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Abstract

This paper proposes a new method to a bond portfolio problem in a

multi-period setting. In particular, we apply a factor allocation approach to

constructing the optimal bond portfolio in a class of multi-factor Gaussian

yield curve models. In other words, we consider a bond portfolio problem in

terms of a factors’ allocation problem. Thus, we can obtain clear interpre-

tation about the relation between the change in the shape of a yield curve

and dynamic optimal strategy, which is usually hard to be obtained due to

high correlations among individual bonds.

We first present a closed form solution of the optimal bond portfolio

in a class of the multi-factor Gaussian term structure model. Then, we

investigate the effects of various changes in the term structure on the optimal

portfolio strategy through series of comparative statics.



1 Introduction

In recent years, the fixed income security market has grown rapidly and research

for the trading strategies are getting sophisticated. However, there are few re-

searches on dynamic optimal portfolio with term structure models. In particular,

the changes in a yield curve shape are rarely reflected in the optimal portfolio

strategy. Moreover, the optimal strategies for bond portfolio problems are usually

hard to be interpreted because of high correlations among individual bonds. As

is often reported in principal component analysis (PCA) for the change in term

structure, most of the variations of spot yields with different maturities can be

explained by three common factors.

Thus, to avoid high correlations, it seems better to consider portfolio problems

not in terms of bonds but in terms of common factors. There are various term

structure models to evaluate bonds and interest rate derivatives. By combining

these models with portfolio optimization, especially, applying multi-factor yield

curve models to optimal bond portfolio problems, we can analyze bond portfolio

in terms of factors, which enables us to interpret optimal strategies intuitively. For

example, because spot rates can be expressed as a linear combination of factors in

a multi-factor Gaussian model, we can easily obtain factors exposures in a bond

optimal portfolio.

Hence, we introduce a factor allocation approach. First, we decompose each

bond’s return into several factors’ return and then the allocation of bonds can be

converted into that of factors. Using this idea, we can easily analyze the effects of

the parameter changes in a yield curve on the optimal portfolio.
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In this paper, we use a multi-factor Gaussian term structure model with stochas-

tic mean and power utility function for terminal wealth. Then, we derive a closed

form solution of the optimal strategy for a dynamic bond portfolio problem using

a result of Takahashi and Yoshida [2004]; they presented an explicit expression

of optimal portfolio in a general Markovian setting based on Ocone and Karatzas

[1991].

There are several previous works related to this theme. Sørensen [1999] and

Brennan and Xia [2000] consider the dynamic portfolio optimization problem in

a structure with a power utility, single/two-factor stochastic interest rate model

and a constant market price of risk in the complete market. Sørensen [1999] uses

a Vasicek one-factor model for discrete time optimal portfolio allocation utilizing

the quasi-dynamic programming approach. Brennan and Xia [2000] investigates

the optimal stock-bond mix along with a two-factor interest rate model and derive

comparative statics with respect to the risk aversion. Liu [2006] solves the dynamic

portfolio problem using a single factor model of interest rates in a general structure

such as a stochastic interest rate, a stochastic market price of risk and a stochastic

volatility. Most studies, however, have not forcused on the term structure and the

optimal bond portfolio.

Kobayashi, Takahashi and Tokioka [2005] mainly uses a general single-factor

HJM model, stochastic market price of risk, stochastic volatility and the power

utility. They first formulate a dynamic optimal bond portfolio problem based

on the general setting utilizing the asymptotic expansion scheme and investigate

the effect of the change in the market price of risk. Korn and Koziol [2006] uses

multi-factor term structure models of the Vasicek type to analyze bond portfolio
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optimization with the static Mean-Variance approach.

We consider the dynamic bond portfolio problem and present a closed-form

optimal strategy with a model including Sørensen [1999], Brennan and Xia [2000]

and Korn and Koziol [2006] as special cases and our result includes the solution

of Brennan and Xia [2000] in the case in which all securities consist of bonds.

Furthermore utilizing the term structure model effectively, we propose the idea

of a factor allocation; the bond portfolio problem is reinterpreted as the factor

allocation problem, which enables us to investigate the relation between the term

structure and the optimal bond portfolio clearly. In particular, we implement

comparative statics in detail with respect to parameters which affect the shape of

the term structure.

The organization of this paper is as follows. In section 2, after we briefly in-

troduce a dynamic optimization problem for bond portfolio in a class of Gaussian

term structure models, we derive a closed form solution of optimal strategy. In

section 3, we implement series of comparative statics to investigate the effects of

changes in the yield curve shape on the optimal portfolio strategy. Finally, section

4 states conclusion.

2 DYNAMIC FACTOR ALLOCATION PROBLEM

In this section, we discuss the dynamic portfolio optimization under a multi-factor

Gaussian term structure model with stochastic mean. First, we describe the dy-

namic portfolio problem combined with a multi-factor Gaussian model by employ-

ing the result from Takahashi and Yoshida [2004]. By specifying the processes
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of the state variable, the market price of risk and the instantaneous interest rate

r(t), we derive a closed form solution for optimal bond portfolio strategy under the

general version of the multi-factor Gaussian term structure model with stochastic

mean, which is one of our main contributions in this paper.

2.1 Dynamic Portfolio Problem in a General Markovian

Setting

2.1.1 Description of the financial market

First, we describe the financial market. Assume the market is complete. Let (Ω,

F , {Ft}0≤t≤T<∞, P) denote a probability space with a filtration and assume it

satisfies usual conditions. T (< ∞) denotes a fixed time horizon of the economy.

We suppose the instantaneous spot rate r(t) to be r(t) = r(Xt), that is, it

can be represented as some function of the m-dimensional state variable Xt :=

(X1,t, . . . , Xm,t)
′, whose variation is governed by;

dXt = V0(Xt) dt +
m∑

j=1

Vj(Xt) dŴj,t X0 = x, (2.1)

here we use the notation of x′ as the transpose of x. Vj(·), j = 0, 1, . . . ,m

are (m × 1) column vectors respectively and set a m × m matrix as V (·) :=

(V1(·), . . . , Vm(·)). Vj(·), j = 0, 1, . . . ,m are some functions of Xt and satisfy the

regularity conditions. Ŵt := (Ŵ1,t, Ŵ2,t, . . . , Ŵm,t)
′, 0 ≤ t ≤ T is a Rm-valued

Brownian motion whose components are independent Brownian motions defined

on (Ω, F , {Ft}0≤t≤T<∞, P). Let P (t, Ti), i = 1, 2 . . . ,m and P0(t) denote the
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prices at time t ∈ [0, T ] of zero coupon bonds with the maturity Ti and that of

money market account, respectively. Here we suppose the stochastic differential

equation governing the movement of zero coupon bond’s price, P (t, Ti), and that

of money market account as

dP (t, Ti) = P (t, Ti)[βi(t,Xt) dt + σ̂i(t) dŴt], P (0, Ti) = pi, i = 1, 2 . . . ,m

dP0(t) = r(Xt)P0(t) dt, P0(0) = 1

(2.2)

where σ̂i(t) := (σ̂i,1(t), . . . , σ̂i,m(t)) .

As we assume the financial market is complete, there uniquely exists a stochastic

process, θ̂(t,Xt), which is given as the solution of the equation below;

β(t,Xt) − r(Xt)1 = σ̂(t)θ̂(t,Xt) (2.3)

where β(t,Xt) is a (m×1) vector whose ith element is βi(t,Xt), σ̂(t) is a (m×m)

matrix whose ith row is σ̂i(t) and 1 is a (m×1) unit vector. This variable, θ̂(t,Xt),

is often referred as the market price of risk.

Thus we can rewrite (2.2) as;

dP (t, Ti) = P (t, Ti)[(r(Xt) + σ̂i(t)θ̂(t,Xt)) dt + σ̂i(t) dŴt]

P (0, Ti) = pi, i = 1, 2 . . . ,m

(2.4)

Given the opportunity set described in (2.2), investors will allocate their wealth

among these (m + 1) assets. Let ϕi(t) denotes the number of units of asset i held

at time t. From the budget constraint, the stochastic differential equation below
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should hold 1;

dX (t) = ϕ(t)′ dP (t) + (1 − ϕ(t)′1) dP0(t) − c(t)dt, X (0) = x > 0 (2.5)

where X (t) and c(t) denote investors’ total wealth and their non-negative con-

sumption rate respectively, ϕ(t) is a (m × 1) vector whose ith element is ϕi(t), 1

is a (m × 1) unit vector and P is a (m × 1) vector whose ith element is P (t, Ti).

It is useful to replace ϕ(t) from (2.5) by a new variable, π(t), a (m × 1) vector

whose ith element is πi(t), which denotes the amount of money invested for ith

asset at time t. Substituting for dP (t, Ti)/P (t, Ti) from (2.4), we can rewrite (2.5)

as

dX (t) = [r(Xt)X (t) − c(t)] dt + π(t)′[σ̂(t)θ̂(t,Xt) dt + σ̂(t) dŴt],

X (0) = x > 0,

(2.6)

which is often referred as the budget-constraint dynamics.

Finally, we define A (x) as the set of stochastic processes (π, c) such that given

X (0) = x > 0, for all t ∈ [0, T ], X (t) ≥ 0 (a.s.).

2.1.2 Optimal portfolio problem

Here we analyze optimal portfolio selection. First, we specify optimal portfolio

problem for investors;

ASSUMPTION 1 We assume investors seek to maximize an objective function

1For a detailed explanation of this budget constraint, see Merton [1971]
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as below;

sup
(π,c)∈A (x)

EP [U(X (T ))], (2.7)

subject to the budget-constraint dynamics, (2.6), here EP [·] denotes the expectation

operator under P and U denotes a utility function.

Note that, with the objective function above, optimal consumption rule turn out

to be c(t) = 0.

Furthermore, as assumed in Sørensen [1999], Brennan and Xia [2000], Kobayashi,

Takahashi and Tokioka [2005], Liu [2006], We assume a utility function in (2.7) is

specified as so-called power utility, that is;

ASSUMPTION 2 We assume investors have a utility function as follows; for

δ < 1, δ ̸= 0,

U(x) :=
xδ

δ
.

In this Markovian setting, Takahashi and Yoshida [2004] provides the following

result based on Ocone and Karatzas [1991].

THEOREM 2.1 Under the same conditions as in Section 4 in Takahashi and

Yoshida [2004], the optimal proportion of zero coupon bonds in wealth denoted by
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π(t)′/X (t) are given as follows;

π(t)′

X (t)
=

1

1 − δ
θ̂(t,Xt)

′σ̂(t)−1 +
δ

1 − δ

1

EP
t [(Ht,T )−δ/(1−δ)]

×

× EP
t

[
(Ht,T )−δ/(1−δ)

(∫ T

t

∂r(Xu)Yu V (Xt) du+

+
m∑

j=1

∫ T

t

∂θ̂j(t,Xu)Yu V (Xt) dŴju+

+
m∑

j=1

∫ T

t

θ̂j(t,Xu) ∂θ̂j(t,Xu)Yu V (Xt) du

)]
σ̂(t)−1

(2.8)

where EP
t [·] denotes the conditional expectation at time t, Ht,T is defined by;

Ht,T := exp

(
−

∫ T

t

θ̂(t,Xu)
′ dŴu −

1

2

∫ T

t

|θ̂(t,Xu)|2 du −
∫ T

t

r(Xu) du

)
,

and

∂r(Xu) =

(
∂r

∂X1

, . . . ,
∂r

∂Xm

)
∂θ̂j(t,Xu) =

(
∂θ̂j

∂X1

, . . . ,
∂θ̂j

∂Xm

)
,

and Yu follows the (m × m) matrix valued stochastic differential equation; for

u ∈ [t, T ],

dYu = ∂V0(Xu)Yu du +
m∑

j=1

∂Vj(Xu)Yu dŴj,u Yt = I (2.9)

where ∂Vk(Xu) is a (m×m) matrix such that ∂Vk(Xu) = (∂V i
k/∂Xj,u)1≤i,j≤m, V i

k

denotes the ith element of Vk, k = 0, . . . ,m which appeared in (2.1) and I denotes

(m × m) identity matrix.
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Proof. See Section 4.1 in Takahashi and Yoshida [2004].

In the next subsection, we will obtain a closed form solution of the optimal

portfolio by specifying Xt, θ̂(t,Xt) and r(Xt).

2.2 Optimal Portfolio in Multi-factor Gaussian model

In this subsection, we first specify the process of Xt.

ASSUMPTION 3 We assume the state variable Xt follows the process;

dX1,t = α1(X2,t + X3,t + · · · + Xm,t − X1,t) dt + σ1 dW1,t

dXi,t = αi(X̄i − Xi,t) dt + σi dWi,t, (i = 2, 3, . . .m)

(2.10)

where, α1 > 0, αi ≥ 0, X̄i ≥ 0, i = 2, 3, . . .m, σi ≥ 0, i = 1, 2, . . .m are all

constants and Wt := (W1,t,W2,t, . . . ,Wm,t)
′, 0 ≤ t ≤ T is a Rm-valued correlated

Brownian motion defined on (Ω, F , {Ft}0≤t≤T<∞, P) with dWi dWj = ρijdt (if

i = j, ρij ≡ 1). The correlated Brownian motion Wt can be expressed by using

an independent Brownian motion Ŵt as Wt = CŴt, where C is some lower

triangular matrix obtained by Cholesky decomposition.

Under this setting, (2.1) is reduced to

dXt = α(X̄ − Xt) dt + V dŴt X0 = x, (2.11)

where α is a (m×m) diagonal matrix whose ith element is αi, X̄ := (X̄1, X̄2, . . . , X̄m)′,

X̄1 := X2,t + X3,t + · · · + Xm,t, V := σC and σ is a (m × m) diagonal matrix

whose ith element is σi.

10



Next, we put assumptions on θ(t,Xt) and r(Xt) as follows;

ASSUMPTION 4 (1)We assume the market price of risk θ(t,Xt) is given by;

θ(t,Xt) := θ = (θ1, . . . , θm)′,

where θi, i = 1, 2, . . . ,m are all constants.

(2) We also assume the instantaneous spot rate r(t) is expressed as r(t) =

r(Xt) := X1,t.

Then, the dynamics of Xt under a risk neutral measure Q is given;

dXt =
[
α(X̄ − Xt) − σθ

]
dt + V dŴ∗

t X0 = x, (2.12)

where W∗
t denotes a Rm-valued Brownian motion under Q given as;

W∗
t = Wt + θt.

This model belongs to the class of the multi-factor affine model and the general

version of stochastic mean model including Vasicek[1977], Hull and White [1990],

Balduzzi et al. [2000], He [2001] and Takahashi and Sato [2001] as special cases.
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From Assumption 4 and (2.12), r(u) is expressed as follows;

r(u) = e−α1(u−t)X1,t +
m∑

i=2

(
α1

∫ u

t

e−αi(s−t)−α1(u−s) ds

)
Xi,t

− σ1θ1

α1

(1 − e−α1(u−t))

+
m∑

i=2

(
α1

∫ u

t

∫ s

t

e−αi(s−τ)−α1(u−s)dτ ds

)
(α2X̄i − σiθi)

+ σ1

∫ u

t

e−α1(u−τ) dW1,τ

+
m∑

i=2

σiα1

∫ u

t

∫ u

τ

e−αi(s−τ)−α1(u−s) ds dWi,τ

(2.13)

Under the no-arbitrage condition, the zero coupon price at time t with the

maturity Ti, P (t, Ti) is obtained by;

P (t, Ti) = EQ
t

[
exp

(
−

∫ Ti

t

r(u) du

)]

where EQ
t [·] is the conditional expectation operator under Q given information at

time t. Then the bond price at time t with the maturity Ti is given by;

P (Xt, Ti) := P (t, Ti) = exp

(
ai,0(τi) +

m∑
j=1

ai,j(τi)Xj,t

)

where ai,0(τi) is some deterministic function with respect to τi := Ti− t and ai,j(τi)

is given by;

ai,1(τi) := −1 − e−α1τi

α1

, ai,j(τi) := −α1

∫ T

t

∫ u

t

e−αi(s−t)−α1(u−s)ds du.
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From Itô ′s lemma, we obtain;

dP (Xt, Ti)

P (Xt, Ti)
=

m∑
j=1

ai,j(τi) dXj,t +
∂P (Xt, Ti)

∂t
/P (Xt, Ti) dt

+
1

2

m∑
k,j=1

ai,k(τi)ai,j(τi)ρkjσkσj dt.

(2.14)

From the right hand side in (2.14), we can see that the return of each zero coupon

bond can be decomposed into 3 terms; factor variation, carry and factor convexity.

Especially, from the first term, we obtain factor exposure of the ith bond for

each factor j = 1, . . . ,m as ai,j(τi). Here we define a (m × 1) vector, ai(τi), by

ai(τi) := (ai,1(τi), ai,2(τi), . . . , ai,m(τi))
′ and then the first term in (2.14) can be

rewritten as ai(τi)
′dXt. Therefore, with (2.11), σ̂i(t) in (2.2) can be rewritten as

σ̂i(t) = ai(τi)
′V . Finally, set factor exposure matrix A as A := (ai,j(τi))1≤i,j≤m

then σ̂ appeared in (2.6) and (2.8) can be rewritten as

σ̂ = AV . (2.15)

Then, by adding Assumption 3 and 4, the optimal portfolio strategy in Theorem

2.1 reduces to the following proposition;

PROPOSITION 2.1 Under the same conditions as in Theorem 2.1 and As-

sumption 3-4, the optimal proportion of zero coupon bonds are given as follows;

π(t)′

X (t)
=

1

1 − δ
θ̂
′
σ̂−1 +

δ

1 − δ
Y ′ V σ̂−1 (2.16)

where Y is defined as below;
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Y :=



1−e−α1(T−t)

α1

α1
∫ T

t

∫ u

t e−α2(s−t)−α1(u−s) ds du
...

α1
∫ T

t

∫ u

t e−αm(s−t)−α1(u−s) ds du


(2.17)

Proof. ∂θ̂j(Xu) ≡ 0, j = 1, . . . ,m follows from Assumption 4(1). As ∂r(Xu) =

(1, 0, . . . , 0) from Assumption 4(2), ∂r(Xu)Yu reduces to the first row of Yu, which

is obtained by;

(
e−α1(u−t), α1

∫ u

t

e−α2(s−t)−α1(u−s) ds, . . . , α1

∫ u

t

e−αm(s−t)−α1(u−s) ds

)
.

Finally using V (Xt) = V and
∫ T

t
∂r(Xu)Yu du = Y ′, (2.8) turns out to be;

π(t)′

X (t)
=

1

1 − δ
θ̂
′
σ̂−1 +

δ

1 − δ

1

EP
t [(Ht,T )−δ/(1−δ)]

×

× EP
t

[
(Ht,T )−δ/(1−δ)

(∫ T

t

∂r(Xu)Yu V du

)]
σ̂−1

=
1

1 − δ
θ̂
′
σ̂−1 +

δ

1 − δ

1

EP
t [(Ht,T )−δ/(1−δ)]

×

× EP
t [(Ht,T )−δ/(1−δ) ]

(∫ T

t

∂r(Xu)Yu du

)
V σ̂−1

=
1

1 − δ
θ̂
′
σ̂−1 +

δ

1 − δ
Y ′ V σ̂−1.

The first term on the right hand side of (2.16) represents so-called Mean-Variance

portfolio in a continuous-time setting; hence we call it MV term. The second

term is specific to a multi-period setting and represents the intertemporal hedging

demand defined by Merton [1971]; we call it IR-hedging term.
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As observed in (2.14), the dynamics of a single bond’s return can be decomposed

into exposures to several factors’ return. Thus the allocation to bonds is converted

into the allocation to factors. While it is difficult to interpret the optimal portfolio

in terms of bonds because of high correlation among them, we can interpret the

optimal portfolio easier in terms of factors.

Therefore we consider factor exposure of the optimal strategy in Proposition

2.1. The process of the instantaneous return of the optimal bonds’ portfolio can

be described as follows;

dX (t)

X (t)
=

(
1 −

m∑
i=1

πi(t)

X (t)

)
r(Xt)dt +

m∑
i=1

πi(t)

X (t)

dP (Xt, Ti)

P (Xt, Ti)

=

(
1 −

m∑
i=1

πi(t)

X (t)

)
r(Xt)dt +

m∑
j=1

( m∑
i=1

πi(t)

X (t)
ai,j(τi)

)
dXj,t

+
m∑

i=1

πi(t)

X (t)

∂P (Xt, Ti)

∂t
/P (Xt, Ti) dt +

1

2

m∑
k,j=1

m∑
i=1

πi(t)

X (t)
ai,k(τi)ai,j(τi)ρkjσkσj dt.

(2.18)

The factor exposure to Xj,t is given by the coefficient of dXj,t in the second term

on the right hand side of (2.18). Then, we obtain the following corollary.

COROLLARY 2.1 Factor exposure of the optimal portfolio strategy in Proposi-

tion 2.1 can be obtained as follows;

π(t)′A

X (t)
=

1

1 − δ
θ̂
′
V −1 +

δ

1 − δ
Y ′. (2.19)
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Proof. Using (2.15) and the result of Proposition 2.1, we can calculate as follows;

π(t)′A

X (t)
=

1

1 − δ
θ̂
′
σ̂−1A +

δ

1 − δ
Y ′ V σ̂−1A

=
1

1 − δ
θ̂
′
V −1A−1A +

δ

1 − δ
Y ′ V V −1A−1A

=
1

1 − δ
θ̂
′
V −1 +

δ

1 − δ
Y ′.

Thus using this corollary, we can convert the optimal portfolio into its factor

exposure and we can reinterpret the bond allocation as the factor allocation. This

idea is useful for investigating the relationship between the change in term struc-

ture and that in the factor exposure of the optimal portfolio strategy.

In concluding this section, one final remark on Corollary 2.1 deserves mention.

In this multi-factor model, the optimal allocation to each factor does not depend

on the components of portfolio. That is, being current term structure equal, the

factor allocation is also invariant even though the optimal bond allocation varies

as we change component of the bond portfolio. Thus we can say that the essence of

the portfolio problem lies in the factor allocation rather than the bond allocation.

Once we obtain the optimal factor allocation from Corollary 2.1, then we can

also get the optimal allocation for any bond portfolio through its factor exposure

matrix. Therefore, we can see that the optimal allocation of bonds is essentially

obtained by that of factors. When the term structure varies, the change will be

reflected by the factor allocation directly and the bond portfolio will also change

through the change of factor allocation. Therefore the effect of the term structure

variation on the bond portfolio is indirect and thus it is easier to analyze factor
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allocation directly.

The factor allocation depends on parameters such as speed parameters of mean-

reversion ki, i = 1, . . . ,m which are strongly related with the shape of the yield

curve. One of our objectives is to analyze how the changes in the shape of yield

curve affect the IR-hedging term and hence the whole portfolio strategy. To inves-

tigate this issue, we introduce a concrete 3-factor model in the next section and

implement series of comparative statics.

3 Numerical Analysis

So far, we have outlined the dynamic portfolio problem with multi-factor model.

In this section, we introduce a 3-factor model as an example of the multi-factor

stochastic mean model in (2.12) and we implement series of comparative stat-

ics based upon the model. The result brings clear interpretation of the optimal

portfolio, which is also one of our main contributions in this paper.

3.1 3-factor Model

In this subsection, we concentrate on the case where the risk-neutral dynamics

of X1, X2 and X3 are given by;

dX1 = [α1(X2 + X3 − X1) − θ1σ1] dt + σ1 dW ∗
1

dX2 = [α2(X̄2 − X2) − θ2σ2] dt + σ2 dW ∗
2

dX3 = [α3(X̄3 − X3) − θ3σ3] dt + σ3 dW ∗
3 .
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Here, we assume α1 > αi, i = 2, 3, α2 > 0, α3 ≥ 0, θi ≤ 0, i = 1, 2, 3 and the other

conditions are the same in the previous section.

Then r(u), V and Y in this model are expressed as follows;

r(u) = e−α1(u−t)X1,t +
α1

α1 − α2

(e−α2(u−t) − e−α1(u−t))X2,t

+
α1

α1 − α3

(e−α3(u−t) − e−α1(u−t))X3,t

− (1 − e−α1(u−t))
σ1θ1

α1

+

{
(1 − e−α1(u−t)) − α1

α1 − α2

(e−α2(u−t) − e−α1(u−t))

}
(X̄2 −

σ2θ2

α2

)

+

{
(1 − e−α1(u−t)) − α1

α1 − α3

(e−α3(u−t) − e−α1(u−t))

}
(X̄3 −

σ3θ3

α3

)

+ σ1

∫ u

t

e−α1(u−s) dW1,s

+ σ2
α1

α1 − α2

∫ u

t

(
e−α2(u−s) − e−α1(u−s)

)
dW2,s

+ σ3
α1

α1 − α3

∫ u

t

(
e−α3(u−s) − e−α1(u−s)

)
dW3,s

(when α3 ̸= 0)(3.1)

r(u) = e−α1(u−t)X1,t +
α1

α1 − α2

(e−α2(u−t) − e−α1(u−t))X2,t + (1 − e−α1(u−t))X3,t

− (1 − e−α1(u−t))
σ1θ1

α1

+

{
(1 − e−α1(u−t)) − α1

α1 − α2

(e−α2(u−t) − e−α1(u−t))

}
(X̄2 −

σ2θ2

α2

)

−
{

(u − t) − 1 − e−α1(u−t)

α1

}
σ3θ3

+ σ1

∫ u

t

e−α1(u−s) dW1,s

+ σ2
α1

α1 − α2

∫ u

t

(
e−α2(u−s) − e−α1(u−s)

)
dW2,s

+ σ3

∫ u

t

(
1 − e−α1(u−s)

)
dW3,s

(when α3=0)(3.2)

18



V =


σ1 0

σ2

0 σ3




1

ρ12

√
1 − ρ2

12

ρ13 x y


where

x :=
ρ23 − ρ12ρ13√

1 − ρ2
12

y :=

√
1 − (ρ2

12 + ρ2
23 + ρ2

13) + 2ρ12ρ23ρ13

1 − ρ2
12

.

Y :=



1−e−α1(T−t)

α1

α1
α1−α2

[1−e−α2(T−t)

α2
− 1−e−α1(T−t)

α1
]

α1
α1−α3

[1−e−α3(T−t)

α3
− 1−e−α1(T−t)

α1
]


(when α3 ̸= 0) (3.3)

Y :=



1−e−α1(T−t)

α1

α1
α1−α2

[1−e−α2(T−t)

α2
− 1−e−α1(T−t)

α1
]

(T − t) − 1−e−α1(T−t)

α1


(when α3 = 0). (3.4)
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3.2 Properties of the 3-factor model

In this subsection, we briefly review properties of the 3-factor model introduced

above. First, we check the characteristics of factors and parameters such as αi and

θi. Here we present the comparative statics of the 3-factor model with θ1 = θ2 =

α3 = 0 which will be used for the analysis in the next subsection.

As explained by He [2001], X1 captures the short rate controlled by the central

bank, X2 represents the movements of the yield curve slope and X3 tracts the

movements of the long-term interest rate. We investigate how the change of each

factor affects the term structure. In Exhibits 1 − 3, the horizontal axis and the

vertical axis represent spot rate maturities and changes in spot rates when each

factor Xi increases by 20 basis points (bps) respectively. From Exhibits 1 − 3, we

can confirm X1 affects mainly the short sector in the term structure and X2 and

X3 affect mainly the middle and the long term sectors respectively.

The positive constants α1 and α2 control the speed of mean-reversion of X1

and X2 respectively. The faster (slower) the reversion is, the shorter (longer)

the shock to the economic system (or new information) stays in the market, and

therefore the steeper (flatter) the yield curve becomes. Thus, α1 and α2 affect the

slope of the short - middle term sector and that of the middle - long term sector

respectively. We investigate how the changes of parameters in the model affect

the term structure in Exhibits 4 − 7 where the horizontal axis and the vertical

axis represent spot rate maturities and changes in spot rates respectively. We can

confirm above from Exhibit 4, Exhibit 5 and Exhibit 6 which show the effects of

each parameter’s change. Exhibit 7 shows the increase of the market price of risk
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pushes up the spot rates of the long term sector.

3.3 Comparative Statics

Next we show the results from series of comparative statics based on this model.

From Corollary 2.1, we can see how the changes in the shape of yield curve,

investor’s preference and so on affect the portfolio strategy. The relative risk

aversion (RRA given by 1− δ) affects both. The MPR θi, the volatility σi and the

correlation ρij affect only the MV term. Investment Horizon T and the speed of

mean-reversion αi affect only the IR-hedging term.

From Corollary 2.1, we can also see the hedging demand for X1 and X2 will

converge to 0 as α1, α2 → ∞. It is well-known that when the state variables

are deterministic, the dynamic parts will disappear. As α1, α2 → ∞, X1 and

X2 become almost deterministic because these two factors follow mean-reverting

processes. Therefore the hedge demand for X1 and X2 will disappear. We can

observe the same result for X3 in (3.3) as α1, α3 → ∞. On the other hand, the

hedging demand for X3 in (3.4) is the increasing function of investment horizon T

because when α3 = 0, X3 does not have a mean-reversion property.

Based upon these analysis, we implement series of comparative statics. First, the

initial parameters are reported in Exhibit 8. We use estimates of these parameters

from He [2001] and set the components of the portfolio, the investment horizon and

the RRA as in Exhibit 9. The optimal portfolio strategy and its factor allocation

in this setting are given in Exhibit 10.

Two points deserve mention. First, the IR-hedging term is not negligible and
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affects the whole strategy. Second, although the allocation to the long-term bond

(30-year bond) is quite small in the MV term because of its high volatility, its allo-

cation in the IR-hedging term is not small because it is necessary to hedge mainly

against X3. This is important because if we use Mean-Variance scheme only, the

position will be a simple spread strategy without 30-year bond which cannot hedge

against yield curve risks other than the spread risk. Thus our approach is more

preferable and practical because we can hedge against several yield curve risks.

Next, we shift several parameters to investigate further details of properties of

this model. The results are shown in Exhibits 11 - 21 where we take the values

of each parameter in a horizontal axis and the portfolio weight for each bond or

the allocation to each factor in a vertical axis, respectively. First, we see the

effect of the variation of α1. The results are shown in Exhibit 11 and Exhibit

12. From these results, we can see several points. First, as mentioned before,

the effects on each bond’s allocation are very complicated and unclear because

of high correlations among bonds; from Exhibit 11, it is difficult to see how the

change of α1 affects. In contrast, Exhibit12 shows a clear message; there is no

change in the MV term of factor allocation and thus only the IR-hedging term

can reflect the steepening and flattening. As α1 becomes larger, the allocation to

X1 in the IR-hedging term decreases. This is because the larger α1 becomes, the

faster X1 reverts and hence X1 becomes less uncertain. Therefore, the steepening

(flattening) in the short term sector makes investors reduce (increase) the hedging

position to X1, and increase (reduce) hedging positions against X2 and X3 because

these factors become riskier than X1.

From Exhibit 14 we can see the same is true for α2; the increase of α2 decreases
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the exposure to X2. Moreover, this case shows the advantage of the factor alloca-

tion approach. It is difficult to interpret how α2 affects each bond from Exhibit

13. On the other hand, from Exhibit 14, we can interpret the effect intuitively as

follows; steepening (flattening) in the middle term sector makes investors reduce

(increase) only their hedge exposures to X2 while exposures to X1 and X3 stay

constant.

Next we consider the effect of the change of θ3. In Exhibit 15, the factor al-

location in the IR-hedging term unchanges while the exposures to X2 and X3 in

the MV term change. The decrease of θ3 makes the instantaneous expected return

of X3 increase and therefore X3 becomes more attractive in Mean-Variance basis.

Thus the exposure to X3 increase as θ3 decreases. Moreover, because the correla-

tion between X2 and X3 is set to be negative, investors can increase the exposure

to X3 further by using the exposure to X2 for hedging. As a result, the exposure

to X2 also increases. We can confirm this from Exhibit 18. The exposure to X3

with ρ23 ̸= 0 is larger than that with ρ23 = 0.

From Corollary 2.1, we can confirm σi, i = 1, 2, 3 affect only the MV term. We

can see this from Exhibit 16 and Exhibit 17. The increase of σi will reduce only

the allocation to Xi and others stay constant.

Next we can refer to Exhibit 19 and Exhibit 20 to see the effect of the investment

horizontal. Two points deserve mention. First, the MV term has no horizontal

effect and this effect is specific to the dynamic term. Second, from Exhibit 19 the

effect on the allocation to bonds is not monotone. The increase of the investment

horizon increases the uncertainty in the future but at the same time it also reduces

the duration of each bond and that makes uncertainty decrease. Which of them

23



is dominant depends on circumstances. On the other hand, the effect on the

factor allocation is monotone increasing from Exhibit 20. This is simply because

uncertainty becomes larger as the investment horizon increases.

Finally, we consider the effect of the variation of the RRA. The results are given

in Exhibit 21. When the RRA= 1, the investor has a log utility and the optimal

strategy is the same with that of Mean-Variance approach. From Exhibit 21 we can

see several points. First, as for X1 the MV term has no exposure to X1 therefore

the IR-hedging term is dominant. If the RRA < 1, the investor is less risk averse

and takes an aggressive position, which corresponds to positive exposures in the

IR-hedging term. If the RRA > 1, on the other hand, the investor is more risk

averse and takes a cautious position; the opposite position with the MV term.

We summarize the results of the comparative statics in Exhibit 22.

4 Conclusion

In this paper, we analyzed the dynamic fixed-income portfolio optimization with a

multi-factor Gaussian yield curve model. The main results obtained in this paper

are summarized as follows.

First, we combined the dynamic portfolio optimization and a multi-factor Gaus-

sian term structure model to obtain an analytical expression of the optimal bond

allocation; it enables us to examine the model parameters’ effects efficiently.

Second, by introducing the idea of factor allocation, we can easily interpret op-

timal portfolio which is usually hard to be understood by considering the portfolio

in terms of bonds.
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Third, we investigate how the change in the term structure affects the optimal

portfolio through series of comparative statics.
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EXHIBIT 1: X1 effect;+20 bps

EXHIBIT 2: X2 effect;+20 bps

EXHIBIT 3: X3 effect;+20 bps

EXHIBIT 4: α1 effect; +0.5

EXHIBIT 5: α2 effect;+0.5, X2(0) < 0

EXHIBIT 6: α2 effect;+0.5, X2(0) > 0

EXHIBIT 7: θ3 effect;−0.7
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EXHIBIT 8: Model Parameter Set

α1 1.50 σ1 0.50%

α2 0.50 σ2 1.50%

α3 0 σ3 1.25%

θ1 0 ρ12 0

θ2 0 ρ13 0

θ3 −0.125 ρ23 −0.3

EXHIBIT 9: Portfolio Parameter Set

Investment Horizon 1

RRA 4

2

Zero Coupon Bonds 7

30

EXHIBIT 10: Initial Result

MV IR Hedge Total

2 0.882 0.937 2 1.820

7 −0.836 + −0.353 = 7 −1.189

30 −0.002 0.045 30 0.043

Cash 0.673

Total 1

factor allocation

MV IR Hedge Total

X1 0.0000 −0.3884 −0.3884

X2 0.7661 −0.3027 0.4635

X3 4.1570 −0.3616 3.7954
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EXHIBIT 11: The effect of α1 variation;

bonds

EXHIBIT 12: The effect of α1 variation;

factor allocation
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EXHIBIT 13: The effect of α2 variation;

bonds

EXHIBIT 14: The effect of α2 variation;

exposure to X2
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EXHIBIT 15: The effect of θ3 variation;

factor allocation

EXHIBIT 16: The effect of σ2 variation;

X2

EXHIBIT 17: The effect of σ3 variation;

X3
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EXHIBIT 18: θ3 and ρ23

θ3 0.2 0.3 0.4 0.5 0.6 0.7 0.8phantom000

Factor Allocation

MV term

X2 (ρ23 = −0.38) 1.1103 1.6655 2.2207 2.7758 3.3310 3.8862 4.4413
X3 (ρ23 = −0.38) 6.0246 9.0369 12.0492 15.0615 18.0738 21.0861 24.0984

X2 (ρ23 = 0) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
X3 (ρ23 = 0) 5.1546 7.7320 10.3093 12.8866 15.4639 18.0412 20.6186

X2 (ρ23 = 0.38) −1.1103 −1.6655 −2.2207 −2.7758 −3.3310 −3.8862 −4.4413
X3 (ρ23 = 0.38) 6.0246 9.0369 12.0492 15.0615 18.0738 21.0861 24.0984
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EXHIBIT 19: The effect of Investment

Horizon variation; bonds

EXHIBIT 20: The effect of Investment

Horizon variation; factor allocation
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EXHIBIT 21: The effect of RRA variation; factor allocation
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EXHIBIT 22: The summary of effects

Parameter
The effect on the portfolio strategy (the factor allocation)

MV term IR Hedge term

Term Structure

α1 ——– α1 ↑ ⇒ X1 ↓, X2 & X3 ↑
α2 ——– α2 ↑ ⇒ X2 ↓

θ3

θ3 ↑ ⇒ X3 ↑
——–

ρ23 < 0 ⇒ X3 ↑↑, X2 ↑

σ1 ——– ——–

σ2 σ2 ↑ ⇒ X2 ↓ ——–

σ3 σ3 ↑ ⇒ X3 ↓ ——–

Investment strategy

T
——– T ↑ ⇒ X1, X2, X3 ↑

(Investment Horizon)

RRA
RRA > 1, RRA ↑ ⇒ X2 & X3 ↓ RRA > 1, RRA ↑ ⇒ X1, X2, X3 ↑

(Risk Preference)
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