I−W) lndij, slight increases but remains fairly stable. Turning to the wage terms, it

is worth noting that they are highly significant and negative. Put differently, higher origin

wages reduce trade flows because of increased production costs. Although one might a pri-

ori suspect that interregional wage differentials should not significantly affect interregional

trade flows in an integrated economic environment like North America, where interregional

wages differentials are relatively small, our results show that this is not the case: inter-

regional wage differentials are significant enough across North American regions to affect

trade flows. One of the key empirical results in the SARMA specification is that there is

a significant amount of negative spatial autocorrelation among trade flows (ρ̂ < 0), as pre-

dicted by theory. There is also negative spatial autocorrelation among error terms (λ̂ < 0),

thus showing that controlling for cross-sectional correlations in errors is important.

Finally, as can be seen from Table 2, capturing the spatial interdependence of the equi-

librium system in the SARMA model significantly reduces the border effects with respect

to the OLS estimates, but also with respect to Anderson and van Wincoop (2003). Indeed,

in our preferred theory-based specification, the border effects for Canadian provinces range

from about 7.7 to 8.2, whereas the ones for U.S. states range from 1.31 to about 1.32 (see

Appendix B.1. for a more detailed explanantion of how to compute and to decompose the

border effects). Our specification thus captures much of the spatial interdependence that

has been shown to lie at the heart of the ‘border effect puzzle’.

As can be seen from equation (18), the most exact theoretical specification imposes

some additional restrictions on the coefficients of the model. In particular, own GDP

should have a unit coefficient, whereas the coefficients on relative distance and relative

wages should be identical. In Appendix C, we show how to derive a constrained model

that encapsulates these additional restrictions. Columns 4–6 of Table 3 give results for the

constrained specification. Note that all coefficients have the correct sign and are precisely

estimated. The major change between the constrained and the unconstrained SARMA

estimates lies in the fact that the spatial autoregressive coefficient is larger in the former

than in the latter, whereas the border effects are slightly smaller. Overall, the estimation
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results of the constrained specification largely confirm those of the unconstrained one, thus

suggesting that the results are robust.

As stated in the foregoing, there are many ways of modeling the error structure about

which theory has little to say. To see how sensitive the results are to the precise nature of

the error structure, we now run two robustness checks. First, we approximate the moving

average by a more general autoregressive error structure, which leads to the so-called general

spatial model (henceforth, GSM; Anselin, 1988). Consider a vector of error terms u that is

spatially correlated according to the autoregressive structure

u = D(λ ⊗ [W − Wdiag])u + ε, (22)

where ε is i.i.d. and normally distributed with zero mean and variance σ2I. Provided that

|λi| < 1 for all i, we then can write

u =
[
In2 − D(λ ⊗ [W −Wdiag])

]−1
ε =

∞∑

j=1

[
D(λ ⊗ [W −Wdiag])

]j
ε + ε.

When the successive powers of
[
D(λ ⊗ [W −Wdiag])

]j
converge to 0 sufficiently quickly,

the spatial autoregressive structure approximates appropriately the first-order moving av-

erage, i.e., u ≈ ε + D(λ ⊗ [W − Wdiag])ε as in (21).21

We estimate the GSM specification in the homogeneous case and the results are sum-

marized in Table 3 (columns 1–3). Observe that, as in the SARMA model, the spatial

autoregressive coefficient ρ is negative and highly significant in all estimations, which is in

accord with the underlying theory stipulating that goods are gross substitutes. Yet, the

magnitude of ρ is smaller than in the unconstrained theory-based SARMA model, thus

suggesting that the approximation is not very good. The value is close to the one obtained

in the constrained SARMA model.

Insert Table 3 about here.

All remaining coefficients are precisely estimated and the signs are identical to the ones

obtained under the SARMA specification. Note that the magnitude of both origin and

destination GDPs change, with the former now exceeding unity whereas the latter falls

short of unity. These results are at odds with the underlying model and probably driven by

the poor fit of the approximation. The distance coefficients and the border effects remain

fairly similar, and the wage coefficient is again negative and highly significant.

As a second robustness check, we re-estimate the model by introducing the error terms

in an ad hoc way. The simplest way of doing so is to rewrite (19) as follows:

X = β01I + β1Yd + β2Ỹo + β3d̃ + β4w̃ + θb̃ + ρ (W −Wdiag)X + ε, (23)

21Note that this approximation is reasonably accurate provided that: (i) all λi are small enough; and (ii)

the elements of the successive powers of D(λ ⊗ [W − Wdiag]) converge to zero sufficiently quickly.
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which simply amounts to adding the i.i.d. error term ε to the estimating equation. The

resulting specification (23) is a standard spatial autoregressive model (for short, SAR; Lee,

2004). Table 3 (columns 4–6) summarize estimation results for the SAR with homogeneous

coefficients. Observe that, although the other coefficients remain fairly stable, the spatial

autoregressive coefficient ρ is not significantly different from zero (with even positive point

estimates). This result runs plainly against the underlying theory which predicts a negative

spatial autocorrelation across trade flows. Hence, the ad hoc introduction of the error term

is not backed by the data in the sense that it is incompatible with the qualitative predictions

of the theory. In other words, the SAR specification is clearly rejected by the data as not

fitting the theoretical model presented in Section 2.

5.3 Heterogeneous coefficient regressions

All previous estimates are based upon the strong assumption of homogeneous coefficients.

Although, as pointed out by Henderson and Millimet (2006), this assumption does not di-

rectly flow from the theory, it has become a staple in estimating gravity equations.22 Yet,

as one can see from equation (19), the theory predicts that coefficients are region specific.

This is in accord with recent findings by Helpman et al. (2007, p.23), who note that “the

elasticities vary widely across different country pairs”. We therefore now estimate the model

by allowing every region to have different coefficients, as implied by the underlying theoret-

ical specification. In so doing, we restrict ourselves to the preferred SARMA specification

because OLS have no theoretical foundation, because GSM offers a poor approximation,

and because SAR runs against the theory.

For reasons of computational complexity, we estimate a simpler heterogeneous coeffi-

cients model in which only the non-autoregressive parameters βi are allowed to vary across

regions, whereas the autoregressive coefficients ρ and λ vary by country only (ρCA and λCA

for Canada; and ρUS and λUS for the U.S.).23 For estimation purposes, we rewrite the model

in a more compact way, as presented in Appendix C. All the technical details for estimating

this model, including the derivation of the likelihood function and the information matrix,

are relegated to Appendix D.

The estimation results for this β-heterogeneous SARMA model are summarized in Ta-

ble 3, where we give the estimated coefficients for the borders and the distances, the true

regional distance elasticities εdij
, the border effects (and their decomposition; see Appendix

22Anderson and van Wincoop (2004, p.711) note that: “Implausibly strong regularity (common coef-

ficients) conditions are often implicitly imposed on the trade cost function.” As shown in the foregoing,

heterogeneity is also likely to affect the other coefficients.
23Ideally, we would like one ρ and one λ coefficient per region. We keep the estimation of this fully

heterogeneous model for future work. To the best of our knowledge, even the two-coefficient SARMA

model has not been estimated in the literature until now.
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B.2.), as well as the country-specific autoregressive coefficients. It is worth noting that, in

the presence of region-specific coefficients, we can no longer identify the impacts of origin

wages w̃i separately, as it is subsumed by the regional fixed effect.

Insert Table 4 about here.

Several comments are in order. First, it is worth noting that there is a substantial amount

of heterogeneity in the estimated coefficients, both for distance elasticities, border effects,

and autoregressive coefficients. As can be seen from Table 4, the autoregressive coefficient

for the U.S. is smaller than that for Canada, thus suggesting that the U.S. market is more

competitive than the Canadian market. The estimated distance coefficients (which differ

from the true elasticity εdij
because of the cross-sectional interdependence and the implicit

form of the estimating equation) range from −0.7 for California to −3.3 for Newfoundland.24

The real elasticities are very similar, with values in the same range.

Insert Figure 2 about here.

Figure 2 depicts the relationship between the true distance elasticities and the size of the

local market (Li/L). There is a clear pattern relating regional sizes to distance elasticities:

larger regions face systematically lower distance elasticities than smaller regions. As shown

in Section 4.2, the model predicts the existence of such a positive and concave relationship

between a region’s relative size Li/L and its distance coefficient. The latter is indeed given

by β3i ≡ ρ γ

1−ρ
Li
L

, which is concave and increasing in Li/L.25 One possible explanation

for this finding is that firms in larger regions predominantly serve the local market, so

that export flows are relatively smaller and less sensitive to distance (when measured in

percentage changes). Another possible interpretation of this finding, which is in accord with

recent developments in the literature on firm heterogeneity, is that smaller markets are less

competitive, so that less productive firms are selected into those markets (Melitz, 2003;

Melitz and Ottaviano, 2005). These firms then have a greater handicap in serving foreign

markets, thus facing higher distance elasticities than firms in larger and more competitive

markets.
24Because the estimating equation is given in implicit form, the true distance elasticities differ from the

estimated coefficients. However, starting from (19), they can be computed (in matrix form) as follows:

εd ≡ [I − ρ(W − Wdiag)]
−1

β3, (24)

which is derived from the explicit solution to the estimating equation. Note that εd ≡ (εd)ij is the n2 × n2

matrix of distance elasticities. Since all distance elasticities with the same origin index are identical, there

are only n distinct distance elasticities, i.e., one for each region.
25Table 8 in Helpman et al. (2007), though very aggregated since countries are just clustered into three

broad categories, also exhibits such a positive and concave relationship when size is measured by GDP. We

conjecture that further disaggregation of their results would yield a graph similar to the one in Figure 4.
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Insert Figure 3 about here.

The regional structure of distance elasticities is depicted in Figure 3. The Canadian core re-

gions (Ontario and Quebec), as well as the north-eastern U.S. states (Maryland, New York,

Pennsylvania) form a cluster of regions facing small distance elasticities (in absolute value)

of trade flows. The same holds true for the western states and provinces (Alberta, British

Columbia, Washington, California), whereas the Great Plains and the remote Canadian

provinces, face relatively high distance elasticities (in absolute value).

Turning next to the border effects, Table 4 and Figure 4 reveal that, as expected, the

Canadian provinces face larger border effects than the U.S. states. The reason for this

is as in Anderson and van Wincoop (2003) and explained in detail in Appendix B. As

shown by Table 4, the intranational trade-boosting effect of the border is much larger

for Canadian provinces than for U.S. states. Put differently, “trade barriers raise size

adjusted trade within small countries more than within large countries” (Anderson and van

Wincoop, 2003, p.176). Furthermore, the trade-reducing international effect of the border

for Canadian exports is larger than that for U.S. exports, which illustrates again that the

border has a stronger effect on Canadian firms than on U.S. firms. The reason is that the

U.S. internal market is much larger, so that the border affects only a much smaller part of

sales from U.S. firms than from Canadian firms.

Insert Figure 4 about here.

Finally, as can be seen from Table 4, most border coefficients for U.S. states are not signif-

icant at the 5% level, except for a few regions like Maryland, North Dakota and Virginia.

On the contrary, the border effects for Canadian provinces are almost all highly significant

and there is a lot of variation.26 Magnitudes for the border effects range from about 0.9 in

Newfoundland to 23.7 in Ontario, yet most values are clustered between 8 and 12 (with the

exception of a few provinces with larger border effects). On the contrary, border effects for

the U.S. states are uniformly small, ranging from a low of about 0.68 to a high of about

5.2. Although we obtain in the estimation a large number of positive coefficients for U.S.

states, which runs against theory, these are not precisely enough estimated to be signifi-

cantly different from zero. To sum up, border effects do nearly not exist for U.S. exports

to Canada, whereas they do exist for Canadia exports to the U.S.

26As in Anderson and Smith (1999), there is a huge amount of variation in border effects. Ontario and

Quebec may be viewed as “import platforms” (low value of the international border component), whereas

British Columbia appears to be an “export platform” (large value of the international border component).

Contrary to Anderson and Smith, our estimations include information on the full sample since we account

for interdependencies.
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6 Conclusions

Building on a ‘dual’ version of the gravity equation, we have shown how spatial econo-

metric techniques provide a natural tool for controlling for cross-sectional interdependence

among trade flows. Handling directly such interdependence is a major issue for consistent

estimation but has been rather elusive until now. Our results suggest that, as in Anderson

and van Wincoop (2003), consistent theory-based estimates of the gravity equation lead to

significantly smaller border effects than those obtained with ad hoc specifications or fixed

effect methods. Put differently, there is much less of a border effect puzzle once the cross-

sectional interdependencies have been controlled for. Besides partially solving the ‘border

effect puzzle’, our methodology offers a number of additional advantages when compared to

previous approaches: (i) it accounts for cross-sectional interdependence among trade flows,

as implied by the model, and thus directly controls for multilateral resistance; (ii) it uses a

more careful modeling of the error structure, thereby controlling for possible cross-sectional

interdependence in the error terms; (iii) it reveals that all coefficients are generally region-

specific, and allows for statistical inference on estimated regional border effects and distance

elasticities; and (iv) it does not require an a priori value for the elasticity of substitution

and provides, as a by-product, an intuitive measure of ‘spatial competition’.

Finally, it is worth noting that, despite a very different methodology than the one used

by Anderson and van Wincoop (2003), our border effects are of roughly similar magnitudes.

This suffices to show that the two methodologies are ‘dual’ with respect to prices-quantities

and may both be profitably used to consistently handle interdependence in the gravity

equation. There is, in our opinion, much complementarity in the two approaches and many

further avenues to be explored in the future.
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Appendix A: Linearization of the model

In this appendix, we linearize (13) to obtain the estimable specification (14). The lineariza-

tion of f around σ = 1 is given by ln Xij = f(1) + (σ − 1)f ′(1). Some straightforward
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calculation yields

f(1) = lnYj − ln

[
∑

k

Lk

Li

]
= ln Yj − ln L + ln Li, (A.1)

where L ≡
∑

k Lk. Turning to the derivative, some longer calculation shows that

f ′(σ) = ln Yj − ln

[
∑

k

Lk

Li

(
τkjYk

τijYi

) 1

σ
−1

X
1− 1

σ

kj

]

−σ

∑
k

Lk

Li

(
1
σ2

){
−

(
τkjYk

τijYi

) 1

σ
−1

X
1− 1

σ

kj ln
(

τkjYk

τijYi

)
+

(
τkjYk

τijYi

) 1

σ
−1

X
1− 1

σ

kj ln Xkj

}

∑
l

Ll

Li

τljYl

τijYi

1

σ
−1

X
1− 1

σ

lj

,

which implies that

f ′(1) = ln Yj − ln L + lnLi +
∑

k

Lk

L
ln

τkj

τij
+

∑

k

Lk

L
ln

Yk

Yi
−

∑

k

Lk

L
lnXkj. (A.2)

Using (A.1) and (A.2), linearized equation can then be expressed as follows:

ln Xij = σ ln Li − σ ln L + σ ln Yj − (σ − 1) ln Yi − (σ − 1) ln τij

+(σ − 1)
∑

k

Lk

L
ln τkj + (σ − 1)

∑

k

Lk

L
ln Yk − (σ − 1)

∑

k

Lk

L
ln Xkj,

which, using the aggregate income constraint Yi = wiLi, yields:

lnXij = −σ ln wi − σ ln L + σ ln Yj + ln Yi − (σ − 1) ln τij + (σ − 1)
∑

k

Lk

L
ln τkj

+σ
∑

k

Lk

L
ln wk + σ

∑

k

Lk

L
lnLk −

∑

k

Lk

L
ln Yk − (σ − 1)

∑

k

Lk

L
ln Xkj.

Rearranging terms we then readily obtain equation (14).

Appendix B: Border effects

B.1. Homogeneous coefficients. Following Anderson and van Wincoop (2003) we de-

compose the border effects into two components: the trade-boosting intranational effect

and the trade-reducing international effect of the border. To disentangle the two compo-

nents and to retrieve the full implied border effect (both intranational and international),

we proceed as follows. First, we define the border effects as the ratio of trade flows in a

world with borders to that which would prevail in a borderless world. Let Xij denote the

former and Xij the latter. Using (14) and (16), we then have

Bij ≡
Xij

X ij

= e
θ

h

bij−
P

k

Lk
L

bkj

i ∏

k

(
Xkj

Xkj

)ρ
Lk
L

, (B.1)
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where the term e
θ

h

bij−
P

k

Lk
L

bkj

i

subsumes the border frictions as a deviation from their

population-weighted average. Note that (B.1) defines a log-linear system of all the relative

trade flows, which depend on all border effects. Let B stand for the n2 × 1 vector of the

ln(Xij/X ij) and let b stand for the N2×1 vector of the
[
bij −

∑
k

Lk

L
bkj

]
. The log-linearized

version of the system has the following solution, B = θ(I − ρW)−1b, which allows us to

retrieve the border effect as the exponential of the foregoing expression.

Note that (B.1) quite naturally depends upon where regions i and j are located. Four

cases may therefore arise with respect to Canada-U.S. trade. Let popCA ≡
∑

k∈CA
Lk

L

(resp., popUS ≡
∑

k∈US
Lk

L
) stand for the Canadian (resp., the U.S.) population share. It

is readily verified that

θ

[
bij −

∑

k

Lk

L
bkj

]
=





−θ popUS if i ∈ CA, j ∈ CA

θ popUS if i ∈ CA, j ∈ US

θ popCA if i ∈ US, j ∈ CA

−θ popCA if i ∈ US, j ∈ US

(B.2)

The explicit solution for ln Bij is then given by

ln Bij = θ
[
(I − ρW)−1

]
i
b, (B.3)

where [(I − ρW)−1)]i denotes the i-th line of the matrix. Using (B.2) and (B.3), and the

fact that W is row-standardized and has a special structure which implies that Wb = 0,

the border effects are finally given as follows:

ln Bij =






−θ popUS if i ∈ CA, j ∈ CA

θ popUS if i ∈ CA, j ∈ US

θ popCA if i ∈ US, j ∈ CA

−θ popCA if i ∈ US, j ∈ US

These expressions for the border effects reveal several interesting points. First, the ex-

pressions for CA-CA and U.S.-U.S. can be interpreted as the trade-boosting effect of the

international border on flows within each country. Indeed, when ξ is positive and ρ is nega-

tive (as implied by the model), the trade flows within each country will be larger in a world

with border than in a borderless world. The reason is that the border protects domestic

firms from import competition and gives them an advantage in the home market. Second,

the expressions for CA-U.S. and U.S.-CA can be interpreted as the trade-reducing effect of

the international border on flows across countries. When ξ is positive and ρ is negative,

the trade flows across countries will be smaller in a world with borders than in a borderless

world. Third, as in Anderson and van Wincoop (2003), smaller countries will have larger

implied border effects than large countries since their magnitude depends positively on the
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size of the trading partner, as measured by its population share. The reason is that the

border affects the small country more than the large country, as it creates trade frictions

for a larger share of the total demand served by its firms.

Insert Figure 5 about here.

Finally, the full border effect (combining the trade-boosting and trade-reducing effects), is

given by e−2ξρ popUS for Canadian provinces and by e−2ξρ popCA for U.S. states. As shown by

Figure 5, which is drawn for popUS = 0.89 as implied by the data, the dependence on size

implies that the border effects for Canada (left panel) are much larger for any estimated

value of θ than for the U.S (right panel).

B.2. Heterogeneous coefficients. In the heterogeneous coefficients model, we can

retrieve the region-specific border effects in an analogous way to that presented in the

foregoing Appendix B.1. Starting from (B.1), taking logarithms and rearranging, we readily

obtain:

ln Xij − ln Xij =
θ

1 − ρLi

L︸ ︷︷ ︸
θi

[
bij −

∑

k

Lk

L
bkj

]
−

ρ

1 − ρLi

L︸ ︷︷ ︸
ρi

∑

k 6=i

Lk

L

(
ln Xkj − ln Xkj

)
. (B.4)

Using the expressions established in Appendix B.1. (which remain unchanged in the het-

erogeneous coefficient case), as well as the same matrix notation, we then obtain:

ln Bij = θi

[
I − ρ ⊗ (W −Wd)

]−1

i
b.

The only change with respect to the homogeneous coefficient case is that the coefficient

θi captures the local border frictions, whereas ρ is a vector of elements accounting for the

varying ‘thoughness of competition’ in the different regional markets.

Appendix C: Constrained specification

In this appendix, we derive a constrained version of equation (14) that integrates all the

theoretical restrictions on the coefficients. This specification will be useful for estimation

in the presence of heterogeneous coefficients. Starting from (14), we get

ln

(
Xij

YiYj

)
= σ

∑

k

Lk

L
ln

Lk

L
+ (σ − 1) lnYj − (σ − 1)

[
ln τij −

∑

k

Lk

L
ln τkj

]

− σ

[
ln wi −

∑

k

Lk

L
ln wk

]
−

∑

k

Lk

L
ln Yk − (σ − 1)

∑

k

Lk

L
ln Xkj.
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Using the aggregate income constraint Yi = Liwi, and since
∑

k(Lk/L) = 1, we then have

ln

(
Xij

YiYj

)
= σ

∑

k

Lk

L
ln

Lk

L
+ (σ − 1)

∑

k

Lk

L
ln Yj − (σ − 1)

[
ln τij −

∑

k

Lk

L
ln τkj

]

− σ

[
ln wi −

∑

k

Lk

L
lnYk +

∑

k

Lk

L
ln Lk

]
−

∑

k

Lk

L
ln Yk − (σ − 1)

∑

k

Lk

L
ln Xkj

= −σL − (σ − 1)

[
ln τij −

∑

k

Lk

L
ln τkj

]
− σ ln wi − (σ − 1)

∑

k

Lk

L
ln

(
Xkj

YkYj

)
.

Some simple rearrangements the yield

ln

(
XijL

YiYj

)
= −(σ − 1)

[
ln τij −

∑

k

Lk

L
ln τkj

]
− σ ln wi − (σ − 1)

∑

k

Lk

L
ln

(
XkjL

YkYj

)
.

The previous expression is a spatial autoregressive model with respect to the transformed

explained variable Zij ≡ (XijL)/(YiYj):

ln Zij = −(σ − 1)

[
ln τij −

∑

k

Lk

L
ln τkj

]
− σ ln wi − (σ − 1)

∑

k

Lk

L
lnZkj. (C.1)

Note that (C.1) is structurally close to the estimating equations of both Feenstra (2002,

2004) and Anderson and van Wincoop (2003). In the case of local estimates with region-

specific coefficients, ln wi may be viewed as origin fixed effect, whereas
∑

k
Lk

L
ln Zkj is a

destination ‘fixed effect’ that incorporates the spatial equilibrium interdependence.

Appendix D: Log-likelihood and the information matrix

In this appendix, we derive the theoretical properties of the heterogeneous coefficients

SARMA model with country-specific autoregressive parameters (ρj and λj for j = 1, 2) and

region-specific non-autoregressive parameters (β0i, β1i, β2i, β3i, β4i and θi for i = 1, ..., n).

D.1. Model. To make notation as compact as possible, let Vi stand for the diagonal

matrix defined by Vi ≡ Ei⊗In, where Ei = [ 0 | 0 | . . . ei . . . | 0 | 0 ] with ei (the i-th vector

of the canonical base of R
n) in position i and zero column vectors elsewhere. The diagonal

matrix Vi is, therefore, a selection matrix with 1 on its main diagonal for the selected

variables and 0 otherwise. Note that, by construction,
∑n

i=1 Vi = In2 . Analogously, let Dj

stand for the diagonal selection matrix with 1 on its main diagonal for selecting canadian

provinces or U.S. states, and 0 otherwise. Again,
∑2

j=1 Dj = In2 by construction. Using
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the definitions of Vi and Dj , the estimating equation (19) can be rewritten as follows:

X =
∑

i

Vi

{
β0i1I + β1iYd + β2iỸo + β3id̃ + β4iw̃ + θib̃

}
+

∑

j

Dj ρjWdX + u,

= Zβ + D
(
ρ ⊗ Wd

)
X + u, (D.1)

where

u = ε + D(λ ⊗Wd)ε. (D.2)

In expressions (D.1) and (D.2), Wd ≡ W − Wdiag denotes the spatial weight matrix

without its diagonal elements; Z ≡ V (In ⊗ M) denotes the n2×6n block diagonal matrix of

explanatory variables, with M ≡ [ 1I | Yd | Ỹo | d̃ | w̃ | b̃ ]; V ≡ [ V1 | V2 . . . Vi . . . Vn ]

stands for the n2×n3 selection matrix which extracts local subsamples from the full sample;

β is the 6n×1 vector of region-specific parameters; and ρ and λ are the 2×1 vectors of spatial

autoregressive coefficients. Expressions (D.1) and (D.2) constitute the most compact and

general specification of our model and will be useful for deriving the log-likelihood function

and the information matrix.

Note that, in contrast to the SARMA model in the homogeneous case, we need to

estimate two spatial autoregressive coefficients associated with different spatial weight ma-

trices, the sum of which is equal to the spatial weight matrix that is used in the homoge-

nous case (ρj = ρ and λj = λ for j = 1, 2). Letting S(ρ) = In2 − D(ρ ⊗ Wd) and

S(λ) = In2 − D(λ ⊗ Wd), the equilibrium vector X is as follows:

X = S(ρ)−1
[
Zβ + S(λ)ε

]
, (D.3)

where S(ρ) and S(λ) are both non-singular. We propose to estimate this model by standard

maximum likelihood techniques.

D.2. Log-likelihood. Let ε(θ) ≡ S(λ)−1 [S(ρ)X − Zβ], where θ =
[

β ′ | ρ′ | λ
′ ]′

. The

log-likelihood of (D.3) is then given by:

ln L(θ, σ2) = −
n

2
ln(2π) −

n

2
ln σ2 + ln |S(ρ)| − ln |S(λ)| −

1

2σ2
ε′(θ)ε(θ). (D.4)

The Maximum Likelihood Estimators (MLE) θ̂ML and σ̂2
ML are derived from the maximiza-

tion of equation (D.4). In order to compute these estimators, it is convenient to work with

the concentrated log-likelihood.

D.3. Estimators. The first-order conditions yield the following expressions for the esti-

mators as a function of the autoregressive parameters:

β̂ML(ρ, λ) =
[
Z′S′(λ)−1S(λ)−1Z

]−1
Z′S′(λ)−1S(λ)−1S(ρ)X (D.5)

σ̂2
ML(ρ, λ) =

1

n
X′S′(ρ)S′(λ)−1M(λ)S(λ)−1S(ρ)X, (D.6)

with M(λ) ≡ In2 −S(λ)−1Z
[
Z′S′(λ)−1S(λ)−1Z

]−1
Z′S′(λ)−1 the n2×n2 projection matrix.
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Proof. The first-order condition with respect to β is given by:

∇β lnL(θ, σ2) = 0 ⇐⇒ Z′S′(λ)−1S(λ)−1S(ρ)X = Z′S′(λ)−1S(λ)−1Zβ,

which directly yields

β̂ML(ρ, λ) =
[
Z′S′(λ)−1S(λ)−1Z

]−1
Z′S′(λ)−1S(λ)−1S(ρ)X.

The first-order condition with respect to σ2 is given by:

∇σ2 ln L(θ, σ2) = 0 ⇐⇒ −n +
1

σ2
ε′(θ)ε(θ) = 0,

which directly yields

σ̂2
ML(ρ, λ) =

1

n
ε′(θ)ε(θ).

Using the definition of the projection matrix M(λ) we then obtain:

σ̂2
ML(ρ, λ) =

1

n
X′S′(ρ)S′(λ)−1M(λ)S(λ)−1S(ρ)X,

which establishes the result.

D.4. Maximization of the concentrated log-likelihood. The concentrated log-

likelihood can be rewritten as a function of the vectors ρ and λ as follows:

ln Lc(ρ, λ) = −
n

2
(ln(2π) + 1) + ln |S(ρ)| + ln |S(λ)|

−
n

2
ln

[(
e0(λ) −

∑n
i=1 ρiei(λ)

)′ (
e0(λ) −

∑n
i=1 ρiei(λ)

)

n

]
, (D.7)

where e0(λ) = M(λ)S(λ)−1X, and where ei(λ) = M(λ)S(λ)−1DiWdX for i = 1, 2. Put

differently, e0(λ) is the vector of residuals of a regression of X on Z, and ei(λ) is the vector

of residuals of a regression of DiWdX on Z, for i = 1, 2.

Proof. Note first that, using the expression for σ̂2
ML(ρ, λ), we have the following relation:

ε′(θ)ε(θ) = nσ̂2
ML(ρ, λ). Moreover, using the expression of the projection matrix M(λ), it

is straightforward to obtain the concentrated log-likelihood.

The MLEs of ρ and λ, denoted respectively by ρ̂ML and λ̂ML, maximize the concentrated

log-likelihood (D.7). The MLEs of β and of σ2 are then given by β̂ML ≡ βML(ρ̂ML, λ̂ML)

and by σ̂2
ML ≡ σ2

ML(ρ̂ML, λ̂ML), respectively.
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D.5. Information matrix. The asymptotic covariance matrix of the maximum like-

lihood estimators is given by the inverse of the information matrix, which is defined as

follows:

I(θ̃) = −E
[
∇2

θ̃,θ̃′
ln L(θ̃)

]
(D.8)

with θ̃ = (θ′, σ2)′. We can use the following estimator for this matrix:

[
Î(ˆ̃θ)

]−1

=
[
−∇2

ˆ̃
θ,

ˆ̃
θ′

ln L(ˆ̃θ)
]−1

(D.9)

To obtain this estimate, we need to compute that derivatives of the log-likelihood function.

D.6. First-order derivatives of the log-likelihood. We start with the first-order

derivatives. By definition, ε(θ) = S(λ)−1S(ρ)X − S(λ)−1Zβ. Because the transpose of a

scalar is that scalar itself, we then obtain:

ε′(θ)ε(θ) = X′S′(ρ)S′(λ)−1S(λ)−1S(ρ)X − 2β ′Z′S′(λ)−1S(λ)−1S(ρ)X

+ β ′Z′S′(λ)−1S(λ)−1Zβ. (D.10)

The derivative of the log-likelihood with respect to β is given by:

∇β ln L(θ, σ2) = −
1

2σ2
∇β [ε′(θ)ε(θ)]

= −
1

2σ2

[
−2Z′S′(λ)−1S(λ)−1S(ρ)X + 2Z′S′(λ)−1S(λ)−1Zβ

]

=
1

σ2
Z′S′(λ)−1ε(θ). (D.11)

The derivative of the log-likelihood with respect to σ2 is given by:

∇σ2 lnL(θ, σ2) = −
n

2σ2
+

2

4(σ2)2
ε′(θ)ε(θ) = −

n

2σ2
+

1

2(σ2)2
ε′(θ)ε(θ). (D.12)

The derivative of the log-likelihood with respect to ρi, for i = 1, 2, is given by:

∇ρi
lnL(θ, σ2) = −tr

(
S(ρ)−1DiWd

)
+

1

σ2
X′W′

dD
′
iS

′(λ)−1ε(θ). (D.13)

Proof. To establish the expression for ∇ρi
ln L(θ, σ2), note that

∇ρ ln L(θ, σ2) = ∇ρ ln |S(ρ)| −
1

2σ2
∇ρ

(
ε′(θ)ε(θ)

)

Computation of the first term requires to apply the theorem for chain derivation of a matrix

expression. Applying it for each element of the vector ρ, we have:

∇ρi
ln |S(ρ)| = tr

(
∇S(ρ)(ln |S(ρ)|)′∇ρi

S(ρ)
)
,

33



with ∇S(ρ) ln |S(ρ)| = (S(ρ)′)−1, and with

∇ρi
S(ρ) = −D

[
(∇ρi

ρ) ⊗ Wd + ρ ⊗ (∇ρi
Wd)

]
= −D(ei ⊗Wd) = −DiWd.

As in the foregoing, ei denotes the i-th vector of the canonical base, with 1 in position i

and 0 otherwise. We then, therefore, obtain:

∇ρi
ln |S(ρ)| = −tr

(
S(ρ)−1DiWd

)
.

To compute the second term, note that

∇ρi
(ε′(θ)ε(θ)) = ∇ρi

(ε′(θ)ε(θ)) + ε(θ)∇ρi
ε(θ)

= X′∇ρi
S′(ρ)S′(λ)−1ε(θ) + ε′(θ)S(λ)−1∇ρi

S(ρ)X

= 2X′∇ρi
S′(ρ)S′(λ)−1ε(θ),

where we use the property that the transpose of a scalar is the scalar itself. We obtain:

∇ρi
(ε′(θ)ε(θ)) = −2X′(ei ⊗Wd)′D′S′(λ)−1ε(θ) = −2X′W′

dD
′
iS

′(λ)−1ε(θ)

Putting finally the expressions together, we have:

∇ρi
ln L(θ, σ2) = −tr

(
S(ρ)−1DiWd

)
+

1

σ2
X′W′

dD
′
iS

′(λ)−1ε(θ)

for i = 1, 2, which establishes the result.

Next, the derivative of the log-likelihood with respect to the vector λ is given by:

∇λi
ln L(θ, σ2) = tr

(
S(λ)−1DiWd

)
−

1

σ2
ε′(θ)W′

dD
′
iS

′(λ)
−1

ε(θ). (D.14)

Proof. To begin with, note that

∇λ ln L(θ, σ2) = −∇λ ln |S(λ)| −
1

2σ2
∇λ(ε

′(θ)ε(θ))

Computation of the first term requires to apply the theorem for chain derivation of a matrix

expression. Applying it for each element of the vector λ, we have:

∇λi
ln |S(λ)| = tr

(
∇S(λ) ln |S(λ)|′∇λi

S(λ)
)

,

with ∇S(λ) ln |S(λ)| = (S(λ)
′
)−1, and with

∇λi
S(λ) = −D

[
(∇λi

λ) ⊗ Wd + λ ⊗ (∇λi
Wd)

]
= −D(ei ⊗ Wd) = −DiWd. (D.15)

As in the foregoing, ei denotes the i-th vector of the canonical base, with 1 in position i

and 0 otherwise. We then, therefore, obtain:

∇λi
ln |S(λ)| = −tr

(
S(λ)−1DiWd

)
.
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To compute the second term, note that

∇λi
(ε′(θ)ε(θ)) = ∇λi

ε′(θ)ε(θ) + ε′(θ)∇λi
ε(θ)

= [S(ρ)X − Zβ]′ ∇λi
S′(λ)−1ε(θ) + ε′(θ)∇λi

S(λ)−1 [S(ρ)X− Zβ]

= 2 [S(ρ)X − Zβ]′ ∇λi
S′(λ)−1ε(θ)

where we use the property that the transpose of a scalar is the scalar itself. We obtain:

∇λi
S′(λ)−1 = −S′(λ)−1∇λi

S′(λ)S′(λ)−1 = S′(λ)−1W′
dD

′
iS

′(λ)−1.

Putting finally the expressions together, we have:

∇λi
(ε′(θ)ε(θ)) = 2 [S(ρ)X − Zβ]′ S′(λ)−1W′

dD
′
iS

′(λ)−1ε(θ)

and

∇λi
ln L(θ, σ2) = tr

(
S(λ)−1DiWd

)
−

1

σ2
[S(ρ)X − Zβ]′ S′(λ)−1W′

dDi
′S′(λ)−1ε(θ),

for i = 1, 2, which establishes the result.

D.7. Second-order derivatives of the log-likelihood. We next turn to the second-

order derivatives with respect to β. Deriving (D.11) with respect to β, we obtain:

∇2
β ln L(θ, σ2) =

1

σ2
Z′S′(λ)−1∇βε(θ) = −

1

σ2
Z′S′(λ)−1S(λ)−1Z. (D.16)

Deriving (D.11) with respect to σ2 yields:

∂
(
∇β ln L(θ, σ2)

)

∂σ2
= −

1

(σ2)2
Z′S′(λ)−1ε(θ). (D.17)

Taking the derivative of (D.11) with respect to ρj yields:

∂
(
∇β ln L(θ, σ2)

)

∂ρj

=
1

σ2
Z′S′(λ)−1∇ρj

ε(θ)

=
1

σ2
Z′S′(λ)−1S(λ)−1∇ρj

S(ρ)X

= −
1

σ2
Z′S′(λ)−1S(λ)−1DjWdX (D.18)

for j = 1, 2. Finally, the derivative of (D.11) with respect to λj is given by:

∂
(
∇β ln L(θ, σ2)

)

∂λj

=
1

σ2
Z′

[
∂S′(λ)−1

∂λj

ε(θ) + S′(λ)−1∂ε(θ)

∂λj

]
(D.19)

=
1

σ2
Z′

[
S′(λ)−1W′

dD
′
jS

′(λ)−1ε(θ)

+S′(λ)−1S(λ)−1DjWdS(λ)−1(S(ρ)X − Zβ)
]

=
1

σ2
Z′S′(λ)−1

[
W′

dD
′
jS

′(λ)−1 + S(λ)−1DjWd

]
ε(θ)
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for j = 1, 2. We next derive (D.12) with respect to σ2 to obtain the following second-order

derivative:
∂2 ln L(θ, σ2)

∂(σ2)2
=

n

2(σ2)2
−

1

(σ2)3
ε′(θ)ε(θ). (D.20)

The derivative of (D.12) with respect to ρj is computed as follows:

∂2 ln L(θ, σ2)

∂σ2∂ρj

=
1

2(σ2)2
∇ρj

(ε′(θ)ε(θ)) = −
1

(σ2)2
X′W′

dD
′
jS

′(λ)−1ε(θ), (D.21)

for j = 1, 2. The derivative of (D.12) with respect to λj is given by:

∂2 ln L(θ, σ2)

∂σ2∂λj

=
1

2(σ2)2
∇λj

(ε′(θ)ε(θ)) =
1

(σ2)2
ε′(θ)W′

dD
′
jS

′(λ)−1ε(θ), (D.22)

for j = 1, 2. We next derive (D.13) with respect to ρj:

∂2 ln L(θ, σ2)

∂ρi∂ρj

= −
∂
(
tr(S(ρ)−1DiWd)

)

∂ρj

+
1

σ2
X′W′

dD
′
iS

′(λ)−1∇ρj
ε(θ) (D.23)

for j = 1, 2. Since

∂
(
tr(S(ρ)−1DiWd)

)

∂ρj

= tr
(
∇ρj

S(ρ)−1DiWd

)

= tr
(
−S(ρ)−1∇ρj

S(ρ)S(ρ)−1DiWd

)

= tr
(
S(ρ)−1DjWdS(ρ)−1DiWd

)
,

and since

∇ρj
ε(θ) = S(λ)−1∇ρj

S(ρ)X = −S(λ)−1DjWdX,

we finally obtain:

∂2 ln L(θ, σ2)

∂ρi∂ρj

= −tr
(
S(ρ)−1DjWdS(ρ)−1DiWd

)
−

1

σ2
X′W′

dD
′
iS

′(λ)−1S(λ)−1DjWdX.

(D.24)

We next derive (D.13) with respect to λj, which yields:

∂2 ln L(θ, σ2)

∂ρi∂λj

=
1

σ2
X′W′

dD
′
i

[
∇λj

S′(λ)−1ε(θ) + S′(λ)−1∇λj
ε(θ)

]

=
1

σ2
X′W′

dD
′
iS

′(λ)−1
[
W′

dD
′
jS

′(λ)−1 + S(λ)−1DjWd

]
ε(θ), (D.25)

for j = 1, 2. Finally, the derivative of (D.14) with respect to λj is computed as follows:

∂2 ln L(θ, σ2)

∂λi∂λj

=
∂
(
tr(S(λ)−1DiWd)

)

∂λj

−
1

σ2

[
∇λj

ε′(θ)W′
dD

′
iS

′(λ)−1ε(θ)

+ ε′(θ)W′
dD

′
i

(
∇λj

S′(λ)−1ε(θ) + S′(λ)−1∇λj
ε(θ)

)]
(D.26)
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for j = 1, 2. We have:

∂
(
tr(S(λ)−1DiWd)

)

∂λj

= tr
(
∇λj

S(λ)−1DiWd

)

= tr
(
−S(λ)−1∇λj

S(λ)S(λ)−1DiWd

)

= tr
(
S(λ)−1DjWdS(λ)−1DiWd

)

so that, using the foregoing results, we obtain:

∂2 ln L(θ, σ2)

∂λi∂λj

= tr
(
S(λ)−1DjWdS(λ)−1DiWd

)
−

1

σ2
ε′(θ)

[
W′

dD
′
jS

′(λ)−1W′
dD

′
iS

′(λ)−1

+ W′
dD

′
iS

′(λ)−1W′
dD

′
jS

′(λ)−1 + W′
dD

′
iS

′(λ)−1S(λ)−1DjWd

]
ε(θ). (D.27)

37



Table 1 — OLS regressions.

Model OLS(1) OLS(2) OLS(3) OLS(4) OLS(5) OLS(6)

Dependent variable ln Xij ln Xij ln Xij ln Xij lnXij lnXij

Obs. 1600 1600 1600 1600 1600 1600

lnYi 1.045 1.044 1.043 1 1 1

(0.000) (0.000) (0.000) — — —

lnYj 0.920 0.919 0.919 1 1 1

(0.000) (0.000) (0.000) — — —

lndij −1.172 −1.228 −1.245 −1.289 −1.385 −1.423

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

bordCAij 2.674 2.734 2.778 — — —

(0.000) (0.000) (0.000)

bordUSij 0.393 0.397 0.407 — — —

(0.000) (0.000) (0.000)

bordij — — — −1.482 −1.504 −1.528

(0.000) (0.000) (0.000)

fixed effects† no no no yes yes yes

internal distance 1

3

q

surfi

π
2

3

q

surfi

π

q

surfi

π
1

3

q

surfi

π
2

3

q

surfi

π

q

surfi

π

adjusted R2 0.937 0.935 0.933 0.921 0.919 0.916

AIC 2.155 2.156 2.157 2.244 2.245 2.246

BIC 2.178 2.179 2.180 2.520 2.520 2.521

Border effect

Canada 14.496 15.401 16.091 — — —

(0.000) (0.000) (0.000)

U.S. 1.482 1.487 1.502 — — —

(0.000) (0.000) (0.000)

“Average border” 4.634 4.786 4.916 4.404 4.501 4.608

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Moran’s I stat. 0.038 0.043 0.043 −0.015 −0.015 −0.015

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Notes: p-values are given in parentheses, those for border effect coefficients are computed

using the Delta method. OLS(4), OLS(5) and OLS(6) include importer-exporter fixed ef-

fects. Following Feenstra (2002, 2004), average border effects are computed as the geometric

mean of the individual border effects. AIC and BIC stand for the Akaike and the Schwarz

information criteria, respectively.
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Table 2 — Homogeneous coefficients SARMA regressions.

Model SARMA(1) SARMA(2) SARMA(3) SARMA(4) SARMA(5) SARMA(6)

Dependent variable lnXij lnXij ln Xij ln
Xij

YiYj
ln

Xij

YiYj
ln

Xij

YiYj

Obs. 1600 1600 1600 1600 1600 1600

Weight matrix W − Wd W − Wd W − Wd W − Wd W − Wd W − Wd

constant −10.699 −10.850 −10.862 −16.130 −15.806 −15.706

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

(I − W) lnYi 0.893 0.887 0.882 — — —

(0.000) (0.000) (0.000)

ln Yj 1.911 1.951 1.969 — — —

(0.000) (0.000) (0.000)

(I − W) ln wi / ln wi −1.363 −1.398 −1.413 −1.270 −1.343 -1.378

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

(I − W) ln dij −1.152 −1.215 −1.233 −1.225 −1.343 −1.323

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

(I − W)bij −1.156 −1.174 −1.193 −1.105 −1.298 -1.141

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ρ −0.805 −0.859 −0.893 −0.139 −0.133 -0.132

(0.000) (0.000) (0.000) (0.005) (0.008) (0.009)

λ −4.261 −4.366 −4.464 −1.312 −1.213 -1.161

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

internal distance 1

3

q

surfi

π
2

3

q

surfi

π

q

surfi

π
1

3

q

surfi

π
2

3

q

surfi

π

q

surfi

π

AIC 2.252 2.279 2.309 2.276 2.307 2.339

BIC 2.275 2.303 2.333 2.293 2.324 2.356

Border effect†

(total)

(intra) / (inter)

CA 7.699 7.951 8.222 7.048 7.254 7.501

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

CA–CA / CA–US 2.775 / 0.360 2.820 / 0.355 2.868/0.349 2.655 / 0.377 2.693 / 0.371 2.739/0.365

(0.000)/(0.000) (0.000)/(0.000) (0.000)/(0.000) (0.000)/(0.000) (0.000)/(0.000) (0.000)/(0.000)

US 1.310 1.316 1.322 1.295 1.300 1.306

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

US–US / US–CA 1.145 / 0.874 1.147 / 0.872 1.150 / 0.870 1.138 / 0.879 1.140 / 0.877 1.142 / 0.875

(0.000)/(0.000) (0.000)/(0.000) (0.000)/(0.000) (0.000)/(0.000) (0.000)/(0.000) (0.000)/(0.000)

“Average border” 3.176 3.235 3.297 3.021 3.071 3.130

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Notes: p-values are given in parentheses, those for border effect coefficients are computed using the Delta method. See Appendix

B for an explanation of how to compute the border effects. Following Feenstra (2002, 2004), average border effects are computed

as the geometric mean of the individual border effects. AIC and BIC stand for the Akaike and the Schwarz information criteria,

respectively.
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Table 3 — Homogeneous coefficients GSM and SAR regressions.

Model GSM(1) GSM(2) GSM(3) SAR(1) SAR(2) SAR(3)

Dependent variable lnXij ln Xij ln Xij ln Xij lnXij lnXij

Obs. 1600 1600 1600 1600 1600 1600

Weight matrix W − Wd W − Wd W − Wd W − Wd W − Wd W − Wd

constant −6.838 −6.911 −6.753 −5.802 −5.751 −5.718

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

(I − W) ln Yi 1.248 1.266 1.249 1.062 1.058 1.056

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ln Yj 0.984 0.979 0.979 1.006 1.004 1.003

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

(I − W) ln wi −1.557 −1.604 −1.631 −1.582 −1.633 −1.659

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

(I − W) ln dij −1.246 −1.318 −1.342 −1.257 −1.329 −1.352

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

(I − W)bij −1.109 −1.127 −1.145 −1.077 −1.093 −1.112

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ρ −0.179 −0.205 −0.200 0.009 0.007 0.004

(0.009) (0.007) (0.007) (0.792) (0.840) (0.910)

λ 0.482 0.499 0.497 — — —

(0.000) (0.000) (0.000)

internal distance 1

3

q

surfi

π
2

3

q

surfi

π

q

surfi

π
1

3

q

surfi

π
2

3

q

surfi

π

q

surfi

π

AIC 1.138 1.168 1.199 2.298 2.328 2.359

BIC 1.162 1.192 1.223 2.321 2.352 2.383

Border effect†

(total)

(intra) / (inter)

CA 7.087 7.322 7.553 6.694 6.895 7.131

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

CA–CA / CA–US 2.662 / 0.376 2.706 / 0.370 2.748 / 0.364 2.587 / 0.387 2.626 / 0.381 2.670 / 0.375

(0.000)/(0.000) (0.000)/(0.000) (0.000)/(0.000) (0.000)/(0.000) (0.000)/(0.000) (0.000)/(0.000)

US 1.296 1.302 1.307 1.286 1.291 1.297

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

US–US / US–CA 1.138 / 0.878 1.141 / 0.877 1.143 /0.875 1.134 / 0.882 1.136 / 0.880 1.139 / 0.878

(0.000)/(0.000) (0.000)/(0.000) (0.000)/(0.000) (0.000)/(0.000) (0.000)/(0.000) (0.000)/(0.000)

“Average border” 3.031 3.087 3.142 2.935 2.984 3.041

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Notes: p-values are given in parentheses, those for border effect coefficients are computed using the Delta method. See Appendix

B for an explanation of how to compute the border effects. Following Feenstra (2002, 2004), average border effects are computed

as the geometric mean of the individual border effects. AIC and BIC stand for the Akaike and the Schwarz information criteria,

respectively.
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Table 4 — β-heterogeneous SARMA regressions.

Model SARMA

Dependent variable ln
Xij

YiYj

Obs. 1600

Weight matrix W − Wd

Region Code ln dij p-value ln bij p-value εdij
bij intra bij inter Total border

AB -1.647 0.000 -1.292∗ 0.000 -1.647 3.179∗ 0.315∗ 10.106∗

BC -1.003 0.000 -1.035∗ 0.001 -1.003 2.535∗ 0.394∗ 6.428∗

MN -2.151 0.000 -1.353∗ 0.000 -2.151 3.331∗ 0.300∗ 11.098∗

NB -1.967 0.000 -1.620∗ 0.000 -1.967 4.212∗ 0.237∗ 17.742∗

Nfld -3.317 0.000 0.114 0.732 -3.317 0.904 1.106 0.817

NS -1.622 0.000 -1.353∗ 0.000 -1.622 3.326∗ 0.301∗ 11.064∗

ON -1.370 0.000 -1.709∗ 0.000 -1.371 4.860∗ 0.206∗ 23.622∗

PEI -1.970 0.000 -1.047∗ 0.001 -1.970 2.527∗ 0.396∗ 6.386∗

Que -1.150 0.000 -1.474∗ 0.000 -1.150 3.833∗ 0.261∗ 14.688∗

SK -1.869 0.000 -1.401∗ 0.000 -1.869 3.472∗ 0.288∗ 12.057∗

Ala -1.582 0.000 -2.462 0.346 -1.591 1.333 0.750 1.778

Ari -1.316 0.000 -3.702 0.152 -1.323 1.540 0.649 2.372

Cal -0.703 0.000 -2.321 0.312 -0.727 1.373 0.728 1.885

Flo -1.190 0.000 0.211 0.934 -1.210 0.974 1.026 0.949

Geo -1.670 0.000 -2.270 0.384 -1.686 1.309 0.764 1.713

Ida -1.256 0.000 -2.623 0.312 -1.258 1.352 0.740 1.827

Ill -1.251 0.000 -0.119 0.963 -1.270 1.015 0.986 1.029

Ind -1.569 0.000 -2.728 0.295 -1.581 1.379 0.725 1.901

Ken -1.596 0.000 -1.311 0.618 -1.604 1.165 0.858 1.357

Lou -1.841 0.000 -1.976 0.447 -1.851 1.260 0.794 1.587

Mai -1.398 0.000 -7.175∗ 0.006 -1.401 2.282∗ 0.438∗ 5.208∗

Mas -0.848 0.000 -2.513 0.330 -0.855 1.345 0.743 1.809

Mic -1.604 0.000 0.933 0.716 -1.624 0.894 1.119 0.799

Min -1.743 0.000 1.651 0.522 -1.754 0.824 1.213 0.679

MO -1.862 0.000 0.890 0.732 -1.875 0.901 1.110 0.811

Mon -1.825 0.000 0.604 0.817 -1.827 0.933 1.072 0.871

Mry -1.015 0.000 0.492 0.849 -1.022 0.944 1.059 0.891

Nca -1.274 0.000 -2.556 0.323 -1.286 1.354 0.739 1.833

Nda -2.400 0.000 -5.002∗ 0.056 -2.402 1.774∗ 0.564∗ 3.147∗

NHm -1.064 0.000 -1.186 0.647 -1.065 1.146 0.873 1.313

NJr -0.858 0.000 -3.620 0.158 -0.867 1.539 0.650 2.370

Nyr -0.691 0.000 -0.567 0.820 -0.706 1.074 0.931 1.154

Ohi -1.323 0.000 1.256 0.624 -1.342 0.859 1.165 0.737

Pen -0.772 0.000 -1.255 0.622 -0.784 1.165 0.858 1.358

Ten -1.675 0.000 -0.721 0.783 -1.686 1.088 0.919 1.185

Tex -1.151 0.000 -1.398 0.575 -1.177 1.193 0.838 1.423

Ver -1.215 0.000 -4.281 0.100 -1.216 1.633 0.612 2.668

Vir -1.079 0.000 -5.229∗ 0.043 -1.089 1.856∗ 0.539∗ 3.444∗

Was -1.267 0.000 -3.463 0.183 -1.276 1.502 0.666 2.256

Wis -1.594 0.000 -2.063 0.424 -1.604 1.274 0.785 1.623

ρCA −0.995

(0.000)

ρUS −1.293

(0.000)

λCA −4.758

(0.000)

λUS −6.166

(0.000)

Notes: p-values are given in parentheses, all are computed using the Delta method. See Appendix B for an

explanation of how to compute the border effects. Asterisks denote significantly positive border effects at the

5% level. Distance elasticities εdij
are computed from the explicit form of the model.
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Figure 1. General equilibrium flows in a three-region trading network

Yi = fi(L, σ,T)

Yi ≡
∑M

j=1 Xij =
∑M

j=1 Xji
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Figure 2. Distance elasticities and regional size (β-heterogeneous SARMA)
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Figure 3. Regional structure of distance elasticities (β-heterogeneous SARMA)
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Figure 4. Regional structure of border effects (β-heterogeneous SARMA)
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Figure 5. Magnitude of border effects (Canadian provinces and U.S. states)
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