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Abstract

This paper studies the properties of t-ratios associated with the limited

information maximum likelihood (LIML) estimators in a structural form es-

timation when the number of instrumental variables is large. Asymptotic

expansions are made of the distributions of a large K t-ratio statistic un-

der large-Kn asymptotics. A modified t-ratio statistic is proposed from the

asymptotic expansion. The power of the large K t-ratio test dominates the

AR test, the K-test by Kleibergen (2002), and the conditional LR test by

Moreira (2003); and the difference can be substantial when the instruments

are weak.
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1. Introduction

In recent microeconometric applications, some econometricians have used many

instrumental variables in estimating an important structural equation. One em-

pirical example of this kind, often cited in econometric literatures, is Angrist and

Krueger (1991), who used 178 instruments in one of their specifications. However, in

such cases, it has been found that approximate distributions of estimators and statis-

tics based on the conventional large sample asymptotic theory can be inaccurate.

See, for instance, Anderson, Sawa, and Kunitomo (1982); Bound, Jaeger, and Baker

(1995); and Anderson, Kunitomo, and Matsushita (2005). In order to overcome

this problem, several new test statistics have recently been proposed. Kleibergen

(2002) and Moreira (2001) proposed a score-type statistic, while Moreira (2003)

proposed a conditional likelihood ratio (CLR) test, both of which are shown to be

robust to the weak instruments. Several papers extend these tests to a more general

framework including heteroscedasticity. See, for instance, Kleibergen (2005) and

Andrews, Moreira and Stock (2006).

There has been another approach to provide better approximation using “large-

Kn asymptotics,” where the number of instruments (K) is allowed to increase with

the number of observations (n). Kunitomo (1980, 1982) and Morimune (1983) were

the earlier developers of the large-Kn asymptotics, and they derived asymptotic

expansions of the distributions of the k-class estimators including the two stage least

squares (TSLS) and the limited information maximum likelihood (LIML) estimators

in the case of two endogenous variables. Multivariate first order approximations to

the distributions were derived by Bekker (1994) and Anderson et al (2005). Bekker

(1994) found that the large-Kn asymptotics provides better approximations than

the one where K is fixed even when the number of instruments is not large. Hansen,

Hausman and Newey (2006) consider the same model and show that Bekker (1994)

standard error corrects the size problem.

This paper focuses on the second approach. The main purpose of this paper is to
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explore the finite sample properties of t-ratio statistics under the large-Kn asymp-

totic theory. Since the t-test is one of the most commonly used procedures to test

hypotheses on a coefficient in a structural equation, there have been several litera-

tures investigating the finite sample properties of the t-ratio. See Richardson and

Rohr (1971), Morimune (1989), Hansen et al (2006), for instance. Morimune (1989)

derived asymptotic expansions of the distributions of (standard) t-ratio statistics

associated with the k-class estimators under the standard large sample asymptotic

theory in the case of normal disturbances. This paper extends his work into the

case with many instruments. We derive an asymptotic expansion of the null distri-

bution of (large K) t-ratio statistic based on the LIML estimator under the large-Kn

asymptotics: both in the case of normal disturbances and non-normal disturbances.

An asymptotic expansion of the distribution of the LIML estimator is also derived,

which is new in the many endogenous variables case. We find that the absolute

values of the second terms of the asymptotic expansion of the (standardized) LIML

estimator and large K t-ratio are the same but have different signs, and that this

second order term may have a substantial impact on the size distortion of the t-ratio

test. Using the asymptotic expansion of the large K t-ratio, a modified t-ratio statis-

tic which does not include terms of order O(n−1/2) in the expansion is proposed.

In Section 2, the model and t-tests with many instruments are explained, and a

large K t-test is defined. In Section 3, large-Kn asymptotic expansions of the null

distributions of the t-ratio statistic are provided both in the cases of normal and

non-normal disturbances. Some Monte Carlo experiments are provided in Section 4,

and conclusions are provided in Section 5. All derivations of theorems are provided

in Appendices.

2. The Model and t-Tests with Many Instruments

Let a single structural equation be

y1 = Y 2β + Z1γ + u, (2.1)

where y1 and Y 2 are n× 1 and n×G1 matrices, respectively, of observations of the
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endogenous variables, Z1 is an n × K1 matrix of observations of the K1 exogenous

variables, β and γ are column vectors with G1 and K1 unknown parameters, and u

is a column vector of n disturbances. We assume that (2.1) is the first equation in a

simultaneous system of G1+1 linear stochastic equations relating G1+1 endogenous

variables and K(K = K1 + K2) exogenous variables. The reduced form of y =

(y1 Y 2) is defined as

Y = ZΠ + V = (Z1 Z2)

 Π1

Π2

 + (v1 V 2), (2.2)

where Z is an n × K matrix of instrumental variables, Π1 = (π11 Π12) and Π2 =

(π21 Π22) are K1× (1+G1) and K2× (1+G1) matrices, respectively, of the reduced

form coefficients, and (v1 V 2) is an n × (1 + G1) matrix of disturbances. The

rows of V are independently distributed, each row having mean 0 and (nonsingular)

covariance matrix

Ω =

 ω11 ω12

ω21 Ω22

 . (2.3)

In order to relate (2.1) and (2.2), we postmultiply (2.2) by (1, −β′)′, then u =

v1 − V 2β, γ = π11 − Π12β, and

π21 = Π22β. (2.4)

The matrix (π21 Π22) is of rank G1 and so is Π22. The components of u are

independently normally distributed with mean 0 and variance σ2, which is defined

to be ω11 − 2β′ω21 + β′Ω22β.

We define, for any full column matrix F ,

P F = F (F ′F )−1F ′, P̄ F = I − F (F ′F )−1F ′. (2.5)

The LIML estimator of (β′ γ ′)′ is (β̂
′
LI γ̂ ′

LI)
′ satisfying


y′

1

Y ′
2

Z ′
1

 P Z(y1 Y 2 Z1) − λ̂


y′

1

Y ′
2

Z ′
1

 P̄ Z(y1 Y 2 Z1)




1

−β̂LI

−γ̂LI

 = 0, (2.6)
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where λ̂ is the smallest root of∣∣∣∣∣∣∣∣∣∣∣


y′

1

Y ′
2

Z ′
1

 P Z(y1 Y 2 Z1) − λ


y′

1

Y ′
2

Z ′
1

 P̄ Z(y1 Y 2 Z1)

∣∣∣∣∣∣∣∣∣∣∣
= 0. (2.7)

The TSLS estimator of (β′ γ ′)′ is (β̂
′
TS γ̂ ′

TS)′ satisfying

 Y ′
2

Z ′
1

 P Z(y1 Y 2 Z1)


1

−β̂LI

−γ̂LI

 = 0. (2.8)

Under the conventional (fixed K) asymptotics, both LIML and TSLS estimators

are consistent and have the same asymptotic distributions. Let i be a (G1 +K1)×1

column vector of zeros, apart from its ith element which is unity. The standard

t-ratio for testing

H0 : i′

 β

γ

 = 0, (2.9)

is

tk =
1

sk

√
Q̂

−1

ii (k)
i′
√

n

 β̂k

γ̂k

 , k = LIML, TSLS, (2.10)

where β̂ and γ̂ can be the LIML and TSLS estimators, s2
k is an esimator of σ2 that

is given as

s2
k =

1

n − K1 − G1

(y1 − Y 2β̂k − Z1γ̂k)
′(y1 − Y 2β̂k − Z1γ̂k), (2.11)

and Q̂
−1

ii (k) is the ith diagonal element in the matrix, where

Q̂
−1

= n

 Y ′
2Z(Z ′Z)−1Z ′Y 2 − (k − 1)Y ′

2P̄ ZY 2 Y ′
2Z1

Z ′
1Y 2 Z ′

1Z1


−1

. (2.12)

Here, k = 1 for the TSLS estimator, and k = 1 + λ̂ for the LIML estimator, and

(s2Q̂
−1

ii ) is a consistent estimator of the asymptotic variance of
√

n(β̂
′
γ̂ ′)i under

the null hypothesis of the test.
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Figure 1: The null distributions of tLIML and tTSLS when the number of excluded

instruments is 30 (n − K = 100, K2 = 30, α = 0.5, δ2 = 30)

However, when the number of instruments is large classical normal asymptotic

approximations may provide poor approximations to the finite-sample distributions

of IV statistics. When the number of the instruments is large, the TSLS estima-

tor can be extremely biased. Anderson et al (2005) show that for K2 = 10 and

K2 = 30, the median of the TSLS (and GMM) estimators can be lower than -1.0

ASD(asymptotic standard deviation)’s. On the other hand, the LIML estimator has

larger variances than the asymptotic variance based on the standard large sample

theory. Figure 1 includes the empirical null distributions of the (standard) t-ratio

associated with the LIML and TSLS estimators when the number of the excluded

instruments is 30.

Bekker (1994) pointed out that the large-Kn asymptotic thoery may be suited

better to applications, where the number of the (excluded) instruments (K2) is al-

lowed to increase with the number of observations (n). In this paper we consider the

same situations, that is, the number of the (excluded) instruments (K2) is allowed

to increase proportionally with the number of observations (n):

n → ∞,
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K/n = c1 + O(n−1), (0 ≤ c1 < 1) (2.13)

K/q = c2 + O(n−1), (0 ≤ c2 < ∞)

where we defined q = n − K. Under the large-Kn asymptotics, the asymptotic

distributions of the LIML and TSLS estimators are rather different. The LIML

estimator is consistent and asymptotic normal while the TSLS estimators even lose

consistency. The LIML estimator attains the asymptotic lower bound when the

number of instruments is large. See Kunitomo(1982) and Anderson and Kunitomo

(2006). For this reason, in this paper, we focus on t-tests based on the LIML

estimator. We define D2 as follows:

D2 =

 Π12 IK1

Π22 0

 (2.14)

and assume that

1

n
D′

2Z
′ZD2

p→ Q, (2.15)

where Q is a nonsingular constant matrix. Under the sequence (2.13), Anderson

and Kunitomo (2006) have proved under certain conditions 1

√
n

 β̂LI − β

γ̂LI − γ

 d→ N(0 Ψ),

where

Ψ = σ2Q−1 + c1(1 + c2)Q
−1


 Ω22σ

2 0

0 0

 − q2q
′
2σ

4

 Q−1

+Q−1[(Ξ3 + Ξ′
3) + ηΓ4]Q

−1,

which is identical to the Bekker (1994) variance in the case of the normal distur-

bances. Here we have used the notations that

Ξ3 = plimn→∞D′
2

1

n

n∑
i=1

zi[(1 + c2)a
(n)
ii − c2]E[u2

i w
′
2i],

Γ4 = E(u2
i w2iw

′
2i) − σ2E[w2iw

′
2i],

η = (1 + c2)
2plimn→∞

1

n

n∑
i=1

a
(n)2
ii − c2

2,

q2 =
1

σ2
(ω′

21 − β′Ω22 0′)′, w2i = (v′
2i 0′)′ − uiq2,

1Anderson and Kunitomo (2006) provided the results only on β̂ using different notations.
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and a
(n)
ii = z′

i(Z
′Z)−1zi. Ψ can be estimated consistently by

Ψ̂ = σ̂2Q̂
−1

+
K

n
(1 + λ̂)Q̂

−1


 Ω̂22σ̂

2 0

0 0

 − q̂2q̂
′
2σ̂

4

 Q̂
−1

+Q̂
−1

[(Ξ̂3 + Ξ̂
′
3) + η̂Γ̂4]Q̂

−1
,

where

Ω̂ =
1

q
Y ′P̄ ZY , σ̂2 =

1

q
b̂
′
Y ′P̄ ZY b̂, q̂2 =

1

σ̂2

1

q
Y ′

2P̄ ZY b̂,

Ξ̂3 =
1

n

n∑
i=1

[D̂
′
2zi(1 + λ̂)a

(n)
ii − λ̂]

1

n

n∑
i=1

ûi
2ŵ2i, D̂2 =

 Π̂12 IK1

Π̂22 0

 ,

Γ̂4 =
1

n

n∑
i=1

û2
i ŵ2iŵ

′
2i − σ̂2 1

n

n∑
i=1

ŵ2iŵ
′
2i, η̂ = (1 + λ̂)2 1

n

n∑
i=1

a
(n)2
ii − λ̂2,

ûi = y1i − y′
2iβ̂ − z′

1iγ̂, and ŵ2i = ((y2i − (Π̂
′
12Π̂

′
22)zi)

′, 0)′ − ûiq̂2.

Here Π̂ is the OLS estimator of Π in (2.2), and we have used the notation that

b̂ = (1,−β′
LI)

′. The large K t-ratio for testing H0 is given by

tlargeK =
1√
Ψ̂ii

i′
√

n

 β̂LI

γ̂LI

 , (2.16)

where Ψ̂ii is the i-th diagonal element in the matrix Ψ̂. The estimate of the asymp-

totic variance depends on the estimates of the third and fourth order moments of

the distributions of the disturbances, which make it complicated. However, we will

see that these terms seem to have little effects even when the distributions of the

disturbances are deviated from the normal distribution in Section 4. See Anderson

and Kunitomo (2006) for further discussions.

3. Asymptotic Expansions of the Distributions of the Large

K t-Ratio Under H0

3.1 The Case of Normal Disturbances
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In order to explore the finite sample properties of the large K t-test, asymptotic

expansions of the null distributions of the large K t-ratio are derived under the

large-Kn asymptotics in this section.

We consider the case of normal disturbances first. When the rows of V are

normally distributed, a consistent estimator of the asymptotic variance of the LIML

estimator is given by

Ψ̂ = σ̂2Q̂−1 (3.1)

+
K

n
(1 + λ̂)Q̂−1

 1
q
Y′

2P̄ZY2σ̂
2 − 1

q2Y
′
2P̄ZYb̂b̂′Y′P̄ZY2 0

0 0

 Q̂−1.

A new assumption is necessary for the expansion.

Assumption 1 There exists a constant positive definite matrix

Q = plimn→∞Q̂ s.t. Q̂ = Q + Op(n
−1). (3.2)

The following theorem is obtained. The derivation is provided in Appendices A

and B.

Theorem 1 When the rows of V are normally distributed, the asymptotic expan-

sion of the distribution of the large K t-ratio (2.16) under the sequence (2.13) is

given by

P{tlargeK ≤ ξ} = Φ(ξ) − 1√
n

1√
Ψii

(i′Ψq2)ξ
2φ(ξ) + O(n−1), (3.3)

where ξ is a (G1 +K1) vector and Φ(ξ) and φ(ξ) are the cdf and the density function

of the standard normal distribution, respectively.

As in the case with the LIML estimator (see Appendix A), when c1 = 0, this

asymptotic expansion is identical to the result under the standard large sample

theory up to O(n−1/2). See Morimune (1989). When G1 = 1, we have a simple

expression of the expansion of the large K t-ratio for testing H0 : β = 0 as follows.
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Corollary 1 When G1 = 1, the asymptotic expansion of the distribution of the large

K t-ratio (2.16) for testing H0 : β = 0 under the sequence (2.13) is given by

P (tlargeK ≤ ξ) = Φ(ξ) +
α

µ

√
ηξ2φ(ξ) + o(µ−1). (3.4)

Here, we use the notations η = 1 + 1
τ2 (1 + ν2

τ2 ), ν2 = limn→∞
µ2

q
, τ 2 = limn→∞

µ2

L
,

µ2 = σ2

|Ω|Π
′
22A22.1Π22, A22.1 = Z ′

2Z2 −Z ′
2Z1(Z

′
1Z1)

−1Z ′
1Z2, α = (ω22β−ω21)/

√
|Ω|,

and L = K2 − 1.

From Corollary 1 and A.1 (in Appendix A), we find that the absolute values of

the second terms of the asymptotic expansion of the LIML estimator and large K

t-ratio are the same but have different signs. This implies that the distributions

of the LIML estimator and large K t-ratio are skewed in opposite directions. We

will later see that this second order term may have a substantial impact on the size

distortion of the t-test.

We find from the asymptotic expansion (3.3) that there exists a simple adjust-

ment of the t-ratio statistic which does not include terms of order O(n−1/2) in the

expansion. We propose an adjusted t-ratio as

tadj = tlargeK − 1√
n

1√
Ψ̂ii

(i′Ψ̂q̂2)t
2
largeK , (3.5)

where Ψ̂ is defined by (3.1), and q̂2 is an estimator of q2 where ω21, Ω22, and β are

consistently estimated by 1
q
Y ′

2P̄ Zy1,
1
q
Y ′

2P̄ ZY 2, and β̂LI , respectively.

3.2 The Case of Non-normal Disturbances

In order to investigate the effects of the normality assumption for disturbances,

the asymptotic expansion of the distribution of the large K t-ratio under H0 is de-

rived in the case of non-normal disturbances. One convenient class of underlying

disturbances is the elliptically contoured distribution, which contains many impor-

tant distributions including the multivariate normal distribution, the multivariate t

distribution and the uniform distribution on the sphere in Rp.
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When the rows of V are followed by the class of elliptically contoured distribution

EC(Ω) 2, the asymptotic variance of the LIML estimator Ψ† is given by

Ψ† = σ2Q−1 + {c1(1 + c2) + ηκ}Q−1


 Ω22σ

2 0

0 0

 − q2q
′
2σ

4

 Q−1, (3.6)

where κ = (E(u4
i )/σ

4 − 3)/3. (Anderson and Kunitomo (2006))

Hence, the large K t-ratio for testing H0 is given by

t†largeK =
1√
Ψ̂

†
ii

i′
√

n

 β̂LI

γ̂LI

 , (3.7)

where Ψ̂
†

is a consistent estimator of Ψ† using η̂ = (1 + λ̂)2 1
n

∑n
i=1 a

(n)2
ii − λ̂2 and

κ̂ = (
1
n

∑n

i=1
(y1i−y′

2iβ̂−z′1iγ̂)4

σ̂4 − 3)/3 for estimating η and κ in (3.6), respectively.

We obtain the next result. The derivation is provided in Appendix C.

Theorem 2 Let the rows of V be followed by the class of elliptically contoured

distribution EC(Ω). In addition to Assumption 1, we assume that 1
n

∑n
i=1 a

(n)
ii =

plim 1
n

∑n
i=1 a

(n)
ii + Op(n

−1). The asymptotic expansion of the null distribution of the

large K t-ratio (3.7) under the sequence (2.13) is given by

P{t†largeK ≤ ξ} = Φ(ξ) − 1√
n

1√
Ψ†

ii

(i′Ψ†q2)ξ
2φ(ξ) + O(n−1). (3.8)

From Theorem 2, when the disturbances are followed by the class of the ellip-

tically contoured distribution, the asymptotic expansion of the distribution of the

large K t-ratio under H0 has the same form as that in the case of normal disturbances

with Ψ replaced by Ψ†.

4. Monte Carlo Experiments

Empirical distributions by Monte Carlo studies are obtained in order to examine

the quality of the preceding asymptotic approximations to the finite sample distri-

butions of the LIML estimator and t-ratio statistics. We considered models with

2The precise definition of elliptically contoured (EC) distribution has been given by Section 2.7

of Anderson (2003).
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two endogenous variables, i.e., G1 = 1. In this case, the distributions of the LIML

estimator and the t-ratios for a coefficient on endogenous variables depend only on

the key parameters used by Anderson et al (1982), which are K2, the number of

excluded exogenous variables; n − K, the number of degrees of freedom in Ω̂;

δ2 =
Π′

22A22.1Π22

ω22

, (4.1)

the noncentrality parameter associated with (2.1); and

α =
ω22β − ω21

|Ω|1/2
= − ρ

(1 − ρ2)1/2
, (4.2)

where ρ is a correlation between u and v2. The numerator of the noncentrality

parameter δ2 represents the additional explanatory power due to y2i over z1i in

the structural equation, and its denominator is the error variance of y2i. Hence,

the noncentrality parameter δ2 determines how well the equation is defined in the

simultaneous equations system.

We use the DGP

y1 = y2β
(0) + Z1γ

(0) + u, (4.3)

and

y2 = ZΠ
(0)
2 + V 2, (4.4)

where K1 = 1, Z ∼ N(0, IK ⊗ In), (u,V ) ∼ N(0,Σ⊗ In), Σ =

 1 ρ

ρ 1

, and the

true values of parameters β(0) = γ(0) = 0. We have controlled the values of δ2 by

choosing a real value of c and setting (1 + K2) × 1 vector Π
(0)
2 = c(1, · · · , 1)′. The

number of repetitions in each experiment is 20,000. The accuracy of our simulation

method has been carefully examined by Kunitomo and Matsushita (2003a).

4.1 Distributions of t-Ratios on β Under H0
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The empirical small sample distributions are calculated for a standardized form

of the LIML estimator

êβ =

√
Π′

22A22.1Π22

σ
(β̂ − β),

and the three types of t-ratios– tLIML, the large K t-ratio (tlargeK), and the adjusted

large K t-ratio (tadj) –under H0. The null hypothesis H0 was imposed so that the

true coefficient is zero. In Tables 1-3, the 5, 10, 50, 90, and 95 percentiles, and the

observed sizes at the 10% and 5% asymptotic critical values are tabulated. In Figure

2, graphs of N(0, 1), and empirical null distribuitions of t, tlargeK , tadj are given in

the case of n − K = 100, K2 = 30, α = 1, and δ2 = 30.

From the tables, the distribution of tLIML is close to the standard normal distri-

bution when α and K2 are small. As α increases, a slight asymmetry is observed;

and as K2 increases, the tails become long, which causes a large difference between

actual and nominal sizes. For given α, K2, and n, the size distortion become small

as δ2 increases. For given α, δ2, and n, the size distortion increases with K2.

The distribution of the large K t-ratio (tlargeK) is closer to the standard normal

distribution than tLIML irrespective of whether K2 is small or large. This implies

that the large K asymptotics are more accurate than the standard large sample

asymptotics, which agrees with the results reported in Bekker (1994). However,

the distribution is still skewed when |α| is large. It is often the case in numerous

applications that the sign of the parameters is known from the economic theory and

that the one-sided test is used. In such cases, the size distortion of the large K t-test

can be rather large.

The distribution of the adjusted large K t-ratio (tadj) is the closest to the standard

normal distribution in all the cases. It is close to being symmetric even when |α|

and K2 are large and the difference between the nominal and real sizes is small in all

cases including the many weak instruments cases (δ2/K2 = 1; see Moreira (2003)).

We note that the small sample distributions of the t-ratio statistics are rather

different from that of the (standardized) LIML estimator. The distributions of tLIML

and tlargeK have long left tails for α > 0 (and long right tails for α < 0), while the
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Table 1: Distributions of t ratios under H0: n − K = 30, K2 = 3, δ2 = 30

α = 0.1 α = 1

normal êβ t tlargeK tadj êβ t tlargeK tadj

X05 -1.65 -1.64 -1.72 -1.61 -1.74 -1.37 -1.95 -1.92 -1.66

X10 -1.28 -1.26 -1.34 -1.26 -1.31 -1.10 -1.48 -1.45 -1.29

MEDN 0 0.01 0.01 0.01 0.01 -0.02 -0.01 -0.01 -0.01

X90 1.28 1.32 1.28 1.19 1.30 1.50 1.13 1.1 1.26

X95 1.65 1.75 1.60 1.50 1.69 2.09 1.39 1.37 1.63

P (t < z05) 5.0 4.9 5.8 4.7 5.9 1.9 8.0 7.6 5.2

P (t < z10) 10.0 9.7 11.1 9.6 10.4 6.3 13.2 12.7 10.2

P (t > z90) 10.0 10.7 9.9 8.2 10.3 12.9 6.8 6.3 9.6

P (t > z95) 5.0 6.0 4.4 3.4 5.4 8.5 2.3 2.0 4.8

distribution of the LIML estimator has a long right tail for α > 0 (and a long left tail

for α < 0). The abovementioned observations agree with the asymptotic expansions

of the cdfs of ê∗β and tlargeK in Appendix A and Section 3, respectively.

In summary, it may be stated that the distribution of tadj is closest to the stan-

dard normal distribution in all the cases. The distribution of tLIML is skewed and

extremely deviated from the normal distribution, particularly when α and K2 are

large. The distribution of tlargeK is closer to the normal distribution than tLIML;

however, it is still skewed and the size distortion can be large. However, the differ-

ence between tadj and the standard normal distribution is small in all cases except

when δ2 is too small. The actual size of tadj is close to the nominal size.

4.2 Power Comparison

We conduct power comparisons of the large K t-ratio statistic with the Anderson-

Rubin (AR) statistic (Anderson and Rubin (1949)), the K statistic (Kleibegen(2002)),

and the conditional likelihood ratio (CLR) statistic (Moreira(2003)). 3

3We do not report power results for the likelihood ratio (LR) test and the standard t-ratio test

because their size properties appear to be rather poor in the situation considered here.
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Table 2: Distributions of t ratios under H0: n − K = 100, K2 = 30, δ2 = 30

α = 0.1 α = 1

normal êβ t tlargeK tadj êβ t tlargeK tadj

X05 -1.65 -1.98 -2.27 -1.57 -1.86 -1.34 -2.60 -2.00 -1.67

X10 -1.28 -1.40 -1.85 -1.23 -1.39 -1.08 -1.95 -1.51 -1.29

MEDN 0 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01

X90 1.28 1.47 1.71 1.15 1.36 1.68 1.23 0.96 1.21

X95 1.65 2.14 2.04 1.43 1.77 2.46 1.42 1.13 1.50

P (t < z05) 5.0 7.4 13.1 4.1 6.8 2.1 13.5 8.4 5.3

P (t < z10) 10.0 11.7 19.5 9.2 11.7 6.0 19.1 13.3 10.1

P (t > z90) 10.0 12.3 18.3 7.4 11.4 14.8 8.4 2.3 8.5

P (t > z95) 5.0 8.3 11.1 2.7 6.4 10.3 1.6 0.2 3.2

Table 3: Distributions of t ratios under H0: n − K = 100, K2 = 50, δ2 = 50

α = 0.1 α = 1

normal êβ t tlargeK tadj êβ t tlargeK tadj

X05 -1.65 -1.87 -2.50 -1.65 -1.86 -1.39 -2.62 -1.97 -1.68

X10 -1.28 -1.35 -2.02 -1.29 -1.41 -1.13 1.98 -1.48 -1.28

MEDN 0 0.00 0.00 0.00 0.00 -0.01 -0.01 -0.01 -0.01

X90 1.28 1.43 1.85 1.19 1.35 1.60 1.38 1.03 1.25

X95 1.65 2.03 2.28 1.50 1.78 2.22 1.62 1.24 1.57

P (t < z05) 5.0 6.7 15.3 5.1 7.1 2.3 13.8 8.0 5.5

P (t < z10) 10.0 11.1 21.4 10.2 12.0 6.9 19.3 13.1 10.1

P (t > z90) 10.0 12.0 20.0 8.2 11.1 14.2 12.1 4.2 9.4

P (t > z95) 5.0 7.7 13.2 3.4 6.3 9.5 4.7 0.7 4.3
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Figure 2: The null distributions of t, tlargeK , and tadj: n − K = 100, K2 = 30, α =

1, δ2 = 30

• Anderson-Rubin (AR) Test

Anderson and Rubin (AR) statsitic is given by

AR =
(1,−β0

′)Y ′(P Z − P Z1)Y (1,−β0
′)′

(1,−β0
′)Y ′P̄ ZY (1,−β0

′)′/(n − K)
. (4.5)

Because, under the null hypothesis, we have

AR =
u′(P Z − P Z1)u

u′P̄ Zu/(n − K)
, (4.6)

the null distribution of the AR statistic does not depend on δ2. Thus the AR

test is one of the testing procedures which are robust to weak instruments. Un-

der either the standard large sample asymptotics or weak-instrument asymp-

toics, AR
d→ χ2(K2) under the null hypothesis.

• Score-type Test

Define the statistics

S = (P Z − P Z1)Y b0(b0
′Ωb0)

−1/2 (4.7)
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and

T = (P Z − P Z1)Y Ω−1

 β0
′

IG1


(β0, IG1)Ω

−1

 β0
′

IG1



−1/2

, (4.8)

and Ŝ and T̂ denote S and T evaluated with Ω̂ = Y ′P̄ ZY /(n−K) replacing

Ω, where b0 = (1,−β0
′)′. Kliebergen (2002) proposed the statistic

K = Ŝ
′
T̂ (T̂

′
T̂ )−1T̂

′
Ŝ. (4.9)

Kleibergen showed that under either the standard large sample asymptotics

or weak-instrument asymptoics, K
d→ χ2(G1) under the null hypothesis, i.e.

robust to the weak instruments.

• Conditional Likelihood Ratio (CLR) Test

The likelihood ratio (LR) statistic for testing H0 : β = β0, when Ω is known,

is given by

LR =
b′

0Y
′(P Z − P Z1)Y b0

b′
0Ωb0

− min
b

b′Y ′(P Z − P Z1)Y b

b′Ωb
. (4.10)

Moreira (2003) showed that the LR statistic is a function of S and T defined

in (4.7) and (4.8), and that, in the fixed-instruments and normal-distubances

model with known Ω, if its critical value is computed from the conditional

distribution given T this conditional likelihood ratio (CLR) test is similar

(i.e. fully robust to weak instrumens). Moreira (2003) suggested computing

the null distribution by Monte Carlo simulation or numerical integration. In

practice, Ω is unknown. However, Ω can be consistently estimated by Ω̂ =

Y ′P̄ ZY /(n−K) under the weak-instrument asymptotics, and the conditional

likelihood ratio (CLR) test based on the plug-in value of Ω can be shown to

be asymptotically robust to weak instruments under the general conditions

(stochastic instruments and nonormal disturbances. )

We generate 5,000 datasets from DGP (4.3) and (4.4) for various values of β and

report size-corrected power curves at the 5% significance level. We also use 5,000

realizations each of χ2(1) and χ2(K2 − 1) random variables to simulate the critical
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values of Moreira’s CLR statistic. Figures 3-6 display the power curves in the case

in which K2 = 3. Figures 7-10 display the power curves in the case of many (weak)

instruments–K2 = 30 and δ2 = 30.

Our results are similar to the results of Kleibergen (2002), Moreira(2003), and

Guggenberger and Smith (2005): (i) The power of the AR test decreases substan-

tially when the number of instruments increases, (ii) The CLR test is usually more

powerful than the AR and the K tests, and (iii) The most important finding of our

experiments is power curve of the large K t-ratio uniformly dominates the power

curves of the other tests. Occasionally, their differences are rather large.

4.3 Effects of Normality

Since the distributions of estimators and t-ratio statistics depend on the distri-

butions of the disturbances, we have investigated the effects of the non-normality

of disturbances. We calculated a large number of cases in which the distributions

of disturbances are skewed (χ2(3)) and have long tails (t(3)). We have chosen the

case of n − K = 100, K2 = 30, α = 1, and δ2 = 30 and reported the 5, 10, 50,

90, and 95 percentiles of the null distributions and the observed sizes at the 10%

and 5% asymptotic critical values of t, tlargeK , tadj, and t†largeK in Table 4. From

these experiments, the size properties of the three t-ratio statistics, t, tlargeK , tadj,

which are derived under the assumption of normal disturbances, are approximately

valid even if the distributions of disturbances are deviated from normal. The power

curves change slightly when the distributions of the disturbances have long tails.

Figures 11-12 contain the power curves when the distributions of disturbances are

t(3) distributions. However, the large K t-test continues to uniformly dominate the

others in these cases.

5. Conclusions

When the number of instruments is large, the null distribution of the standard

t-ratio (tLIML) is skewed and extremely deviated from the normal distribution. The
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Table 4: Distributions of t ratios under H0 (The Cases of Non-normal Disturbances):

n − K = 100, K2 = 30, δ2 = 30

n − K = 100, K2 = 30, δ2 = 30, α = 1

ui = (χ2(3) − 3)/
√

6 ui = t(3)

normal t tlargeK tadj t†largeK t tlargeK tadj t†largeK

X05 -1.65 -2.39 -1.85 -1.74 -1.84 -2.60 -2.02 -1.69 -2.01

X10 -1.28 -1.82 -1.41 -1.32 -1.40 -1.94 -1.50 -1.29 -1.49

MEDN 0 -0.02 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

X90 1.28 1.38 1.06 1.25 1.06 1.22 0.95 1.18 0.94

X95 1.65 1.68 1.31 1.62 1.31 1.43 1.13 1.47 1.13

P (t < z05) 5.0 12.1 7.0 5.9 7.0 13.7 8.4 5.5 8.2

P (t < z10) 10.0 18.0 11.9 10.6 11.8 19.1 13.4 10.2 13.3

P (t > z90) 10.0 12.1 5.5 9.5 5.4 8.4 2.6 8.1 2.6

P (t > z95) 5.0 5.4 1.4 4.8 1.4 2.2 0.3 3.2 0.3

null distribution of a large K t-ratio (tlargeK) is closer to the normal distribution,

but it continues to be skewed and the size distortion can be large, particularly for

the one-sided test.

In order to explore the finite sample properties of the large K t-ratio, we derived

an asymptotic expansion of the null distribution both in the cases of the normal and

non-normal disturbances. We proposed an adjusted large K t-ratio (tadj) from the

asymptotic exapansion. The actual size of tadj is shown to be close to the nominal

size.

We also have found that the power of the large K t-ratio test dominates the AR

test, the K-test, and the conditional LR test. It may be stated that the large K

t-test should be used when the number of instruments is large (except when the

instruments are too weak). When we know the sign of the parameter from the

economic theory, the use of the modified large K t-ratio statistic is recommended as

a more accurate test procedure.
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Figure 3: Power of tests: n − K = 30, K2 = 3, α = 0.1, δ2 = 30
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Figure 4: Power of tests: n − K = 30, K2 = 3, α = 1, δ2 = 30
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Figure 5: Power of tests: n − K = 30, K2 = 3, α = 0.1, δ2 = 10
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Figure 6: Power of tests: n − K = 30, K2 = 3, α = 1, δ2 = 10
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Figure 7: Power of tests: n − K = 100, K2 = 30, α = 0.1, δ2 = 30
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Figure 8: Power of tests: n − K = 100, K2 = 30, α = 1, δ2 = 30
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Figure 9: Power of tests: n − K = 100, K2 = 30, α = 0.1, δ2 = 10
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Figure 10: Power of tests: n − K = 100, K2 = 30, α = 0.1, δ2 = 10
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Figure 11: Power of tests: n − K = 100, K2 = 30, α = 0.1, δ2 = 30, ui = t(3)
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Figure 12: Power of tests: n − K = 100, K2 = 30, α = 1, δ2 = 30, ui = t(3)
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APPENDIX

A. Asymptotic expansion of the distribution of the LIML

estimator

In this section we give the asymptotic expansion of the distribution of the LIML

estimator

êLI =

 êβ

êγ

 =
√

n

 β̂LI − β

γ̂LI − γ

 (A.1)

under the large-Kn asymptotics.

Theorem A.1 When the rows of V are normally distributed, the asymptotic ex-

pansion of the joint distribuiton of êLI under the sequence (2.13) is given by

P{êLI ≤ ξ} = ΦΨ(ξ) +
1√
n

(q′
2ξ)ξφΨ(ξ) + O(n−1), (A.2)

where ξ is a (G1 + K1) vector and ΦΨ(ξ) and φΨ(ξ) are the cdf and the density

function of the multivariate normal distribution with mean 0 and covariance matrix

Ψ, respectively.

We note that when c1 = 0, this asymptotic expansion is identical to the result

under the standard large sample theory up to O(n−1/2). See Fujikoshi et al (1982).

When G1 = 1, integrating (A.2) with respect to the last K1 elements of ξ, the

asymptotic expansion of the marginal joint distribution of a standardized statistic

ê∗β =

√
Π′

22A22.1Π22

σ

1
√

η
(β̂LI − β) (A.3)

is derived. Here, we use the notations η = 1 + 1
τ2 (1 + ν2

τ2 ), ν2 = limn→∞
µ2

q
, τ 2 =

limn→∞
µ2

L
, µ2 = σ2

|Ω|Π
′
22A22.1Π22, A22.1 = Z ′

2Z2 − Z ′
2Z1(Z

′
1Z1)

−1Z ′
1Z2, and L =

K2 − 1.
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Corollary A.1 When G1 = 1, the asymptotic expansion of the distribution of ê∗β

under the sequence (2.13) is given by

P{ê∗β ≤ ξ} = Φ(ξ) − α

µ

√
ηξ2φ(ξ) + o(µ−1), (A.4)

where α = (ω22β − ω21)/
√
|Ω|.

This expansion of the distribution of ê∗
β is identical to the result of Morimune

(1983) up to O(n−1/2). The derivation of the asymptotic expansion is provided next.

Derivation of Theorem A.1:

In order to derive the asymptotic expansion of the distribution of the LIML es-

timator, we derive the stochastic expansion of the LIML estimator êLI first. The

LIML estimator is defined by (2.6), which is rewritten as follows: Y ′

Z ′
1

 (P Z − λ̂P̄ Z)(Y , Z1)êLI (A.5)

=
√

n

 Y ′

Z ′
1

 (P Z − λ̂P̄ Z)(Y , Z1)


1

−β

−γ

 .

Defining

D = (D1 D2) =


 π11

π21


 Π12 IK1

Π22 0


 , (A.6)

we can write Y ′

Z ′
1

 (P Z − λ̂P̄ Z)(Y , Z1) (A.7)

= {ZD + (V 0)}′(P Z − λ̂P̄ Z){ZD + (V 0)}

= D′Z ′ZD + D′Z ′(V 0) +

 V ′

0′

 ZD +

 V ′

0′

 (P Z − λ̂P̄ Z)(V 0).

We define E1 and E2 such that

1

K

 V ′

0′

 P Z(V 0) =

 Ω 0

0 0

 +
1√
K

E1, (A.8)
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and

1

q

 V ′

0′

 P̄ Z(V 0) =

 Ω 0

0 0

 +
1
√

q
E2. (A.9)

We use the following notations:

W 2 = (V 2 0) − uq′
2, (A.10)

and q2 = 1
σ2 (ω

′
21 − β′Ω22 0′)′. By substituting (A.7), (A.8), and (A.9) into (A.5)

and putting

êLI = e(0) +
1√
n

e(1) + op(n
−1/2), (A.11)

λ̂ = λ(0) +
1√
n

λ(1) + op(n
−1/2), (A.12)

we can determine each e(i) and λ(i) successively, which is given as follows:

λ(0) = c2, (A.13)

λ(1) =
c2

σ2
{ 1
√

c1

(
1√
K

u′P Zu) −
√

c2

c1

1
√

q
u′P̄ Zu}, (A.14)

e(0) = Q−1[
1√
n

D′
2Z

′u +

√
c1√
K

W ′
2P Zu −

√
c1c2√
q

W ′
2P̄ Zu], (A.15)

e(1) = −Q−1[{ 1√
n

D′
2Z

′(V 2 0) +

√
c1√
K

W ′
2P Z(V 2 0) (A.16)

−
√

c1c2
1
√

q
W ′

2P̄ Z(V 2 0)}e(0) +
1√
n

W ′
2ZD2e

(0)

−c1

c2

λ(1)


 Ω22 0

0 0

 − q2q
′
2σ

2

 e(0) +

√
c1

c2

λ(1) 1
√

q
W ′

2P̄ Zu].

Each λ(i) is obtained by premultiplying (1,−β′,−γ ′) to (A.5). Each e(i) is obtained

by using the last G1 + K1 rows of (A.5).

It should be noted that W 2 and u are uncorrelated when {vi} are independently

distributed. In light of this fact, we note that the Cornish-Fisher expansion of

1√
K

W ′
2P Zu and 1√

q
W ′

2P̄ Zu can be written as

1√
K

W ′
2P Zu = X0 + Op(n

−1) (A.17)

1
√

q
W ′

2P̄ Zu = Y 0 + Op(n
−1), (A.18)
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where X0 and Y 0 are distributed independently as both N(0 σ2C2), where C2 =

E[w2iw
′
2i]. Hence, we can rewrite êLI as

êLI = ẽ(0) +
1√
n

e(1) + op(n
−1/2), (A.19)

where

ẽ(0) ≡ x = Q−1[
1√
n

D′
2Z

′u +
√

c1X0 +
√

c1c2Y 0]. (A.20)

We derive an asymptotic expansion of the distribution of êLI by inverting the

characteristic function of êLI up to order n−1/2:

C(t) = E[exp(it′x)] +
1√
n

E[it′E(e(1)|x)exp(it′x)] + O(n−1), (A.21)

where t = (ti) is a (G1+K1)×1 vector of real variables and i2 = −1. The conditional

expectation of e(1), given the first order term x, is calculated as

E(e(1)|x) = −x(x′q2) + Op(n
−1/2). (A.22)

The probability P (ê ≤ ξ) is approximated to the order n−1/2 by the Fourier

inverse transformation of the characteristic function (A.21). The inverse transfor-

mation of the first term is ΦΨ(ξ). We also use the next Fourier Inversion formula

that was developed by Fujikoshi et al (1982): for any polynomials h(·) and g(·),

F−1[h(−it)E(g(x)exp(it′x))]x=ξ = h

(
∂

∂ξ

)
g(ξ)φΨ(ξ), (A.23)

where ∂/∂ξ′ = (∂/∂ξ1, · · · , ∂/∂ξG1+K1).

Then, we have

P (êLI ≤ ξ) = ΦΨ(ξ) +
1√
n

(q′
2ξ)ξφΨ(ξ) + O(n−1), (A.24)

where ξ is a (G1 +K1)×1 vector and, ΦΨ(ξ) and φΨ(ξ) are the multivariate normal

cdf and density function with mean 0 and covariance matrix Ψ, respectively.

B. Asymptotic expansion of the null distribution of the large

K t-ratio statistic
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In order to derive theasymptotic expansion of the null distribution of the large

K t-ratio statistic, we need to expand stochastically each term of Ψ̂ as follows:

Q̂ = Q +
1√
n

[
1√
n

D′
2Z

′(V 2 0) +
1√
n

 V ′
2

0′

 ZD2 (B.1)

+
√

c1J
′
2E1J2 +

√
c1c2J

′
2E2J2 − λ(1)

 Ω22 0

0 0

] + Op(n
−1).

Here, we have used the (1 + G1 + K1)× (G1 + K1) choice matrix J2 = (0 IG1+K1)
′.

Hence,

Q̂
−1

= Q−1 − 1√
n

Q−1BQ−1 + Op(n
−1), (B.2)

where

B =
1√
n

D′
2Z

′(V 2 0) +
1√
n

 V ′
2

0′

 ZD2

+
√

c1J
′
2E1J2 −

√
c1c2J

′
2E2J2 − λ(1)

 Ω22 0

0 0

 .

1

q
b̂
′
Y ′P̄ ZY b̂ (B.3)

= {b0 −
1√
n

J2e
(0)
β − 1

n
J2e

(1)
β + · · ·}′

×{Ω +
1√
n

[

√
c2

c1

√
q(

1

q
V ′P̄ ZV − Ω)]}{b0 −

1√
n

J2e
(0)
β − 1

n
J2e

(1)
β + · · ·}

= σ2 +
1√
n

[−2e
(0)′

β J ′
2Ωb0 +

√
c2

c1

√
qb′

0(
1

q
V ′P̄ ZV − Ω)b0] + Op(n

−1),

where we have used the notation b0 = (1,−β′)′. Similarly,

1

q2
Y ′P̄ ZY b̂b̂

′
Y ′P̄ ZY (B.4)

= Ωb0b
′
0Ω

+
1√
n

[−Ωb0e
(0)′

β J ′
2Ω +

√
c2

c1

Ωb0b
′
0

√
q(

1

q
V ′P̄ ZV − Ω)

−ΩJ2e
(0)
β b′

0Ω +

√
c2

c1

√
q(

1

q
V ′P̄ ZV − Ω)b0b

′
0Ω] + O(n−1)
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Then, we have

Ψ̂ = Ψ +
1√
n
Ψ(1) + Op(n

−1), (B.5)

where

Ψ(1) = Q−1[−2e(0)′q2σ
2 +

√
c2

c1

√
q(

1

q
u′P̄Zu − σ2)]

−Q−1BQ−1σ2

+c1(1 + c2)Q
−1AQ−1

−c1(1 + c2)Q
−1BQ−1


 σ2Ω22 0

0 0

 − q2q
′
2σ

4

 Q−1

−c1(1 + c2)Q
−1


 σ2Ω22 0

0 0

 − q2q
′
2σ

4

 Q−1BQ−1,

A = −2

 Ω22 0

0 0

 e
′(0)
β q2σ

2 +

√
c2

c1

√
q

 Ω22 0

0 0

 (
1

q
u′P̄Zu − σ2)

+

√
c2

c1

J ′
2E2σ

2 + q2σ
2e

′(0)
β

 Ω22 0

0 0


−

√
c2

c1

q2

√
q(

1

q
u′P̄ Z(V 2,0) − q′

2σ
2)σ2

+

 Ω22 0

0 0

 e
(0)
β q′

2σ
2 −

√
c2

c1

√
q(

1

q

 V ′
2

0′

 P̄ Zu − q2σ
2)q′

2σ
2.

Then, the inequality {t ≤ ξ} is approximated as

xi +
1√
n

t(1) ≤ ξ + Op(n
−1), (B.6)

where

xi =
i′ẽ(0)

√
Ψii

(B.7)

t(1) =
i′e(1)

√
Ψii

− 1

2

Ψ(1)
ii

Ψii

xi. (B.8)

The first order term xi is distributed as the standard normal random variable, and

the expectation of t(1) conditional upon xi is calculated as
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E(t(1)|xi) =
1√
Ψii

(i′Ψq2)x
2
i + Op(n

−1/2). (B.9)

The asymptotic expansion of the distribution is derived by using the same formula

as (A.23).

P (t∗ ≤ ξ) = Φ(ξ) − 1√
n

1√
Ψii

(i′Ψq2)ξ
2φ(ξ) + O(n−1), (B.10)

where Φ(ξ) and φ(ξ) are the standard normal cdf and density function, respectively.

The validity of the expansion is given by the same method as that in Appendix C

in Fujikoshi et al (1982). The random variables that appear in our analyses are x1 =

1√
n
D′

2Z
′u, x2 = 1√

n
D′

2Z
′W 2, w1 = 1√

K
(u′P Zu−σ2), w2 = 1√

q
(u′P̄ Zu−σ2), w3 =

1√
K

W ′
2P Zu, w4 = 1√

q
W ′

2P̄ Zu, w5 = 1√
K

W ′
2P ZW 2, and w6 = 1√

q
W ′

2P̄ ZW 2.

We use the space Jn where each element of xi, wherei = 1, 2, is in the interval

(−2c
√

log n, 2c
√

log n) and c is a standard deviation of each random variable; each

element of wi, where i = 1, · · · , 6, is in the interval (−2log n, 2log n). Then, P (Jn) =

1 − o(n2), which is proved by Anderson (1974). We see that each element of e(j)

and t(j) is a homogeneous polynomial of degree j + 1 in the elements of xi and wi.

The remainder terms of (A.15) and (B.6) are of the order O(n−1) uniformly in Jn.

Therefore, the analysis subsequent to (C.3) in Fujikoshi et al (1982) is applicable.

C. Derivation of Theorem 3

Anderson and Kunitomo (2006) showed that the limiting distribution of e(0)

under the sequence (2.13) is N(0,Ψ†) when the disturbances are followed by the

elliptically contoured distribution. Moreover, we notice that E[w2iw
′
2iw2iui] = 0

and E[w2iw
′
2iw2iui

3] = 0 in this case. Using these facts, we can calculate, in the

same manner as that in the case of normal disturbances, that

xi =
i′ẽ(0)√

Ψ†
ii

(C.1)

t(1) =
i′e(1)√

Ψ†
ii

− 1

2

Ψ†(1)
ii

Ψ†
ii

xi, (C.2)
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where

Ψ†(1) = Q−1[−2e(0)′q2σ
2 +

√
c2

c1

√
q(

1

q
u′P̄Zu − σ2)]

−Q−1BQ−1σ2

+{c1(1 + c2) + κη}Q−1AQ−1

−{c1(1 + c2) + κη}Q−1BQ−1


 σ2Ω22 0

0 0

 − q2q
′
2σ

4

 Q−1

−{c1(1 + c2) + κη}Q−1


 σ2Ω22 0

0 0

 − q2q
′
2σ

4

 Q−1BQ−1

+κ∗ηQ−1


 σ2Ω22 0

0 0

 − q2q
′
2σ

4

 Q−1,

κ∗ =
1

3σ2
√

n
[− 4

n

n∑
i=1

u3
i w

′
2ie

(0) − 4

n

n∑
i=1

u3
i z

′
iD2e

(0)

+
√

n(
1

n

n∑
i=1

u4
i − E(u4

i )) −
2E(u4

i )

σ2

√
c2

c1

√
q(

1

q
u′P̄ Zu − σ2)],

and the first order term xi is distributed as the standard normal random variable.

Using Lemma 4.3 given in Kunitomo and Matsushita (2005) and the fact that any

odd moments of the elliptically contoured distribution is 0, the expectation of t(1)

conditional upon xi is calculated as

E(t(1)|xi) =
1√
Ψ†

ii

(i′Ψ†q2)x
2
i + Op(n

−1/2). (C.3)

Hence, we can derive an asymptotic expansion of the density function of the

large K t-ratio by inverting the characteristic function of t∗ up to O(n−1/2), which

can be written as

C(t) = E[exp(itxi)] +
1√
n

E[itE(t(1)|xi)exp(itxi)] + O(n−1). (C.4)

Since xi is asymptotically normal, we can invert this characteristic function following

the same discussion as that in Section 4 in Kunitomo and Matsushita (2005). Then,

we obtain the result.
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