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Abstract

In this paper, the simultaneous estimation of the precision parameters of k nor-
mal distributions is considered under the squared loss function in a decision-theoretic
framework. Several classes of minimax estimators are derived by using the chi-
square identity, and the generalized Bayes minimax estimators are developed out
of the classes. It is also shown that the improvement on the unbiased estimators
is characterized by the superharmonic function. This corresponds to Stein (1981)’s
result in simultaneous estimation of normal means.
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1 Introduction

This paper is concerned with the so-called Stein problem in the simultaneous estimation of
normal precision parameters, namely, the reciprocals of the variances. The Stein problem,
discovered by Stein (1956), is one of the most surprising and interesting phenomenon in
theoretical statistics, and has been studied extensively in the literature. Most studies
have addressed the problem in the framework of the simultaneous estimation of means
of normal distributions. Of these, Stein (1973, 81) developed the so-called Stein identity,
a very powerful tool for studying the shrinkage estimation, and derived the wonderful
theory that the inadmissibility of the maximum likelihood estimator is characterized by
superharmonic functions, which suggests a deep connection between the Stein problem
and the potential theory. The Stein phenomenon has been extended to other distributions
since Hudson (1978), who extended the Stein identity to the exponential family and
showed the inadmissibility of unbiased estimators. Berger (1980), Ghosh and Parsian
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(1980), DasGupta (1986, 89) and Bilodeau (1988) provided dominance results in the
gamma distribution, and an extension to the continuous exponential family was studied
by Haff and Johnson (1986). Although these extensions correspond to the estimation
of variances of normal distributions, no dominance results have been established for the
precision parameters.

In this paper, we consider the k sample model that statistics s1, . . . , sk are mutually
independent and distributed as σ2

i χ
2
ni

for i = 1, . . . , k, where χ2
ni

denotes the chi-square
distribution with ni degrees of freedom. Assume that ni − 4 > 0 and σ2

i is unknown for
i = 1, . . . , k. It is noted that this is a canonical model of k sample model from normal
distributions. Suppose that we want to estimate simultaneously the precision parameters
σ−2 = (σ−2

1 , . . . , σ−2
k )t, the reciprocals of the σ2

i ’s, under the squared loss function

L(δ,σ−2) =
k∑

i=1

(δi − σ−2
i )2 = ∥δ − σ−2∥2, (1.1)

where δ = (δ1, . . . , δk)
t is an estimator of σ−2. Every estimator is evaluated by the risk

function R(δ,σ−2) = E[L(δ,σ−2)].

Usual estimators of σ−2 = (σ−2
1 , . . . , σ−2

k )t are represented as δc = (c1/s1, . . . , ck/sk)
t

for positive constants ci’s. For example, the unbiased estimator is

δUB = ((n1 − 2)/s1, . . . , (nk − 2)/sk)
t, (1.2)

and the maximum likelihood estimator (MLE) is

δML = (n1/s1, . . . , nk/sk)
t.

It can be also seen that the best constant ci with respect to the loss (1.1) is ci = ni − 4
for i = 1, . . . , k, namely the best usual estimator is given by

δBU = ((n1 − 4)/s1, . . . , (nk − 4)/sk)
t. (1.3)

Since δBU is minimax relative to the loss ∥δ−σ−2∥2/
∑k

i=1{(ni−2)σ4
i }−1, we here call δBU

the minimax estimator. The purpose of this paper is (1) to derive classes of estimators
improving on δBU and/or δUB, and (2) to obtain generalized Bayes estimators out of
these classes.

The merit of considering the simultaneous estimation of the precision parameters σ−2

under the loss (1.1) is that unbiased estimators of the risk functions can be easily derived
by using the chi-square identity, given by

E
[
(δUB − σ−2)tg(s)

]
= −2E

[
∇tg(s)

]
,

where ∇t = (∂/∂s1, . . . , ∂/∂sk), s = (s1, . . . , sk)
t and g(s) = (g1(s), . . . , gk(s))t for ab-

solutely continuous functions gi(s)’s. In Section 4, we utilize this argument to get the
superharmonic condition ∇t∇

√
f(s) ≤ 0 for a positive function f(s) under which the

estimator δGB∗
f = δUB − 2∇ log f(s) improves on the unbiased estimator δUB. It is also

shown that the generalized Bayes estimator can be written in the form δGB∗
f and that
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the improvement of the generalized Bayes estimators can be characterized by the super-
harmonic condition of the prior density. It is interesting to note that these results just
correspond to the nice story developed by Stein (1973, 81) in the estimation of normal
means, where the chi-square identity in our problem corresponds to the Stein identity in
the normal distribution.

A different point between the two estimation problems of precision parameters and
means is that the unbiased, the minimax and the maximum likelihood estimators are
different in our problem as stated above, while they are identical to the sample means
in estimation of means. In this sense, the nice story of Stein (1981) can be obtained for
the improvement on the unbiased estimator. Since the unbiased estimator is dominated
by the minimax estimator δBU , we want to investigate the dominance properties for δBU .
Section 2 derives the general condition for the improvement on the minimax estimator
δBU through the unbiased estimator of the risk, and constructs several classes of improved
estimators. In Section 3, we introduce a hierarchical prior distribution based on a trun-
cated prior and show that the resulting generalized Bayes estimators belong to the class
of minimax estimators.

Another interesting observation is that the inadmissibility of δBU can be established
for k ≥ 2, while the sample means are inadmissible for k ≥ 3 in the case of normal
means. This phenomenon corresponds to Berger (1980)’s result in estimation of normal
variances. Through the results in Sections 2 and 4, it is also observed that the minimax
estimator δBU can be dominated by expansion estimators while the unbiased estimator
δUB is dominated by both expansion and shrinkage estimators. In Section 5, through a
geometric interpretation, we explain how these estimators can be improved on by expan-
sion or shrinkage procedures. The performances of the risk functions of the estimators
are investigated in Section 6 through the simulation studies.

The organization of the paper is as follows: Several classes of minimax estimators
are constructed in Section 2, and out of the classes, the generalized Bayes minimax es-
timators against the hierarchical prior are obtained in Section 3. Section 4 derives the
same dominance results as in estimation of normal means and provides the generalized
Bayes estimators improving on the unbiased one. The geometric interpretation is given
in Section 5, and numerical investigations are studied in Section 6.

2 Minimax estimation via expansion estimators

In this section, we characterize estimators improving on

δBU = ((n1 − 4)/s1, . . . , (nk − 4)/sk)
t,

which is the best among estimators (a1/s1, . . . , ak/sk)
t for constants a1, . . . , ak relative to

the loss (1.1). We call δBU the best usual estimator or minimax estimator, because it can
be shown to be minimax relative to the loss ∥δ − σ−2∥2/

∑k
i=1{(ni − 2)σ4

i }−1.
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2.1 General condition for minimaxity

We begin with deriving the general condition for the improvement. Consider estimators
of the general form

δg = δBU + g(s),

where g(s) = (g1(s), . . . , gk(s))t. Assume that gi(s) is absolutely continuous for i =
1, . . . , k. To derive an unbiased estimator of the risk function of the estimator δg, we use
the chi-square identity

E

[(
ni − 2

si

− σ−2
i

)
gi(s)

]
= E

[
−2

∂gi(s)

∂si

]
, (2.1)

which leads to the identity

E

[(
ni − 4

si

− σ−2
i

)
gi(s)

]
= E

[
−2

gi(s)

si

− 2
∂gi(s)

∂si

]
,

namely,
E

[
(δBU − σ−2)tg(s)

]
= −2E

[
(s−1)tg(s) + ∇tg(s)

]
,

where s−1 = (s−1
1 , . . . , s−1

k )t. The risk function of the estimator δg is written as

R(δg,σ
−2) = R(δBU ,σ−2) + E

[
∥g(s)∥2 + 2(δBU − σ−2)tg(s)

]
= R(δBU ,σ−2) + E

[
∥g(s)∥2 − 4

{
(s−1)tg(s) + ∇tg(s)

}]
,

which shows the following proposition.

Proposition 2.1 The estimator δg is minimax, namely, better than δBU if g(s) satisfies
the inequality

∥g(s)∥2 − 4(s−1)tg(s) − 4∇tg(s) ≤ 0. (2.2)

The general condition (2.2) gives us various classes of improved estimators given below.

2.2 James-Stein type estimators

Let g(s) = {ϕ(∥s∥2)/∥s∥2}s, and consider the estimators

δJS
ϕ = δBU +

ϕ(∥s∥2)

∥s∥2
s.

Since ∇tg(s) = (k − 2)ϕ(∥s∥2)/∥s∥2 + 2ϕ′(∥s∥2), the inequality (2.2) is written as
ϕ(∥s∥2) {ϕ(∥s∥2) − 8(k − 1)} /∥s∥2 − 8ϕ′(∥s∥2) ≤ 0.

Proposition 2.2 The estimator δJS
ϕ is minimax if the nonnegative function ϕ(s) satisfies

the inequality
ϕ(∥s∥2)

{
ϕ(∥s∥2) − 8(k − 1)

}
− 8∥s∥2ϕ′(∥s∥2) ≤ 0,

for k ≥ 2. This condition is satisfied for a non-decreasing function ϕ(u) with 0 ≤ ϕ(u) ≤
8(k − 1) for k ≥ 2 and u > 0.
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Proposition 2.2 provides various improved estimators. For example, let ϕ(u) = 4(k−1).
The resulting improved estimator is δJS = (δJS

1 , . . . , δJS
k )t with

δJS
i =

ni − 4

si

+
4(k − 1)

∥s∥2
si, i = 1, . . . , k, (2.3)

which expands δBU . Since the modification term {4(k − 1)/∥s∥2}s corresponds to the
James-Stein (1961) estimator in estimation of normal means, we call δJS

ϕ the James-Stein

type estimator. Note that for even k = 2 it is possible to improve upon δBU and see also
Berger (1980).

To present another example, let ϕ(u) = 4{a − 2u(d/du) log h(u)}. The resulting
estimator is minimax if u(d/du) log h(u) is non-increasing and

0 < a − 2 lim
u→∞

{
u

d

du
log h(u)

}
≤ 2(k − 1).

In the case of h(u) = (1 + u)−b, it observed that u(d/du) log h(u) = −bu/(1 + u) is
non-increasing for b ≥ 0 and that limu→∞ bu/(1 + u) = b. The estimator is minimax if
0 < a + 2b ≤ 2(k − 1) for b ≥ 0 and k ≥ 2.

In the case of h(u) = log(1 + u), u(d/du) log h(u) = u/{(1 + u) log(1 + u)}, which
can be verified to non-increasing. Since limu→∞ u/{(1 + u) log(1 + u)} = 0, the resulting
estimator is minimax if 0 < a ≤ 2(k − 1).

2.3 Empirical Bayes estimators

Let g(s) = {ϕ(T )/T}1k for T =
∑k

i=1 si and the k-dimensional vector 1k = (1, . . . , 1)t,
and consider the estimators

δEB
ϕ = δBU +

ϕ(T )

T
1k. (2.4)

In this case, ∇tg(s) = k{ϕ′(T )/T − ϕ(T )/T 2}, so that the inequality (2.2) is written as

k
ϕ2(T )

T 2
− 4k

{
ϕ′(T )

T
− ϕ(T )

T 2

}
− 4

(
k∑

i=1

s−1
i

)
ϕ(T )

T
≤ 0. (2.5)

For the arithmetic and the harmonic means of the si’s, it is noted that (1/k)
∑k

i=1 si ≥
k/(

∑k
i=1 s−1

i ), namely, (
∑k

i=1 s−1
i )(

∑k
i=1 si) ≥ k2. If ϕ(T ) is nonnegative, then the l.h.s.

of (2.5) is less than or equal to

(k/T 2)
[
ϕ(T ){ϕ(T ) − 4(k − 1)} − 4Tϕ′(T )

]
.

Proposition 2.3 The estimator δEB
ϕ is minimax if the nonnegative function ϕ(T ) satis-

fies the inequality
ϕ(T ){ϕ(T ) − 4(k − 1)} − 4Tϕ′(T ) ≤ 0,

for k ≥ 2. This condition is satisfied for a non-decreasing function ϕ(T ) with 0 ≤ ϕ(T ) ≤
4(k − 1) for k ≥ 2.
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Letting ϕ(T ) = 2(k−1), we get the simple improved estimator δEB = (δEB
1 , . . . , δEB

k )t,
where

δEB
i =

ni − 4

si

+
2(k − 1)∑k

j=1 sj

, i = 1, . . . , k. (2.6)

It is noted that δEB is an expansion estimator of δBU . Since it is rewritten as

δEB
i =

ni − 4

si

(
1 +

2(k − 1)ni

ni − 4
× si/ni∑k

j=1 sj

)
,

it is observed that δEB
i gives more expansion for larger sample variance si/ni.

We shall show that δEB can be characterized as an empirical Bayes estimator. Let
ηi = σ−2

i for i = 1, . . . , k and let η = (η1, . . . , ηk)
t. The joint density function of s given

η is

p(s|η) = C0

k∏
i=1

{
η

ni/2
i s

ni/2−1
i e−siηi/2

}
,

for C0 = 1/
∏k

i=1

{
Γ(ni/2)2ni/2

}
. Suppose that the prior density function of η for hyper-

parameter γ > 0 is given by

π(η|γ) = C1

k∏
i=1

{
γ2(ηi − γ)(ni−6)/2η

−ni/2
i I(ηi > γ)

}
, (2.7)

where C1 =
∏k

i=1 {(ni − 2)(ni − 4)/4}, and I(A) is the indicator function such that
I(A) = 1 if A is true, and = 0 otherwise. Then the posterior density of η given s
and γ is

π(η|s, γ) = C2

k∏
i=1

{
s
(ni−4)/2
i (ηi − γ)(ni−4)/2−1e−si(ηi−γ)/2I(ηi > γ)

}
,

for C2 = 1/
∏k

i=1{Γ((ni − 4)/2)2(ni−4)/2}, and the resulting Bayes estimator is

δB
i (γ) = E [ηi|s, γ] = E [ηi − γ|s, γ] + γ =

ni − 4

si

+ γ. (2.8)

Since the hyperparameter γ is unknown, it is estimated from the marginal distribution of
s and γ. The marginal density of s given γ is

pπ(s|γ) =
k∏

i=1

{
1

Γ(4/2)
(γ/2)2sie

−γsi/2

}
,

which means that s1, . . . , sk are marginally i.i.d. γ−1χ2
4. Since T = s1 + · · · + sk has

γ−1χ2
4k, γ is estimated by γ̂a = a/T for constant a. Minimizing the risk among estimators

of the form δBU + (a/T )1k with respect to a, we see that the best constant is given by
a = 2(k − 1). Substituting the estimator 2(k − 1)/T into (2.8) yields the empirical Bayes
estimator which is identical to δEB.
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2.4 Generalized Bayes estimators

Let g(s) = −2∇ log q(s) = −2∇q(s)/q(s) for a positive function q(s), and consider the
estimators

δGB
q = δBU − 2∇ log q(s). (2.9)

Note that

∇tg(s) = −2∇t

{
∇q(s)

q(s)

}
= −2

{
∇t∇q(s)

q(s)
− ∥∇q(s)∥2

{q(s)}2

}
. (2.10)

Then the inequality (2.2) is written as

{4/q(s)}
{
2(s−1)t∇q(s) + 2∇t∇q(s) − ∥∇q(s)∥2/q(s)

}
≤ 0.

Proposition 2.4 The estimator δGB
q is minimax if the positive function q(s) satisfies the

inequality
2(s−1)t∇q(s) + 2∇t∇q(s) − ∥∇q(s)∥2/q(s) ≤ 0. (2.11)

This inequality is satisfied by

(s−1)t∇q(s) + ∇t∇q(s) ≤ 0. (2.12)

Since it can be seen that

2∇t∇q(s) − ∥∇q(s)∥2/q(s) = 4
√

q(s)∇t∇
√

q(s), (2.13)

the condition (2.11) is also expressed as

(s−1)t∇
√

q(s) + ∇t∇
√

q(s) ≤ 0.

The function
√

q(s) being superharmonic is equivalent to the inequality ∇t∇
√

q(s) ≤ 0.
Stein (1973, 81) showed that the superharmonicity of a function of the sample means
implies the minimaxity in estimation of the normal mean vector. In our problem, however,
this story does not hold, because the condition (2.12) depends on (s−1)t∇q(s), the inner
product of the vectors s−1 and ∇q(s).

We shall show that a generalized Bayes estimator can be expressed by (2.9). Assume
that the prior density of η is given by π(η), and let g(η) = π(η)

∏k
i=1 η3

i . Then the
generalized Bayes estimator of η = σ−1 is

δGB
π =

∫
η{

∏k
i=1 η

(ni−4)/2−1
i e−ηisi/2}g(η)dη∫

{
∏k

i=1 η
(ni−4)/2−1
i e−ηisi/2}g(η)dη

.

Note that δGB
π = δBU when g(η) ∝ 1. The generalized Bayes estimator can be written as

δGB
π = δBU + (δGB

π − δBU)

= δBU − 2∇ log
({ k∏

i=1

s
(ni−4)/2
i

}∫ { k∏
i=1

η
(ni−4)/2−1
i e−ηisi/2

}
g(η)dη

)
= δBU − 2∇ log qπ(s), say,
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where the function qπ(s) is given by

qπ(s) =

∫ { k∏
i=1

τ
(ni−4)/2−1
i e−τi/2

}
g(τ/s)dτ ,

for τ/s = (τ1/s1, . . . , τk/sk)
t. This shows that any generalized Bayes estimator is ex-

pressed in the form (2.9).

It is noted that qπ(s) is not a marginal density. From Proposition 2.4, it is seen that
the generalized Bayes estimator δGB

π dominates δBU if

(s−1)t∇qπ(s) + ∇t∇qπ(s) ≤ 0, (2.14)

which provides the general characterization of the prior distribution.

Corollary 2.1 If the prior distribution π(η) = g(η)
∏k

i=1 η−3
i satisfies the condition

(s−1)t∇g(τ/s) + ∇t∇g(τ/s) < 0,

then δGB
π dominates δBU relative to the loss (1.1).

3 Bayesian minimax methods against a truncated prior

We now derive generalized Bayes estimators improving on the best usual one δBU . Assume
that the following hierarchical prior distribution π(η) =

∫
π1(η|γ)π2(γ)dγ:

η|γ ∼π1(η|γ) = C1

k∏
j=1

{
γ2(ηj − γ)(nj−6)/2η

−nj/2
j I(ηj > γ)

}
,

γ ∼π2(γ), (3.1)

where C1 is defined below (2.7), and the second stage prior π2(γ) will be specified later.
The posterior density is written as

π(η|s) = C

∫ k∏
j=1

{
γ2(ηj − γ)(nj−6)/2e−sjηj/2I(ηj > γ)

}
π2(γ)dγ,

and the Bayes estimator is given by

δGB
i = C

∫ ∫
(ηi − γ + γ)

k∏
j=1

{
γ2(ηj − γ)(nj−6)/2e−sjηj/2I(ηj > γ)

}
π2(γ)dγdη. (3.2)

Making the transformation ξj = ηj − γ with |∂ξ/∂η| = 1 for ξ = (ξ1, . . . , ξk)
t, we see that∫ ∫

(ηi − γ)
k∏

j=1

{
γ2(ηj − γ)(nj−6)/2e−sjηj/2I(ηj > γ)

}
π2(γ)dηdγ

=

∫
ξi

k∏
j=1

{ξ(nj−6)/2
j e−sjξj/2}dξ ×

∫
γ2ke−(

Pk
j=1 sj)γ/2π2(γ)dγ,
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and that ∫ ∫
γ

k∏
j=1

{
γ2(ηj − γ)(nj−6)/2e−sjηj/2I(ηj > γ)

}
π2(γ)dηdγ

=

∫ k∏
j=1

{ξ(nj−6)/2
j e−sjξj/2}dξ ×

∫
γ2k+1e−(

Pk
j=1 sj)γ/2π2(γ)dγ,

so that from (3.2), the generalized Bayes estimator δGB
i is expressed as

δGB
i =

ni − 4

si

+

∫
γ2k+1e−Tγ/2π2(γ)dγ∫
γ2ke−Tγ/2π2(γ)dγ

, (3.3)

for T =
∑k

j=1 sj. The following theorem provides a condition for δGB = (δGB
1 , . . . , δGB

k )t

to dominate δBU .

Theorem 3.1 Assume that π2(γ) is an absolutely continuous function on (0,∞) such
that γπ′

2(γ)/π2(γ) is non-increasing in γ, and
∫

γ2ke−Tγ/2π2(γ)dγ < ∞. If π2(γ) satisfies
the condition

lim
T→∞

R(T ) ≥ 3, (3.4)

where R(T ) is defined by

R(T ) ≡ −
∫

γ2k+1e−Tγ/2π′
2(γ)dγ∫

γ2ke−Tγ/2π2(γ)dγ
,

then the generalized Bayes estimator δGB given by (3.2) or (3.3) against the prior (3.1)
is minimax.

Proof. To prove the theorem, we use Proposition 2.3, namely, we show that

ϕ(T ){ϕ(T ) − 4(k − 1)} − 4Tϕ′(T ) ≤ 0. (3.5)

The generalized Bayes estimator δGB is expressed in the form (2.4) by putting

ϕ(T ) = T

∫
γ2k+1e−Tγ/2π2(γ)dγ∫
γ2ke−Tγ/2π2(γ)dγ

.

Note that

ϕ′(T ) =

∫
γ2k+1e−Tγ/2π2(γ)dγ∫
γ2ke−Tγ/2π2(γ)dγ

− T

2

∫
γ2k+2e−Tγ/2π2(γ)dγ∫
γ2ke−Tγ/2π2(γ)dγ

+
T

2

(∫
γ2k+1e−Tγ/2π2(γ)dγ∫
γ2ke−Tγ/2π2(γ)dγ

)2

.

Using the expressions ϕ(T ) and ϕ′(T ), we can rewrite the inequality (3.5) as

2T

∫
γ2k+2e−Tγ/2π2(γ)dγ∫
γ2k+1e−Tγ/2π2(γ)dγ

− T

∫
γ2k+1e−Tγ/2π2(γ)dγ∫
γ2ke−Tγ/2π2(γ)dγ

≤ 4k. (3.6)
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By the integration by parts, it is noted that for constants c1, c2 and d,∫ c2

c1

γde−Tγ/2π2(γ)dγ = − 2

T

[
γde−Tγ/2π2(γ)

]c2

c1

+
2

T

∫ c2

c1

{
dγd−1e−Tγ/2π2(γ) + γde−Tγ/2π′

2(γ)
}

dγ. (3.7)

Note that π2(γ) is an absolutely continuous function such that limγ→0 γde−Tγ/2π2(γ) =
limγ→∞ γde−Tγ/2π2(γ) = 0. Then,

T

∫
γ2k+2e−Tγ/2π2(γ)dγ∫
γ2k+1e−Tγ/2π2(γ)dγ

=2(2k + 2) + 2

∫
γ2k+2e−Tγ/2π′

2(γ)dγ∫
γ2k+1e−Tγ/2π2(γ)dγ

,

T

∫
γ2k+1e−Tγ/2π2(γ)dγ∫
γ2ke−Tγ/2π2(γ)dγ

=2(2k + 1) + 2

∫
γ2k+1e−Tγ/2π′

2(γ)dγ∫
γ2ke−Tγ/2π2(γ)dγ

.

Hence, the inequality (3.6) is equivalent to∫
γ2k+1e−Tγ/2π′

2(γ)dγ∫
γ2ke−Tγ/2π2(γ)dγ

− 2

∫
γ2k+2e−Tγ/2π′

2(γ)dγ∫
γ2k+1e−Tγ/2π2(γ)dγ

≥ 3. (3.8)

Since γπ′
2(γ)/π2(γ) is non-increasing in γ, the following inequality holds:∫

γ2k+2e−Tγ/2π′
2(γ)dγ∫

γ2k+1e−Tγ/2π2(γ)dγ
≤

∫
γ2k+1e−Tγ/2π′

2(γ)dγ∫
γ2ke−Tγ/2π2(γ)dγ

. (3.9)

In fact, this inequality is equivalent to

E∗[γ2π′
2(γ)/π2(γ)] ≤ E∗[γ]E∗[γπ′

2(γ)/π2(γ)],

where E∗[·] is the expectation with respect to the probability

P ∗(A) =

∫
A

γ2ke−Tγ/2π2(γ)dγ
/ ∫

γ2ke−Tγ/2π2(γ)dγ.

Since γ and γπ′
2(γ)/π2(γ) are monotone in opposite directions, the inequality (3.9) is

guaranteed. Using (3.9), we see that the inequality (3.8) is satisfied if

−
∫

γ2k+1e−Tγ/2π′
2(γ)dγ∫

γ2ke−Tγ/2π2(γ)dγ
≡ R(T ) ≥ 3. (3.10)

By differentiating R(T ) with respect to T , the derivative of R(T ) is proportional to∫
γ2k+2e−Tγ/2π′

2(γ)dγ

∫
γ2ke−Tγ/2π2(γ)dγ

−
∫

γ2k+1e−Tγ/2π′
2(γ)dγ

∫
γ2k+1e−Tγ/2π2(γ)dγ

10



which is not positive from the inequality (3.9). That is, R(T ) is non-increasing in T when
γπ′

2(γ)/π2(γ) is non-increasing in γ. Hence form (3.10), we obtain the sufficient condition
limT→∞ R(T ) ≥ 3, which is given by (3.4), and the proof is complete.

When the second stage prior is given by π2(γ) = γ−3g(γ) for an absolutely continuous
function g(γ), R(T ) given below (3.4) can be written as

R(T ) = 3 −
∫

γ2k−2e−Tγ/2g′(γ)dγ∫
γ2k−3e−Tγ/2g(γ)dγ

,

so that we get the following corollary.

Corollary 3.1 Assume that g(γ) is an absolutely continuous function on (0,∞) such that
γg′(γ)/g(γ) is non-increasing in γ, and

∫
γ2k−3e−Tγ/2g(γ)dγ < ∞. If g′(γ) ≤ 0 for any

γ > 0, then the generalized Bayes estimator δGB given by (3.3) against the prior (3.1)
with π2(γ) = γ−3g(γ) is minimax.

Theorem 3.1 and Corollary 3.1 provide various prior distributions which result in the
generalized minimax estimators.

[1] Let π2(γ) = γ−a−3. Then, g(γ) = γ−a, γg′(γ)/g(γ) = −a, and the resulting
estimator is

δGB = δBU +
2{2(k − 1) − a}

T
1k. (3.11)

Since the prior is improper, δGB is generalized Bayes. From Corollary 3.1, δGB is minimax
if 0 ≤ a < 2(k − 1) for k ≥ 2. It is interesting to note that for a = k − 1, δGB is identical
to the empirical Bayes estimator δEB given by (2.6).

[2] Let π2(γ) = γ−3(1 + γ)−a. Then, g(γ) = (1 + γ)−a, γg′(γ)/g(γ) = −aγ/(1 + γ),
and the resulting estimator is

δGB = δBU +
1

T

∫
z2k−2(1 + z/T )−ae−z/2dz∫
z2k−3(1 + z/T )−ae−z/2dz

1k. (3.12)

The generalized Bayes estimator δGB is minimax if a ≥ 0 for k ≥ 2.

As the condition for the minimaxity of δGB, Theorem 3.1 requires the monotonicity
of γπ′

2(γ)/π2(γ) on the second stage prior π2(γ). Using the condition (2.14), however, we
can derive a condition for the minimaxity without assuming the monotonicity. It is noted
that the generalized Bayes estimator (3.3) can be expressed as

δGB = δBU − 2∇ log qπ(s),

where qπ(s) =
∫

γ2ke−Tγ/2π2(γ)dγ.

Proposition 3.1 The generalized Bayes estimator δGB is minimax if the second stage
prior π2(γ) is an absolutely continuous function on (0,∞) satisfying the condition

−γπ′
2(γ)/π2(γ) ≥ k + 2. (3.13)

11



Proof. We need to evaluate the l.h.s. of (2.14) as

(s−1)t∇qπ(s) + ∇t∇qπ(s)

= −1

2

k∑
i=1

1

si

∫
γ2k+1e−Tγ/2π2(γ)dγ +

k

4

∫
γ2k+2e−Tγ/2π2(γ)dγ,

which is less than or equal to

k

2T

{
−k

∫
γ2k+1e−Tγ/2π2(γ)dγ +

T

2

∫
γ2k+2e−Tγ/2π2(γ)dγ

}
, (3.14)

since
∑k

i=1 s−1
i

∑k
i=1 si ≥ k2. From the equation (3.7), it is seen that (3.14) is equal to

k

2T

{
−k

∫
γ2k+1e−Tγ/2π2(γ)dγ + (2k + 2)

∫
γ2k+1e−Tγ/2π2(γ)dγ

+

∫
γ2k+2e−Tγ/2π′

2(γ)dγ

}
=

k

2T

∫
{(k + 2)π2(γ) + γπ′

2(γ)} γ2k+1e−Tγ/2dγ,

which proves Proposition 3.1 from (2.14).

As an example of Proposition 3.1, consider the function π2(γ) = γ−(a+3) exp{2bγ −
cγ2/2} for nonnegative constants a, b and c. Then it is observed that

−γ
d

dγ
log π2(γ) = a + 3 + cγ2 − 2bγ,

which is a quadratic function of γ. For c > 0, this is larger than or equal to a + 3− b2/c.
Hence from (3.13), the condition for the minimaxity is given by b2/c+k−1 ≤ a < 2(k−1).
When c = b = 0, the condition is k − 1 ≤ a < 2(k − 1), which is more restrictive than the
condition given below (3.11).

The derivation of admissible and minimax estimators is one of the main goals in
estimation in the decision-theoretic framework. Since we need substantial additional work
to establish the admissibility of the generalized Bayes and minimax estimators given in
this section, we do not discuss the admissibility problem in this paper. For this purpose,
it would be interesting to find a proper prior such that the resulting Bayes estimator is
minimax.

4 Improvement on the unbiased estimators

As stated in Section 1, the unbiased estimator δUB of σ−2 is given by (1.2), and it is
dominated by the best usual estimator δBU . Although δUB is inferior to δBU , the problem
of improving on δUB has a very nice structure corresponding to the dominance results of
Stein (1981) in the simultaneous estimation of a mean vector of a multivariate normal
distribution. It is also interesting to note that δUB can be dominated by expansion or
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shrinkage estimators and their combined methods, while δBU is dominated by expansion
estimators. Thus, in this section, we provide a summary of the dominance results over
δUB.

For improving on δUB, consider estimators of the form δ∗
g = δUB − g(s) for g(s) =

(g1(s), . . . , gk(s))t. Using the chi-square identity (2.1), we can write the risk function of
the estimator δg as

R(δ∗
g,σ

−2) = R(δUB,σ−2) + E
[
∥g(s)∥2 + 4∇tg(s)

]
,

which shows the following proposition.

Proposition 4.1 The estimator δ∗
g is better than δUB if g(s) satisfies the inequality

∥g(s)∥2 + 4∇tg(s) ≤ 0.

Consider the case of g(s) = 2∇ log f(s) where f(·) is a twice differentiable function
and f(·) > 0. From (2.10) and (2.13), it is observed that

∥g(s)∥2 + 4∇tg(s) = 8
∇t∇f(s)

f(s)
− 4

∥∇f(s)∥2

{f(s)}2
=

16√
f(s)

∇t∇
√

f(s), (4.1)

which yields the following dominance result.

Proposition 4.2 Assume that
√

f(s) is superharmonic, namely, ∇t∇
√

f(s) < 0. Then
the estimator

δGB∗
f = δUB − 2∇ log f(s), (4.2)

dominates the unbiased estimator δUB under the loss (1.1). The inequality ∇t∇f(s) < 0
implies that ∇t∇

√
f(s) < 0.

These propositions give us several classes of improved estimators as described below.

[1] Generalized Bayes estimator. Consider the generalized Bayes estimator against
the prior π(η) = h(η)

∏k
i=1 η−2

i . Then the resulting generalized Bayes estimator can be
expressed as

δGB∗
π = δUB − 2∇ log fπ(s), (4.3)

where

fπ(s) =

∫ { k∏
i=1

τ
(ni−2)/2−1
i e−τi/2

}
h(τ/s)dτ .

Noting that ∇t∇fπ(s) =
∫
{
∏k

i=1 τ
(ni−2)/2−1
i e−τi/2}∇t∇h(τ/s)dτ , we can see that if

∇t∇h(τ/s) ≤ 0, then δGB∗
π dominates δUB relative to the loss (1.1). Although the condi-

tion ∇t∇h(τ/s) ≤ 0 is general, it is more restrictive than the condition ∇t∇
√

fπ(s) < 0,
which will be checked below by a specific prior. The prior considered here is of the form

π(η) = h(η)
k∏

i=1

η−2
i , for h(η) =

(
k∏

i=1

ηi

)−a (
k∑

i=1

ηi

)−b

, (4.4)
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where a ≥ 0 and b ≥ 0. Then, it can be shown that if 0 < a ≤ 2(1 − b) and 0 ≤ b ≤ 1,
then the generalized Bayes estimator δGB∗

π against the prior (4.4) dominates δUB relative
to the loss (1.1). For the details of the proof, see Tsukuma and Kubokawa (2007).

[2] James-Stein type estimator. Consider the expansion estimator

δJS∗
ϕ = δUB +

ϕ(∥s∥2)

∥s∥2
s,

which yields that ∥g∥2 + 4∇tg = (ϕ/∥s∥2){ϕ − 4(k − 2)} − 8ϕ′. Hence, δJS∗
ϕ dominates

δUB if ϕ(u) is a non-decreasing function such that 0 ≤ ϕ(u) ≤ 4(k − 2) for k ≥ 3 and
u > 0.

[3] Empirical Bayes estimator. Consider the shrinkage estimator

δEB∗
ϕ = δUB − ϕ(T )

T
1k,

which yields that ∥g∥2 + 4∇tg = kϕ(ϕ − 4)/T 2 + 4kϕ′/T . Hence, δEB∗
ϕ dominates δUB if

ϕ(t) is a non-increasing function such that 0 ≤ ϕ(t) ≤ 4 for t > 0. This is characterized
as an empirical Bayes estimator as used in Section 2.3.

[4] Further improvement by combining expansion and shrinkage estimators. As de-
scribed above, δEB∗

ϕ is a shrinkage estimator while δJS∗
ϕ is an expansion one. A new

estimator proposed here can be derived by combining the shrinkage and expansion esti-
mators. For example, consider the estimators

δJS∗ =δUB +
β1

∥s∥2
s = δUB − 2∇ log ∥s∥−β1/2, (4.5)

δEB∗ =δUB − β2

T
1k = δUB − 2∇ log T β2/2, (4.6)

for β1 = 2(k − 2) and β2 = 2. It is noted that these estimators are better than δUB. The
proposed estimator is given by

δC∗ = δUB − 2∇ log
(
∥s∥−β1/2T β2/2

)
= δUB +

β1

∥s∥2
s − β2

T
1k. (4.7)

The following arguments guarantee that the combined estimator δC∗ dominates both δJS∗

and δEB∗.

In general, let us define fSH(s) and fEX(s) as twice differentiable functions of s where
(∂/∂si)fSH(s) > 0 and (∂/∂si)fEX(s) < 0 for i = 1, . . . , k. Denote the shrinkage and the
expansion estimators by δSH∗ = δUB − 2∇ log fSH(s) and δEX∗ = δUB − 2∇ log fEX(s),
respectively. Define the combined estimator δC∗ by

δC∗ = δUB − 2∇ log(fSH(s)fEX(s)),

which is also expressed as

δC∗ = δSH∗ − 2∇ log fEX(s)

= δEX∗ − 2∇ log fSH(s).
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Theorem 4.1 Assume that ∇t∇
√

fSH(s) < 0 and ∇t∇
√

fEX(s) < 0. Then δC∗ dom-
inates both the shrinkage and the expansion estimators, δSH∗ and δEX∗, relative to the
loss (1.1).

Proof. From (4.1), the difference in risk of δC∗ and δSH∗ can be represented as

R(δC∗,σ−2) − R(δSH∗,σ−2)

= R(δC∗,σ−2) − R(δUB,σ−2) − (R(δSH∗,σ−2) − R(δUB, σ−2))

= 16E
[∇t∇

√
fSH(s)fEX(s)√

fSH(s)fEX(s)
−

∇t∇
√

fSH(s)√
fSH(s)

]
= 16E

[∇t∇
√

fEX(s)√
fEX(s)

+ 2
[∇

√
fSH(s)]t[∇

√
fEX(s)]√

fSH(s)fEX(s)

]
,

which is negative since ∇t∇
√

fEX(s) < 0 and

[∇
√

fSH(s)]t[∇
√

fEX(s)] =
1

4
√

fSH(s)fEX(s)

k∑
i=1

[∂fSH(s)

∂si

][∂fEX(s)

∂si

]
< 0.

Hence δC∗ dominates δSH∗ relative to the loss (1.1). Similarly, it can be shown that
R(δC∗, σ−2) − R(δEX∗, σ−2) < 0.

It is noted that the above theorem can be applied to δJS∗ and δGB∗ to obtain their
improved estimator

δCB∗ = δGB∗ + {2(k − 2)/∥s∥2}s, (4.8)

where δGB∗ is given by (4.3) against the prior (4.4) with 0 < a ≤ 2(1− b) and 0 ≤ b ≤ 1.

5 Geometric interpretation

We first consider geometric representation of δUB, δBU , δML and σ−2. Let n = n1 =
· · · = nk and let a = a(s) and b = b(s) be vector-valued functions of s, respectively.
Define inner product of a and b as

⟨a, b⟩ = E[atb] =

∫
atb p(s)ds,

where p(s) is the density function of s. Denote ∥a∥I =
√
⟨a,a⟩. It is noted that

⟨δBU −σ−2, δUB⟩ = 0, namely, δBU −σ−2 and δUB intersect orthogonally. It is also seen
that ⟨δUB −σ−2, σ−2⟩ = 0 and ⟨δML −σ−2,σ−2⟩ > 0. Then δUB, δBU , δML and σ−2 are
plotted as in Figure 1.

Let S(z, r) be the closed sphere centered at the vector z with radius r. Denote by
Sc(z, r) complement of S(z, r). Also let O be the zero vector. It is then reasonable that
we seek an alternative estimator in the set

SUB = S(O, ∥δUB∥I) ∩ S(σ−2, ∥δUB − σ−2∥I)
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Figure 1: Geometric interpretation of δML, δUB and δBU in simultaneous estimation of
normal precisions.

or the set
SBU = Sc(O, ∥δBU∥I) ∩ S(σ−2, ∥δBU − σ−2∥I)

since both the sets include σ−2. Let δA and δB be the shrinkage estimators belonging to
the set SUB. Since the set SUB is convex, an estimator αδA + (1 − α)δB for 0 < α < 1 is
also in the set, namely, αδA +(1−α)δB is a shrinkage estimator with respect to δUB and
dominates δUB relative to the loss (1.1). On the other hand, the set SBU is not convex.
Hence for the expansion estimators δC and δD belonging to SBU , αδC + (1−α)δD is not
always an expansion estimator with respect to δBU and however the estimator dominates
δBU relative to the loss (1.1).

We next investigate the geometric relation among δUB, δJS∗, δEB∗, δC∗ and σ−2,
where δJS∗, δEB∗ and δC∗ are given by (4.5), (4.6) and (4.7), respectively. Note that
δJS∗ ∈ Sc

UB and δEB∗ ∈ SUB, namely δJS∗ is an expansion estimator and δEB∗ is a
shrinkage estimator. It can be shown that

⟨δJS∗ − δUB, δJS∗ − σ−2⟩ = E

[
β1{β1 − 2(k − 2)}

∥s∥2

]
= 0,

for β1 = 2(k − 2), and that

⟨δEB∗ − δUB, δEB∗ − σ−2⟩ = E

[
kβ2(β2 − 2)

T 2

]
= 0,

for β2 = 2. Hence δJS∗ and δEB∗ lie on the surface of S((δUB +σ−2)/2, ∥δUB −σ−2∥I/2).
We also note that δBU is on the surface and that δC∗ belongs to the inner of the sphere.
Since δBU

i = (ni − 4)/si < (ni − 2)/si − 2/
∑k

i=1 si = δEB∗
i with probability one, we can

see that ∥δBU∥I < ∥δEB∗∥I . These facts are described as in Figure 2.

16



Figure 2: Geometric relation among δUB, δBU , δJS∗, δEB∗, δC∗ and σ−2. The estimators
δUB, δBU , δJS∗ and δEB∗ exist on the surface of the sphere centered at (δUB + σ−2)/2
with radius ∥δUB − σ−2∥I/2, but δC∗ lies in the inner of the sphere.

Similarly, we consider the geometric relation between δBU , δJS, δEB and σ−2, where
δJS and δEB are given by (2.3) and (2.6), respectively. It can be shown that

⟨δJS − δBU , δJS − σ−2⟩ = E

[
α1{α1 − 4(k − 1)}

∥s∥2

]
= 0,

for α1 = 4(k − 1), and that

⟨δEB − δBU , δEB − σ−2⟩ =α2E

[
− 2

T

k∑
i=1

1

si

+
2k

T 2
+

kα2

T 2

]

≤E

[
kα2{α2 − 2(k − 1)}

T 2

]
= 0,

for α2 = 2(k − 1). Thus δJS exists on the surface of S((δBU + σ−2)/2, ∥δBU − σ−2∥I/2)
and δEB is located in the inner of the sphere. Noting that both δJS and δEB are expansion
estimators, namely δJS ∈ SBU and δEB ∈ SBU , we can see that δBU , δJS, δEB and σ−2

are plotted as in Figure 3.

6 Numerical study

In this section we shall conduct risk comparison for the improved estimators of the unbi-
ased and the best usual estimators in the case that the number of populations is three,
namely, k = 3.

For the risk comparison, we first examine the following estimators:
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Figure 3: Geometric relation among δBU , δJS, δEB and σ−2. δJS is on the surface of the
sphere centered at (δBU + σ−2)/2 with radius ∥δBU −σ−2∥I/2, but δEB lies in the inner
of the sphere.

(1) δUB, given by (1.2),

(2) δBU , given by (1.3),

(3) δJS, given by (2.3),

(4) δEB, given by (2.6),

(5) δGB, given by (3.12) with a = 2,

(6) δJS∗, given by (4.5),

(7) δEB∗, given by (4.6),

(8) δC∗, given by (4.7),

(9) δGB∗, given by (4.3) against the prior (4.4) with a = 1 and b = 1/2.

(10) δCB∗, given by (4.8) with a = 1 and b = 1/2.

It is noted that δJS, δEB and δGB dominate the best usual estimator δBU relative to the
loss (1.1). Also, note that δJS∗, δEB∗, δC∗ and δGB∗ dominate the unbiased estimator
δUB and that δC∗ and δCB∗ are combined estimators of the shrinkage and the expansion
estimators and are superior, respectively, to both δEB∗ and δJS∗ and to both δGB∗ and
δJS∗.

The estimates of risk values were computed by 10,000 independent replications. We
set (n1, n2, n3) = (30, 30, 30) and (5, 5, 5). For values of precision parameters σ−2, we
chose σ−2 = (1, 1 + c, (1 + c)−1)t for c = 0, 1, 2, 3, 4. This simulation results are given
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Table 1: Risk values of various estimators for normal precisions with σ−2 = (1, 1+ c, (1+
c)−1)t for c = 0, 1, 2, 3, 4.

(n1, n2, n3) = (30, 30, 30) (n1, n2, n3) = (5, 5, 5)

c 0 1 2 3 4 0 1 2 3 4

δUB 0.23 0.41 0.78 1.33 2.02 5.96 9.09 16.64 27.51 41.58

δJS∗ 0.23 0.41 0.78 1.32 2.02 5.88 9.03 16.60 27.48 41.56

δEB∗ 0.23 0.41 0.78 1.32 2.02 5.87 9.02 16.59 27.48 41.55

δC∗ 0.23 0.40 0.78 1.32 2.02 5.66 8.86 16.48 27.40 41.49

δGB∗ 0.21 0.37 0.72 1.22 1.86 1.91 3.53 7.07 12.22 18.94

δCB∗ 0.20 0.36 0.71 1.21 1.86 1.38 3.14 6.80 12.03 18.80

δBU 0.22 0.38 0.72 1.22 1.87 1.99 3.34 6.34 10.63 16.19

δJS 0.19 0.36 0.72 1.22 1.86 0.87 2.50 5.77 10.23 15.89

δEB 0.21 0.37 0.71 1.21 1.85 1.21 2.43 5.29 9.47 14.94

δGB 0.21 0.36 0.70 1.20 1.84 1.00 2.07 4.74 8.79 14.15

in Table 1. From this result, it is observed that each risk value of δJS∗, δEB∗ and δC∗

has a bit of reduction in risk than δUB and, on the other hand, δJS, δEB and δGB have
substantial risk reduction than δBU . The risk values of δCB∗ is better than δBU for
(n1, n2, n3) = (30, 30, 30), but not for minimal sample size (n1, n2, n3) = (5, 5, 5) with
scattered precisions (c = 3, 4).

We next confine our attention to the risk behavior of estimators δBU , δJS, δEB

and δGB. For these comparison, we shall describe the curves of the relative risks for
each improved estimator δa against δBU , that is, RR = R(δa,σ−2)/R(δBU , σ−2). The
curves are based on 10,000 independent replications. We took five sets of sample size
(n1, n2, n3) = (30, 30, 30), (5, 5, 5), (30, 10, 50), (30, 50, 10) and (50, 30, 10). For values of
precision σ−2, we assumed that σ−2 = (1, 1 + c, (1 + c)−1)t for 0 ≤ c ≤ 4. Note that the
RR is a function of c and that an estimator δ is better than δUB if RR < 1. The results
are given in Figure 4.

Figure 4 indicates the following important observations.

1. In the case that (n1, n2, n3) = (30, 30, 30) and (5, 5, 5) and c = 0, namely, the ni’s
are the same and each element of the precision parameter σ−2 is one, δJS is better
than both δEB and δGB. On the other hand δGB reduces risk than δJS and δEB if
c is near zero for the cases (n1, n2, n3) = (30, 10, 50), (30, 50, 10) and (50, 30, 10).

2. For minimal sample size (n1, n2, n3) = (5, 5, 5) with c = 0, the RR of δJS is about
0.45. In other words, the risk of δJS is less than half of the risk of δBU .

3. When the elements of σ−2 are much different, δGB is excellent except (n1, n2, n3) =
(30, 50, 10).
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4. The risk value of δEB is inferior to that of either δJS or δGB.

5. The case that (n1, n2, n3) = (30, 10, 50) and c is large implies that the data is suffi-
ciently obtained from a population with poor precision and not from one with good
precision. In this case, δGB is the best. Conversely, in the case that (n1, n2, n3) =
(30, 50, 10) and c is large, δJS is superior.
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Figure 4: The relative risks of improved estimators with respect to the best usual estimator
for σ−2 = (1, 1 + c, (1 + c)−1)t, 0 ≤ c ≤ 4.
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