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1. Introduction 

 We investigate two-player infinitely repeated games with discounting. We assume 

that monitoring is imperfect in that each player cannot observe the opponent’s action 

choice but can imperfectly monitor it by observing a noisy signal. This signal is 

randomly determined according to the probability function conditional on the 

opponent’s action choice. We also assume that monitoring is private in that the signals 

that each player observes cannot be observed by the opponent. 

We focus on a class of games where the payoff functions are additively separable 

and the signals for monitoring any player’s action choices are independent of the other 

player’s action choices. With this class restriction, we investigate the possibility that 

efficiency is approximated by a Nash equilibrium payoff vector when monitoring is 

almost perfect, and we arrive at the following affirmative answer. In the case of almost 

perfect private monitoring, there exists a simple tit-for-tat Nash equilibrium that 

approximately induces efficiency, according to which, each player’s action choice in 

each period depends only on the signal for the opponent’s action choice one period 

before. The main contribution of this paper is that this positive result holds even if the 

discount factor is fixed and not very high. 

It is well known that if each player perfectly monitors the opponent’s action 
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choices and the discount factor is not very low, efficiency is achieved by a Nash 

equilibrium. See Fudenberg and Tirole (1991) and Osborne and Rubinstein (1994). In 

order to clarify the robustness with respect to monitoring ability, it is important to 

answer the question of whether efficiency is approximated by a Nash equilibrium payoff 

vector if monitoring is almost perfect but imperfect. In the case of public monitoring 

where the signals are observable to both players, it is now not difficult to answer in the 

affirmative due to previous works such as Green and Porter (1984); Abreu, Pearce, and 

Stachetti (1990), and Fudenberg, Levine, and Maskin (1986). In the case of private 

monitoring, however, this robustness issue remains unresolved and is much more 

substantial. 

In fact, the previous works have given only partial answers for the private 

monitoring case. First, Sekiguchi (1997) showed an example in which efficiency can be 

approximated by a Nash equilibrium payoff vector when monitoring is almost perfect. 

Sekiguchi demonstrated an idea of construction with public randomization, which 

allowed equilibrium strategies to depend on histories in a non-recursive manner. Ely 

and Valimaki (2002) and Piccione (2002) demonstrated another idea of construction on 

the basis of recursive Markovian techniques, which was applicable to a class of games 

wider than that presented in Sekiguchi. By constructing Markovian strategies to which 
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both the cooperative and non-cooperative actions are the best responses at all times, 

they showed that efficiency is approximated by a Nash equilibrium payoff vector when 

the discount factor is very close to unity. However, this result is not satisfactory because 

their proofs crucially depend on the assumption of almost no discounting. Hence, the 

robustness is regarded as an open question in the case when the discount factor is fixed 

and not very high. This is the main theme of this paper. 

With our class restriction, by using only tit-for-tat strategies instead of the more 

complicated Markovian ones, we can demonstrate the same result as that shown by Ely, 

Valimaki, and Piccione. Tit-for-tat Nash equilibria have a useful property that the least 

upper bound of tit-for-tat Nash equilibrium payoffs for each player is independent of the 

discount factor. This implies that whenever the approximate efficiency holds with 

almost no discounting, then this holds even if the discount factor is not very high. This 

is precisely what we will show as the main theorem. 

This paper is organized as follows. Section 2 describes the model. Section 3 

defines tit-for-tat strategies. In Section 4, we characterize the tit-for-tat Nash equilibria 

and the least upper bounds. Section 5 presents the main theorem. Finally, Section 6 

considers an example where we argue the degree of implicit collusion sustained in the 

long run by introducing the concept of stationary distribution of action profiles. 
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2. The Model 

A two-person component game is defined by {1,2}( , )i i iA u ∈ , where iA  denotes the 

finite set of actions for each player {1,2}i∈ , i ia A∈ , 1 2A A A≡ × , 1 2( , )a a a A≡ ∈ , 

:iu A R→ , and ( )iu a  is the payoff for player i  when the players choose the action 

profile a A∈ . Let : [0,1]i iAα →  denote a mixed action for player i . Let i∆  denote 

the set of mixed actions for player i . 

Two noisy signals 1 1ω ∈Ω  and 2 2ω ∈Ω  occur after the players’ action choices, 

where iΩ  denotes the finite set of possible iω , 1 2( , )ω ω ω= , and 1 2Ω = Ω ×Ω . A 

signal profile ω∈Ω  is randomly determined according to the probability function 

( | ) :f a R+⋅ Ω→  conditional on a A∈ . Let ( | ) ( | )
j j

i if a f a
ω

ω ω
∈Ω

≡ ∑ , where j i≠ . 

We assume that the payoff functions are additively separable, i.e., 

   ( ) ( ) ( )i i i i ju a v a w a= +  for all {1,2}i∈  and all a A∈ , 

where :i iv A R→  and :i jw A R→ . We assume that ( | )i if aω  does not depend on 

ja . We write ( | )i i if aω  instead of ( | )i if aω  and call i iω ∈Ω  the signal for player 

'si  action choice. An economic situation relevant to our model is the voluntary 

contribution of public goods. The players supply their public goods that are perfectly 

differentiated each other. An action i ia A∈  for each player i  implies the amount of 
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public good that player i  produces. The production cost for player 'si  public good is 

given by ( )i iv a− . Player 'si  benefit from opponent 'sj  public good is given by 

( )i jw a . 

Fix 1A , 2A , 1Ω , and 2Ω  arbitrarily. We define an infinitely repeated game by 

{1,2}( , , )i i i iu f δ ∈Γ ≡ , where (0,1)iδ ∈  denotes the discount factor for player i . We 

allow the players to have different discount factors. Let 1( ) ( ( ), ( ))th t a ττ ω τ ==  denote a 

history up to period t , where 1 2( ) ( ( ), ( ))a a a Aτ τ τ= ∈ , and let 

1 2( ) ( ( ), ( ))ω τ ω τ ω τ= ∈Ω  denote the action profile and the signal profile in period t , 

respectively. Let { ( ) | 0,1,...}H h t t= =  denote the set of histories, where (0)h  is the 

null history. A strategy for player {1,2}i∈  is defined as :i iHσ → ∆ , where 

( ( 1))i h tσ −  is the mixed action for player i  in period t  when ( 1)h t −  occurs. Let 

1 2( , )σ σ σ=  denote a strategy profile. The payoff for player i  induced by σ  in Γ  

is given by 1

1

( ) (1 ) [ ( ( )) | , ]
t

i i i iv E u aτ

τ

σ δ δ τ σ−

=

≡ − Γ∑ , where [ | , ]E σ⋅ Γ  denotes the 

expectation when the players conform to σ  in Γ . Let iΣ  denote the set of strategies 

for player i . A strategy profile σ  is said to be a Nash equilibrium in Γ  if 

( ) ( , )i i i jv vσ σ σ′≥  for all {1,2}i∈  and all i iσ ′∈Σ . 

If monitoring is imperfect and private, i.e., each player observes only the signal for 

the opponent’s action choice, it is appropriate to replace the set of strategies iΣ  with a 
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subset ˆ
i iΣ ⊂ Σ  that is defined as the set of strategies iσ  such that ( ( ))i h tσ  is 

independent of ( ( ), ( ))j ia τ ω τ  for all {1,..., }tτ ∈ . Let 1 2
ˆ ˆ ˆΣ = Σ ×Σ . A strategy profile 

ˆσ ∈Σ  is said to be a Nash equilibrium in Γ  with private monitoring if 

( ) ( , )i i i jv vσ σ σ′≥  for all {1,2}i∈  and all ˆ
i iσ ′∈Σ . Clearly, a strategy profile is a 

Nash equilibrium in Γ  with private monitoring if it is a Nash equilibrium in Γ . 

 

3. Tit-For-Tat Equilibria 

For each {1,2}i∈ , we arbitrarily fix two actions *
i ia A∈  and **

i ia A∈  for player 

i . Let * * *
1 2( , )a a a A= ∈  and ** ** **

1 2( , )a a a A= ∈ . We assume that the action profile *a  

is efficient in that * *
1 2 1 2( ) ( ) ( ) ( )u a u a u a u a+ ≥ +  for all a A∈ . Further, we assume 

that for every {1,2}i∈ , * **( ) ( )i i i iv a v a<  and * **( ) ( )i j i jw a w a> , i.e., 

(1)   * **( , ) ( , )i i j i i ju a a u a a<  and * **( , ) ( , )i i j i i ju a a u a a>  for all a A∈ . 

In the voluntary contributions of public goods, this assumption implies that player i  is 

producing *
ia  at a higher cost than **

ia  but in a manner more beneficial to opponent 

j . 

We consider strategies that are tit-for-tat in that 

(i)  each player i  only chooses *
ia  and **

ia  at all times, and 

(ii)  each player 'si  mixed action in any period 2t ≥  depends only on the signal 
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( 1)j tω −  for opponent 'sj  action choice in the previous period 1t − . 

Formally, a strategy iσ  for each player {1,2}i∈  is said to be tit-for-tat if for every 

1t ≥  and every ( 1)h t H− ∈ , 

( ( 1))( ) 0i ih t aσ − =  for all * **\ { , }i i i ia A a a∈  

and for every 2t ≥ , every ( 1)h t H− ∈ , and every ( 1) \{ ( 1)}h t H h t′ − ∈ − , 

( ( 1)) ( ( 1))i ih t h tσ σ ′− = −  whenever ( 1) ( 1)j jt tω ω′− = − . 

A tit-for-tat strategy iσ  is represented by ( , )i iq s  where [0,1]iq ∈ , : [0,1]i js Ω → , 

*( (0))( )i i ih a qσ = , **( (0))( ) 1i i ih a qσ = − , 

for every 2t ≥  and every ( 1)h t H− ∈ , 

*( ( ))( ) 1 ( ( ))i i i jh t a s tσ ω= − , and **( ( ))( ) ( ( ))i i i jh t a s tσ ω= . 

According to ( , )i iq s , player i  chooses action *
ia  (action **

ia ) with probability iq  

(probability 1 iq− ) in period 1 and action *
ia  (action **

ia ) with probability ( )i js ω  

(probability 1 ( )i js ω− ) if he/she observes jω  one period before. Note that any 

tit-for-tat strategy for player i  belongs to the subset ˆ
iΣ . 

Let ( , )q s  denote a tit-for-tat strategy profile, where 1 2( , )q q q=  and 1 2( , )s s s= . 

We confine our attention to the tit-for-tat Nash equilibria ( , )q s  in Γ  such that each 

player i  chooses *
ia  with positive probabilities in every period 2t ≥ , i.e., 

( ( )) 0i js tω >  for some j jω ∈Ω . Note that the necessary and sufficient condition for a 
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tit-for-tat strategy profile to be a Nash equilibrium in Γ  is that each player has no 

incentive to choose any other tit-for-tat strategy. Hence, it follows that a tit-for-tat 

strategy profile is a Nash equilibrium in Γ  with private monitoring if and only if it is a 

Nash equilibrium in Γ . The set of tit-for-tat Nash equilibria also remains unchanged 

when monitoring is imperfect and public, that is, when the signals are observable to 

both players. 

 

4. Characterization 

 The definition of tit-for-tat strategies, along with the assumptions on the payoff 

functions and the signals in Section 3, implies that in every period t , the incentive 

constraint of Nash equilibrium for each player i  is irrelevant to the history other than 

( 1)j tω − ; further, each player 'i s  current action ( )ia t  influences opponent 'j s  

mixed action ( ( ))j h tσ  in the next period 1t +  through the determination of ( )i tω . 

Since each player 'i s  choice of *
ia  is at all times one of the best responses to any 

tit-for-tat Nash equilibrium ( , )q s , it follows that for every {1,2}i∈ , 

(2)   * **( , ) ( ) (1 ){ ( ) (1 ) ( )}i i i j i j j i jv q s v a q w a q w aδ= + − + −  

* **[ ( ) ( ) ( ){1 ( )}] ( | )
i i

i i j j i i j j i i i iw a s w a s f a
ω

δ ω ω ω
∈Ω

+ + −∑ , 

and that the incentive constraint is replaced with the maximization of 
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(3)   * **( ) [ ( ) ( ) ( ){1 ( )}] ( | )
i i

i i i i j j i i j j i i i iv a w a s w a s f a
ω

δ ω ω ω
∈Ω

+ + −∑  

with respect to i ia A∈ . The definition of tit-for-tat Nash equilibrium automatically 

implies that both *
ia  and **

ia  maximize this value. Hence, we have proved the 

following proposition. 

 

Proposition 1: A tit-for-tat strategy profile ( , )q s  is a Nash equilibrium in Γ  if and 

only if for every {1,2}i∈ , 

(4)   * * ** *( ) [ ( ) ( ) ( ){1 ( )}] ( | )
i i

i i i i j j i i j j i i i iv a w a s w a s f a
ω

δ ω ω ω
∈Ω

+ + −∑  

** * ** **( ) [ ( ) ( ) ( ){1 ( )}] ( | )
i i

i i i i j j i i j j i i i iv a w a s w a s f a
ω

δ ω ω ω
∈Ω

= + + −∑ , 

and for every i ia A∈ , 

* * ** *( ) [ ( ) ( ) ( ){1 ( )}] ( | )
i i

i i i i j j i i j j i i i iv a w a s w a s f a
ω

δ ω ω ω
∈Ω

+ + −∑  

* **( ) [ ( ) ( ) ( ){1 ( )}] ( | )
i i

i i i i j j i i j j i i i iv a w a s w a s f a
ω

δ ω ω ω
∈Ω

≥ + + −∑ . 

 

 From Proposition 1, it follows that there exists a tit-for-tat Nash equilibrium in Γ  

if and only if for every {1,2}i∈ , there exists a function : {0}i i Rµ +Ω → ∪  such that 

(5)   * * ** **( ) ( ) ( | ) ( ) ( ) ( | )
i i i i

i i i i i i i i i i i i i iv a f a v a f a
ω ω

µ ω ω µ ω ω
∈Ω ∈Ω

− = −∑ ∑ , 

(6)   * *( ) ( ) ( | ) ( ) ( ) ( | )
i i i i

i i i i i i i i i i i i i iv a f a v a f a
ω ω

µ ω ω µ ω ω
∈Ω ∈Ω

− ≥ −∑ ∑  for all 

i ia A∈ , and 
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(7)   * **0 ( ) { ( ) ( )}i i i i j i jw a w aµ ω δ≤ ≤ −  for all i iω ∈Ω . 

From the compactness and non-emptiness of the set of possible iµ  satisfying (5), (6), 

and (7), we can define a value ( ) ( ; )i i i iR R Rδ δ= Γ ∈  as 

* *

: {0}
max { ( ) ( ) ( | )}

i i
i i

i i i i i iR
u a f a

µ ω

µ ω ω
+Ω →

∈Ω

− ∑∪
 subject to (5), (6), and (7). 

The following proposition shows that ( )i iR δ  is regarded as the least upper bound of 

the tit-for-tat Nash equilibrium payoffs for each player {1,2}i∈ . 

 

Proposition 2: Suppose that there exists a tit-for-tat Nash equilibrium in Γ , i.e., for 

each {1,2}i∈ , there exists a function iµ  that satisfies (5), (6), and (7). Then, there 

exists a tit-for-tat Nash equilibrium ˆ ˆ( , )q s  in Γ  such that 

   ˆ ˆ( , ) ( )i i iv q s R δ=  for all {1,2}i∈ . 

Moreover, for every tit-for-tat Nash equilibrium ( , )q s  in Γ , 

   ( , ) ( )i i iv q s R δ≤  for each {1,2}i∈ . 

 

Proof: From (2), for every tit-for-tat Nash equilibrium ( , )q s  and every {1,2}i∈ , 

* * ** *( , ) ( ) { ( ) ( )}{1 ( )} ( | )
i i

i i i i j i j j i i i iv q s u a w a w a s f a
ω

δ ω ω
∈Ω

≤ − − −∑ ; 

note that in the above equation, the function iµ  defined by 

* **( ) { ( ) ( )}{1 ( )}i i i i j i j j iw a w a sµ ω δ ω= − −  for all i iω ∈Ω  
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satisfies (5), (6), and (7). This implies that ( , ) ( )i i iv q s R δ≤ . 

For each {1,2}i∈ , there exists ˆiµ  satisfying (5), (6), and (7) such that 

   * *ˆ( ) ( ) ( | ) ( )
i i

i i i i i i i iu a f a R
ω

µ ω ω δ
∈Ω

− =∑ . 

We can construct a tit-for-tat Nash equilibrium ˆ ˆ( , )q s  in a manner that for every 

{1,2}i∈ , 

   ˆ 1iq = , and * **

ˆ ( )ˆ ( ) 1
{ ( ) ( )}

i i
j i

i i j i j

s
w a w a

µ ωω
δ

= −
−

 for all i iω ∈Ω . 

Clearly, ˆ ˆ( , ) ( )i i iv q s R δ=  for each {1,2}i∈ . Q.E.D. 

 

Remark 1 (Independence of Discount Factors): Given that the discount factors are 

sufficiently large, we can verify that the least upper bound ( ; )i iR δ Γ  for each player i  

does not depend on iδ  as follows. We define iR R∈�  by 

* *

: {0}
max { ( ) ( ) ( | )}

i i
i i

i i i i i iR
u a f a

µ ω

µ ω ω
+Ω →

∈Ω

− ∑∪
 subject to (5) and (6), 

where we must note that iR�  is independent of iδ , and that ( )i i iR R δ≥� . If 

* **{ ( ) ( )}i i j i jw a w aδ −  is large enough for the restriction (7) not to be binding, then it 

holds that ( )i i iR R δ=� . Let iδ�  denote the minimal discount factor iδ  such that 

( )i i iR R δ=� . Since ( )i iR δ  is nondecreasing with respect to iδ , we have shown that 

( ) ( )i i i i iR R Rδ δ= =� �  for all i iδ δ≥ � . 
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Remark 2 (Exchangeability): Proposition 1 implies that if ( , )q s  is a Nash 

equilibrium in a repeated game {1,2}( , , )i i i iu f δ ∈Γ = , then all tit-for-tat strategies for each 

player i  are the best responses to ( , )j jq s  in any repeated game such that player 'si  

discount factor is the same as that of Γ , i.e., iδ . This implies that the tit-for-tat Nash 

equilibrium notion satisfies the following strong property of exchangeability across 

different games. Consider three repeated games given by {1,2}( , , )i i i iu f δ ∈Γ ≡ , 

{1,2}( , , )i i i iu f δ ∈
′ ′′ ′Γ ≡ , and 1 1 1 2 2 2( , , , , , )u f u fδ δ′′ ′ ′ ′Γ = . If ( , )q s  is a Nash equilibrium in 

Γ  and ( , )q s′ ′  is a Nash equilibrium in ′Γ , then 1 1 2 2( , , , )q s q s′ ′  is a Nash equilibrium 

in ′′Γ , where the payoffs are unchanged in that 

   1 1 1 2 2 1( , , , ; ) ( , ; )v q s q s v q s′ ′ ′′ ′ ′ ′Γ = Γ  and 2 1 1 2 2 1( , , , ; ) ( , ; )v q s q s v q s′ ′ ′′Γ = Γ . 

 

5. Approximate Efficiency 

We assume that for each {1,2}i∈ , 

(8)   * * **( ) ( ) { ( ) ( )}i i i i i i j i jv a v a w a w aδ− < −  for all *\ { }i i ia A a∈ , 

which is a necessary condition for (7), i.e., the existence of tit-for-tat Nash equilibria. 

Note that (8) is sufficient and (almost) necessary for the existence of the efficient 

tit-for-tat Nash equilibrium given that monitoring is perfect. We will show that (8) is 

also sufficient for the existence of the approximately efficient tit-for-tat Nash 
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equilibrium given that monitoring is almost perfect. 

Fix 0ε >  arbitrarily, which is positive but close to zero. Assume that there exist 

*
i iΩ ⊂Ω  and **

i iΩ ⊂Ω  such that * **
i i φΩ Ω =∩ , 

*

*( | ) 1
i i

i i if a
ω

ω ε
∈Ω

≥ −∑ , 
**

**( | ) 1
i i

i i if a
ω

ω ε
∈Ω

≥ −∑ , 

*

( | )
i i

i i if a
ω

ω ε
∈Ω

≤∑  for all *\ { }i i ia A a∈ , and 

**

( | )
i i

i i if a
ω

ω ε
∈Ω

≤∑  for all **\ { }i i ia A a∈ . 

This assumption along with a small 0ε >  implies that the signals are accurate in 

monitoring. When player i  chooses *
ia , it is almost certain that the signal iω  for 

player 'si  action choice belongs to *
iΩ . When player i  chooses **

ia , it is almost 

certain that it belongs to **
iΩ . Hence, opponent j  can almost perfectly monitor 

whether player i  has chosen *
ia , **

ia , or other actions. 

 We specify the function iµ  as 

* **( ) { ( ) ( )}i i i i j i jw a w aµ ω δ= −  for all * **
i i iω ∉Ω Ω∪ , and 

   ( ) 0i iµ ω =  for all *
i iω ∈Ω . 

By selecting ( )i iµ ω  from the interval * **[0, { ( ) ( )}]i i j i jw a w aδ −  for each **
i iω ∈Ω  in 

the appropriate manner, we can make iµ  satisfy (5), (6), and (7), and we can make 

*( ) ( | )
i i

i i i i if a
ω

µ ω ω
∈Ω
∑  close to zero. This implies that the least upper bound ( )i iR δ  is 

approximated by *( )iu a . Hence, we have proved that whenever the signals are 
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sufficiently accurate, efficiency is approximated by a tit-for-tat Nash equilibrium payoff 

vector even if the discount factors are fixed and not very high. 

 

Theorem 3: If 0ε >  is sufficiently close to zero and (8) holds for each {1,2}i∈ , then 

there exists a tit-for-tat Nash equilibrium ( , )q s  in Γ  such that ( , )v q s  is 

approximated by *( )u a . 

 

6. Example 

Fix 1( ,1)2p∈  and (0,1)δ ∈  arbitrarily. We investigate an example where 

{0,1}iA = , {0,1}iΩ = , (1 |1) (0 | 0)i if f p= = , and iδ δ=  for each {1,2}i∈ . The 

following matrix illustrates the component game, where we assume 0Z Y> > . Let 

* (1,1)a =  and ** (0,0)a = . All the assumptions necessary for the results of this paper 

are satisfied, i.e., the payoff functions are additively separable, *a  is efficient, and the 

inequalities expressed in (1) hold. 

 
 1 0 
1 X X X – Z X + Y 
0 X + Y X – Z X + Y – Z X + Y – Z 

  

From the standard calculation, a tit-for-tat strategy profile ( , )q s  satisfies (4) if 
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and only if 

(9)   (1) (0)
(2 1)i i

Ys s
p Zδ

− =
−

 for all {1,2}i∈ . 

This along with Proposition 1 implies that the inequalities given in (9) are necessary and 

sufficient for the tit-for-tat strategy profile to be a Nash equilibrium. This implies that 

there exists a tit-for-tat Nash equilibrium ( , )q s  if and only if 

(10)   
(2 1)

Y
p Z

δ ≥
−

. 

Suppose that (10) holds. The standard calculation along with (2) implies that if 

( , )q s  is a tit-for-tat Nash equilibrium, the payoff induced by ( , )q s  equals 

1( , ) [(1 )(1 ) {1 (1)}]
2 1i j j

pv q s X Y q s Z
p

δ δ−
= − − − − + −

−
. 

The average payoff of the players equals 

  1 2( , ) ( , ) 1
2 2 1

v q s v q s pX Y
p

+ −
= −

−
1 2 1 2(1) (1)[(1 )(1 ) {1 }]

2 2
q q s s Zδ δ+ +

− − − + − . 

Then, it follows that if ( , )q s  and ( , )q s′ ′  are tit-for-tat Nash equilibria and 

1 2 1 2q q q q′ ′+ = +  and 1 2 1 2(1) (1) (1) (1)s s s s′ ′+ = + , 

then the average payoffs are the same between ( , )q s  and ( , )q s′ ′ , i.e., 

   1 2 1 2( , ) ( , ) ( , ) ( , )
2 2

v q s v q s v q s v q s′ ′ ′ ′+ +
= . 

Since the tit-for-tat Nash equilibrium ˆ ˆ( , )q s  specified by (9), 1 2ˆ ˆ 1q q= = , and 

1 2ˆ ˆ(1) (1) 1s s= =  induces the least upper bound ( )iR δ  for each player i , it follows that 

   1ˆ ˆ( ) ( , )
2 1i i i

pR R v q s X Y
p

δ −
= = = −

−
� . 
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This along with Proposition 2 implies that the least upper bound is independent of the 

discount factor δ . As Theorem 3 shows, the least upper bound 1
2 1

pX Y
p
−

−
−

 

converges to the efficient payoff X  as p  approaches unity. 

 In order to demonstrate the degree of implicit collusion in the long run, it is 

appropriate to exclude the payoffs in the early periods and concentrate on the stationary 

distribution defined as ( ) : [0,1]s Aρ ρ= → , where 

*
1 2 2 1

,

( ) ( ) ( ) ( ) ( | )
a A

a a s s f a
ω

ρ ρ ω ω ω
∈ ∈Ω

= ∑ , 

**
1 2 2 1

,

( ) ( ){1 ( )}{1 ( )} ( | )
a A

a a s s f a
ω

ρ ρ ω ω ω
∈ ∈Ω

= − −∑ , 

* **

,

( , ) ( ) ( ){1 ( )} ( | )i j i j j i
a A

a a a s s f a
ω

ρ ρ ω ω ω
∈ ∈Ω

= −∑ , 

and ( ) 0aρ =  for all * ** * ** ** *
1 2 1 2{ , , ( , ), ( , )}a a a a a a a∉ . Let * *( , )

j j

i i j
a A

a aρ ρ
∈

= ∑  denote 

the relative frequency of player 'si  action choice *
ia  in the long run. Note that 

* * * ** *{1 }i j j j jK Kρ ρ ρ= + − , 

where * *( ) ( | )
j j

j i j j j jK s f a
ω

ω ω
∈Ω

≡ ∑  and ** **( ) ( | )
j j

j i j j j jK s f a
ω

ω ω
∈Ω

≡ ∑ . Hence, 

** * ** **
*

* ** * **

( )
1 ( )( )

i j j j
i

i i j j

K K K K
K K K K

ρ
− +

=
− − −

. 

In this example, the standard calculation along with (9) implies that 

   * (1 )(1) (0)(1 ) (1)
(2 1)i i i i

Y pK s p s p s
Z pδ

−
= + − = −

−
, 

   ** (1)(1 ) (0) (1)
(2 1)i i i i
YpK s p s p s

Z pδ
= − + = −

−
, 

and therefore, 
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   *
2 2 2

{ (1) (1) }
( )(2 1)

j i
i

Z s Z s Y Yp
Z Y Z Y p

δ δ
ρ

δ δ
+

= −
− − −

. 

The average relative frequency in the long run is expressed as 

   * * 1 2
1 2

{ (1) (1)}
2( ) ( )(2 1)

Z s s Yp
Z Y Z Y p

δρ ρ
δ δ

+
+ = −

− − −
, 

which depends only on 1 2(1) (1)s s+ . 

The least upper bound of the relative frequencies in the long run is achieved by the 

tit-for-tat Nash equilibrium ˆ ˆ( , )q s  satisfying 1 2ˆ ˆ(1) (1) 1s s= = , and is equal to 

(2 1)
( )(2 1)

Z p YP
Z Y p

δ
δ

− −
− −

. Since this value is increasing with respect to δ , it follows that 

implicit collusion in the long run is more successful when the discount factor is higher. 

 

References 
 
Abreu, D., D. Pearce, and E. Stachetti (1990): “Toward a Theory of Discounted 

Repeated Games with Imperfect Monitoring,” Econometrica 58, 1041–1063. 
Ely, J. and J. Välimäki (2002): “A Robust Folk Theorem for the Prisoner’s Dilemma,” 

Journal of Economic Theory 102, 84–105. 
Fudenberg, D., D. Levine, and E. Maskin (1994): “The Folk Theorem with Imperfect 

Public Information,” Econometrica 62, 997–1040. 
Fudenberg, D. and J. Tirole (1991): Game Theory, MIT Press. 
Green, E. and R. Porter (1984): “Non-cooperative Collusion under Imperfect Price 

Information,” Econometrica 52, 87–100. 
Osborne, M. and A. Rubinstein (1994): A Course in Game Theory, MIT Press. 
Piccione, M. (2002): “The Repeated Prisoners’ Dilemma with Imperfect Private 

Monitoring,” Journal of Economic Theory 102, 70–83. 
Sekiguchi, T. (1997): “Efficiency in Repeated Prisoners’ Dilemma with Private 

Monitoring,” Journal of Economic Theory 76, 345–361. 
 


