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Abstract

This paper examines the intra-�rm di¤usion of new technology in the Japanese steel

industry. The introduction of the basic oxygen furnace was the greatest breakthrough

in steel re�ning in the last century. Using unique panel data concerning capital utiliza-

tion, the paper estimates total factor productivity by technology type, and associates

the estimate with intra-�rm di¤usion. Estimation results reveal that the productivity

di¤erence between the old and new technologies plays an important role. The paper

also �nds that in operation, the old technology can better respond to changes in market

demand, which brings about counter-cyclicality in the measured productivity.

JEL: D24, L61, O14, O33.

Keywords: intra-�rm di¤usion; innovation; technological change; TFP

1 Introduction

Di¤usion of new technology has been viewed as a main driving force of economic growth. An

important set of questions often raised in the literature concerns what factors determine a �rm�s

decision to adopt a new technology. While this issue of inter-�rm technology di¤usion has been

extensively studied, the adoption of new technology is not in and of itself su¢ cient for economic

growth. For the social bene�ts of innovation to be realized, the outcome of an innovation must not

only be adopted by a �rm, but also be extensively utilized in economic activities. Productivity and

outputs would not rise quickly in response to the adoption of new technology, if the utilization of
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ference participants at the University of Tokyo, and International Schumpeter Society Conference for their helpful

comments.
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the technology remains low. As Mans�eld (1963: 356) explains, the accurate measurement of the

rate of intra-�rm di¤usion� the rate at which a particular �rm substitutes a new technology for

old in its production process� requires �rm-level data that identify capital utilization by vintage.

Existing research, however, has measured intra-�rm di¤usion by the proportion of a �rm�s capital

in place, not in use, that incorporates the new technology. Using unique plant-level panel data

that identify utilization by technology type, we seek to shed new light on the study of intra-�rm

di¤usion.1

Using data pertaining to the Japanese steel industry, this paper analyzes two aspects of intra-

�rm di¤usion that have received little previous empirical examination. These aspects are: (1) the

role of old technology in responding to demand shocks; and (2) the relationship between �rm size

and productivity di¤erences between old and new technologies. These aspects of intra-�rm di¤usion

could not be examined without the data that describe capital in use by technology type. As the

object of study we chose re�ning furnace technology in the Japanese steel industry. In the 1950s and

1960s, many integrated steel makers updated their technology, shifting from the conventional open-

hearth furnace (OHF) to the imported basic oxygen furnace (BOF). The introduction of the BOF

was praised as being �unquestionably one of the greatest technological breakthroughs in the steel

industry during the twentieth century�(Hogan, 1971: 1543). Interestingly, the period of the rapid

dissemination of BOF technology coincides with that of the remarkable growth Japan experienced

in the wake of the devastation wreaked by World War II. In particular, the steel industry expanded

its production more than fourfold between 1953 and 1964, raising Japan to the status of the world�s

largest steel exporter in 1969. As we discuss in Section 2, intra-�rm di¤usion played a major role

in BOF di¤usion, resulting in the rapid growth of the Japanese steel industry in the 1950s and

1960s. Restricting our study to examining re�ning furnace technology also allows us to abstract

from market structure e¤ects in our study; virtually all steel plants faced the same market for crude

steel, a homogeneous product manufactured from the re�ning furnaces. The nature of the market,

along with the utilization data, allow our analysis to focus on the in�uence of other determinants

of intra-�rm technology di¤usion, including factors (1) and (2), as we describe below.

Industry circles have recognized that producing steel involves substantial learning from and

during production.2 Given experience of repetitive tasks, steelworkers are likely to learn from

cumulative experience how such tasks can be done more quickly and e¢ ciently. It was the experience

and judgment of steelworkers that made it possible for plants to adjust the frequency and the

size of furnace operations when faced with volatile steel demand in the 1950s and 1960s. The

1Although the data used here refer to plants rather than �rms (subject to the comments on the �xed e¤ects used in

Section 4.2), we use the terms �plant�and ��rm�interchangeably, so as to conform to current usage in the literature.
2The importance of �learning by doing� in Japanese steel production is empirically analyzed in Ohashi (2005),

and Nakamura and Ohashi (2006).
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practice that emerged was that the new and e¢ cient technology (i.e., BOF) was used to provide

a constant, baseline level of steel production regardless of total demand, and that the familiar

but ine¢ cient technology (i.e., OHF) was employed as needed according to the volatility of steel

demand. Although this resource allocation practice is observed in other industries (such as power

generation), its e¤ect on intra-�rm di¤usion has not been empirically examined. Our estimates

indicate that the practice has had a signi�cant in�uence on the di¤usion rate of the BOF. We also

found that this practice brought about counter-cyclicality in measured productivity in our data,

similar to the �ndings of Basu, Fernald, and Kimball (2004) in their analysis of 29 U.S. industries

in the 1949�1996 period.

Di¤erences in the productivity of new and old technologies across plants have been a main

focus of the di¤usion literature (see, for example, Mans�eld, 1968; Battisti and Stoneman, 2005).

If a new technology is more productive than an old one, a �rm will shift its production process

faster than otherwise from the old to the new technologies, so as to minimize the opportunity

cost of retaining the old technology. The existing literature, however, has not yet estimated these

productivity di¤erences, instead employing plant size (in terms of the number of workers) as a

proxy for such an e¤ect. Whether plant size serves as an appropriate indicator of productivity

di¤erences remains an open question. Our panel dataset lets us estimate total factor productivity

(TFP) of the OHF and BOF, respectively, and to associate the obtained productivity estimates

with plant size. The paper �nds that productivity di¤erences between the two furnace technologies

indeed strongly correlate with plant size, and that they play a major role in intra-�rm di¤usion.

Furthermore, the paper provides an explanation as to why plant size serves a proxy suitable for

representing the productivity di¤erences in our application.

In his survey of the literature on new technology di¤usion, Geroski (2000) identi�es two leading

models: the epidemic and probit models. The �rst model, originally proposed by Mans�eld (1963),

predicts that the extent of use of a new technology within a �rm increases with the number of

years since the �rst adoption. Figure 1 traces the changes in the output share produced by the

BOF for each of the thirteen plants represented in our data. Although the BOF share generally

increased over the study period, the epidemic model cannot explain the BOF use observed in Figure

1; the years elapsed since the �rst BOF adoption, with the use of a third-order polynomial, only

explain twenty percent of the total variability of the BOF output share (a �nding similar to that

of Battisti and Stoneman, 2005). Thus we do not rely solely on the epidemic model, but also

incorporate features of the alternative model� the probit model� in analyzing intra-�rm di¤usion

in this paper. The probit model presumes that di¤erences in the di¤usion rate re�ect di¤erences

in �rm and technology characteristics. Estimation of the model indicates the importance of the

previously described factors (1) and (2) as determinants of the intra-�rm di¤usion of new technology.
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The rest of the paper is organized as follows. Section 2 provides an overview of the Japanese

steel market after the second World War. It describes several important features of the market

that have a direct bearing on the formulation of empirical strategies and on the interpretation

of quantitative results discussed in the subsequent sections. Section 3 describes a method for

estimating the TFP of furnace technologies. The panel feature of our dataset enables us to correct

for endogeneity problems when measuring productivity. Using the obtained productivity estimates,

Section 4 presents our estimation models and results. First, Section 4.1 presents the results of

survival analysis, and identi�es economic determinants of the duration for which the old technology

remained in use after the adoption of the BOF. This survival analysis con�rms the relationship

between plant size and the duration of old technology use. Section 4.2 examines what drives the

pattern of intra-�rm di¤usion observed in Figure 1. The analysis reveals the importance of (1)

the role of old technology in responding to demand shocks; and (2) the relationship between plant

size and productivity di¤erences between old and new technologies in intra-�rm di¤usion. We also

discuss the implications for intra-�rm di¤usion rates of the BOF in the United States. Section 5

concludes the presentation, and is followed by two appendices: Appendix A shows a derivation of

the regression model of intra-�rm di¤usion presented in Section 4.2, and Appendix B describes the

data used in this paper.

2 Overview of the Post-war Japanese Steel Market

In the early 1950s, most Japanese steel was produced by integrated steel manufacturers. Integrated

steel works transform raw materials (iron ore and coking coal) into pig iron in a blast furnace. Pig

iron is subsequently transformed into crude steel in a second furnace by removing carbon and other

elements. The prevalent technology used in this second or �re�ning� stage was the OHF, which

blows burning fuel gas over the molten pig iron: this gas provides the heat required to purify the

pig iron. In the late 1950s, the OHF began rapidly losing ground to the BOF. A major advantage of

the BOF was that it re�ned molten iron and scrap charge into steel in approximately 45 minutes� a

sharp decrease from the 6 hours that the OHF normally required then.

Invented in Austria, BOF technology was further developed by Japanese steel makers after be-

ing imported to Japan. The Japanese have been responsible for developing the two most important

improvements in BOF hardware: the multi-hole lance and the OG system (Lynn, 1982: 34; Odagiri

and Goto, 1996: 149). The multi-hole lance reduces splashing in the BOF, thus increasing steel-

making yield and improving refractory life. Over the course of our study period, the BOF lance

continuously improved its capability for softer blowing at lower velocities while achieving higher

production rates. The OG system allows the recovery of gases from the BOF. It controls pollution

and helps reduce energy costs, while contributing to steelmaking yield. These �user-centered tech-
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nological improvements�(von Hippel, 2005) associated with the BOF are known to have contributed

to the increase in steelmaking productivity in Japan. In the subsequent section, we measure the

e¤ects of these user-side technological innovations on the process of intra-�rm di¤usion. 3

Figure 2 depicts the di¤usion of the new technology as observed in the dataset. Three BOF

di¤usion paths are plotted in the �gure: overall di¤usion (denoted by the thin line), inter-�rm

di¤usion (by the dotted line), and intra-�rm di¤usion (by the bold line). The BOF share of the

industry�s output rose from 0.7 in 1957 to 100 percent in 1971. This overall usage level of the new

technology in the industry is attributed to changes in the number of users (inter-�rm di¤usion)

and in the intensity of use by �rms (intra-�rm di¤usion). The inter-�rm di¤usion indicates that

all plants represented in the data had adopted the BOF by 1965, at which time the within-plant

technology penetration had reached approximately 70 percent: then, intra-�rm di¤usion became the

sole driving force of the overall di¤usion. The �gure illustrates how intra-�rm di¤usion is important

in accounting for the penetration of the new technology, particularly in the later stages of the

di¤usion process. This �nding has also been observed with regard to other technologies, including

computer numerically controlled (CNC) machine tools as reported in Battisti and Stoneman (2004).

Industry circles have recognized that producing steel involves substantial learning from and

during production. Hogan (1971) and Lynn (1982) both noted that it was only through extensive

furnace use that detailed knowledge of furnace operation was gained. Both OHF and BOF re�ning

furnaces cannot be operated without skilled workers. It was the experience and judgment of skilled

workers that made it possible for plants to adjust the frequency and the size of furnace operations,

while maintaining the quality and durability of the crude steel produced.

Steel demand in the 1950s and 1960s varied substantially from year to year, as shown in the

last column of Table 1: the rate of steel output growth ranged from �7.3 to 42.9 percent. This

volatile demand in the steel market raised the question of how to allocate production e¢ ciently

between the old and new furnaces to meet the demand. The practice that emerged was that the

new and e¢ cient technology (i.e., BOF) was used to provide a constant, baseline level of steel

production regardless of total steel demand, and that the familiar but ine¢ cient technology (i.e.,

OHF) was employed as needed according to the volatility of steel demand. Figure 3 illustrates,

from the data, the importance of this practice. The �gure plots unanticipated steel-demand shocks

and detrended intra-�rm OHF share. The former variable is calculated as the deviation from the

AR(1) prediction of the industry-level steel demand. The �gure indicates that, consistent with the

practice described above, OHF production deviates upwardly from the scheduled operation level

upon the arrival of unanticipated demand shocks. This practice of furnace operation is, in fact,

3This paper does not consider the electric furnace (EF), because its production share was small during our study

period.
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not unique to the steel industry; a similar feature is also observed in other markets, for example,

the power market. In the power market, it is known that base-load power is provided by low-cost

means of generation (nuclear plants, for example), higher-cost but more �exible means of generation

(combustion turbines, for example) being employed to match power consumption demands. In an

analogy with this power-market example, the BOF would correspond to nuclear power, and the

OHF to combustion turbines.

Much theoretical and empirical research informs us that �rm size plays an important role in the

di¤usion of new technology, and casual observation of our data indeed reveals a clear relationship

between plant size and intra-�rm penetration of the BOF. Figure 4 plots the year in which the �rst

BOF was adopted (denoted by circles) and the year in which the last OHF was terminated from

use (denoted by rectangles) for each steel re�ning plant. The adoption and termination years are

sorted by plant size, as measured by the logarithmic number of workers. The �gure contains two

important observations. First, a negative correlation is observed between plant size and the year of

new technology adoption, larger plants tending to adopt the BOF earlier. This observation, which

concerns inter-�rm technology di¤usion, is well documented in the existing literature, as surveyed,

for example, in Stoneman (2001). Second, a negative relationship is observed between plant size

and the rate of intra-�rm di¤usion of the BOF. The �gure indicates that the smallest plant needed

four years to fully replace the OHF, whereas the largest plant took twelve years. The correlation

between replacement speed and plant size is great enough to generate a negative correlation between

plant size and the year in which the OHF ceased to be used.

While the �rst observation regarding inter-�rm di¤usion has been extensively studied, the second

one has not: to address this imbalance, this paper concentrates on analyzing the second observation.

Note, however, that our empirical analysis uses evidence pertaining to inter-�rm di¤usion. The

econometric analysis described in Section 4 reports that productivity di¤erences between furnace

technologies account for the intra-�rm di¤usion of the BOF. The next section describes the method

used to estimate the productivity of furnace technology.

3 Measuring Productivity

This section presents the method used to estimate the productivity of furnace technology, while

explicitly considering di¤erences in furnace type.4 To do so, we require estimates of the production

function, which describe the steel re�ning process. Considering that the two furnace technologies,

OHF and BOF, exhibit considerably di¤erent operational characteristics, we allow for the pro-

4The methodology described in this section is in essence similar to that used in Nakamura and Ohashi (2006).

Here, however, we tailor the method to the analysis of intra-�rm di¤usion, instead of to the analysis of changes in

plant-level productivity as was done in the earlier paper.
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duction function parameters to di¤er in terms of technology. The description of the industry in

the previous section reveals that experience was an important feature of furnace operations. The

production function thus incorporates experience, as well as other control variables, such as capac-

ity size and input measures. The productivity estimates obtained in this section are used in the

di¤usion analysis in Section 4.

The two vintages of furnaces both produce crude steel, a homogeneous product. Our economet-

ric model of the production function describes how e¢ ciently the furnaces completed the transfor-

mation process. We use the following Cobb-Douglas form with the parameters, �sXk , �
s
K , and �

s
Z

to be estimated:

Y sit =
Q
k

(Xs
kit)

�sXk (Ks
it)
�sK (Zsit)

�sZ exp (usit) ; (1)

where Y sit is the annual output (in tons) for furnace s (s is either OHF or BOF) at plant i in

year t. The production function comprises a number of input variables. Vector Xs
it includes fuels

and labor along with a constant term. All furnaces use electricity as an energy source, and the

OHF uses oil in addition. The k-th component of this vector is denoted by Xs
kit. The capacity

of furnace s is indicated by Ks
it, and the number of years of use for furnace s is denoted by Z

s
it.

The last variable captures two aspects of capital utilization: On one hand, this variable re�ects the

experience level, i.e., the extent to which extensive use of a particular furnace type leads to more

e¢ cient production. On the other, the variable also indicates the degree of capital depreciation, as

furnace productivity deteriorates with age. The estimated coe¢ cient of the variable implies which

of the two e¤ects dominates in our application.

Apart from the three factors described in (1), two important in�uences on steel production are

plant-level e¢ ciency of production management and improved furnace technologies. Such unmea-

sured determinants are represented by usit. Productivity unobserved by the econometrician may

create endogeneity in input choice.

Endogeneity in input choice arises when producers adjust the amount of material (fuels and

labor in our application) according to their e¢ ciency di¤erences in usit. For example, plants that

are perceived to have higher productivity might use more fuels. Our response to the endogeneity

problem is to use plant-, year-, and technology-speci�c components in the estimation. Further, we

allow the technology �xed e¤ect to di¤er according to the year, as follows: usit = � i + �
s
t + "

s
it,

where "sit is a mean-zero error. The plant �xed component, � i, deals with e¢ ciency di¤erences

between plants, di¤erences that do not change over time. The inclusion of �st serves to control

for the di¤erences in furnace technologies, which change according to the year. It may appear to

be restrictive to assume that the plant �xed component remains constant over time. However,

this assumption is not unreasonable given our data, and is consistent with the observation that,
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conditional on the furnace type s, the order of the plant-level production share remained constant

over the sampling period. 5, 6

The estimation result is found in Table 2. The upper part of the table presents estimates of the

regression coe¢ cients. Our inference is based on heteroskedasticity-robust standard errors. The

measure of adjusted R2 is quite high, indicating that the model �ts the data well. The results of

the Chi-square test presented in the table would reject the hypothesis of homogenous technology

between the two furnace types, and thus justify our speci�cation that allows for coe¢ cients to di¤er

according to furnace vintage.

The table shows that the input coe¢ cients are estimated to be positive and mostly statistically

signi�cantly di¤erent from zero. The coe¢ cients of vintage-speci�c capacity variables are all less

than one, and this may indicate the existence of decreasing returns to scale. This point, however,

could be misleading, because we assume constant returns to scale across multiple furnaces of the

same technology at the plant level. We previously investigated this issue (Nakamura and Ohashi,

2006) and determined that the �nding of returns to scale is robust to this concern. The number

of years of furnace use is found to be signi�cantly positive, indicating that the e¤ect of learning

dominates that of capital depreciation in furnace technology.

Figure 5 presents estimated average TFP values for the OHF and BOF technologies, �st , where s

represents either OHF or BOF, over the 1957�1968 study period. The TFP estimates in the �gure

con�rm that the BOF (indicated by the thin line) was more e¢ cient than the OHF (the dotted

line). The �gure also indicates that the TFP measures of the two technologies diverged over time:

the productivity of the BOF increasing by approximately 25 percent over the study period, while

the productivity of the OHF decreased by half. The productivity increase of the BOF could be

due to user-centered innovations (von Hippel, 2005), including the multi-hole lance and the OG

system mentioned earlier in this section. It could also be due to a feature of inter-�rm di¤usion

process: As experience in the use of the BOF accumulated in adopting �rms, some, if not all, of this

experience would spread among non-adopting �rms by word-of-mouth or knowledge spillover. In

either case, the late adopters would bene�t from knowledge transferred from other earlier adopting

�rms, and thus enjoy higher initial productivity when adopting the BOF. The productivity decline

5The stability of market share has often been observed in other industries in Japan; see Sutton (2005) for a detailed

examination of this matter.
6An alternative method to control for unobserved productivity is to create a proxy for usit by introducing an

input demand equation from outside the production function framework. A previous version of the present study,

Nakamura and Ohashi (2006), reported that the infrequency of investment fails to use the Olley and Pakes (1996)

method, and that the use of material input (pig iron and scrap in our case), as per the idea adopted from Levinsohn

and Petrin (2003), generates unreasonable productivity estimates. The Levinsohn�Petrin approach has also been

recently criticized by Ackerberg, Caves, and Frazer (2005). Based on these �ndings from Nakamura and Ohashi

(2006), the present study does not employ these methods to control for unobserved productivity.
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of the old furnace, on the other hand, may be primarily attributed to capital depreciation: smaller

plants spent less time and e¤ort maintaining and repairing the OHF prior to adopting the BOF.
7 Although the knowledge spillover also possibly a¤ected OHF operation, the �gure appears to

indicate that the depreciation e¤ect dominates.

While identifying the sources of furnace productivity requires further data collection, the mea-

sured productivity presented here implies a negative relationship between plant size and the rate of

intra-�rm di¤usion. Because the early generation of the BOF exhibits lower productivity than later

generations do, it takes more years for early BOF adopters to replace the old technology. One may

thus wonder why larger �rms adopted the new technology earlier; however, we leave this matter to

the literature on inter-plant di¤usion.8

Instead, we concentrate our analysis on intra-�rm di¤usion, and, in the next section, statistically

analyze the role of the measured productivity di¤erences.

4 Econometric Analysis of Intra-�rm Di¤usion

In this section, we statistically analyze the intra-�rm di¤usion of the new re�ning furnace technology

in the post-war Japanese steel market. For this purpose, we use plant-level panel data that identify

technology use by vintage. We use two empirical approaches to examine the features of the intra-

�rm di¤usion of the BOF. The �rst approach is based on a hazard-rate model. Figure 4 indicated

a negative correlation between plant size and the year in which the OHF ceased to be used. The

proportional hazard model, which accounts for the nature of discrete time in our data, examines

the robustness of this correlation.

Though useful for understanding the usage duration of the old technology, the hazard-rate

approach does not help us uncover information regarding the rate of intra-�rm di¤usion of the new

technology. We thus employ the second approach and explain the variation in the relative shares

of outputs produced by the old and new technologies.

7Data regarding furnace maintenance time and frequency are available for only one plant in Yawata, then the

largest steel maker in Japan. We observed the four OHFs owned by the plant, and noted that maintenance time

and the OHF sizes were clearly negatively correlated. Since smaller plants tend to own lower capacity OHFs, this

observation is in line with our �nding regarding changes in measured OHF productivity.
8Firm size is a commonly explored variable in the analysis of inter-�rm di¤usion. Many studies in the literature

reported a positive correlation between �rm size and adoption speed. However, as Geroski (2000: 612) pointed out,

di¤erent interpretations of what �rm size might mean are not always mutually consistent, and thus it is hard to

unambiguously interpret the empirical results.
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4.1 Duration Analysis of New Technology

This section examines the robustness of our observation regarding Figure 4, concerning the rela-

tionship between plant size and the number of years a plant took to replace the old with the new

technologies. Because our data only allow us to infer the timing of the plant�s technology adoption

and retirement decisions using yearly intervals, we use the discrete-time version of the proportional

hazard model. We will brie�y describe our estimation method, which follows that of Prentice and

Gloeckler (1978). Let Ti be the length of the spell for plant i. The hazard for plant i at time t is

de�ned by,

�i (t) � lim
�!0

Pr [t+ � > Ti � t]
�

:

The hazard here is parameterized using a proportional hazard form: �i (t) = �0 (t) exp
�
wi (t)

0 �
�
,

where �0 (t) is the baseline hazard at time t, w is a vector of covariates, and � is a vector of un-

known parameters. We assume that the plant, not the �rm, is the decision unit concerning when

to stop using the old furnace technology. 9 Our observations are grouped into yearly intervals,

A� = [a��1; a� ), � = 1; :::; r with a0 = 0 and ar =1. Note that the di¤erence between a��1 and a�
is one. The vector of covariates is allowed to be time dependent, but �xed within the year interval.

The probability of the spell lasting until the � -th year, provided that it lasts until the (� � 1)-th
year, is given by:

Pr [Ti � a� jTi � a��1] = exp

"
�
Z a�

a��1

�i (u) du

#
= exp

�
� exp

�
wi (�)

0 � +  (�)
��
;

where  (�) = ln
�R a�
a��1

�0 (u) du
�
. We assume that the baseline hazard, �0(t), is constant.10 We

obtain estimates of � and 0 by maximizing the following likelihood function using the number of

observations, N :

NY
i=1

"�
1� exp

�
� exp

�
wi (Ri)

0 � + 0
��	Ri�1Y

�=1

exp
�
� exp

�
wi (�)

0 � + 0
��#

; (2)

9Nakamura and Ohashi (2006) estimated the spillover e¤ects across plants within a �rm, and found that these

e¤ects are small in economic terms. Thus, we abstract the issues of multi-plant operation in the present analysis.
10Alternatively, one could allow a non-parametric baseline hazard by replacing �0 (t) with the t-�xed e¤ects.

One could also allow the inclusion of unobserved heterogeneity in survival analysis under a speci�c distributional

assumption of heterogeneity (for example, a gamma distribution). Due to the small number of observations (88), we

are unable to allow for either non-parametrics nor unobserved heterogeneity.
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where the �rst term in the squared bracket in (2) indicates the probability of the OHF being

replaced by the BOF by the Ri-th year, and the second term in the same bracket indicates the

probability of the OHF remaining in use by the Ri-th year.

Table 3 presents three results obtained from estimating the conditional likelihood function (2).

Speci�cation (3-B) adds to speci�cation (3-A) the variable of productivity di¤erence between the

old and new technologies, and speci�cation (3-C) allows for non-linearity in the coe¢ cient of the

plant-size variable. The Chi-squared measures indicate that the models, if any, �t the data only

at the margin, and in most cases we cannot reject the null hypothesis that all coe¢ cients in the

models are zero.

Speci�cations (3-A) and (3-B) yield precise parameter estimates of plant size. The estimated

coe¢ cient in (3-A) indicates that a one percent increase in the number of employees lowers the

hazard rate of OHF use termination by 5.2 percent. The absolute value of the size estimate

is reduced by approximately 20 percent when the productivity di¤erence variable is included in

the model. This results from the fact that plant size and productivity di¤erence are positively

correlated.

As de�ned in the previous section, the unanticipated demand shock variable is measured as

the deviation from the AR(1) prediction of the industry-level steel demand. Though statistically

insigni�cant for all speci�cations, the sign of the estimates indicates that the arrival of unanticipated

steel demand shock would prolong the use of the old technology.

The model includes OHF and BOF capacity sizes. The estimated signs of the variable imply the

e¤ect of economies of scale in the operation of furnace technology: It appears to have taken more

(or less) time for a plant to stop using the old technology when the plant owned OHFs (BOFs) of

larger size. An increase in the number of years for which a plant had used OHF (BOF) technology

decreases (or increases) the conditional probability of the termination of OHF use. This result is

consistent with the �nding concerning the production-function estimates reported in Section 3, in

that the e¤ect of experience captured by the variable dominates the e¤ect of capital depreciation.

The �rst two speci�cations (3-A) and (3-B) assume that the e¤ect of plant size on the survival

of the OHF is the same across di¤erent size classes. Speci�cation (3-C) relaxes the assumption and

allows for non-linearity across three classes of plant size: the plant with over ten thousand, the

plant with between �ve and ten thousand, and the plant with under �ve thousand workers. These

variables are de�ned as plant size (in terms of logarithmic number of workers) multiplied by a size

class dummy. The three estimates of the plant-size variables do not di¤er from one another, and

thus justify the treatment of the variable reported under (3-A) and (3-B).

The results of the duration analysis discussed here con�rm that plant size is negatively correlated

with the conditional probability of terminating OHF use. The analysis, however, only considers
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the duration of the OHF usage, and does not examine OHF and BOF technology usage patterns.

Section 4.2 presents such an analysis.

4.2 Analysis of Intra-plant Di¤usion

This section investigates the economic determinants of intra-plant di¤usion of the BOF. In the

previous section, the survival analysis indicated that plant size is a main factor in determining the

duration of OHF use; however, it did not reveal what determines the changes in intensity of BOF

use. In this section, we try to answer this remaining question.

We employ, as the indicator of the extent of intra-�rm di¤usion, we use the steel output (in

tons) of the BOF divided by that of the OHF, presented logarithmically. The rate of intra-�rm

di¤usion is analyzed using the following di¤usion equation:

ln

�
Y BOFit

Y OHFit

�
= �s (sW ln (W

s
it)) + u�

susit + GGit + �f + �
s
it; (3)

where �s denotes the di¤erence operator for technology type, namely �s�s � �BOF � �OHF , and
where � takes either W ln (Wit) or uit. Model (3) is constructed using the production function (1),

and the derivation is described in Appendix A. Note that the literature used the proportion of the

�rm�s capital stock that incorporates the new technology as the measure of intra-�rm di¤usion.

Since a plant rarely has full command of a new technology immediately upon its adoption, data

regarding capital in place would tend to overstate the rate of intra-�rm di¤usion in comparison

with our data regarding capital in use.

Three sets of explanatory variables are included in (3). The vector, W , contains vintage-speci�c

variables of capacity size and of the number of years of use, both of which are incorporated into

the production function, (1). The variables for plant size (as measured by labor) and unanticipated

demand shock (as de�ned in the previous section) along with the constant term are represented by

a vector, G. Note that the variable, G, is plant and year speci�c, but is not indexed by s. The

productivity di¤erence between technology vintages is represented by �susit.

While we can take care of market-level uncertainty by including the variable G, other types

of uncertainty, presumably speci�c to the �rm, may also have in�uenced the path of intra-�rm

di¤usion. Some �rms might have accelerated the development of the BOF based on their naive

expectations of market development, while other �rms might have held back the penetration, be-

cause they faced greater technological uncertainty in operating the new type of furnace. Since such

uncertainty is unobserved by us, we are concerned that it could create endogeneity problems, in

particular in estimating the coe¢ cient, u. Firms that are susceptible to market and technological

uncertainty would tend to delay BOF adoption, and thus start with larger values for productivity

di¤erences, �susit (as noted in Figure 5). Since such uncertainty would also reduce the di¤usion
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rate, the ordinary least squared estimation (OLS) method would exert a downward bias on the es-

timated coe¢ cient of �susit. In response to this endogeneity concern, we include �rm �xed e¤ects,

�f , to control for such �rm-speci�c unobserved uncertainty. Note that because the average �rm

owned more than two plants (see Table 1), multiple plants receive the same �rm �xed e¤ect (as

noted in footnote 1). The last term, �sit, is a mean zero error. The parameters to be estimated are

sW , u, and G.

In the intra-�rm di¤usion analysis, we employ data regarding �rms that operated both the OHF

and BOF. In empirical implementation, the selectivity problem is made apparent by considering

the expectations of (3), conditional on the selected plant i in year t:

E

�
ln

�
Y BOFit

Y OHFit

�
jdit
�
= �s (sW ln (W

s
it)) + u�

susit + GGit + E (�
s
itjdit) ;

where the selection indicator, dit, takes 1 if plant i satis�es both 0 < Y OHFit and 0 < Y BOFit in

year t. If the selection indicator is not randomly assigned, but rather correlated with unobserved

determinants of intra-�rm di¤usion rates, the last term of the above equation does not equal the

unconditional expectation E (�sit). We assume that the latent variable that determines the selected

plants in year t is normally distributed with the di¤usion errors and that the selection decision is

based on plant size and age, the capacity sizes of the respective OHFs and blast furnaces, and a

time trend. Plants with blast furnaces were more likely to adopt the BOF, and such a likelihood

would be captured by blast furnace size. A time trend is included to control for the aggregate trend

of the variables. The �rst-stage selection regression provides an estimate of the expected value of

the error, E (�sitjdit). We subsequently include the inverse Mills ratio in the di¤usion equation (3).
Under the assumption of normality, the intra-�rm di¤usion estimates, inclusive of the inverse Mills

ratio, are consistent even when technology choice is self-selected.

Table 4 presents four estimation results, based on methods without (column 4-A; hereafter �no-

FE�) and with the �rm �xed e¤ects (columns 4-B, 4-C, and 4-D; hereafter �FE�). Speci�cation

(4-C) incorporates the self-selection bias concern into the di¤usion process, while (4-D) accounts

for possible nonlinearity in the plant-size variable. The last speci�cation includes three size-class-

speci�c variables in the same way as (3-C) does: plant size of over ten thousand workers, between �ve

and ten thousand workers, and remaining plants. Our inferences are based on heteroskedasticity-

robust standard errors. The goodness of �t measure indicates that the model �ts the data well,

accounting for more than 70 percent of the variation in intra-plant di¤usion. The results of the

Chi-squared test would reject the hypothesis that all the coe¢ cients of the �rm dummy variables

are zero.

Many coe¢ cients in (4-A) are precisely estimated. The result indicates that a one-percent

increase in the number of plant workers decreases the relative output share of the BOF by less than
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half a percent. The elasticity of the di¤usion indicator with respect to the productivity di¤erence

between BOF and OHF is found to be 0.80. Since the larger plants were subject to smaller

productivity di¤erences, the sign of the estimate is consistent with the �ndings concerning the

plant-size estimate. The estimate of the coe¢ cient of unanticipated demand shock is statistically

insigni�cant, but the sign of the estimate is coherent with the observation presented in Figure 4.

The coe¢ cients of capacity size and number of years of technology use are also both precisely

estimated. The estimates of either variable reject the hypothesis that the OHF and BOF coe¢ cients

are the same. The estimated capacity-size coe¢ cients indicate the existence of economies of scale:

the greater the BOF (or OHF) capacity, the faster (or slower) the intra-�rm di¤usion. The number

of years of use indicates that the experience level, rather than capital obsolescence, is a main

determinant of intra-�rm di¤usion. The results discussed here concerning the last four variables

in (4-A) are qualitatively in accordance with those found in the production-function estimates

discussed in Section 3.11

We are concerned that other dimensions of �rm heterogeneity discussed earlier in this section

could presumably in�uence the di¤usion rates, and thus bias the no-FE estimates. Hence, we

include the �rm �xed e¤ects and estimate the model. The FE estimators reported in (4-B) indicate

that the plant-size estimate loses both statistical and economic signi�cance. Since the number

of plant workers does not vary greatly, the plant-size variable is reasonably approximated by the

�xed e¤ects. The magnitude of the estimate in the productivity-di¤erences coe¢ cient thus more

than doubles. The estimate moves in the direction that points to the successful elimination of the

endogeneity bias discussed earlier.

Speci�cation (4-C) corrects for selectivity in technology choice. In the intra-�rm di¤usion

analysis, we need to consider �rms that simultaneously operated both OHFs and BOFs. This

sampling method, although necessary in our analysis, could generate biased estimates if there

existed a persistent relationship between the di¤usion rate and the choice of �rms in the sample.

This concern would make both capacity and number of years of technology use correlate with the

error in the equation. We have applied the Heckit correction procedure in the sample selection, and

included the inverse Mills ratio. Including this variable and assuming normality in the distribution

of the latent variable, the estimates in (4-C) will be consistent even if the selected sample is

endogenous. The results under (4-C) do not indicate the problem in the sample selection. The

magnitude of di¤erences in the estimates between results (4-B) and (4-C) are not signi�cantly

di¤erent from zero. Thus, we conclude that the selection problem is not severe, probably because

11Though not reported in Table 4, we also included the number of furnaces owned by plants. Conceivably, plants

with more furnaces could take longer to fully replace the old technology. We found, however, that the estimated

number-of-furnace variable is not statistically signi�cant, and that including the number of furnaces does not quali-

tatively change the results reported in this paper.
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the termination of OHF use or adoption of BOF use are not related to the intra-�rm di¤usion

process.

The previous speci�cations assume that the e¤ect of the number of plant workers on the di¤usion

rate is the same for all plant sizes. Speci�cation (4-D) relaxes this assumption, and allows for the

plant-size coe¢ cient to di¤er by size category. The three size variables are all estimated to be

insigni�cant, and would not reject the linearity assumption regarding the plant size coe¢ cient that

we made in the prior speci�cations.

It has been a common contention that the decline of the U.S. steel industry in the late twentieth

century was due to its technical backwardness and slowness in adopting new technology (Adams

and Dirlan, 1966; Oster, 1982). Indeed, when Japan had already converted all of its capacity to

the BOF process, the United States had merely converted half of its capacity. 12 Although the

estimates presented in Table 4 were obtained from the BOF di¤usion process in Japanese �rms, it

is tempting to make inferences regarding the intra-�rm di¤usion of the BOF in the United States.

For data availability reasons, we focus on the plant owned by U.S. Steel that �rst adopted the

BOF: the Gary plant in Indiana. Gary remains the largest plant of the company. We simulate the

intra-�rm BOF di¤usion path of the Gary plant using the estimates of (4-B). 13 Table 5 presents

the simulated BOF share (in terms of steel output), in comparison with the shares from the largest

and smallest plants in Japan. The table indicates that when all steel was being produced by the

BOF in Japan, a quarter of the steel was being still made by the OHF in Gary. This slow intra-�rm

di¤usion rate in Gary was primarily attributable to the large capacity size of the OHF: the Gary

plant had an OHF capacity more than two and a half times larger than that of Yawata, the largest

plant in Japan, whereas the BOF capacity of Gary was approximately 70 percent smaller in size

than that of Yawata�s. Strong economies of scale in the operation of the old technology would

have presumably discouraged the progress of BOF di¤usion in the Gary plant. While extending

this analysis to the U.S. steel industry as a whole is beyond the scope of this paper, it would be a

fruitful future research project to examine intra-�rm BOF di¤usion patterns in the United States

in greater details, and compare these results with our simulated ones.

The estimates presented in Table 4 also serve as an interesting note to the literature on the

relationship between productivity and the business cycle. We calculate the industry productivity

by aggregating the estimates of furnace productivity, � i + �st , using the output share as a weight,

and then plotting the productivity in Figure 6 along with the output growth rate. It is evident in

the �gure that the calculated industry-level productivity is counter-cyclical to the output growth

12See Table 2 in Oster (1982).
13We took the BOF and OHF capacity data for the Gary plant from Fisher (1951), and imputed missing values by

using the average values of our data. Since OHFs in the U.S. are known to be much older than OHFs in Japan, our

simulated intra-�rm di¤usion rate would provide a lower bound of the actual rate.
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path, the correlation coe¢ cient between the variables being approximately �0.70. This �nding

is largely traceable to the industry practice of frequently accommodating unanticipated demand

shocks by using the old and ine¢ cient technology.

5 Conclusion

For the Japanese steel industry, the share of output produced using the new technology was limited

even several years after the di¤usion process had taken place. While inter-�rm di¤usion was the

main driver early on in the overall di¤usion of BOF di¤usion, intra-�rm di¤usion began to make the

main contribution a few years later. This paper concentrated on analyzing the intra-�rm di¤usion

pattern of the new technology, a topic that has been relatively neglected in the di¤usion literature.

By making use of available panel data regarding �rm capital use, data that capture the adoption

and use of the new BOF technology, this paper made two major contributions to the literature on

intra-�rm di¤usion that follow from its empirical analyses. First, the paper found evidence that

the OHF was used more intensively relative to the BOF when plants faced unanticipated demand

shocks. Thus, intra-�rm di¤usion slowed upon the arrival of industry demand shocks that were

unforeseen by the plants. This industry practice in furnace operation brought about counter-

cyclicality in the measured productivity. Our �nding accords with that of Basu, Fernald, and

Kimball (2004), who found that technology improvements reduce input use. While their �nding

regarding contractionary technology shocks cannot be explained by standard real business cycle

models, Basu, et.al. (2004) argued that the evidence is consistent with general equilibrium sticky-

price models. Though their �nding of little output change is not quite coherent with our �nding,

our paper has suggested an alternate channel by which to generate contractionary productivity.

Second, the paper identi�ed that di¤erences in productivity between the old and new furnace

technologies play an important role in intra-�rm di¤usion. Taking advantage of our panel dataset,

we estimated the TFP of furnace technology. We addressed endogeneity in input choice when

estimating the production function. The estimated productivity by technology vintage indicated

that the BOF productivity increased, while that of the OHF decreased over the study period. We

associated the measured di¤erences in productivity between the technologies with the negative

relationship between plant size and intra-�rm di¤usion rate.

In addition to the above contributions, this paper identi�ed some other important features of the

intra-�rm di¤usion of the BOF. The results of the regression of intra-�rm di¤usion (3) indicate the

importance of usage experience and of economies of scale in the operation of the furnace technology.

The estimation results are robust to the presence of sample selection and endogeneity because of

the existence of �rm-speci�c uncertainty.

It would be interesting to comment on the public policy implications of intra-�rm di¤usion.
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Analyses of di¤usion policy require knowledge of whether a �rm�s realized intra-�rm di¤usion

performance di¤ers from the optimal performance, and of whether policy interventions addressing

the di¤usion path actually improve social welfare (Stoneman, 2001). The paper�s analysis suggests

that di¤usion policies could be justi�ed on the grounds that �rms have insu¢ cient information

regarding the use of new technology. Our estimation results indicated that experience in furnace

operation was an important determinant of intra-�rm di¤usion of the BOF. Indeed, approximately

30 percent of the variation in BOF di¤usion could be explained by operational experience, according

to our analysis. If this experience exhibits externalities that cannot be fully appropriated by the

�rms themselves, there must be room for public policy in intra-�rm di¤usion. Measuring the

magnitude of the externalities that arise from the adoption and use of BOF would be the next step

to understanding the need for public policy addressing technology di¤usion.
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A Derivation of the Intra-�rm Di¤usion Equation

This technical appendix describes the micro-economic foundation of the intra-�rm di¤usion equation

(3) introduced in Section 4. The di¤usion equation was based on the production function discussed

in Section 3. We took the output ratio of the BOF to the OHF to obtain:

ln

�
Y BOFit

Y OHFit

�
=

X
k

�
�BOFXk

ln
�
XBOF
itk

�
� �OHFXk

ln
�
XOHF
itk

��
(A1)

+
�
�BOFK ln

�
KBOF
it

�
� �OHFK ln

�
KOHF
it

��
+
�
�BOFZ ln

�
ZBOFit

�
� �OHFZ ln

�
ZOHFit

��
+
�
uBOFit � uOHFit

�
Vector X contains the variables of labor and fuels. The available labor data are not indexed by

furnace vintage, because the same workers operated both types of furnaces. We thus classi�ed labor

under the variable Git. Fuels (namely electricity and oil) are variables that plants could adjust when

facing unanticipated demand shocks. Although varying by plant, fuels are indeed highly collinear

with the unanticipated demand-shock variable. By including the variable of unanticipated demand

shock in (3), we had to drop the fuels variable from the equation. We also multiplied the parameter

to be estimated, u, by the interest variable, u
BOF
it �uOHFit , so as to assess the impact of di¤erences

in productivity between the technologies. To account for the possible endogeneity concern, we added

the �rm �xed e¤ect, �f , to (A1). The �xed e¤ects control for unobserved di¤erences between �rms

that do not change over time. Finally, the error term, �sit, was added to (A1) to derive the intra-�rm

di¤usion equation (3).

B Data Description

Our dataset comprises annual plant-level furnace data describing 13 plants and 9 Japanese steel

�rms from 1957 to 1970: the output and input data (except for labor and physical capital, as

described below) come from Japan Steel Federation (1955�1970). The data cover approximately

95 percent of the total steel production throughout the study period. We focused on crude steel

as the output. For the inputs, we collected data regarding the amounts of oil and electricity used.

The output and input data identify two furnace types, OHF and BOF, for each plant. Over 90

percent of the plants covered in the data operated more than one furnace in a given year. The

input and output data are aggregated over these multiple furnaces of the same vintage within a

plant. The cumulative plant output by vintage is calculated for the period beginning 1947. The

obtained estimation results do not change when we calculate the variable for the period beginning

1931.
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Data concerning labor input are constructed from two datasets: the number of workers at the

plant level (from Japan Steel Federation, 1955�1970) and the actual work hours averaged over

workers at the �rm level. The data concerning the number of workers are not disaggregated by

furnace type, unlike the other input data obtained from the same source. This construction of the

labor data is due to the fact that plant workers often operated both types of furnace. The labor

input used for the estimation is expressed in terms of total man hours, which is constructed from

the number of plant-level workers multiplied by the actual work hours averaged over workers at the

�rm level.

The data pertaining to furnace capacity by plant were obtained from companies�semiannual

�nancial reports, which identify the capacities of all furnaces in the 13 plants covered in our data.

The data recorded the capacity at the end of year t, and investment was made only when a new

furnace was built. The capacity of furnace js using technology s, located in plant i in t changes

as follows: kjsit = (1� �) kjsit�1, where � is the depreciation rate. This paper�s result is based on
the assumption that � equals zero. Alternatively, we set � to 0.05, to allow for the possibility that

that furnace e¢ ciency may have declined over time. This assumption generates similar results. For

consistency with the input data described above, we aggregated kjsit over s to obtain the capital

variable of furnace s in plant i in year t.
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Output
M tons

1957 0.7 2 1 1 99.3 83 13 9 11.83 5.42
1958 9.9 4 2 2 90.1 83 13 9 12.77 7.93
1959 10.7 6 2 2 89.3 88 13 9 18.25 42.86
1960 15.3 11 4 4 84.7 90 13 9 23.16 26.93
1961 24.6 17 7 6 75.4 90 13 9 29.40 26.93
1962 40.3 22 8 7 59.7 81 13 9 27.25 -7.31
1963 52.3 26 10 7 47.7 77 13 9 34.08 25.06
1964 58.4 30 11 8 41.6 74 13 9 40.53 18.93
1965 72.1 36 13 9 27.9 64 12 9 41.30 1.89
1966 80.8 38 13 9 19.2 53 10 7 51.90 25.67
1967 84.3 42 13 9 15.7 43 9 7 63.78 22.89
1968 92.8 43 13 9 7.2 34 8 7 68.99 8.17
1969 93.8 41 13 9 6.2 27 6 6 87.03 26.15
1970 98.0 44 13 9 2.0 9 3 3 92.41 6.18
1971 100.0 44 13 9 0.0 0 0 0 88.44 -4.29

Annual
Growth %

OHFBOF Industry Total

TABLE 1

Plant Characteristics and Output Share by Furnace Technology

output
share (%)

No.
Furnaces

No. Plants No. Firms
output

share (%)
No.

Furnaces
No. Plants No. Firms



Est. Std Error

OHF dummy 2.268c 1.178

BOF dummy 6.759a 1.801

laborOHF 0.467a 0.128

laborBOF 0.268c 0.162

electricityOHF 0.265a 0.054

electricityBOF 0.050 0.051

oilOHF 0.014 0.019

capacity sizeOHF 0.366a 0.068

capacity sizeBOF 0.665a 0.098

OHF Use Years 0.267a 0.082

BOF Use Years 0.058c 0.032

Adjusted R squared
No. Observations

Notes: 
 Fixed effects estimates are omitted
from the table.
 The superscripts a, b, and c indicate
significance at the confidence level 
of 99, 95 and 90 % respectively.

0.9996
229

TABLE 2
Production Function Estimates



No Productivity With Productivity Nonlinearity in Size

Est. Std. Error Est. Std. Error Est. Std. Error

plant size -5.164
b 2.520 -4.852

c 2.529 -

plant size × (#employees≧10000) - - -5.944
c 3.321

plant size × (5000≦#employees<10000) - - -5.582
c 3.209

plant size × (#employees≦5000) - - -5.819
c 3.359

Productivity difference: log(TFP
BOF

) - log(TFP
OHF

) - 1.086 1.454 2.613 2.109

Unanticipated Demand Shock -6.846 5.585 -6.850 5.527 -10.252 9.398

OHF Capacity Size -1.515 1.123 -1.511 1.115 -2.384 1.670
BOF Capacity Size 5.316

b 2.434 4.852
b 2.558 5.970

c 3.276
Years of OHF Use -0.918 1.211 -1.137 1.245 -3.342 2.286
Years of BOF Use 0.585

b 0.277 0.584
b 0.268 0.843

b 0.410

Chi-squared for all coefs = 0
log likelihood

Number of Observation = 88
a Significance at the 99-percent confidence level.
b Significance at the 95-percent confidence level.
c Significance at the 90-percent confidence level.

TABLE 3
Duration Analysis for OHF

13.84
c 13.04 12.71

( 3-A ) ( 3-B ) ( 3-C )

-19.481 -19.282 -17.531



Dependent Variable: ln(Y
BOF

)-ln(Y
OHF

)
no-FE FE FE with Selection FE with Selection

Nonlinearity in Size

Variable Est. Std. Error Est. Std. Error Est. Std. Error Est. Std. Error

plant size -0.403
c 0.212 0.088 0.431 0.093 0.494 -

plant size × (#employees≧10000) - - - -0.604 0.719

plant size × (5000≦#employees<10000) - - - -0.678 0.745

plant size × (#employees≦5000) - - - -0.679 0.791

Productivity difference: log(TFP
BOF

) - log(TFP
OHF

) 0.795
b 0.376 1.994

a 0.744 2.005
b 0.943 2.173

a 0.772

Unanticipated Demand Shock -1.181 0.746 -1.293
c 0.681 -1.292

c 0.689 -1.295
c 0.680

OHF Capacity Size -1.061
a 0.173 -0.708

b 0.343 -0.705
c 0.393 -0.584

c 0.350

BOF Capacity Size 1.431
a 0.180 1.190

a 0.224 1.191
a 0.227 1.298

a 0.231

Years of OHF Use -0.382
c 0.200 -0.066 0.343 -0.058 0.526 -0.134 0.374

Years of BOF Use 0.124
a 0.030 0.190

a 0.041 0.191
b 0.078 0.183

a 0.041

Inverse Mills ratio 0.015 0.822 -0.792 0.897

Firm Fixed Effects included? N Y Y Y

Chi-squared (All firm fixed effects = 0) -

Adjusted R-squared

Number of Observation = 88
a Significance at the 99-percent confidence level.
b Significance at the 95-percent confidence level.
c Significance at the 90-percent confidence level.

( 4-B )

25.26
a

0.719

TABLE 4
Determinants of Rate of Intra-firm BOF Diffusion

( 4-C )

21.87
a

0.7650.769

( 4-A ) ( 4-D )

0.774

13.66
c



U.S.

BOF
share (%)

Gary
(Estimated

)

Largest
plant

(Actual)

Smallest
plant

(Actual)

Average
share

(Actual)

1963 0.1 60.7 59.4 52.3
1964 52.2 64.9 75.1 58.4
1965 63.3 70.5 86.4 72.1
1966 64.1 76.7 93.1 80.8
1967 64.8 82.9 93.9 84.3
1968 74.0 90.3 99.5 92.8
1969 77.5 92.5 100.0 93.8
1970 82.3 99.3 100.0 98.0

Note:
Throughout the study period, Yawata plant was the largest plant,
and Wakayama plant owned by Sumitomo was the smallest
in Japan

TABLE 5
Simulated Intra-firm Diffusion of the BOF

Gary Plant of U.S. Steel

Japan



FIGURE 1
BOF Share of Steel Production by Plant
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FIGURE 2
Inter- and Intra-plant Diffusion of the BOF
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FIGURE 3

Plant-level OHF share and Industry Growth
in the deviation form
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FIGURE 4
Relationship between Plant Size and the Rate of Intra-firm Diffusion

y = -0.205x + 410.15
      (0.007)  (151.68)

y = 0.229x - 442.45
     (0.113)   (222.85)

6

7

8

9

10

11

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972

plant size
(log of #employees) in 1968

BOF Adoption

OHF Exit



FIGURE 5
Average TFP by Technology Type (OHF and BOF)
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FIGURE 6
Relationship in growth rates between Productivity and Output,

from 1958 to 1968
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