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Abstract

We consider Bayesian estimation of a sample selection model and propose a highly efficient

Gibbs sampler using the additional scale transformation step to speed up the convergence to

the posterior distribution. Numerical examples are given to show the efficiency of our proposed

sampler.
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1 Introduction

A sample selection model or generalized Tobit (Type II Tobit) model has been very popular in

the econometric analysis of the labour supply and wage function. It has been well-known as

a generalization of the standard Tobit (Type I Tobit) model in econometrics since it was first

introduced by Tobin (1958) to analyze the relationship between household income and household

expenditures on a durable good where there are some households with zero expenditures (see e.g.

Amemiya (1984) for a survey). Bayesian estimation method of a standard Tobit model using Monte

Carlo method was proposed by Chib (1992). Chib (1992) developed Gibbs sampling procedure using

the idea of data augmentation, which is widely used in the literature, and compared the efficacy of

several Monte Carlo methods.

This article develops a related approach for a sample selection model and show that the con-

vergence to the posterior distribution can be greatly accelerated by adding one or more sampling

steps to the benchmark Gibbs sampler. Numerical examples suggest that the benchmark samplers

suffer from inefficiencies and produces highly autocorrelated samples. The additional Gibbs move

recovers efficiencies and reduces the sample autocorrelations dramatically. The rest of the paper is

organised as follows. In Section 2, we introduce a sample selection model and describe benchmark

Gibbs samplers. Section 3 proposes an additional sampling step to accelerate the convergence to

the posterior distribution. Numerical examples are given in Section 4.
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2 Bayesian analysis of a sample selection model

In a sample selection model, the sample rule is determined by a latent random variable z∗i , and we

observe the response variable yi when z∗i ≥ 0. The latent variable z∗i is allowed to be correlated

with the response variable y∗i . When the correlation coefficient, ρ, between (z∗i , y
∗
i ) is not equal to

zero, a sample selection model is considered a Type I Tobit (a censored regression) model with a

stochastic threshold model.

The sample selection model or a generalized Tobit (Type II Tobit) model for the i-th individual

is given by

yi =

{

y∗i , if z∗i ≥ 0,

n.a., otherwise,
i = 1, 2, . . . , n,

z∗i = w′
iθ + ξi, y∗i = x′

iβ + ηi, (ξi, ηi)
′ ∼ i.i.d. N (0,Σ), (1)

where yi is a dependent variable, y∗i , z
∗
i are latent dependent variables, (wi,xi) are independent

variable vectors, and (θ,β) are corresponding coefficient vectors. The disturbance vector (ξi, ηi)
′

follows a bivariate normal distribution with mean 0 and covariance matrix Σ. The (1, 1) element of

Σ is set equal to 1 for the identification and we use the following parameterisation as in McCulloch

et al. (2000) to implement Gibbs sampler:

Σ =

(

1 γ

γ φ+ γ2

)

.

This implies that the variance of the dependent variable, σ2, is equal to φ + γ2 and that the

correlation coefficient, ρ, between disturbances (ξi, ηi) in (1) is given by γ/
√

φ+ γ2. To conduct

Bayesian analysis, we assume that

θ ∼ N (θ0,Θ0), β ∼ N (β0, B0), γ ∼ N (γ0, G0), φ ∼ IG
(n0

2
,
S0

2

)

, (2)

for prior distributions where IG denotes an inverse gamma distribution. We consider the following

two Gibbs samplers which we call the benchmark Gibbs sampler A and B. In the first Gibbs sampler

(benchmark Gibbs sampler A), we generate censored observations. In the second Gibbs sampler

(benchmark Gibbs sampler B), the posterior distribution is marginalized over unobserved censored

observations to improve the efficiency of the first Gibbs sampler.

2.1 Benchmark Gibbs sampler A

Let y∗c and yo denote vectors of censored (latent) dependent variables and observed dependent

variables, respectively. We first describe a Gibbs sampler for which we generate the unobserved

censored observations y∗c . The generation of the latent variable z∗i in the selection equation will

also be implemented as in Albert and Chib (1993). The joint posterior probability density of
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(y∗c ,z
∗,θ,β, γ, φ) given by

π(y∗c ,z
∗,θ,β, γ, φ|yo)

∝ φ
−

(

n1

2
+1

)

× exp
{

− 1

2

n
∑

i=1

(1 + φ−1γ2)(z∗i −w′
iθ)

2 − 2φ−1γ(z∗i −w′
iθ)(yi − x′

iβ) + φ−1(yi − x′
iβ)2

}

× exp
{

− 1

2
(β − β0)

′B−1
0 (β − β0) −

1

2
(θ − θ0)

′Θ−1
0 (θ − θ0) −

(γ − γ0)
2

2G0
− S0

2φ

}

where z∗ = (z∗1 , z
∗
2 , . . . , z

∗
n)′, and n1 = n0 + n. As shown in the Appendix A1, the conditional

posterior distributions of φ, γ, ψ = (θ′,β′)′ are

ψ|γ, φ,z∗,y∗c ,yo ∼ N (ψ1,Ψ1), γ|ψ, φ,z∗,y∗c ,yo ∼ N (γ1, G1),

φ|ψ, γ,z∗,y∗c ,yo ∼ IG
(n1

2
,
S1

2

)

,

where

γ1 = G1

{

G−1
0 γ0 + φ−1

n
∑

i=1

(z∗i −w′
iθ)(y

∗
i − x′

iβ)
}

, G−1
1 = G−1

0 + φ−1
n
∑

i=1

(z∗i −w′
iθ)

2, (3)

S1 = S0 + γ2
n
∑

i=1

(z∗i −w′
iθ)

2 − 2γ

n
∑

i=1

(z∗i −w′
iθ)(y

∗
i − x′

iβ) +

n
∑

i=1

(y∗i − x′
iβ)2,

Ψ1 =
(

Ψ−1
0 +

n
∑

i=1

X̃ ′
iΣ

−1X̃i

)−1
, ψ1 = Ψ1

(

Ψ−1
0 ψ0 +

n
∑

i=1

X̃ ′
iΣ

−1ỹ∗i

)

,

ỹ∗i =
( z∗i
y∗i

)

, X̃i =

(

w′
i 0

′

0
′ x′

i

)

, ψ0 =

(

θ0

β0

)

, Ψ0 =

(

Θ0 O

O B0

)

.

Using these conditional posterior distributions, we implement the Gibbs sampler as follows:

1. Initialise φ, γ and ψ.

2. Sample (y∗c ,z
∗)|φ, γ,ψ,yo.

(a) For censored observations, we generate y∗i |ψ, φ, γ ∼ N (x′
iβ, φ+ γ2) and z∗i |y∗i ,ψ, φ, γ ∼

T N (−∞,0)(µz, σ
2
z) where µz = w′

iθ + γ(y∗i − x′
iβ)/(φ + γ2), σ2

z = 1 − γ2/(φ + γ2) and

T N (a,b)(µ, σ
2) denotes a normal distribution with mean µ and variance σ2 truncated on

the interval (a, b).

(b) For uncensored observations, we generate z∗i |yi,ψ, φ, γ ∼ T N [0,∞)(µz, σ
2
z).

3. Sample φ|ψ, γ,z∗,y∗c ,yo ∼ IG(n1/2, S1/2),

4. Sample γ|φ,ψ,z∗,y∗c ,yo ∼ N (γ1, G1).

5. Sample ψ|φ, γ,z∗,y∗c ,yo ∼ N (ψ1,Ψ1).

6. Go to 2.
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2.2 Benchmark Gibbs sampler B

We further consider an alternative bechmark Gibbs sampler based on the marginalization of the

posterior distribution over unobserved observations y∗c . Such a marginalization over unobserved

variables is expected to be effective to improve the efficiency of the Gibbs sampler (see Chib

(2007), Chib, Greenberg and Jeliazkov (2006)). Here, the joint posterior probability density of

(z∗,θ,β, γ, φ) is given by

π(z∗,θ,β, γ, φ|yo)

∝ φ
−

(

m1

2
+1

)

× exp
{

− 1

2

∑

i:z∗
i
≥0

(1 + φ−1γ2)(z∗i −w′
iθ)

2 − 2φ−1γ(z∗i −w′
iθ)(yi − x′

iβ) + φ−1(yi − x′
iβ)2

}

× exp
{

− 1

2

∑

i:z∗
i
<0

(z∗i −w′
iθ)

2
}

× exp
{

− 1

2
(β − β0)

′B−1
0 (β − β0) −

1

2
(θ − θ0)

′Θ−1
0 (θ − θ0) −

(γ − γ0)
2

2G0
− S0

2φ

}

where m1 = n0 +m and m is a number of uncensored observations.

Using the conditional posterior distributions, we implement the Gibbs sampler as follows (see

Appendix A2 for details):

1. Initialise φ, γ and ψ.

2. Sample z∗|φ, γ,ψ,yo.

(a) For censored observations, we generate z∗i |ψ, φ, γ ∼ T N (−∞,0)(w
′
iθ, 1).

(b) For uncensored observations, we generate z∗i |yi,ψ, φ, γ ∼ T N [0,∞)(µz, σ
2
z). µz = w′

iθ +

γ(yi − x′
iβ)/(φ+ γ2), σ2

z = 1 − γ2/(φ+ γ2) and

3. Sample φ|ψ, γ,z∗,yo ∼ IG(m1/2, S
†
1/2), where S†

1 = S0+γ
2
∑n

i:z∗
i
≥0(z

∗
i −w′

iθ)
2−2γ

∑

i:z∗
i
≥0(z

∗
i −

w′
iθ)(yi − x′

iβ) +
∑

i:z∗
i
≥0(yi − x′

iβ)2.

4. Sample γ|φ,ψ,z∗,yo ∼ N (γ†1, G
†
1) where G†−1

1 = G−1
0 + φ−1

∑

i:z∗
i
≥0(z

∗
i − w′

iθ)
2 and γ†1 =

G†
1

{

G−1
0 γ0 + φ−1

∑

i:z∗
i
≥0(z

∗
i −w′

iθ)(yi − x′
iβ)
}

.

5. Sample ψ|φ, γ,z∗,yo ∼ N (ψ†
1,Ψ

†
1) (see Appendix A2 for the definition of ψ†

1,Ψ
†
1).

6. Go to 2.

3 Acceleration of the Gibbs sampler

As we shall see in the illustrative examples, samples from the benchmark Gibbs samplers in Sec-

tion 2 are highly autocorrelated and large number of iterations would be required to conduct the

appropriate statistical inferences for the parameters. To speed up the convergence, we consider
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the additional step to the Gibbs sampler which transforms some parameters without changing the

stationary distribution of the Markov chain.

3.1 Gibbs sampler A

Consider the scale group Γ = {g > 0 : g(ϕ) = (g
√
φ, gγ, gθ, gz∗)} where ϕ = (

√
φ, γ,θ,z∗), the

unimodular left-Harr measure is L(dg) = g−1dg and the corresponding Jacobian is Jg = g2+J+n

(where J is a dimension of the vector θ). The conditional probability density of g which preserves a

stationary distribution of the chain can be obtained as follows using Theorem 1 of Liu and Sabatti

(2000).

π(g|ϕ,β,y∗c ,yo) (4)

∝ π(g
√

φ, gγ, gθ, gz∗ |β,y∗c ,yo) × |Jg| × L(dg)

∝ gν1−1 × exp
{

− 1

2
(a2g−2 + b2g2)

}

× exp
{

g(θ′Θ−1
0 θ0 + γγ0G

−1
0 )
}

,

where

ν1 = J − n0 + 1, a2 = φ−1
{

S0 +

n
∑

i=1

(y∗i − x′
iβ)2

}

, (5)

b2 = (1 + φ−1γ2)
n
∑

i=1

(z∗i −w′
iθ)

2 + θ′Θ−1
0 θ + γ2G−1

0 .

When γ0 = 0 and θ0 = 0, the g2 follows generalized inverse Gaussian distribution GIG(ν1/2, a, b)

(a, b ≥ 0) where the probability density function of GIG(ν, a, b) is given by

f(x|ν, a, b) =
(b/a)ν

2Kν(ab)
xν−1 exp

{

− 1

2
(a2x−1 + b2x)

}

, x > 0, a, b ≥ 0, −∞ < ν <∞,

and Kν is a modified Bessel function of the third kind (see e.g. Barndorff-Nielsen and Shephard

(2001)). To generate a random sample from GIG(ν, a, b), see e.g. Dagpunar (1989), Doornik (2002)

and Hörmann et al. (2004).

When γ0 6= 0 or θ0 6= 0, the conditional posterior distribution of g is not a well-known probability

distribution and we need to conduct the Metropolis-Hastings (MH) algorithm (see e.g. Tierney

(1994), Chib and Greenberg (1995)) to sample g. Given the current point g, we generate a candidate

g′2 ∼ GIG(ν1/2, a, b) and accept it with probability min[exp{1, (g′ − g)(θ′Θ−1
0 θ0 + γγ0G

−1
0 )}]. To

obtain a random sample from this conditional distribution, we usually need to repeat the MH

algorithm many times until the distribution of the sample converges to its stationary distribution.

However, in sampling g from the above distribution, we can show that we only need to implement

the MH algorithm once using the initial value g = 1.

Theorem 3.1. Suppose that γ0 6= 0 or θ0 6= 0 in (6). To sample from the conditional distribution

of g, it suffices to generate a candidate g′2 ∼ GIG(ν1/2, a, b) where ν1, a, b are given above and
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accept it with probability

min
[

exp
{

1, (g′ − 1)(θ′Θ−1
0 θ0 + γγ0G

−1
0 )
}]

.

If it is rejected, set g = 1.

Proof: (See Appendix B).

Thus, to accelerate the convergence of the Gibbs sampler described in Section 2, we replace Step 6

by

6’. (a) Generate g2 ∼ GIG(ν1/2, a, b).

(b) Accept g with probability

min
[

1, exp
{

(g − 1)(θ′Θ−1
0 θ0 + γγ0G

−1
0 )
}]

.

If rejected, set g = 1.

(c) Let g
√
φ→ √

φ, gγ → γ, gθ → θ and gz∗ → z∗.

7’. Go to 2.

Note that the Metropolis-Hastings algorithm reduces to Gibbs sampler when γ0 = 0 and θ0 = 0.

When the absolute value of ρ is close to one (i.e., φ is very small), the speed of the random sample

generation from the generalized inverse Gaussian distribution may become very slow, and it is

recommended to skip this additional transformation step (say when
√
ab > 150).

3.2 Gibbs sampler B

Similar acceleration can be implemented for the benchmark Gibbs sampler B. Using the scale group

Γ = {g > 0 : g(ϕ) = (g
√
φ, gγ, gθ, gz∗)} where ϕ = (

√
φ, γ,θ,z∗), the conditional probability

density of g which preserves a stationary distribution of the chain is

π(g|ϕ,β,yo)

∝ π(g
√

φ, gγ, gθ, gz∗ |β,yo) × |Jg| × L(dg)

∝ gν†
1
−1 × exp

{

− 1

2
(a†2g−2 + b†2g2)

}

× exp
{

g(θ′Θ−1
0 θ0 + γγ0G

−1
0 )
}

,

where

ν†1 = J + n−m− n0 + 1, a†2 = φ−1
{

S0 +
∑

i:z∗
i
≥0

(yi − x′
iβ)2

}

,

b†2 = (1 + φ−1γ2)
∑

i:z∗
i
≥0

(z∗i −w′
iθ)

2 +
∑

i:z∗
i
<0

(z∗i −w′
iθ)

2 + θ′Θ−1
0 θ + γ2G−1

0 .

When γ0 = 0 and θ0 = 0, the g2 follows generalized inverse Gaussian distribution GIG(ν†1/2, a
†, b†)

(a†, b† ≥ 0). When γ0 6= 0 or θ0 6= 0, we need to conduct the Metropolis-Hastings (MH) algorithm
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to sample g as in the previous section. Given the current point g, we generate a candidate g′2 ∼
GIG(ν†1/2, a

†, b†) and accept it with probability min
[

exp
{

1, (g′ − g)(θ′Θ−1
0 θ0 + γγ0G

−1
0 )
}]

. As in

Section 3.1, we can show that we only need to implement the MH algorithm once using the initial

value g = 1.

4 Numerical example

We illustrate our proposed procedure using the simulated data from the sample selection model.

We set

θ = (1, 5, 10)′, β = (2, 1, 1)′, σ2 = 1.0, ρ = 0.9,

and all covariates are a constant term and variables generated using a standard normal distribution

independently. The total number of generated observations was 1000, and 46.5 percent of them

were censored. The sampling results are based on less informative proper prior distributions given

by

θ ∼ N (0, 10I3), β ∼ N (0, 10I3), γ ∼ N (0, 10), φ ∼ IG
(

0.001, 0.001
)

.

The initial 20,000 variates are discarded as so-called burn-in period and the subsequent 200, 000

values are recorded to conduct an inference. Figure 1 & 2 show the sample paths and the sample

autocorrelations functions for the benchmark Gibbs sampler A described in Section 2. It is clear

that the sample paths show very slow convergence to the posterior distribution for θ′is, parameters

of selection equation (1), and their autocorrelations do no decay even at 10,000 lags.

The summary statistics are given in Table 1. The inefficiency factors in Table 1 are calculated

to measure how well the chain mixes. The inefficiency factor is defined as 1 + 2
∑∞

s=1 ρs where ρs

is the sample autocorrelation at lag s calculated from the sampled values (see e.g. Chib (2001)).

It is the ratio of the numerical variance of the sample posterior mean to the variance of the sample

mean from the hypothetical uncorrelated draws.

The inefficiency factors for θi’s are quite large in the range of 1600 ∼ 4900 for the benchmark

Gibbs sampler A and 900 ∼ 3300 for the benchmark Gibbs sampler B. The sampler B seems to

be more efficient than the sampler A, but both samplers suffer from the poor mixing properties.

This implies that we need to sample from the Gibbs sampler A about 4900 as many times as the

hypothetical uncorrelated sampler to obtain the same variance of the posterior sample mean. We

note that the corresponding factors for σ2 and ρ are also large, while those for β′is, parameters of

the regression equation (1) are relatively small.
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Figure 1: Sample paths from the benchmark Gibbs sampler A.
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Figure 2: Sample autocorrelations from the benchmark Gibbs sampler A.
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True Mean Stdev 95% Interval Inefficiency

A/B

θ1 1.0 0.971 0.149 (0.687, 1.269) 1642.1/974.7

θ2 5.0 4.593 0.397 (3.875, 5.419) 4679.4/3090.8

θ3 10.0 9.508 0.800 (8.104, 11.167) 4840.5/3273.1

β1 2.0 2.027 0.043 (1.942, 2.112) 38.7/14.3

β2 1.0 0.951 0.042 (0.870, 1.034) 20.0/12.6

β3 1.0 1.019 0.039 (0.944, 1.095) 60.5/16.9

σ2 1.0 0.989 0.061 (0.877, 1.114) 193.3/120.1

ρ 0.9 0.882 0.080 (0.684, 0.985) 526.9/214.2

Table 1: Posterior means, standard deviations, 95% credible intervals are obtained from the benchmark

Gibbs sampler A. Inefficiency factors are obtained from the benchmark Gibbs sampler A & B (ρ = 0.9).

For the accelerated Gibbs sampler A described in Section 3.1, Figure 3 & 4 show the sample

paths and sample autocorrelation functions. The sample paths seem to mix well and autocorre-

lations die out very quickly. We skipped only 4.2 percent of the acceleration steps due to slow

random generations, and succeeded in improving the mixing property of obtained samples. The

summary statistics are shown in Table 2. The inefficiency factors for θ′is are drastically decreased

to 250 ∼ 600 for the sampler A and 150 ∼ 230 for the sampler B.
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Figure 3: Sample paths from accelerated Gibbs sampler A.
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Figure 4: Sample autocorrelations from accelerated Gibbs sampler A.

True Mean Stdev 95% Interval Inefficiency

A/ B

θ1 1.0 0.969 0.152 (0.681, 1.278) 557.6/215.8

θ2 5.0 4.589 0.399 (3.831, 5.389) 252.2/155.3

θ3 10.0 9.503 0.812 (7.967, 11.151) 252.7/150.1

β1 2.0 2.027 0.043 (1.941, 2.112) 47.4/12.7

β2 1.0 0.952 0.041 (0.871, 1.034) 34.4/12.1

β3 1.0 1.019 0.039 (0.943, 1.096) 17.9/12.5

σ2 1.0 0.988 0.061 (0.876, 1.113) 32.6/24.4

ρ 0.9 0.881 0.080 (0.686, 0.982) 598.8/230.0

Table 2: Posterior means, standard deviations, 95% credible intervals are obtained from the accelerated

Gibbs sampler A. Inefficiency factors are obtained from the accelerated Gibbs sampler A & B (ρ = 0.9).

To investigate the influence of the correlation coefficient, ρ, on the sampling efficiencies, we repeated

the experiments using ρ = 0.5 and 0.98. First, for ρ = 0.5, Table 3 shows summary statistics for the

accelerated Gibbs sampler A. The inefficiency factors of both samplers are still large for θ′is, but

relatively smaller compared with those values in Table 1 & 2 with ρ = 0.9. The obtained samples

seem to be less autocorrelated when the correlation coefficient ρ = 0.5. We did not need to skip

any acceleration step due to slow random generations, and accomplished great improvements in

decreasing the inefficiency factors.

For ρ = 0.98, Table 4 shows very high inefficiency factors for θ′is, and the obtained samples are
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highly autocorrelated. Since ρ is very close to one, we have very small values of φ. This resulted in

skipping 68.3% for the sampler A (50.4% for the sampler B) of acceleration steps due to the slow

random number generations from the GIG(ν1/2, a, b) distribution, and we were not as successful as

in the case ρ = 0.5 or ρ = 0.9.

True Mean Stdev 95% Interval Inefficiency [Inefficiency]

A/B A/B

θ1 1.0 0.898 0.143 (0.620, 1.183) 34.1/37.1 [501.3/786.3]

θ2 5.0 4.416 0.447 (3.595, 5.349) 54.9/47.6 [1568.0/2018.1]

θ3 10.0 9.236 0.923 (7.551, 11.162) 57.8/43.6 [1666.3/2151.5]

β1 2.0 1.993 0.044 (1.906, 2.080) 10.3/2.1 [8.9/6.3]

β2 1.0 0.968 0.044 (0.882, 1.055) 2.8/0.6 [6.0/1.8]

β3 1.0 1.030 0.040 (0.951, 1.109) 1.8/1.6 [4.6/3.6]

σ2 1.0 1.001 0.062 (0.887, 1.129) 2.5/2.3 [8.0/2.7]

ρ 0.5 0.483 0.141 (0.179, 0.726) 119.3/38.2 [72.6/62.2]

Table 3: Accelerated Gibbs sampler A when ρ = 0.5. Inefficiency factors using the benchmark Gibbs

sampler A are given in brackets.

True Mean Stdev 95% Interval Inefficiency [Inefficiency]

A/B A/B

θ1 1.0 0.991 0.106 (0.765, 1.192) 692.5/830.2 [2295.2/3632.2]

θ2 5.0 4.643 0.316 (3.960, 5.285) 1000.1/1486.4 [7601.9/8202.1]

θ3 10.0 9.419 0.642 (8.053, 10.800) 1144.7/1474.6 [8256.1/8310.3]

β1 2.0 2.038 0.042 (1.955, 2.122) 41.24/27.6 [46.4/27.3]

β2 1.0 0.957 0.040 (0.879, 1.036) 158.8/124.6 [335.4/185.9]

β3 1.0 1.003 0.037 (0.931, 1.076) 120.0/211.8 [603.9/264.6]

σ2 1.0 0.995 0.059 (0.886, 1.117) 297.2/238.4 [683.4/1497.1]

ρ 0.98 0.976 0.031 (0.887, 0.999) 909.8/845.4 [1142.0/967.0]

Table 4: Accelerated Gibbs sampler A (ρ = 0.98). Inefficiency factors using the benchmark Gibbs sampler

A are given in brackets.

Since the inefficiency factors for θ1 are found to be smaller than those for θ2 and θ3, the above

experiments are repeated using different set of parameters for θ. We found that the inefficiency of

the benchmark Gibbs sampler may become moderate when the values of θi are sufficiently small.

5 Conclusion

The efficient Markov chain Monte Carlo implementations are described for Bayesian analysis of a

sample selection model. The proposed estimation method is illustrated using numerical examples
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and is found to be highly efficient.
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Appendix A

A1 Gibbs sampler A

In this section we derive some formulas. Recall the definition (3).

Conditional posterior probability density of φ.

π(φ|y∗c ,z∗,θ,β, γ,yo)

∝ φ
−

(

n1

2
+1

)

exp
[

− 1

2φ

{

γ2
n
∑

i=1

(z∗i −w′
iθ)

2 − 2γ

n
∑

i=1

(z∗i −w′
iθ)(y

∗
i − x′

iβ)

+
n
∑

i=1

(y∗i − x′
iβ)2 + S0

}]

∝ φ
−

(

n1

2
+1

)

exp
{

− S1

2φ

}

.

Conditional posterior probability density of γ.

π(γ|y∗c ,z∗,θ,β, φ,yo)

∝ exp
[

− 1

2φ

{

γ2
n
∑

i=1

(z∗i −w′
iθ)

2 − 2γ
n
∑

i=1

(z∗i −w′
iθ)(y

∗
i − x′

iβ)
}

− (γ − γ0)
2

2G0

]

∝ exp
{

− (γ − γ1)
2

2G1

}

.

Conditional posterior probability density of ψ = (θ′,β′)′.

π(ψ|y∗c ,z∗, γ, φ,yo)

∝ exp
{

− 1

2

n
∑

i=1

(ỹ∗i − X̃iψ)′Σ−1(ỹ∗i − X̃iψ) − 1

2
(ψ −ψ0)

′Ψ−1
0 (ψ −ψ0)

}

∝ exp
{

− 1

2
(ψ −ψ1)

′Ψ−1
1 (ψ −ψ1)

}

.
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A2 Gibbs sampler B

Conditional posterior probability density of φ :

π(φ|z∗,θ,β, γ,yo)

∝ φ
−

(

m1

2
+1

)

exp
[

− 1

2φ

{

γ2
∑

i:z∗
i
≥0

(z∗i −w′
iθ)

2 − 2γ
∑

i:z∗
i
≥0

(z∗i −w′
iθ)(yi − x′

iβ)

+
∑

i:z∗
i
≥0

(yi − x′
iβ)2 + S0

}]

∝ φ
−

(

m1

2
+1

)

exp
{

− S†
1

2φ

}

.

where

S†
1 = S0 + γ2

n
∑

i:z∗
i
≥0

(z∗i −w′
iθ)

2 − 2γ
∑

i:z∗
i
≥0

(z∗i −w′
iθ)(yi − x′

iβ) +
∑

i:z∗
i
≥0

(yi − x′
iβ)2.

Conditional posterior probability density of γ :

π(γ|z∗,θ,β, φ,yo)

∝ exp
[

− 1

2φ

{

γ2
∑

i:z∗
i
≥0

(z∗i −w′
iθ)

2 − 2γ
∑

i:z∗
i
≥0

(z∗i −w′
iθ)(yi − x′

iβ)
}

− (γ − γ0)
2

2G0

]

∝ exp
{

− (γ − γ†1)
2

2G†
1

}

where γ†1 = G†
1

{

G−1
0 γ0 +φ−1

∑

i:z∗
i
≥0(z

∗
i −w′

iθ)(yi −x′
iβ)
}

, G†−1
1 = G−1

0 +φ−1
∑

i:z∗
i
≥0(z

∗
i −w′

iθ)
2.

Conditional posterior probability density of ψ = (θ′,β′)′.

π(ψ|z∗, γ, φ,yo)

∝ exp
{

− 1

2

∑

i:z∗
i
≥0

(ỹ†i − X̃†
iψ)′Σ−1(ỹ†i − X̃†

iψ) − 1

2

∑

i:z∗
i
<0

(ỹ†i − X̃†
iψ)′(ỹ†i − X̃†

iψ)

−1

2
(ψ −ψ0)

′Ψ−1
0 (ψ −ψ0)

}

∝ exp
{

− 1

2
(ψ −ψ1)

′Ψ−1
1 (ψ −ψ1)

}

,

where ψ0, Ψ are as in (3) and

Ψ†
1 =

(

Ψ−1
0 +

∑

i:z∗
i
≥0

X̃†′
i Σ−1X̃†

i +
∑

i:z∗
i
<0

X̃†′
i X̃

†
i

)−1
,
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ψ
†
1 = Ψ†

1

(

Ψ−1
0 ψ0 +

∑

i:z∗
i
≥0

X̃†′
i Σ−1ỹ

†
i +

∑

i:z∗
i
<0

X̃†′
i ỹ

†
i

)

ỹ
†
i =

{

(z∗i , yi)
′ if z∗i ≥ 0,

(z∗i , 0)
′ if z∗i < 0,

X̃†
i =























(

w′
i 0

′

0
′ x′

i

)

, if z∗i ≥ 0,

(

w′
i 0

′

0
′

0
′

)

, if z∗i < 0.

Appendix B

Proof of Theorem 3.1. Given the current sample g of the conditional distribution, let α(g, g′)

denote the acceptance probability of the candidate g′ where g′2 ∼ GIG(ν1/2, a, b),

α(g, g′) = min
[

exp
{

(g′ − g)(θ′Θ−1
0 θ0 + γγ0G

−1
0 )
}

, 1
]

.

Then the Markov transition function of g is Tx(g, g′)L(dg′) given parameters x = (
√
φ, γ,θ,z∗)

where

Tx(g, g′) =
(b/a)

ν1

2

Kν1/2(ab)
g′ν1 exp

{

− 1

2

(

a2g′−2 + b2g′2
)}

α(g, g′).

Since

Tg−1

0
(x)(gg0, g

′g0) =
{(b/g0)/(ag0)}

ν1

2

Kν1/2((ag0)(b/g0))
(g′g0)

ν1

× exp
{

− 1

2

(

(ag0)
2g′−2g−2

0 + (b/g0)
2g′2g2

0

)}

αg−1

0
(x)(gg0, g

′g0)

= Tx(g, g′),

the result follows by Theorem 2 in Liu and Sabatti (2000). �
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