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Abstract 
 
This chapter reviews recent advances in nonparametric and semiparametric estimation, 
with an emphasis on applicability to empirical research and on resolving issues that arise 
in implementation.   It considers techniques for estimating densities, conditional mean 
functions, derivatives of functions and conditional quantiles in a flexible way that 
imposes minimal functional form assumptions.    
 
The chapter begins by illustrating how flexible modeling methods have been applied in 
empirical research, drawing on recent examples of applications from labor economics, 
consumer demand estimation and treatment effects models.  Then, key concepts in 
semiparametric and nonparametric modeling are introduced that do not have counterparts 
in parametric modeling, such as the so-called curse of dimensionality, the notion of 
models with an infinite number of parameters, the criteria used to define optimal 
convergence rates, and “dimension-free” estimators.   After defining these new concepts, 
a large literature on nonparametric estimation is reviewed and a unifying framework 
presented for thinking about how different approaches relate to one another.   Local 
polynomial estimators are discussed in detail and their distribution theory is developed. 
The chapter then shows how nonparametric estimators form the building blocks for many 
semiparametric estimators, such as estimators for average derivatives, index models, 
partially linear models, and additively separable models.   Semiparametric methods offer 
a middle ground between fully nonparametric and parametric approaches. Their main 
advantage is that they typically achieve faster rates of convergence than fully 
nonparametric approaches. In many cases, they converge at the parametric rate.    
 
The second part of the chapter considers in detail two issues that are central with regard 
to implementing flexible modeling methods: how to select the values of smoothing 
parameters in an optimal way and how to implement “trimming” procedures.   It also 
reviews newly developed techniques for deriving the distribution theory of 
semiparametric estimators.  The chapter concludes with an overview of approximation 
methods that speed up the computation of nonparametric estimates and make flexible 
estimation feasible even in very large size samples.     
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1 Introduction

In the last two decades significant progress has been made in the study of nonparametric and
semiparametric models. This chapter describes recent advances with special emphasis on their
applicability to empirical research and on issues that arise in implementation. As the coverage of
the chapter is broad, and our ability limited, our discussion provides only an overview. It covers
mostly cross sectional analysis emphasizing methods which have rigorous theoretical justifications,
albeit in most cases only in first order asymptotic forms from frequentists’ view point.1 Nevertheless,
we hope the chapter captures the basic motivations and ideas behind the developments and serves
as a guide to using the methods appropriately. We begin by briefly summarizing the nature of
recent progress, implications for empirical research, and some implementation issues.

1.1 The nature of recent progress

A major motivation for work on flexible models is the desire to avoid masking important features of
the data by use of parametric models.2 Recent progress has provided many new ways of modeling
and estimating different aspects of a conditional probability distribution. For example, there are
now a number of alternatives to linear regression model for modeling and estimating the conditional
mean function as well as methods available for examining other features of distributions, such as
conditional quantiles. Another area of advance has been in the study of models with limited
dependent variables. In the early eighties, the standard approach with such models was to specify
the error distribution parametrically and employ parametric maximum likelihood (ML) estimation.
Recent research has shown that parametric specification of the error term is often unnecessary
for consistent estimation of slope parameters. Models with simultaneity problems can also now
be analyzed under weaker functional form assumptions. In these contexts and in others, model
specification is beginning to be made more flexible. These developments enable empirical work to
be carried out under fewer restrictions than was deemed possible twenty years ago.

Another important motivation for research on flexible models is the pursuit of a classical theme
in econometrics: the study of the trade-off between efficiency and allowing for less restrictive models.
We often wish to identify a parameter within the broadest class of models possible, but broadening
a class sometimes comes at the expense of less efficient estimation. Recent research has clarified the
trade-offs in terms of convergence rates and attainable efficiency bounds between specifying more
or less restrictive models.

1.2 Benefits of flexible modeling approaches for empirical research

From an empirical perspective, the primary benefit of recent work in flexible modeling is a provi-
sion of new estimation methods with a better understanding of the efficiency loss associated with
different modeling approaches. Another benefit is that the departure from the traditional linear

1For developments in studying panel data, see Arellano and Honoré (2001).
2See McFadden (1985). For brevity, we refer to nonparametric and semiparametric models as flexible models.
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modeling framework decreases the tendency to focus on the conditional mean function as the sole
object of interest. Using flexible models provides a natural way of considering other aspects of the
probability distribution that may be of interest, such as conditional quantiles.3 Research on limited
dependent variable models has shown that quantile restrictions provide sharper restrictions than
conditional mean restrictions for identifying model parameters.4

When we construct an econometric model of a dependent variable, either explicitly or implicitly,
we model the form of a conditional distribution function. Sometimes the conditional distribution
function is the parameter of interest, but more often we are interested in particular aspects of it, such
as the conditional mean function, conditional quantile function, or derivatives of these functions,
as we will see in the next section. When data on the dependent variable given some conditioning
variables are directly observed for a random sample of the population, then the nonparametric
methods discussed later in this chapter can be directly applied. However, often the application is not
straightforward, because the conditional distribution that is observed differs from the conditional
distribution in a random population. This can arise in variety of modeling situations, such as with
limited dependent variable models, with models with measurement error, and with simultaneity.
For example, a demand function can be represented as a conditional distribution of demand given
price, but the distribution of the observed quantity-price data may differ from the conceptual
conditional distribution we wish to study, because the supply side can affect the observed quantity
and price as well.

When the conditional distribution of interest differs from the conditional distribution that can
be measured directly from the data, there are two different approaches taken in the literature.
One is to search for a source of variation in the data that can be used to identify the conceptual
distribution of interest. This may require using data generated from a randomized experiment or
from a so-called “natural experiment”.5 When variation of this sort is available in the data, the
methods described in this chapter can often be directly applied. An alternative approach is to
explicitly model the relationship between the observed distribution and the conceptual distribution
of interest and then try to identify some aspects of the distribution of interest from the observed
distribution. Much work has been done towards extending nonparametric methods to account for
limited dependent variables, sample selectivity, and simultaneity. Section 2.2.3 provides some
examples of applications of semiparametric selection models.

An additional benefit of using flexible models is that they allow for a more direct connection
between the parameters of interest and the identification restrictions being exploited in estima-
tion. For example, consider the linear regression model with the conditional mean restriction
E (y|x) = x′β0. Here β0 represents a vector that defines the conditional mean function and also
a vector that defines the derivative of the conditional mean function. Generally, in a restricted
framework conceptually different parameters may coincide and there can be a discrepancy between
the parameter of interest and the source of variation in the data used to estimate the parameter.

3See e.g. Buchinsky (1995), Chamberlain (1995), Buchinsky and Hahn (1998).
4Powell (1984), Manski (1985), Chamberlain (1986a), and Cosslett (1987).
5See Rosenzweig and Wolpin (2000) for a discussion of the use of natural experiments in economics.
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Using flexible models makes more transparent the source of variation in the data that should be
used to estimate the parameter of interest. For example, it is natural to estimate β0 by ordinary
least squares when it represents a vector defining the conditional mean function and to estimate
it by an average derivative estimator, when it represents a vector defining the derivative of the
conditional mean function. Average derivative estimators are discussed below in section 5. Actual
implementation may require using a more restricted model for the curse of dimensionality problem
we will discuss, however.

Finally, flexible models provide a systematic way of addressing concerns about model specifica-
tion. First, they require fewer modeling assumptions, which directly eliminates the need for some
specification testing. Second, they provide a formal framework for conducting the specification
search. In parametric models, searches often proceed piece-meal, leaving the selection of which
models to examine and the order in which to examine them up to the researcher. The route by
which a particular model is chosen is often not made explicit, which makes it difficult to obtain
general results about the properties of the estimators. Another difficulty is that there is no formal
language for effectively communicating the domain of search, and the description of the domain is
usually left up to the researcher’s conscious effort. With nonparametric estimators, the class of
models for which the estimation is valid is a priori specified, so that the domain is clear and the
process by which a particular model is chosen is more transparent.

Careful researchers have always been aware of potential drawbacks of parametric models and
have guarded against misspecification by examining the sensitivity of empirical results to alternative
specifications and using imaginative ways of checking model restrictions.6 The recent progress in
flexible modeling makes it easier for researchers to address concerns about model specification and
also to assess the variability of estimation procedures. The progress represents an important step
towards replacing what has been characterized as the difficult art of model specification with a
simpler, more systematic approach.

1.3 Implementation issues

So far we have emphasized the benefits of using flexible models. To fully realize these benefits,
however, there are still some questions that need to be resolved regarding how to choose a model
and an estimation method that is well suited to a particular application and how to implement the
chosen estimation method.

A key consideration in using a flexible model is that greater flexibility often comes at a cost
of a slower convergence rate. Thus, understanding the trade-off between flexibility and efficiency
is important to choosing an appropriate estimation strategy. A barrier to implementing the new
estimators is how to choose from a bewildering array of available estimators. A first impression
from studying nonparametric literature is the richness in the variety of methods. In this chapter,

6Various formal specification tests and model selection rules have been developed. See for example Davidson and

MacKinnon (1981), Hansen (1982), Hausman (1978), Newey (1985, 1987), Tauchen (1985), White (1980), and Wu

(1974).
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we attempt to pick up some common threads among different methods, to highlight differences and
commonalities, and to discuss how each method has been theoretically justified.

Another consideration is that there is a degree of arbitrariness in many of the available estima-
tion procedures that takes the form of unspecified parameters. The arbitrariness is not problematic
for certain theoretical questions of interest, such as the question of whether a particular level of
convergence rate is achievable. But the arbitrariness poses a problem when we implement the
method, because different ways of specifying these parameters can greatly affect the estimates. For
example, parameter estimates or asymptotic variance estimates can be highly sensitive to the choice
of smoothing parameters or to different ways of trimming the data.7 One focus of this chapter is
on how to choose the values of these unspecified parameters.

A third problem we address is how to assess the variability of nonparametric and semiparametric
estimators. In many empirical applications, the model used and methods applied deviate in some
respects from the prototypical models and methods studied in the theoretic literature. Hence, it
is important for researchers to be able to modify theories according to their needs and to derive
the properties of modified versions of the estimators. For models and estimators based on moment
conditions with finite dimensional parameters, Hansen (1982) and Pakes and Pollard (1989) provide
results that are sufficiently general to accommodate many different kinds of modifications. For
semiparametric models, some progress has also been made along similar lines. See Andrews (1994),
and Newey and McFadden (1994) Ai and Chen (2003) and Chen, Linton and van Keilegom (2003),
and Ichimura and Lee (2006).

Finally, another obstacle in applying flexible estimators is that they can be computationally
intensive, particularly for large data sets. Because of slower rates of convergence, the methods
are ideally suited for larger data sets. Yet it is precisely when sample sizes are large, say on the
order of 100,000, when the computational burden of these methods can make them impractical. We
discuss approximation methods that speed up estimation and provide great gains in speed, making
it feasible to analyze even very large samples.

1.4 Overview of chapter

In section 2, we illustrate through examples drawn from different empirical literatures how flexi-
ble estimation methods have been used as an alternative or as a supplement to more traditional
estimation approaches. Section 3 describes some concepts in semiparametric and nonparametric
modeling and makes precise how new developments in the literature broaden the kinds of models
and parameters of interest that can be considered in empirical research.

Section 4 discusses nonparametric estimation of densities, conditional mean functions, and
derivatives of functions. Although fully nonparametric analysis are not often practical because of
slow rates of convergence, we begin with nonparametric estimators because they serve as building

7“Trimming” is the practice of excluding a fraction of observations in local nonparametric estimation. Trimming is

required when the density of the data is low at these observations and a nonparametric estimate would be unreliable.

See Section 6.
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blocks for many semiparametric estimators. We discuss how apparently different estimators are
in some ways closely related and present a unifying framework for thinking about nonparametric
density and conditional mean estimators.

Section 5 considers estimation of the same parameters of interest (densities, conditional mean
functions, and derivatives of functions) using semiparametric modeling methods that overcome the
problem of slow-convergence of fully nonparametric estimators. We describe a variety of semi-
parametric approaches to estimating densities and conditional mean functions. Although there
are many estimators proposed for a variety of semiparametric and nonparametric models in the
literature, we only discuss a subset of them. The models we cover are additively separable models,
index models, and partially linear models as well as nonparametric models.

Section 6 focuses on the question of how to choose smoothing parameters and trimming methods
in estimators applicable to nonparametric and semiparametric models. The problem of choosing
the values of these unspecified parameters is similar to a model selection problem in a parametric
context. For each estimator, we summarize existing research on how to choose the values of these
parameters and describe the evidence on the effectiveness of various smoothing parameter selection
methods, some of which comes from our own Monte Carlo studies.

Section 7 discusses how to assess the variability of different estimation procedures. Section 8 ex-
amines the problem of how to compute local nonparametric estimates in large samples. We describe
binning algorithms that speed up computation through accurate approximation of nonparametric
densities and conditional mean functions.

Section 9 concludes with a discussion of other issues left for future research.

1.5 Related literature

There are many useful surveys in the literature to which we will at times refer in this chapter. For
excellent introduction to nonparametric literature in the book form we recommend Silverman (1986)
and Fan and Gijbels (1996). Surveys by Blundell and Duncan (1998), Härdle and Linton (1994),
and Yatchew (1998) cover nonparametric methods compactly. Useful surveys for semiparametric
models are given by Arellano and Honoré (2001), Delgado and Robinson (1992), Linton (1995),
Matzkin (1994), Newey and McFadden (1994), Powell (1994), and Robinson (1988).

Books by Bierens (1985), Härdle (1990), Prakasa-Rao (1983), Scott (1992) cover nonparametric
density or regression function estimation methods. Books by Horowitz (1998), Lee (1996), Pa-
gan and Ullah (1999), Stoker (1991), Ullah and Vinod (1993), and Yatchew (2003) cover both
nonparametric and semiparametric methods. Deaton (1996) describes how nonparametric and
semiparametric models are used in substantively important issues of household bahavior and policy
analysis in developing countries.

Efficiency issues are dealt with concisely by Newey (1990, 1993) and in detail by Bickel, Klaassen,
Ritov, and Wellner (1993). Most of the probabilistic techniques are explained by van der Vaart
(1998) and van der Vaart and Wellner (1996).
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2 Applications of Flexible Modeling Approaches in Economics

We first illustrate through several examples how flexible models have been used in empirical work,
either as an alternative to more traditional estimation approaches or as a supplement to them. The
examples are drawn from the literatures on estimating consumer demand functions, estimating the
determinants of worker earnings, correcting for sample selection bias, and evaluating the effects
of social programs. Our examples are chosen to highlight different kinds of parameters that may
be of interest in empirical studies, such as densities, conditional mean and quantile functions and
averages of the functions.

2.1 Density estimation

In many empirical studies, researchers are interested in analyzing the distribution of some random
variable. Nonparametric density estimators provide a straightforward way of estimating densities.
One nonparametric estimator that has already gained widespread use is the histogram estimator,
which estimates the density by the fraction of observations falling within a specified bin divided
by the bin width. In section 4, we discuss how the histogram relates to other nonparametric
density estimators and how to optimally choose the bin width. We also present alternatives to the
histogram estimator that have superior properties, such as the Nadaraya-Watson kernel density
estimator for particular choices of kernel functions, which can be viewed as a generalized version
of the histogram estimator.

An innovative empirical application of nonparametric density estimation methods is given by
DiNardo, Fortin and Lemieux (1996), which investigates the effects of institutional and labor market
factors on changes in the U.S. wage distribution over time. DiNardo et. al. (1996) write the overall
wage density at time t, fw(w|t), in terms of the conditional wage densities, where conditioning is
on a set of labor market or institutional factors, z, whose effects on earnings they analyze:

fw(w|t) =
∫

Z
fw(w|z, t)fz(z|t)dz.

In their study, z includes variables indicating union status, industrial sector, and whether the wage
falls above or below the minimum wage. Counter-factual wage densities are then constructed by
replacing fz(z|t) by a different hypothetical conditional density, gz(z|t), for the purpose of inferring
the effect of changes in elements of z on the wage distribution.

A traditional parametric approach to simulating wage distributions would specify a parametric
functional form for the w and z distributions, in which case inference would only be valid within
the class of models specified. The approach taken in DiNardo, Fortin and Lemieux (1996) is to
estimate the densities nonparametrically, using a nonparametric kernel density estimator that will
be discussed in section 4 of this chapter. Using a flexible modeling approach makes inference valid
for a broader class of models and avoids the need to search for an appropriate parametric model
specification for fw and fz.
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2.2 Conditional mean and conditional quantile function estimation

2.2.1 Earnings function estimation

In addition to studying the shape of the earnings distribution, economists are often interested in
examining how changes in individual characteristics, such as education or years of labor market
experience, affect some aspect of the distribution, such as the mean. An earnings specification that
is widely used in empirical labor research is that of Mincer (1974), which writes log earnings as a
linear function of years of schooling (s) and as a quadratic in years of work experience (exp) and
other control variables (z):

ln y = α0 + ρs+ β1 exp+β2 exp2 +z′γ + ε.

This simple parametric specification captures several empirical regularities, such as concavity of log
earnings-age and experience profiles and steeper profiles for persons with more years of education.8

However, Mincer’s model was derived under some strong assumptions, so it is of interest to also
consider more general specifications of the earnings equation such as

ln y = g(s, exp, z) + ε,

where g is a function that is continuous in the continuous variable (experience). Usually the g
function is interpreted as the conditional mean function. In Heckman, Lochner and Todd (2005),
nonparametric regression methods are applied to estimate the above equation and to examine the
empirical support for the parametric Mincer model. Their study finds substantial support for the
parametric specification in decennial Census data from 1940-1960 but not in more recent decades.9

Figure 1 shows the nonparametrically estimated log earnings-experience relationship for alternative
schooling classes for adult males from the 1960 U.S. decennial census (the same data analyzed by
Mincer, 1974). Nonparametric estimation was performed using local linear regression methods that
are described in section 4 of this chapter.

{Figure 1: Earnings-Experience Profiles by Education Level Estimated Nonparametrically by a
Local Linear Regression Estimator}

One can also interpret the g function to be the conditional quantile function, in which case
the nonparametric or semiparametric quantile estimation methods (Koenker and Basset (1978)
and Koenker (2005)) can be applied. For example, Buchinsky (1994) applies semiparametric
conditional quantile estimation methods to study changes in the U. S. Wage Structure from 1963-
1987, using data from the Current Population Survey. He estimates a model of the form:

Y = Xβθ + uθ,

where βθ is a parameter that characterizes the conditional quantile. The model is estimated under
the restriction that the θth conditional quantile of Y given X = x is x′βθ.

8See Willis (1986) for a discussion of the use of the Mincer model in labor economics.
9Data from the 1940, 1950, 1960 show support for the model, but data from 1970, 1980 and 1990 show important

deviations from the model, which Heckman et. al. (2005) attribute in part to changing skill prices over recent decades,

which violates an assumption of the traditional Mincer model.
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The estimation yields a time series of the estimated returns to education and experience at
different quantiles of the earnings distribution. Buchinsky (1994) finds that the mean returns to
education and experience and the returns at different quantiles generally follow similar patterns.
Analysis of the spreads of the distributions reveals large changes in the 0.75-0.25 spread and that
changes in inequality come mainly from longer tails at both ends of the wage distribution.

2.2.2 Analysis of consumer demand

Several recent studies in consumer demand analysis have made use of flexible estimation techniques
in estimating Engel curves, which relate a consumer’s budget share or expenditure on a good to
total expenditure or income. Economic theory does not place strong restrictions on functional
forms for Engel curves, so earlier research addressed the question of model specification mainly
by adopting flexible parametric functional forms. Recent research by Banks, Blundell and Lewbel
(1997), Blundell and Duncan (1998), Deaton and Paxson (1998), Härdle, Hildebrand and Jerison
(1991) and Schmalensee and Stoker (1999), and Blundell, Browning and Crawford (2003) consider
nonparametric and semiparametric estimation of Engel curves. The basic modeling framework is

y = g(x, z) + u,

where y is the budget share of a good, x is total expenditure or income, and z represents other
household or individual characteristics included as conditioning variables. Typically g(x, z) is as-
sumed to be the conditional mean function of y given x and z so that E(u|x, z) = 0.

The traditional approach to estimating conditional mean functions specifies the functional form
of g up to some finite number of parameters. In consumer demand analysis, the Engel curve function
is often assumed to be linear or quadratic in lnx and z and the coefficients on the conditioning
variables are estimated by ordinary least squares (OLS). A nonparametric estimation approach
places no restrictions on the g(x, z) relationship other than assuming that the g(·) function lies
within a class of smooth functions (such as the class of twice continuously differentiable functions).

As discussed in section 3, with a large number of regressors fully nonparametric estimators
converge at a rate that is too slow to be practical in conventional size samples. Semiparametric
modeling approaches provide a more practical alternative. These methods achieve a faster rate
of convergence by allowing some aspects of the g(x, z) relationship to be flexible while imposing
some parametric restrictions. For example, the approach taken in Banks, Blundell and Lewbel
(1997), Blundell and Duncan (1998), and Deaton and Paxon (1998) is to model the budget-share-
log-income relationship nonparametrically under the parametric restriction that other z covariates
enter in a linear, additively separable way. This yields a partially linear model10:

y = g(x) + zγ + u.

Engle, Granger, Rice, and Weiss (1986) considered electricity demand setting x to be the temper-
ature and z captures household characteristics. In this application, the parameter of interest was

10Schmalensee and Stoker (1999) adopt a similar but slightly more general specification.
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g(x), how the electricity demand peaked as temperature varied. When z are discrete variables,
assuming that they enter in a linear fashion imposes only the assumption of additive separability.11

Analogous to the Mincer example, the partially linear model may also be regarded as a conditional
quantile function. Blundell, Chen, and Kristensen (2003) has considered the model allowing for
endogeneity of income variable.

A variety of semiparametric estimators that allow for flexibility in different model components
have been proposed in the econometrics and statistics literatures. Several classes of estimators will
be discussed in section 5 of this chapter.

2.2.3 Analysis of sample selection

A leading area of application of flexible estimation methods in economics is to the sample selection
problem. In fact, several estimators for the partially linear model were developed with the sample
selection model in mind.12 In the sample selection problem, an outcome is observed for a nonrandom
subsample of the population and the goal is to draw inferences that are valid for the full population.
For example, in the analysis of labor supply the outcome equation corresponds to the market wage,
observed only for workers, and the selection equation corresponds to the decision to participate in
the labor force. The wage model takes the form

w = w(x, θ1) + u

where x denotes individual characteristics, w is observed if the wage exceeds the individual’s reser-
vation wage, wr, which is the minimum wage the individual would be willing to accept.

Under sample selection, the above model leads to the wage model of the form:

w = w(x, θ1) + ϕ(x, z) + u

where ϕ(x, z) = E(u|w > wr, x) is the so-called control function that needs to be estimated along
with parameter θ1.13 Clearly, in the above equation the functions w(x, θ1) and ϕ(x, z) could not
be nonparametrically separately identified without some additional restrictions. Section 5 of this
chapter considers alternative estimators for the sample selection model under different kinds of
restrictions.

There have been numerous applications of the partially linear sample selection model. For
example, Newey, Powell and Walker (1990) and Buchinsky (1998) apply the model to study female
labor force participation. Stern (1996) uses it to study labor force participation among disabled
workers. Olley and Pakes (1996) use the partially linear model to control for nonrandom firm

11In more recent work, Ai, Blundell and Chen (2000) consider the consumer demand model of the form

y = g(x + zγ) + zγ + u

and show that including the term zγ both in the g(·) function and in the linear term is necessary to make the Engel

curve consistent with a consumer demand system.
12The sample selection model is developed by Gronau (1973), Heckman (1976), and Lewis (1974).
13See Heckman (1980).
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exit decisions in a study of productivity in the telecommunications industry. Some additional
applications are discussed in section 5.

2.3 Averages of functions: evaluating effects of treatments

A common problem that arises in economics as well as many other fields is that of determining the
impact of some intervention or treatment on some measured outcome variables. For example, one
may be interested in estimating the effect of a job training program on earnings or employment
outcomes.14 In evaluating social programs, the average effect of the program for people participating
in it (known as the mean impact of treatment on the treated) is a key parameter of interest on
which many studies focus.

Let (y1, y0) denote the outcomes for an individual in two hypothetical states of the world
corresponding to with and without receiving treatment. Let d be an indicator variable that takes
the value 1 if treatment is received and 0 else. The outcome observed for each individual can be
written as y = dy1 + (1 − d)y0. The mean effect of the program for program participants with
characteristic z is given by E(y1 − y0|d = 1, z). The average of this parameter for the treated
(d = 1) population is E(y1 − y0|d = 1).

Clearly the first parameter is more informative than the second. However, as discussed in detail
in the next section and in section 6, the conditional on z parameter can be estimated nonparamet-
rically less accurately than the second parameter can be estimated nonparametrically.

A variety of estimators have been put forth in the literature to estimate E(y1 − y0|D = 1).
One class of estimators are so-called matching estimators, which impute no-treatment outcomes
for treated persons by matching each treated person to one or more observably similar untreated
persons. Heckman, Ichimura and Todd (1997, 1998b) develop nonparametric matching estimators
that use local polynomial regression methods to construct matched outcomes. Local polynomial
regression estimators are discussed in section 4. The application of these estimators in program
evaluation settings is considered in this handbook by Abbring, Heckman and Vytlacil.

3 Convergence rates, asymptotic bias, and the curse of dimen-

sionality

A key motivation for developing flexible models is to achieve a closer match between the functional
form restrictions suggested by economic theory, which are typically weak, and the functional forms
used in empirical work. To study aspects of the conditional distribution functions, such as the
conditional mean function and the conditional quantile function, the linear in parameter model is
traditionally used. Let the conditioning finite dimensional random vector be X, and a known finite
dimensional vector-valued function evaluated atX = x be r (x). Then the linear in parameter model

14See, e.g. Ashenfelter (1978), Bassi (1984), Ashenfelter and Card (1985), Fraker and Maynard (1987), Heckman

and Hotz (1989), Heckman and Smith (1995), Heckman, Ichimura, Smith and Todd (1998a), and Heckman, Ichimura,

and Todd (1997, 1998b), and Smith and Todd (2001, 2005).
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specifies the conditional mean function or the conditional quantile function of a dependent random
variable Y by r (x)′ θ for some unknown finite dimensional vector θ. For example x = (x1, x2)

′

and r (x) =
(
1, x1, x

2
1, x2, x

2
2, x1 · x2

)′. The ordinary least squares (OLS) estimator estimates the
conditional mean function and the quantile regression estimator estimates the conditional quantile
function. Alternatively, the most flexible model would specify θ (x) for some unknown function
θ (·). The unknown function itself or its derivative could be the parameter of interest.

The specification of parametric models involves two difficulties: which variables to include in the
model and what functional form to use. Although nonparametric methods do not resolve the first
difficulty, they do resolve the second. Thus if θ (·) could be estimated with the same accuracy as
that for the finite dimensional case, then there would be no reason to consider a finite dimensional
parameter model. Unfortunately, that is not the case.

Recall that under very general regularity conditions, including the random sampling, most of
the familiar estimators–the OLS estimator, the generalized method of moment (GMM) estimator,
and the maximum likelihood (ML) estimator–have the property that n1/2(β̂ − β) converges in
distribution to the mean zero random vector with some finite variance-covariance matrix as the
sample size n goes to infinity, where β̂ denotes the estimator and β the target parameter. This
implies not only that β̂ − β converges to 0 in probability, but that the difference is bounded with
arbitrarily high probability (i.e. stochastically bounded) even when it is blown up by the increasing
sequence n1/2. In this case, we say that the difference converges to 0 with rate n−1/2, that the
estimator is n1/2-consistent and that its convergence rate is n−1/2. More generally, if an estimator
has the property that rn(β̂ − β) is stochastically bounded, then the estimator is said to be rn-
consistent or to have convergence rate is 1/rn. If rn/n1/2 converges to zero, then the rn-consistent
estimator converges to β slower than the n1/2-consistent estimator does. When two estimators of
the same parameter have different convergence rates, the one that approaches to the target faster
is generally more desirable asymptotically.15

As discussed, there are estimators of the regression coefficient θ, such as the OLS estimator,
that converges with rate n−1/2, so that r (x)′ θ can be estimated with the same rate. But in the
context of estimating the conditional mean function, Stone (1980, 1982) showed that any estimator
of the regression function θ (·) converges slower than n−1/2.

To state the Stone’s results, we need to clarify two complications that arise because the target
parameter is a function rather than a point in a finite dimensional space Rd for some positive integer
d. Note first that we need to define what we mean by an estimator to converge to a function. If
we consider a function at a point, then the convergence rate can be considered in the same way
discussed above. If we want to consider a convergence of an estimator of a regression function as
a whole to the target regression function, then we need to define a measure of distance between
two functions. There are different ways we can define the distance between the functions and the
discussion about the convergence rate will generally depend on the distance used. Typically a norm
is used to define the distance.

15Note that this is an asymptotic statement and the finite sample performance may be different. Clearly, it would

also be desirable to have a better understanding about the sample size at which one estimator dominates the other.
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To define a few examples of the norms used, let k = (k1, ..., kd) where kj is a nonnegative integer
for each j = 1, ..., d, and define Dkθ (x) = ∂k1+···+kdθ (x) /∂xk1

1 · · · ∂xkd
d . Leading examples of the

norms used are the Lq-norm for 1 ≤ q < ∞ (‖·‖q), the sup-norm (‖·‖∞), and more generally the
Sobolev norm (‖·‖α,q or ‖·‖α,∞): ∑

0≤k1+···+kd≤α

∫
X

∣∣∣Dk
(
θ̂n (x)− θ (x)

)∣∣∣q dµ (x)

1/q

or max
0≤k1+···+kd≤α

sup
x∈X

∣∣∣Dk
(
θ̂n (x)− θ (x)

)∣∣∣ .
Note that ‖·‖0,q = ‖·‖q and ‖·‖0,∞ = ‖·‖∞.16

Once a norm is defined, then consistency and hence the rate of convergence concept can be
defined using one of the three standard consistency concepts, convergence in probability, conver-
gence almost surely, and the q-th order moment convergence by how fast the distance between the
estimator and the target function converges to 0.17

Which norm is more appropriate will depend on how the estimator is going to be used. For
example if a function value at a point or its derivative is of interest, then Lq-norm is not useful
because there are many functions close to a function in Lq-sense which does not determine the
value at that point or the derivative values may be rather different. For these type of applications,
the sup-norm may be used.

For any two norms, ‖·‖1 and ‖·‖2 in a finite dimensional space Θ there exist positive constants
CH and CL such that for any θ and θ′ ∈ Θ,

CL

∥∥θ − θ′
∥∥

1
≤
∥∥θ − θ′

∥∥
2
≤ CH

∥∥θ − θ′
∥∥

1
.

Hence, consistency using one norm implies consistency using another norm on the same space.
For infinite dimensional spaces, this is no longer the case without any restriction on the class of
functions under consideration. Thus we need to be more explicit about which norm is used to
define consistency.18

Next we need to define the class of functions under consideration. When the target parameter is
a point in Rd, the class to which the parameter belongs is well defined. When the target parameter
is a function, however, we need to be more specific about the class of functions to which the target
belongs.

Stone specified a set of differentiable functions restricting the highest order derivative to be
Hölder continuous. Let bpc denote the maximum integer that is strictly smaller than p and Θp,C

be a class of functions which are bpc-times continuously differentiable with their bpcth derivative
16Clearly we need to restrict the class of functions so that the written objects are well defined.
17More generally one can define a metric on a relevant space of functions, but that generality may not be useful

as we typically want the distance between m̂ (x) and m (x) and that between m̂ (x) + c (x) and m (x) + c (x) for any

c (x) to be the same. It is easy to see that the distance between m̂ (x) and m (x) only depends on m̂ (x) − m (x).
18One might wonder if a point-wise consistency concept can be regarded as a consistency concept using a metric

or a norm. Whether this is possible will depend on what the domain of m (x) is and what the set of functions is.

Without any restriction this is not possible.
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being Hölder continuous with exponent 0 < γ ≤ 1: denoting p = bpc+ γ

Θp,C =
{
f ; max

k1+···+kd=bpc

∣∣∣Dkf (x)−Dkf
(
x′
)∣∣∣ ≤ C ·

∥∥x− x′
∥∥γ
}

for some positive C.
Denote the distribution of the dependent variable Y conditional on X by h (y|x, t)φ (dy), where

φ is a measure on R and t is an unknown real-valued parameter in an open interval J , and t is the
mean of Y given X so that∫

yh (y|x, t)φ (dy) = t for x ∈ Rd and t ∈ J.

By the construction, t varies with x according to t = θ (x), where θ (x) ∈ Θ.
Stone (1980, 1982) considers a model with some regularity conditions which imply: (1) t does

not shift the support of h or some other aspects of the conditional distribution than the mean, (2)
the effect of a change in t on the log-density is smooth (3) h is bounded away from 0 at relevant
points and for the case of the global case (4) h has at most an exponential tail and (5) the region
defining the Lq-norm is compact.

For the model which satisfies the regularity conditions, Stone shows that the optimal conver-
gence rate for estimating the mth order derivative of θ (·) point-wise or with Lq-norm for any q

with 0 < q < ∞ depends on the dimension of the number of continuous conditioning variables d
and the smoothness p (p > m) of θ (·). Let r = (p−m) / (2p+ d). In particular he shows that the
optimal rate of convergence is n−r. For the sup-norm, he shows that the optimal rate is (log n/n)r.
Note that r < 1/2 so that Stone’s results imply that the optimal rate for estimating a regression
function within a very general class of functions specified by Θp,C is slower than n−1/2. Stone also
shows that an analogous result holds for the estimation of Lebesgue densities.

If we specify a different class of functions in place of Θp,C , then the optimality result may
change. For example, the neural network literature considers a class of functions ΘC representable
by an inverse Fourier transform formula with finite absolute first moment:

ΘC =
{
θ; θ (x) =

∫
eiω·xF̃ (dω) for some complex measure F̃ with

∫
Rd

|ω|
∣∣∣dF̃ (ω)

∣∣∣ dω ≤ C

}
.

See, for example, Barron (1993). For this class of functions, Chen and White (1999) constructs an
estimator which converges in mean square with rate

(n/ lnn)−(1+2/(d+1))/[4(1+1/(d+1))] .

Whether this is the best rate for ΘC is an open question. This rate is better than the Stone’s
optimal rate when p < d/2 + d/ (d+ 1). This implies that not all functions which are less smooth
than d/2+d/ (d+ 1) is in ΘC . Let [s] denote the largest integer which is less or equal to s. Barron
(1993) has shown that if the partial derivatives of θ (x) of order [d/2] + 2 are continuous on Rd,
then those functions can be considered to be in ΘC .19

19It will be useful to clarify the relationship between Θp,C and ΘC more completely.
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That the optimal rate may be slower than the regular n−1/2-rate may be intuitive. Consider
estimating the conditional mean function θ (x) = E (y|x) at a point x. If X has a probability mass
at x, then we can use data whose corresponding X equals x and construct the conditional mean
function estimator at point x. However, if X has continuous distribution and if we do not wish to
presume any particular functional form in the conditional mean function, all we can make use of
are data that lie close to x. Let it be an ε-neighborhood of x. In general we will have sample size
of order nεd if the underlying density is bounded away from 0 and finite. This implies that the
variance of the sample mean will decrease with rate 1/

(
nεd
)

under i.i.d. sampling.20 If we are to
construct a consistent estimator for a large set of functions, we will have to make ε smaller as sample
size increases, because without making ε smaller we will not be able to guarantee the estimator
to be consistent for a broad class of functions specified in the set. This consideration separates
nonparametric estimators from more restricted estimation. That ε converges to zero implies that
the variance will decrease with rate slower than n−1 which in turn implies the estimator to converge
at rate slower than the n−1/2-rate.

This intuition can be used to gain more insight to the formula obtained by Stone. As we
discussed the variance of an estimator of the mean in an ε-neighborhood is of order

(
nεd
)−1. On

the other hand, if θ (·) has smoothness p, then a parametric assumption of polynomial of order bpc
in the neighborhood will result in the bias of order εp if we are to consider all functions in set Θp,C .
Thus the mean square error to the first order is, for some constants C1 and C2

C1

nεd
+ C2 · ε2p.

Minimizing this expression over ε yields r = p/ (2p+ d). If the target function is the m-th order
derivative of θ (x), note that the bias changes to something of order εp−m. The variance also changes
because the target changes to the difference of means divided by something of order εm.21 Since
the number of observations is still of order nεd, the mean square error expression changes to

C1

nεd−2m
+ C2 · ε2(p−m).

Minimizing this expression with respect to ε yields r = (p−m) / (2p+ d).
The result means that if we can only restrict ourselves to conditional functions with a certain

degree of smoothness, then we can estimate the function with a slower rate than the n−1/2-rate
which depends on three factors: the number of continuous regressors, underlying smoothness of the
target function, and the order of the derivative of the target function itself. The result is in sharp
contrast to the situation where we obtain the convergence rate n−1/2 regardless of these factors in
estimating regression function or its derivatives under random sampling.

20An uncritical assertion we take for granted is that the mean of y whose corresponding regressors are in the

neighborhood is the best estimator of the θ (x0).
21For example

lim
ε→0

f(x + ε) − 2f(x) + f(x − ε)

ε2
= f ′′(x).
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The above analysis makes clear the reason the convergence rate for the non-parametric case is
slower than for the parametric case. It is because we need to make ε converge to zero to reduce
the potential bias for a broad class of functions and the number of data points in the shrinking
ε-neighborhood grows slower than the sample size. The sample size within an ε-neighborhood also
grows more slowly when the dimension is high. When the underlying function is smooth, ε can be
shrunk less rapidly to reduce the potential bias. The fact that the standard error decreases with
the square root of the relevant sample size (sample size within ε-neighborhood) does not change.

In the above discussion, we observed that the extent to which the small neighborhood approxi-
mates the underlying function depends on the smoothness of the function itself. That the function
is only an approximation and thus there is an approximation error even in the neighborhood dis-
tinguishes nonparametric or semiparametric approach from the parametric approach. For example,
consider estimating a one dimensional regression function. One flexible estimator that could be
used is a nonparametric power series expansion estimator (described in section 5), which estimates
the regression function by a finite power series. For the estimator to be consistent, the order of
the polynomials must increase with the sample size to cover all potential models. But for any
finite sample size, the number of polynomial terms used is fixed so that superficially the estimator
appears to be the same as a standard regression problem. The key distinction between whether we
have a parametric or a nonparametric model in mind is whether the estimator is considered to have
a negligible bias relative to the rate of convergence or not. If we regard the estimator only as an
approximation to the true regression function, then the model is nonparametric and there is a bias
that needs to be taken into account in conducting inference which results in slower convergence
rate. Admitting the possibility of misspecification leads us to use a more conservative standard
error as the convergence rate is slower than the standard n−1/2 rate and the form of variance will
be different as well.

The dependence of the convergence rate on the dimension in particular is often referred to
as the curse of dimensionality, which limits our ability to examine conditional mean functions
or Lebesgue densities in a completely flexible way. This limitation of fully flexible models has
motivated the development of semiparametric modeling methods, which offer a middle ground
between fully parametric and fully nonparametric approaches. For a clarifying discussion of the
definition of semiparametric models we refer the readers to Powell (1994) section 1.2. Note that
the discussion so far concentrated on the estimation of the conditional mean function but results
would be analogous for the estimation of the conditional quantile function.

Interestingly, not all nonparametric estimation of functions face the curse of dimensionality. A
leading example is the cumulative distribution function. As it can be expressed as the mean of a
random variable defined using an indicator function, the finite dimensional cumulative distribution
can be estimated with n−1/2-rate nonparametrically. We will briefly discuss a necessary condition
for the n1/2-consistent estimability of the parameter under consideration in the next sub-section as
a part of the discussion of how the curse of dimensionality has been addressed in the literature.
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3.1 Semiparametric approaches

The curse of dimensionality has been addressed using one of the following three approaches: by
restricting the class of considered models, by changing the target parameter, and by changing the
stochastic assumption maintained. We shall see that all three approaches can be understood within
a single framework, but first we will discuss each of the concrete approaches in turn.

3.1.1 Using semiparametric models

The first approach is to impose some restrictions on the underlying models. Leading semiparametric
models of the conditional functions are the additive separable model, the partially linear model, and
the single and the multiple index models. These models provide ways to strike a balance between
the flexibility and the curse of dimensionality.

The additive separable model is

θ (x) = φ1 (x1) + · · ·+ φk (xk) ,

where φj (j = 1, ..., k) are unknown functions and xj are sub-vectors of x with different dimension.
For the additive model for the conditional mean function, Linton and Nielsen (1995), Linton

(1997), and Huang (1998) constructed an estimator of φj (xj) which converges with the rate that
depends only on the number of continuous regressors and smoothness of φj (·). Thus the convergence
rate for estimating θ (x) is driven by the maximum number of continuous regressors in

{
φj (·)

}
assuming the same degree of smoothness for each of the component functions. For the conditional
quantile function, Horowitz and Lee (2005) has constructed an estimator with analogous properties.

The partially linear model is

θ (x) = r (x0)
′ β + φ (x1) ,

where r (·) is a known function, φ (·) is an unknown function and x0 and x1 are sub-vectors of
x. Robinson (1988) shows that when θ(x) is the conditional mean function, β can be estimated
with n−1/2-rate regardless of the number of regressors in x1 and constructs an estimator of φ which
performs as if β were known. Thus the convergence rate for estimating θ (x) is driven by the number
of continuous regressors in x1 and smoothness of φ (·).

The multiple index model is

θ (x) = r0 (x0)
′ β0 (θ) + φ

(
r1 (x1)

′ β1 (θ) , . . . , rk (xk)
′ βk (θ)

)
,

where rj (j = 0, 1, ..., k) are known functions and φ (·) is an unknown function. Note that the
multiple index model reduces to the partially linear model when βj (θ) (j = 1, ..., k) are known.
Ichimura (1993) constructed an estimator of β1 in a single-index model without β0. Using the
same idea, Ichimura and Lee (1991) shows that θ can be estimated with n−1/2-rate regardless of
the dimension of unknown function φ. It is straightforward to show that the estimation of φ can
be done as if βj(θ) for j = 0, ..., k are known. For the single index model, Blundell and Powell
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(2003) develops a method to allow for an endogenous regressor and Ichimura and Lee (2006) studies
the asymptotic property of Ichimura’s estimator under general misspecification. Ichimura and Lee
(2006) also examines the single index model under a quantile restriction, rather than the conditional
mean restriction and shows that results analogous to the conditional mean restriction case hold.

We will discuss these models and accompanying estimation methods in some detail in section
5. The advantage of using these models is clear. Because the parameters are estimated without
being subject to the curse of dimensionality and because these models typically include the linear in
parameter specification as a special case, they permit examining the conditional mean and quantile
functions under less stringent conditions than previously thought possible.

There are at least two limitations in using semiparametric models. First, we do not know
which of these three or an alternative semiparametric model to use. Second, there could be a
discrepancy between the parameter we want to estimate and the variation we would use to estimate
the parameter. As Powell (1994) has emphasized, the defining characteristic of a semiparametric
model is that there are different ways to express the same parameters. For example, consider the
partially linear model with r (x0) = x0 and assume that x0 and x1 do not have a common variable
and that all relevant moments are finite. In this case, β is the partial derivative of θ (x) with respect
to x0. When θ (x) = E (y|x), β is also a solution to minimizing E [V ar (y − x′0b|x1)] with respect to
b and at the same time β is a solution (corresponding to b) to minimizing E

[
(y − x′0b− f (x1))

2
]

with respect to b and a measurable function f .22 Thus one can estimate β using any of the sample
counterpart of these observations. Depending on how the estimator is going to be used, we may
want to use different estimation method but using semiparametric model tends to mask this point
because β is β within a semiparametric model. The second limitation can be overcome by carefully
choosing the appropriate estimation method, but he first limitation seems harder to resolve at this
point.

3.1.2 Changing the parameter

The second approach is to shift the focus of estimation to an aspect of θ (·) rather than θ (·)
itself. This approach does not restrict the class of functions we consider to a parametric or a
semiparametric model. For example Schweder (1975), Ahmad (1976), Hasminskii and Ibragimov
(1979) studied estimation of

∫
θ (x)2 dx where θ (x) is a Lebesgue density of a random variable.

This object is of interest in studying rank estimation of a location parameter and also studying
optimal density estimation. The parameter can be estimated at the n−1/2-rate thus the curse of
dimensionality can be avoided.

Stoker (1986) considers average derivative of the form
∫
{∂θ(x)/∂x}w(x)dx where w (x) is a

given weight function. Even though ∂θ(x)/∂x itself cannot be estimated point-wise at the n−1/2-
rate Powell, Stock, and Stoker (1989) and Robinson (1989) showed that this type of parameter can
be estimated with n−1/2-rate regardless of the dimension of x. By changing the weighting function
w(x) appropriately, the average derivative parameter can inform us about different aspects of

22The latter two problems lead to the same solution for b even in a nonparametric setup.
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∂θ(x)/∂x. Altonji and Ichimura (1998) has studied average derivative estimation when dependent
data are observed with censoring. We will discuss average derivative method in some detail in
section 5.

As previously discussed, DiNardo, Fortin and Lemieux (1996) studies a density f (x) via con-
ditional density θ (x, z) and the marginal distribution of z, Fz(z):

f(x) =
∫

Z
θ (x, z) dFz(z).

They study various hypothetical wage densities by replacing Fz(z) with hypothetical marginal
distributions. In their application z consists of discrete variables. Thus both f(x) and θ (x, z) are
estimated with the same rate. But if z contains a continuous variable, then this is an example in
which integration improves the rate of convergence. This is also the case for Heckman, Ichimura,
Smith, Todd (1998). In their work θ (·) is the conditional mean function and Fz(z) is replaced by
a distribution which is estimated.

3.1.3 Specifying different stochastic assumption within a semiparametric model

Even when the model is restricted to a semiparametric model which has a finite dimensional pa-
rameter, such as β in the partially linear regression model, it is not always possible to estimate
the finite dimensional parameter with the standard n−1/2-rate. The role that different stochastic
assumptions can play in this regard is clarified in the context of the censored regression model by
Powell (1984) and Chamberlain (1986a) and Cosslett (1987). An illustration of the results requires
us to fully specify the probability model.

A probability model is specified by a class of conditional or unconditional distribution of a
random variable z, say F . To distinguish conditional and unconditional models, we write z =
(y, x) where x represents conditioning variables. Let Fx denote a conditional probability model.
Sometimes F is specified indirectly as a known mapping, say h, from another parameter space Θ
into a space of distributions, F = {f : f(z) = h(z; θ), θ ∈ Θ}. This is the conventional way the
standard parametric model specifies F . When the indirect specification of a probability model can
be accomplished based on a finite dimensional space Θ in some ‘smooth’ way, the model is called
a parametric model.23

Consider, for example, the censored linear regression model censored from below at 0, with only
an intercept term. In this case the model of the distribution of y is

F =

{
f ; f(y) = h(y − µ)1{y>0}

[∫ −µ

−∞
h(s)ds

]1{y=0}
, h ∈ Γ

}
,

where Γ is a class of densities with certain stochastic properties. The parameter space is Θ = R×Γ.
In the econometric literature in the past it was common to treat the parameter space as R leaving

23Without a smoothness restriction on the mapping from the finite dimensional parameter space to the space of

probability distributions, the definition of the parametric model is not meaningful. Without smoothness one can

‘encode’ an infinite dimensional space into a finite dimensional space.
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the nonparametric component Γ implicit. Specifying the probability model completely turned out
to be an important step towards understanding the convergence rate and efficiency bound of a
semiparametric estimator.

As an illustration consider estimating µ semiparametrically under two alternative stochastic
restrictions on Γ under random sampling. One model restricts that h has mean 0 and the other
model restricts that h has median 0. We will argue that the first stochastic assumption will not
allow us to estimate µ with n−1/2 rate but the second assumption will.

To see this, suppose h is known. Then under random sampling, the most efficient estimator is
the ML estimator and its asymptotic variance in this case is 1 over

h2(−µ)
H(−µ)

+
∫ ∞

−µ

[h′(s)]2

h2(s)
h(s)ds,

where H(t) =
∫ t
−∞ h(s)ds. Note that the first term can be made arbitrarily small under both

models. Under the model with mean 0 restriction, the second term can be made arbitrarily small
also because only a small probability needs to be on [µ,∞) to satisfy the mean 0 restriction.
However, with the median restriction, when µ > 0, and H(−µ) < 1, for example, the second term
is strictly positive. To see this, note that the second term divided by 1 − H(−µ) corresponds to
the inverse of the asymptotic variance of the ML estimator of the mean when the random variable
under consideration is supported on [−µ,∞). Since we know that the mean can be estimated
with rate n−1/2 when the variance is restricted to be finite the infimum of the second term cannot
be 0. Thus with the restrictions on Γ, the infimum over Γ of the second term should be strictly
positive so that the asymptotic variance is bounded above. Thus whether the conditional mean
or the conditional median, or more generally the conditional quantile is restricted to zero makes a
fundamental difference.

We intuitively argued that the bound on the asymptotic variance of any estimator of µ could be
obtained by considering the worst case among Γ after computing the smallest asymptotic variance
of a possible estimators of µ given a particular function in Γ. This is the approach of Stein
(1956) further developed by various researchers. The work is summarized in Bickel, Klaassen,
Ritov, Wellner (1993). Newey (1990) provides a useful survey of the literature as do van der Vaart
and Wellner (1996) and van der Vaart (1998). It has been shown that the bound thus computed
provides a lower bound of the asymptotic variance of the n1/2-consistent “regular” estimators where
regularity is defined to exclude super-efficient estimators as well as estimators that use an unknown
aspect of the probability model under consideration. When the bound is infinite, then there is
no n1/2-consistent estimator. A finite found also does not imply that n1/2-consistent estimator
exists, because it may not be achievable. See Ritov and Bickel (1990) for examples. On the other
hand, when there is a regular estimator that achieves the bound, then it is reasonable to call the
estimator efficient.24 For the example considered above, the estimator considered by Powell (1984)
gives an example that achieves the n1/2-consistency and Newey and Powell (1990) constructs an

24For an alternative formulation of an efficiency concept that does not restrict estimators to the regular estimators,

see van der Vaart (1998) chapter 8.
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asymptotically efficient estimator for the model.
To some extent, these developments partly solve the specification search problem that was

described in the introduction. For the censored regression model, for example, the specification
search for the error distribution has become completely redundant as the slope parameters can be
estimated at the parametric rate without specifying a functional form for the error distribution.
However, search problems still remain for the specification of the systematic component of the
model. For the average derivative example, the specification search problem reduces to that of fully
nonparametric models: the main difficulty being which variables to use and not which functional
form to adopt.

In a parametric setting, specification search often makes it difficult to assess the variability of the
resulting estimator. In contrast, there are now large classes of semiparametric and nonparametric
models for which at least asymptotic assessment of the variability of estimators is possible. Not
only has consistency been proved for many estimators, but the explicit form of the asymptotic bias
and variance has also been obtained.

4 Nonparametric Estimation Methods

While the above discussion of the curse of dimensionality may leave one with an impression that
nonparametric methods are useful only for a low dimensional cases, they are nonetheless important
to study, if only because they form the building blocks of many semiparametric estimators.

Roughly speaking, there are two types of nonparametric estimation methods: local and global.
These two approaches reflect two different ways to reduce the problem of estimating a function
into estimation of real numbers. Local approaches consider a real valued function h (x) at a single
point x = x0. The problem of estimating a function becomes estimating a real number h (x0). If we
are interested in evaluating the function in the neighborhood of the point x0, we can approximate
the function by h(x0) or, if h (x) is continuously differentiable at x0, then a better approximation
might be h (x0) + h′ (x0) (x− x0). Thus, the problem of estimating a function at a point may be
thought of as estimating two real numbers h (x0) and h′ (x0), making use of observations in the
neighborhood. Either way, if we want to estimate the function over a wider range of x values, the
same, point-wise problem can be solved at the different points of evaluation.

Global approaches introduce a coordinate system in a space of functions, which reduces the
problem of estimating a function into that of estimating a set of real numbers. Recall that any
element v in a d-dimensional vector space can be uniquely expressed using a system of independent
vectors {bj}d

j=1 as v =
∑d

j=1 θj · bj , where one can think of {bj}d
j=1 as a system of coordinates and

(θ1, ..., θd)
′ as the representation of v using the coordinate system. Likewise, using an appropriate

set of linearly independent functions
{
φj (x)

}∞
j=1

as coordinates any square integrable real valued
function can be uniquely expressed by a set of coefficients. That is, given an appropriate set
of linearly independent functions

{
φj (x)

}∞
j=1

, any square integrable function h (x) has unique
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coefficients {θj}∞j=1 such that

h (x) =
∞∑

j=1

θj · φj (x) .

One can think of
{
φj (x)

}∞
j=1

as a system of coordinates and (θ1, θ2, ...)
′ as the representation of

h (x) using the coordinate system. This observation allows us to translate the problem of estimating
a function into a problem of estimating a sequence of real numbers {θj}∞j=1.

Well known bases are polynomial series and Fourier series. These bases are infinitely differen-
tiable everywhere. Other well known bases are polynomial spline bases and wavelet bases. One
dimensional linear spline bases are: for a given knot locations tj , j = 1, . . . , J

1, x, (x− tj)1{x ≥ tj},

quadratic spline bases are:
1, x, x2, (x− tj)21{x ≥ tj},

and cubic spline bases are:
1, x, x2, x3, (x− tj)31{x ≥ tj}.

By making the knot locations denser, a larger class of functions can be approximated. A function
represented by a linear combination of the linear spline bases is continuous, that represented by
the quadratic spline is continuously differentiable, and that represented by the cubic spline is twice
continuously differentiable. Higher dimensional functions can be approximated by an appropriate
Tensor product of the one dimensional bases. Polynomial spline bases have an unpleasant feature
that imposing higher order of smoothness requires more parameters.

Wavelet bases are generated by a single function φ and written as

2k/2φ(2kx− `)

where k is a nonnegative integer and ` is any integer and φ satisfies certain conditions so that
{2k/2φ(2kx − `)}` is an orthonormal family in L2-space. Now many functions φ, including an
infinitely differentiable function, are known to define the orthonormal bases. Since these functions
themselves can be infinitely differentiable and yet can approximate any function in L2-space, the
bases are useful to examine functions without known degree of smoothness. See Fan and Gijbels
(1996) for a concise discussion of the wavelet analysis. For a fuller discussion see Chui (1992) and
Daubechies (1992).

Below, we illustrate both local and global approaches to density and conditional mean function
estimation. We emphasize commonalities among estimation approaches that on the surface may
appear very different. While we believe it is useful to understand the local and global nonparametric
approaches, we shall see that even that distinction is not as clear cut as it seems at first.
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4.1 How do we estimate densities?

As with parametric estimation, nonparametric estimation of a density can be carried out using
either likelihood based estimation or a moment based estimation. Here we classify various density
estimators, using the maximum likelihood vs method of moment classification in addition to the
local vs global classification.

4.1.1 Moment based estimators

If there were a standard function δx(s), such that for any continuous function f∫ +∞

−∞
δx (s) f (s) ds = f (x) ,

then by regarding f as the Lebesgue density function of a random variable X, this equality can be
used as the moment condition

E{δx(X)} = f(x)

to estimate the density. Unfortunately, it is well known that such function δx(s), called the Dirac-
delta function, does not exist as a standard function.25 However, it can be expressed as a limit of
a class of standard functions indexed by a positive real number h, say δx(s, h).26 For example

δx (s, h) =
1
h
K

(
x− s

h

)
where

∫ +∞
−∞ K(u)du = 1 satisfies the requirement for a continuous Lebesgue densities if lim|u|→∞ |u|K(u) =

0.
Method-of-moment estimation based on this specification for δx (s, h) leads to the so called

kernel density estimator of Rosenblatt (1956). See also Parzen (1962).:

f̂h(x) = n−1
n∑

i=1

Kh(x− xi),

where Kh(s) = h−1K(s/h). When the function K (·) is a density function, the estimator itself is a
density function. Smoothness on estimated density function can be imposed by choosing a smooth
function K(·). See Silverman (1986) for a very useful discussion of the estimator.27

Implementing this estimator requires specifying the functionK (·), referred to as the kernel func-
tion, and the parameter h. The parameter h is called the window-width, bandwidth, or smoothing
parameter.

When a symmetric kernel function with a finite variance is used, a calculation using the change
of variables formula and the Taylor’s series expansion under the assumption that the density is

25See for example, Zemanian (1965), p.10.
26See Walter and Blum (1976).
27Härdle and Linton (1994) summarizes the asymptotic properties of this estimator in chapter 38. See also Scott

(1992).
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twice continuously differentiable shows that the highest order of the point-wise mean square error
of the kernel density estimator is

(h2/2
∫
u2K(u)dsf ′′(x))2 +

1
nh

∫
K2(u)duf(x).

The bandwidth that minimizes the leading terms of the mean squared error is

h∗ =
[ ∫

K2(u)duf(x)
(
∫
u2K(u)ds)2[f ′′(x)]2

]1/5

n−1/5.

The optimal bandwidth is larger when the density is high, because then the variance is higher; the
optimal bandwidth is larger when the second derivative is small, because then the bias is smaller so
that wider bandwidth can be tolerated. Because the optimal bandwidth involves unknown density
itself and its second derivative, it is not feasible. However, there is a large literature that we review
in section 6 that studies methods that use the data to come close to the optimal bandwidth.

With the optimal bandwidth the highest order of the mean square error is

5
4
(
∫
K2(u)du)4/5(

∫
u2K(u)du)2/5f4/5(x)[(f ′′(x))2]1/5n−4/5.

This shows three things: first, the convergence rate of the kernel density estimator is n−4/5, which
corresponds to the optimal rate Stone obtained for the estimation of one-dimensional twice contin-
uously differentiable densities. Second, regardless of the unknowns, optimal kernel function can be
chosen by minimizing

(
∫
K2(u)du)(

∫
u2K(u)du)1/2,

under the restriction that the kernel function is symmetric and the second moment is finite and
normalized to 1, Epanechnikov (1969) showed that the optimal kernel function is

K(u) =
3

4 · 53/2
(5− u2)1{u2 ≤ 5}.

This kernel function is usually refereed to as the Epanechnikov kernel.28 The envelope theorem
implies that a slight deviation from the optimal kernel function would not affect the asymptotic
mean square error very much. In fact, Epanechnikov showed numerically that the efficiency loss
by using commonly used kernel functions such as the normal kernel is about 5% and that by the
uniform kernel is about 7%. This observation lead subsequent researches to concentrate more on
how to choose the bandwidth sequence. Note that the Epanechnikov kernel is not differentiable at
the edges of its support. If we impose three times continuous differentiability via the quartic kernel
function, sometimes called the biweight kernel,

K(u) =
15

16 · 75/2
(7− u2)21{u2 ≤ 7},

28Sometimes the support is normalized between −1 and 1 rather than the variance being normalized to 1. However,

this normalization will make the comparison to the kernel function with unbounded support difficult.
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the efficiency loss to the first order is less than 1%.29

The histogram estimator can be viewed as a kernel density estimator which uses a uniform
kernel function Kh(s) = 1(|s| < h)/2. Although the simplicity of the histogram is appealing and it
can be interpreted as an estimator of the cell probability divided by twice the bandwidth for each
finite observation, it has two disadvantages; one is that density estimates generated by a histogram
are discontinuous at bin end-points, and the other is that there is about 7% efficiency loss discussed
above. Figure 2 compares the density of earnings estimated by a histogram to that estimated using
a kernel density estimator.

{Figure 2: Comparison of earnings density estimated by a histogram and by a kernel density
estimator}

Another density estimator which can be viewed as a kernel density estimator is the nearest
neighbor estimator. The estimator is based on the equality

∫ x0+Rn

x0−Rn
f(s)ds = Pr{|X − x0| ≤ Rn},

where f is the Lebesgue density of random variable X. Because the left hand side is approximately
2Rnf(x0) and the right hand side can be estimated by the fraction of observations which fall
within the Rn distance from x0, by using the distance Rn to the nearest kn observations from x0,
the density at x = x0 can be estimated by equating 2Rnf(x0) and kn/n; i.e. by kn/(2Rnn). This
can be written as

n−1
n∑

i=1

KRn(x− xi)

where the kernel function is the uniform kernel function.30 Thus the nearest neighbor estimator
can be viewed as a histogram estimator for a particular way of choosing the bandwidth. Note that
the way bandwidth is selected does not consider the second derivative of the density at the point of
estimation, so when the density is twice continuously differentiable the nearest neighbor estimator
cannot be a optimal.

The estimators discussed so far are all local estimators. We next show that method of moment
based global estimators can be viewed also as a local estimator. As discussed earlier, let {φj(x)}∞j=1

be an orthonormal bases in the space of square integrable functions and consider the class of
Lebesgue densities in the same space. Then one can write

f(x) =
∞∑

j=1

cjφj(x)

for some sequence {cj}∞j=1. The coefficients can be computed by∫
f(x)φk(x)dx =

∞∑
j=1

cj

∫
φj(x)φk(x)dx = ck,

where the last equality follows from the orthonormality of {φj(x)}∞j=1.
Thus a global method to estimate the Lebesgue density in L2 is to use the first J elements of the

series just discussed and estimating cj by the sample average of φj(X) where X has the Lebesgue

29See for example, Scott (1992), Table 6.2.
30See Moore and Yackel (1977a, b).
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density f(x). In this case the estimator of cj is ĉj = n−1
∑n

i=1 φj(xi) so that the estimator of f(x)
is

f̂(x) =
1
n

n∑
i=1

J∑
j=1

φj(xi)φj(x).

This results in another example of δx (s, h). Denoting the number of series used by J = 1/h:

δx (s, h) =
1/h∑
j=1

φj (s)φj (x) .

This form of an approximation to the delta function is known as a reproducing kernel. See
Weinert (1982), Saito (1989), Wahba (1990), and Berlinet and Thomas-Agnan (2003). For ex-
ample, when we consider densities supported on [−π, π] and 0 at the boundaries, we can use
1/(2π), cos(x)/π, sin(x)/π, cos(2x)/π, sin(2x)/π, ... as the orthonormal bases. In this case one can
show that δx (s, 1/J) is the Dirichlet kernel:

δx (s, 1/J) =
1
2π

sin 2J+1
2 (s− x)

sin s−x
2

.

Figure 3 plots this function.
{Figure 3: implicit kernel function for the Fourier series density estimator}
We are not advocating using the series estimator as discussed above. In fact this simple version

of the implementation has been shown to have undesirable features that have been improved. For
a discussion see Scott (1992).

A notable difference between the kernel density and series expansion estimators is that kernel
functions that correspond to orthogonal expansion methods have support independent from the
number of terms in the expansion, whereas standard kernel functions have a support that depends
on the bandwidth choice if the kernel function is supported on a finite interval.

For the general series estimators, the highest order of the bias and the variance have not been
characterized although the rate of convergence have been characterized. For the wavelet based
bases, however, the highest order of the bias and the variance are computed by Hall and Patil
(1995). See also Huang (1999) and Ochiai and Naito (2003).

We have seen that moment based density estimators can be regarded as reflecting different ways
to approximate the delta function. A single parameter h in the approximation δx(s, h) is used to
construct a model of densities. If

∫
δx(s, h)dx = 1 and δx(s) ≥ 0, then an estimator itself is a valid

density. As discussed, Epanechnikov (1969) argued that among the kernel density estimators, the
choice of bandwidth is more important than the choice of kernel function. For the same reason, the
above discussion may indicate that among method-of-moment based methods the more important
issue is how to choose the smoothing parameter rather than which method of moment estimator to
use. This remains to be seen.
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4.1.2 Likelihood-based approaches

Another natural way of estimating densities is a maximum likelihood (ML) approach; however, a
straightforward application of the likelihood method fails in nonparametric density estimation. To
see why consider the ML estimator

max
f∈F

n∑
i=1

log f (xi)

where F is an a priori specified class of densities. If F is not restricted, then for each n one can
choose an f with spikes at xi and yet f can be a density. Thus the likelihood can be made as high
as desired regardless of the underlying density and the method leads to an inconsistent estimator.

Many modifications have been proposed to resolve this failure by restricting F in some way.31

Imposing smoothness alone does not correct the situation. To see this, first observe that the
likelihood value is only affected by values of f (x) on the data points x1, ...,xn. As one can construct
a polynomial function that passes through any given finite points that are a subset of the graph of
log f (x), the likelihood value can be made arbitrarily large. Stronger restrictions are needed.

As discussed below, some restrictions are needed regardless of whether one takes a global or
a local approach. The global method, such as that of Stone et. al. (1997), restricts the rate at
which more complex functions are included in F as the sample size increases. The local method
attempts to approximate the density locally holding the complexity of the functions fixed. The
approach taken by Hjort and Jones (1996) and Loader (1996) is to approximate a density locally
by a parametric density.

Global likelihood estimation The global likelihood-based approach restricts the rate at which
complex functions are included in F as the sample size increases. Here, we describe a density
estimation implementation of Stone’s extended linear modeling, as exposited in Stone et al. (1997).
Their starting point is to observe that the log-density function can be written in the form

l(h,X) = h (X)− log
∫
X

exph (x) dx

for any function h (x) ∈ H, where H is a linear space of real-valued functions on X . The second
term on the right hand side ensures that exp [l (h,X)] is a proper density.

Stone et. al. (1997) define the estimator of the log-density as the maximizer of the log-likelihood
function

n∑
i=1

h (Xi)− n log
∫
X

exp [h (x)] dx

over h in a finite dimensional linear subset of H, denoted G. With no restriction on H to a
smaller subset G, the problem pointed out earlier in relation to inconsistency of the unrestricted
ML estimator also arises here. By choosing h to have spikes at observation points we can make∑n

i=1 h (Xi) as large as we wish, while keeping the contribution to n log
∫
X exp [h (x)] dx small.

Also, for any constant value C, h (x) and h (x) +C give rise to the same log-likelihood value so we
31See Prakasa-Rao (1983), Silverman (1984), and Scott (1992).
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need a normalization. Stone et. al. (1997) use the normalization E [h (X)] = 0, which guarantees a
unique optimizer in G since the log likelihood function is strictly concave. The implementation of
the method depends crucially on how G is chosen. The choice of G represents the finite dimensional
model used to approximate the unknown density. In their formulation of d-dimensional functions,
the first stage is the additive separable model. The second stage includes two dimensional function
etc. In this way, the additive separable model could be embedded in a series of less restrictive
models.

Local likelihood estimation Loader (1996) and Hjort and Jones (1996) propose a localized
likelihood based estimator. The local likelihood is defined as

L (f, x) =
n∑

i=1

Kh (x−Xi) log f (Xi)− n

∫
X
Kh (x−Xi) f (u) du.

Because the data are localized through the use of kernel weighting, we need only to approximate
the log-density locally. Loader considers polynomial approximation of the log density, which is
equivalent to using exponential models. Hjort and Jones consider approximation by general para-
metric models. If we do not restrict the class of models to a small subset like the ones considered
in these papers, then the optimization problem does not have a well defined solution.

To gain insight into the form of the above objective function, we show that one can view the
objective function as an approximation to a likelihood for observing data only in an area within h
of point x. When the density is f , the likelihood contribution if the data falls within the interval
is f(Xi) but if not, then it also contributes by computing the probability of not observing in the
interval. Thus we can write the likelihood as

n∑
i=1

Ii log f (Xi) + (1− Ii) log
(

1−
∫
X
I {|x− u| ≤ h} f (u) du

)
.

Using the approximation log
(
1−

∫
X I {|x− u| ≤ h} f (u) du

)
≈ −

∫
X I {|x− u| ≤ h} f (u) du gives

n∑
i=1

Ii log f (Xi)− n

∫
X
I {|x− u| ≤ h} f (u) du

−
n∑

i=1

Ii

∫
X
I {|x− u| ≤ h} f (u) du,

where the leading two terms are of higher order. Approximating the indicator function by the
kernel function Kh(x−Xi) gives the objective function

n∑
i=1

Kh (x−Xi) log f (Xi)− n

∫
X
Kh (x− u) f (u) du,

which is the objective function studied by Loader (1996) and Hjort and Jones (1996).32

32The local likelihood estimator is available as a supplement to the Splus statistical software package. In section

6, we present some Monte Carlo results on the performance of these estimators.
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We have grouped density estimation methods into moment-based and likelihood-based methods.
Recent developments in empirical likelihood literature suggest a link between the method of moment
estimators and likelihood estimators, which still needs to be clarified in this context.

4.2 How do we estimate conditional mean functions?

As with density estimation, there are both local and global approaches to estimating the condi-
tional mean function. Because the conditional mean function does not characterize the conditional
distribution, most of the methods analyzed extensively in the literature are based on the method-
of-moments approach rather than the likelihood approach. Let M denote a class of functions in
which the conditional mean function m (x) = E (Y |X = x) lies. We can characterize the conditional
mean function in two ways: as the solution to

inf
g(·)∈M

E{[Y − g (X)]2}

or as the solution to
inf

g(·)∈M
E{(Y − g (X))2 |X = x}.

The global method is based on the first characterization and the local method on the second.
Analogous to the ML-based density estimation, both global and local approaches to estimating
conditional mean functions require that the space M be restricted to avoid over-fitting.

Below we discuss nonparametric estimators of the conditional mean function. Estimators of
the conditional quantile function can be constructed by replacing the quadratic loss function with
that of Koenker and Bassett (1978). Also, see Tsybakov (1982), Härdle and Gasser (1984), and
Chaudhuri (1991a, b).

The global approach As described earlier, the global approach to nonparametric estimation
constructs a sequence of parametric models Mn such that approximation error of m (·) by an
element of Mn eventually goes down to zero as n → ∞. A well known sequence is a sequence
of polynomial functions, a sequence of spline functions,33 or a sequence of wavelets as discussed
above. All sequences specify for each n some set of functions

{
φnj (x)

}Jn

j=1
, and use them to define

the sequence of models by

Mn =
{
f ; f (x) = θ1φn1 (x) + · · ·+ θJnφnJn

(x) for some θ1, ..., θJn ∈ R
}
.

Then, for each n the global estimator can be defined as m̂ (x, Jn) = θ̂1φn1 (x) + · · ·+ θ̂JnφnJn
(x),

where θ̂1,...,θ̂Jn are obtained by the least squares minimization problem of the following objective
function:

n∑
i=1

[
yi −

(
θ1φn1 (xi) + · · ·+ θJnφnJn

(xi)
)]2

.

As discussed before, for more than 1 regressor cases, appropriate Tensor product of a one dimen-
sional bases are used to construct the base functions.

33See Schoenberg (1964) and also Eubank (1999) and Green and Silverman (1994).
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Different global methods can be viewed as different combinations of decisions about how the
class M is restricted and how the data are used in choosing the class M. Clearly the properties
of this estimator crucially depends on how we choose the base functions

{
φnj (x)

}Jn

j=1
and Jn.

Typically the order in which different base functions are brought in is given and the literature
discusses how to choose Jn using a model selection criterion. For example when the polynomial
series are used base functions are ordered in terms of the degree of polynomials. In the wavelet
literature, there is an attempt to endogenize the choice of the bases themselves so as to estimate
the degree of smoothness.

Global approaches can be a convenient way of imposing global properties of underlying functions
such as monotonicity, concavity, and additive separability. It is also easy to restrict a class of
functions so that any function in the class goes through a certain point.

For global estimation methods, there has been less progress in analyzing the form of the first
order bias in comparison to local methods. Although the rate of convergence is known, the exact
expression for the highest order term is known only for limited cases. See Newey (1997) for the
convergence rate results and see Zhou, Shen and Wolfe (1998) and Huang (2003) for some results
about the first order bias computations.

The local approach Let f (y, x) and f (x) denote the joint density of (Y,X) and the marginal
density of X, respectively. Using the Dirac-delta function, δx (s), as used previously in setting up
the moment condition for the density estimation (Section 4.1), we can write∫ ∫

[y − g (s)]2 f (y, s) δx (s) dsdy =
∫

[y − g (x)]2 f (y, x) dy

= E{(Y − g(X))2 |X = x}f (x) .

As the last term is proportional to E{(Y − g(X))2|X = x}, the solution to the infimum problem is
the same if f(x) > 0. Following the same logic as for the density estimation case, one can construct
a sample analog objective function using some approximation to the Dirac-delta function.

If we do not restrict the class of functions (M) over which infimum is taken, then the opti-
mization problem does not have a well defined solution. Different local estimation methods can be
viewed as different combinations of decisions about (1) how to approximate the Dirac-delta function
(2) how to restrict the class M and (3) how to use the data in choosing the approximation and the
class M.

For example, if we approximate the Dirac-delta function by

1
h
K

(
x− s

h

)
as we did in the density estimation case, and restrict M to the class of constant functions, the
left-hand side of the above expression has the sample analog:

1
n

n∑
i=1

(yi − β)2Kh(xi − x).
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Minimizing this with respect to β we get the kernel regression estimator:34

m̂K (x) =
∑n

i=1 yiKh (xi − x)∑n
i=1Kh (xi − x)

,

whenever the denominator is not zero. Writing

wK
ni (x) =

Kh (xi − x)∑n
i=1Kh (xi − x)

we see that m̂K (x) =
∑n

i=1 yiw
K
ni (x) and

∑n
i=1w

K
ni (x) = 1.

If function K (s) takes the form 1 (|s| ≤ 1) where |s| denotes a norm of s and the smoothing
parameter h is chosen to be the distance between x and the kth closest observation in {xi}n

i=1, then
the estimator is the kth-nearest neighbor estimator.

For the same Dirac-delta approximation, when M is replaced by a class of a finite dimensional
polynomial function, we get the local polynomial regression estimator of E(Y|X=x) at x = x0.35 It
is defined as the solution corresponding to β0 of the following minimization problem:

min
β(0),β(1),...,β(p)

1
n

n∑
i=1

yi − β(0) −
p∑

ν=1

∑
j1+···+jd=ν

1
j1! · · · jd!

βν,j1,...,jd
(xi1 − x01)j1 · · · (xid − x0d)jd

2

Kh(xi−x0),

where for ν = 1, . . . , p the length of vector β(ν) is (ν+d−1)!/((d−1)!ν!) and its elements are denoted
by βν,j1,...,jd

where j1+· · ·+jd = ν and j1, . . . , jd are non-negative integers. For concreteness and for
later purpose we order j = (j1, . . . , jd) lexicographically putting highest order to the first element,
the next to the second element, etc.

To gain an understanding of the objective function, observe that

Y = m(X) + ε = m(x0) + [m(X)−m(x0)] + ε.

Consider the one-dimensional case and assume that K (·) is a symmetric, unimodal density function
supported on the interval [−1, 1]. In that case, observations whose X = xi are close to x0 receive
more weight than others and if an observation’s X = xi is more than h apart from x0, it receives 0
weight. If functionm(·) is continuous atX = x0, then when the approximation error [m(X)−m(x0)]
is not very big so long as we restrict attention to observations whose xi is close to x0. Thus ignoring
the approximation error, minimizing the objective function for the kernel regression estimator is
justified.

To motivate the objective function of the higher order polynomial estimator, consider a one
dimensional case and let m(ν)(x) denote the νth order derivative of function m(·). Observe that

Y = m(X) + ε

= m(x0) +m(1)(x0)(X − x0) + · · ·+m(p)(x0)(X − x0)p/p!

+ {m(X)− [m(x0) +m(1)(x0)(X − x0) + · · ·+m(p)(x0)(X − x0)p/p!]}+ ε,

34See Nadaraya (1964) and Watson (1964) and Härdle (1990).
35See Stone (1977) and Fan and Gijbels (1996) p.105–106.
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where {m(X)− [m(x0) +m(1)(x0)(X − x0) + · · ·+m(p)(x0)(X − x0)p/p!]} constitutes the approxi-
mation error. The objective function is the weighted least squares objective function ignoring the
approximation error where the observations whose xi are closer to x0 receive higher weights. Clearly,
the solution corresponding to the constant term is the estimator of the conditional mean function
evaluated at x0 and the solution corresponding to the coefficient of (xi−x0)ν/ν! is the estimator of
the νth order derivative of the conditional mean function evaluated at x0. For higher dimensional
problems, we interpret m(ν)(x0), as a vector of partial derivatives of order ν and (X−x0)(ν)/ν! as a
vector of elements (X1−x01)j1 · · · (Xd−x0d)jd/(j1! · · · jd!), where j1+· · ·+jd = ν. For concreteness,
we assume both are ordered in the lexicographical way as above.

Fan (1992) clarifies the theoretical reasons why we may prefer to use the local polynomial regres-
sion estimator with p ≥ 1 instead of the kernel regression estimator (p = 0). The advantage is the
ability of the estimator to control the bias in finite sample. As we have seen above, in finite sample
the kernel regression estimator ignores [m(X) −m(x0)], which is of order h in the neighborhood
of x0 when the underlying function is twice differentiable with bounded second derivative. If the
local linear estimator is used, then under the same condition, the approximation error ignored is
of order h2 in the neighborhood of x0. If pth order polynomial is used and the underlying function
is at least r-times differentiable with bounded rth derivative where r ≥ p + 1, the approximation
error is of order hp+1 in finite sample. This leads to practical and theoretical advantages.

For the kernel regression estimator evaluated at the interior point of the support of regressors,
when the underlying function is twice differentiable and the second derivative is bounded, the first
order asymptotic analysis shows that the asymptotic bias is of order h2, which is the same order
with the local linear estimator. However, note that this is an asymptotic result and applicable to
interior points. For the local linear estimator, the bias is of order h2 in finite sample whenever the
estimator is well defined. For the local polynomial regression estimator of order p, so long as the
estimator is defined and the underlying function is sufficiently smooth, the bias is of order hp+1 in
finite sample. This is the practical advantage.

When a nonparametric estimator is used to construct a semiparametric estimator and the
asymptotic properties of the resulting semiparametric estimator is examined, as we shall see later,
typically the uniform convergence needs to be established with a certain convergence rate. Since
the same convergence rate can be achieved without the boundary consideration, the theoretical
development simplifies. This is the theoretical advantage.

We clarify above points in some detail as the results will be useful to understand the asymptotic
results discussed below and the bandwidth selection methods discussed later. Let j = (j1, . . . , jd)
and denote |j| = j1 + · · · + jd. Also let β = (β(0), β(1)′, . . . , β(p)′)′, Nu = (u + d − 1)!/((d − 1)!u!),
N =

∑p
u=0Nu, and X(u) be an n × Nu matrix with the ith row being (xi − x0)j/j! for |j| = u,

interpreted as specified above, ιn be the vector of n ones, X = (ιnX(1) · · ·X(p)) (an n×N matrix),
y = (y1, . . . , yn)′ and W be an n× n diagonal matrix with ith diagonal element being Kh(xi− x0).

With these notations, the local polynomial objective function can be written as

(y −Xβ)′W (y −Xβ)
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so that the local polynomial estimator is, when it exists, β̂ = (X ′WX)−1X ′Wy. The local polyno-
mial estimator of the conditional mean function is the first element of β̂ so that it can be written
as
∑n

i=1w
L
ni(x0)yi where

(wL
n1(x0), . . . , wL

nn(x0)) = e′N (X ′WX)−1X ′W,

where eN is a vector of length N with first element being one and the rest of the elements are zero.
Observe that

(wL
n1(x0), . . . , wL

nn(x0))X = e′N (X ′WX)−1X ′WX = e′NIN .

Reading off the row, we observe that
∑n

i=1w
L
ni(x0) = 1,

∑n
i=1w

L
ni(x0)(xi − x0) = 0, and generally∑n

i=1w
L
ni(x0)(xi−x0)(j)/j! = 0 for any j with 1 ≤ |j| ≤ p. As we shall see below, these orthogonality

properties of the weight function are the source that enables the estimator to control bias in finite
sample.

The weights for the kernel regression estimator satisfies
∑n

i=1w
K
ni(x0) = 1, but satisfies

n∑
i=1

wK
ni(x0)(xi − x0) → 0

only asymptotically when x0 is at the interior point of the support of xi and this does not hold
asymptotically if x0 is on the boundary of the support of xi.

One might think that the limitation of the kernel regression estimator at the boundary points
is not so important practically, because there are many more interior points than boundary points.
However, two points need to be taken into account. First, the comparable performance of the
kernel regression estimator in interior points is obtained asymptotically, not in the finite sample
as for the local polynomial estimator. Second, in finite sample, it is entirely plausible that the
data are unevenly distributed, so that there are many more data points lying on one side of the
point of evaluation (x0) than the other. This is even more likely to occur in higher dimensions. In
these cases, the asymptotic properties of the kernel regression estimator may not capture well the
finite sample behavior. In some sense, in finite sample, there are likely many points at which the
boundary behavior of the estimator may better represent its performance.

To see these points more clearly, define ε = (ε1, . . . , εn)′, β(ν)
0 = m(ν)(x0) for ν = 0, . . . , p and

β0 to be the vector of length N constructed by stacking these sub-vectors. We can write

y = Xβ0 + r + ε

where r = (r1, . . . , rn)′ = m−Xβ0 with m = (m(x1), . . . ,m(xn))′. Thus

β̂ = β0 + (X ′WX)−1X ′Wr + (X ′WX)−1X ′Wε.

The second term on the right-hand side is the bias term and the third, the variance term. We
examine the bias and the variance terms in turn.
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Bias Let H be the diagonal matrix with Nu diagonal elements of 1/hu for u = 0, . . . , p, in this
order. Then

β̂
(0)

= β
(0)
0 + e′NH(HX ′WXH)−1HX ′Wr + e′NH(HX ′WXH)−1HX ′Wε

= β
(0)
0 + e′N (HX ′WXH)−1HX ′Wr + e′N (HX ′WXH)−1HX ′Wε.

One can show thatHX ′WXH/(nhd) converges in probability to an invertible matrix, under general
conditions specified later. To see this, note that the typical element of the matrix is, for vectors of
non-negative integers j and j′,

1
nhd

n∑
i=1

((xi − x0)/h)(j)((xi − x0)/h)(j
′)K((xi − x0)/h)/(j!j′!).

Applying the Taylor series expansion we obtain

ri = m(p+1)(x̄i)(xi − x0)(p+1)/(p+ 1)!,

where m(p+1)(x̄i) is a row vector of length Np+1, consisting of m(j)(x̄i) with |j| = p + 1 and x̄i

lies on a line connecting xi and x0. Using this result, a typical element of HX ′Wr/(nhd) can be
written as, using the same j and j′ as above,

1
nhd

n∑
i=1

((xi − x0)/h)(j)(xi − x0)(j
′)m(j′)(x̄i)K((xi − x0)/h)/(j!j′!),

where here, |j′| = p + 1. Since ‖(xi − x0)(j
′)‖ = O(hp+1) when the kernel function used has a

bounded support, if the p+ 1st order derivative of m(x) at x = x0 is bounded, then the bias term
is of order hp+1.

Note that when the p+1st derivative is Lipschitz continuous at x = x0, the leading term of the
bias can be expressed as

e′N (HX ′WXH)−1HX ′WX(p+1)m(p+1)(x0).

Variance Conditional variance of e′N (X ′WX)−1X ′Wε is

e′N (X ′WX)−1X ′WΣWX(X ′WX)−1eN ,

where Σ is an n× n diagonal matrix with the ith diagonal element σ2(xi) = E(ε2i |xi). This can be
rewritten as

e′NH(HX ′WXH)−1HX ′WΣWXH(HX ′WXH)−1HeN

= e′N (HX ′WXH)−1HX ′WΣWXH(HX ′WXH)−1eN .

1 Combining the earlier calculation about HX ′WXH/(nhd) with the observation that the typical
element of HX ′WΣWXH/(nhd) can be written as

1
nhd

n∑
i=1

((xi − x0)/h)(j)((xi − x0)/h)(j
′)σ2(xi)K2((xi − x0)/h)/(j!j′!),
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we see that the variance is of order 1/(nhd). Note that when the conditional variance function is
Lipschitz continuous at x0, the highest order term of the conditional variance can be expressed as

e′N (HX ′WXH)−1HX ′W 2XH(HX ′WXH)−1eNσ
2(x0).

These finite sample expressions of the bias term and the conditional variance term will later be
used to approximate the mean squared error, which can be used to optimally choose the bandwidth
h.

The asymptotic properties of the local polynomial estimator has been developed by many au-
thors, but the following results due to Masry (1996a, 1996b) seem to be the most comprehen-
sive. We assume stationarity of {(Xt, Yt)}, and define the local polynomial regression estimator of
E(Yt+s|Xt = x) = m(x) and its derivatives at x = x0 where x0 ∈ Rd.

Let f(x) denote the Lebesgue density of Xt, f(x, x′, `) denote the joint Lebesgue density of Xt

and Xt+`, j = (j1, . . . , jd),

Djm(x) =
∂|j|m(x)

∂j1x1 · · · ∂jdxd
,

its local polynomial estimator of order p by β̂|j|,j(x), and define for (0, . . . , 0) ∈ Rd, β̂0,(0,...,0)(x) =

β̂
(0)

. Masry (1996b) establishes the conditions under which local polynomial estimator converges
uniformly over a compact set.

Theorem 1. Let D be a compact subset of Rd. If

1. the kernel function K(·) is bounded with compact support (There exists A > 0 such that
K(u) = 0 for ‖u‖ > A.) and there exists C > 0 such that for any (j1, . . . , jd) such that
0 ≤ j1 + · · · jd ≤ 2p+ 1

|uj1
1 · · ·u

jd
d K(u)− vj1

1 · · · vjd
d K(v)| ≤ C‖u− v‖,

2. the stationary process {(Xt, Yt)} is strongly mixing with the mixing coefficient α(k) satisfying

∞∑
j=1

jaα(j)1−2/ν <∞

for some ν > 2 and a > 1− 2/ν,

3. there exists C > 0 such that f(x) < C, f(x) is uniformly continuous on Rd, and infx∈D f(x) >
0,

4. there exists C > 0 such that f(u, v, `) < C,

5. the conditional density fX0|Ys
(x|y) of X0 given Ys exists and is uniformly bounded,

6. the conditional density f(X0,X`)|(Ys,Ys+`)(x, x
′|y, y′) of (X0, X`) given (Ys, Ys+`) exists and is

uniformly bounded for all ` ≥ 1,
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7. the p+ 1st order of derivative of m(x) is uniformly bounded and the p+ 1st order derivative
is Lipschitz continuous, and

8. E(|Y |σ) <∞ for some σ > ν,

then,
sup
x∈D

|β̂|j|,j(x)−Djm(x)| = O((lnn/(nhd+2|j|))1/2) +O(hp−|j|+1).

Point-wise variance goes down with rate 1/(nhd) as discussed above when |j| = 0. The lnn
factor is the penalty we need to pay for uniform convergence.

Masry (1996a) establishes the asymptotic normality of the local polynomial estimator in an
interior point of the support of Xt.36 Let M and Γ be N × N matrices with Nu × Nv, sub-
matrices Mu,v and Γu,v for u, v = 0, . . . , p, respectively, where the typical elements of Mu,v is∫
x

j1+j′1
1 · · ·xjd+j′d

d K(x)dx/(j!j′!) with |j| = u and |j′| = v and the typical element of Γu,v is∫
x

j1+j′1
1 · · ·xjd+j′d

d K2(x)dx/(j!j′!)with |j| = u and |j′| = v. Analogously define Mu,p+1 for u =
0, . . . p and define the N ×Np+1 matrix B as

M0,p+1

M1,p+1

...
Mp,p+1


and recall that we write m(p+1)(x) to denote a vector of Djm(x) with |j| = p+1 in the lexicographic
order discussed above.37

Note that matricesM , Γ, andB are the probability limits ofHX ′WXH/(nhd),HX ′W 2XH/(nhd
n),

and HX ′WX(p+1)/(nhd), respectively, when x0 is an interior point of the support of Xt.

Theorem 2. Suppose x0 is an interior point of the support of Xt. Let h = O(n−1/(d+2p+2)) as
n → ∞. If the conditional distribution and the conditional variance of Ys given X0 = x are
continuous at x = x0, f(x) is continuous at x0, f(x0) > 0 and if

1. the kernel function K(·) is bounded with compact support,

2. the stationary process {(Xt, Yt)} is strongly mixing with the mixing coefficient α(k) satisfying

∞∑
j=1

jaα(j)1−2/ν <∞

for some ν > 2 and a > 1−2/ν, and there exists νn = o((nhd)1/2) such that (n/hd)1/2α(νn) →
0 as n→∞,

36The following results imposes comparable conditions as those above, although Masry (1996a) establishes results

under somewhat weaker conditions on the kernel functions and results include cases under ρ-mixing as well.
37Our definition of M is different from that in the Masry’s paper by j!j′! for each element of M and thus the

asymptotic bias and variance expressions differ as well reflecting only the difference in the notations.

37



3. there exists C > 0 such that f(x) < C,

4. there exists C > 0 such that f(u, v, `) < C,

5. the conditional density f(X0,X`)|(Ys,Ys+`)(x, x
′|y, y′) of (X0, X`) given (Ys, Ys+`) exists and is

uniformly bounded for all ` ≥ 1,

6. the p+ 1st order of derivative of m(x) is uniformly bounded and the p+ 1st order derivative
is Lipschitz continuous, and

7. E(|Y |ν) <∞ for ν defined above,

then,
(nhd+2|j|)1/2

(
[β̂|j|,j(x0)−Djm(x0)]− (M−1Bm(p+1)(x0))ih

p+1−|j|
)

converges in distribution to the zero mean random variable with variance

σ2(x0)
f(x0)

(M−1ΓM−1)i,i

where i denotes the order in which j appear in matrix M .

The convergence rate coincides with the optimal rate computed by Stone (1982). The theorem
specifies the rate at which h should converge to 0, but does not specify how to choose h. Section
six discusses how to choose the smoothing parameter.

Note that the first order bias term

(M−1Bm(p+1)(x0))ih
p+1−|j|

depends on the p + 1st order derivatives but does not, in general, depend on the distribution of
the conditioning variable, other than the fact that f(x0) > 0 has been used in arriving at the
formula. When the kernel function used is symmetric and p− |j| is even, then the bias term is of
order hp+2−|j| and involves the derivative of regressor density.38 This corresponds to the case of
the kernel regression estimator.39

The order of the variance depends on the dimension of the function being estimated and the
order of the derivative of the target function, but does not depend on the degree of the polynomial
used in estimation. However, the constant term in the variance expression does depend on the
degree of the polynomial used. It has been observed that the constant term does not change when
p moves from a lower even number to the next odd number, for example from 0 to 1. It does go
up when moving up from an odd number to the next even number, for example from 1 to 2.40

Thus, moving up by one from an even number to an odd number reduces the bias, but does not
add to the variance. So when there is a choice, we should choose p to be an odd number. In
particular, it is better to use a local linear estimator to estimate the conditional mean function

38See Fan and Gijbels (1996), Theorem 3.1 for a discussion of a univariate case.
39See Härdle and Linton (1994).
40See Ruppert and Wand (1994) and Fan and Gijbels (1996) section 3.3.
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rather than a kernel regression estimator. Note that this is a result at interior points and also when
the underlying function is at least p+ 1-times continuously differentiable.

Another point to note about the form of the first order variance is that it is the same regardless of
whether the errors are allowed to be correlated or not. This is a standard but an unpleasant result in
nonparametric asymptotic analysis as pointed out by Robinson (1983) for the case of kernel density
estimation. It is unpleasant, because, for any finite number of observations, the observations that
fall in the fixed neighborhood of x0 would be correlated especially in high frequency data analysis.
See Conley, Hansen, Liu (1997) for a bootstrap approach to assess the variability.41

Here, we have discussed local polynomial estimation of the conditional mean function. For a
discussion of locally linear estimation of the conditional quantile function, see Chaudhuri (1991a,
b) and Yu and Jones (1998).

5 Semiparametric Estimation

We review some semiparametric estimation methods used in econometrics. As discussed in section
two, the curse-of-dimensionality problem associated with nonparametric density and conditional
mean function estimators makes the methods impractical in applications with many regressors and
modest size samples. Semiparametric modeling approaches offer a middle ground between fully
nonparametric and fully parametric approaches. They achieve faster rates of convergence for con-
ditional mean functions or other parameters of interest by employing one of the three approaches
discussed earlier: by imposing some parametric restrictions, by changing the target parameters,
or by imposing quantile restrictions in the case of limited dependent variable models. The non-
parametric density and conditional mean function estimators described in the last section form the
building blocks of a variety of semiparametric estimators.

In section two, we considered one semiparametric model–the partially linear model–and de-
scribed its application to the problems of estimating consumer demand functions and to controlling
for sample selection. Here we consider that model in greater detail as well as other classes of semi-
parametric models for conditional mean function estimation, including additive separable models,
index models, and average derivative models with and without index restrictions. We also review
censored LAD estimator of Powell (1984) and the Maximum Score estimator of Manski (1975,
1985) for the limited dependent variable models as examples of exploiting quantile restrictions.
These methods embody distinct ideas that are applicable in other contexts. A detailed discussion
of techniques for deriving the distribution theory is left for section seven.

5.1 Conditional mean function estimation with an additive structure

Suppose the relationship of interest is E(Y |X = x) = g(x), where X is a random vector of length
d and g is an unknown function from Rd into R. As described earlier, we face the curse of di-

41Another approach may be to compute the finite sample variance formula and estimate it analogously to the

Newey-West approach.
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mensionality if fully nonparametric estimator of g(x) were to be used. Another problem is that
nonparametrically estimated g functions become difficult to interpret when the estimated surface
can no longer be visualized and the effect of any regressor on the dependent variable depends on
the values of all the other regressors.

We consider three classes of semiparametric estimators for g(x) that impose different kinds
of modeling restrictions designed to overcome the curse-of-dimensionality problem and to make
estimates easier to interpret. The first class, additively separable models, restricts g(x) to lie in
the space of functions that can be written as an additively separable function of the regressors.
The second class, single index models, assumes that X affects Y only through an index X ′β. That
is, g(x) = g(x′β). Multiple index models allow the conditional mean of Y to depend on multiple
indices. The third class, partially linear models, assumes that the function g(x) can be decomposed
into a linear component and a nonparametric component, thereby extending the traditional linear
modeling framework to include a nonparametric term. Partially linear restrictions are often imposed
in connection with index model restrictions, giving rise to partially linear, single or multiple index
models.

5.1.1 Additively separable models

An additively separable model restricts g(x) to be additively separable in the components of the
vector X:

E(Y |X) = α+ g1(X1) + g2(X2) + g3(X3) + · · ·+ gd(Xd),

where the gi(xi), i = 1..d, are assumed to be unknown and are nonparametrically estimated. A
key advantage of imposing additive separability is that the nonparametric estimators of the gi(xi)
functions as well as of the conditional mean function E(Y |X = x) can be made to converge at the
univariate nonparametric rate. Another advantage is interpretive: the model allows for graphical
depiction of the effect of xj on y holding other regressors constant. The separability assumption
is also not as restrictive as it may seem, because some regressors could be interactions of other
regressors (e.g. x3 = x1x2). However, for gi(xi) to be nonparametrically identified, it is necessary to
rule out general forms of collinearity between the regressors. That is, we could not allow x1 = ψ(xk)
for some ψ function, for example, and still separately identify g1(x), . . . , gd(x).42

Estimation Methods

Back-fitting algorithms As described in Hastie and Tibshirani (1990), additively separable
models can be solved through an algorithm called back-fitting.

The algorithm involves three steps:

(i) Choose initial starting values for α and for gj . A good starting value might set α0 = average(Y )
and g0

j equal to the values predicted by a linear in x least squares regression of Y on a constant
and all the regressors.

42See the discussion of concurvity in Hastie and Tibshirani (1990).
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(ii) For each j = 1..d, define gj = Ê(y−α−
∑

k 6=j g
0
k(xk) |xj), where g0

k is the most recent estimate
of gk(xk) (the starting value at the first iteration). The conditional expectation is estimated
by a smoothing method, such as kernel or local linear regression, or series expansion or spline
regression. At this stage, if it is desired that a functional form restriction be imposed on the
shape of one or more of the gj functions, then the restriction can be imposed by setting, for
example, Ê(y − α−

∑
k 6=j g

0
k(xk) |xj) = xjβj .

(iii) Repeat step (ii) until convergence is reached (when the estimated gj(xj) functions no longer
change).43

Back-fitting can require many iterations to reach convergence, but it is relatively easy to im-
plement and is available in the software package Splus. Disadvantages of the method are that
consistency has not been shown when nonparametric smoothing methods are used in step (ii) and
there is as of yet no general distribution theory available that can be used to evaluate the variation
of the estimators.

An estimator based on integration An alternative approach to estimating the additively
separable model, which is studied by Newey (1994), Härdle and Linton (1996), Linton, Chen, Wang
and Härdle (1997) and others. Although it is more difficult to implement than the back-fitting
procedure, because it requires a pilot estimator of the nonparametric model g(x), the integration
approach has the advantage of having a distribution theory available.

For notational simplicity, consider the additively separable model with two regressors Y =
α+ g1(X1) + g2(X2) + ε. Define the integrated parameter

g̃1(x1) =
∫
g(x1, x2)dFx2 .

Note that this is generally not equal to E(Y |X1 = x1) which would be

E(Y |X1 = x1) =
∫
g(x1, x2)dFx2|X1=x1

.

If X1 and X2 are independent, then the two parameters coincide. The integration estimator is
given by

ĝ1(x1) = n−1
n∑

i=1

ĝ(x1, x2i).

If the model is additive, then ĝ1(x1) estimates g1(x1) up to an additive constant. Reversing the
roles of x1and x2 obtains an estimator for g2(x2), again up to scale.

In general, we do not really believe that the underlying function g(x1, x2) is additively separable
but that we use the model as a convenient way to summarize data. From this perspective, the
integration estimator proposes to examine the effect of one variable X1 on the dependent variable

43Also see Hastie and Tibshirani (1990) for discussion of a modified back-fitting algorithm that, in some circum-

stances, converges in fewer iterations.
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after integrating out the rest of the variablesX2, . . . Xd using the marginal distribution ofX2, . . . Xd,
which would be exactly the correct procedure if the underlying function g is indeed additively
separable between X1 and X2, . . . Xd.

The back fitting algorithm seems to be an attempt to obtain the solution to the least squares
problem within the class of additively separable functions. Although these two sets of functions
should coincide, up to an additive constant terms, if underlying function g is additively separable,
if not, the two estimates in general would converge to different functions.

Newey (1994) shows that the estimator ĝ1(x1) converges at a one-dimensional nonparametric
rate because of the averaging. As we have seen, the convergence rate decreased because the rate
at which we obtain data decreased if we needed to condition on a point in a higher dimension
space. Since there is no need to condition on X2, . . . Xd for examining g1(x1), the convergence rate
corresponds to that for one-dimensional cases.

As noted above, an advantage of estimating additive models through integration is that the
distribution theory for the estimators has been developed.44 A disadvantage of the integration
estimator is that it requires that the higher dimensional estimate of the g(x) be calculated prior to
averaging, and existing distribution theory for the estimator requires that negative kernel functions
be used for bias reduction.

Generalized additive models The additive modeling framework has been generalized to
allow for known or unknown transformations of the dependent variable, Y . That is, estimators are
available for models of the form

θ(Y ) = α+ g1(X1) + g2(X2) + · · ·+ gd(Xd) + ε,

where the link function θ may be a known transformation (such as the Box-Cox transformation)
or may be assumed to be unknown and nonparametrically estimated along with the gj functions.
Hastie and Tibshirani (1990) describe how to modify back-fitting procedures to accommodate
binary response data and survival data, when the link function is known. For the case of an
unknown θ function, Breiman and Friedman (1985) propose an estimation procedure called ACE
(Alternating Conditional Expectation).45 Linton, Chen, Wang and Härdle (1997) describe an
instrumental variables procedure for estimating the θ function, which is based on the identifying
assumption that the model is only additively separable for the correct transformation so that
misspecification in θ shows up as a correlation between the error terms and the instruments. We
are not aware of empirical applications of these methods in economics, although generalized additive
models (GAMs) and ACE seem potentially very useful ways for empirical researchers to gain some
flexibility in modeling the conditional mean function while at the same time avoiding the curse-of-
dimensionality.

44See, for example, Härdle and Linton (1996).
45ACE is also discussed in Hastie and Tibshirani (1990). The ACE algorithm is available in the software package

Splus.
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5.1.2 Single Index Model

The single index model restricts the function g(x) under consideration to be

g(x) = φ(x′β0)

where φ is an unknown function. An estimator of the slope coefficients β0 in the single index model
that allows for discrete regressors and regressors which may be functionally related is studied by
Ichimura (1993).

Consider the single index model in the conditional mean function:

Yi = φ
(
X ′

iβ0

)
+ εi

E (εi|Xi) = 0.

This model arises naturally in a variety of limited dependent variable models in which the observed
dependent variable Yi is modeled as a transformation of X ′

iβ0 and an unobserved variables which
are independent of Xi. See Heckman and Robb (1985) and Stoker (1986). Also, this model can be
viewed simply as a generalization of the regression function.

Observe that

mW (b) ≡ E
{[
Y − E

(
Y |X ′b

)]2
W (X)

}
= E

{
ε2W (X)

}
+ E

{[
φ
(
X ′β0

)
− E

(
Y |X ′b

)]2
W (X)

}
The computation makes clear that, for any function W (x), the variation in Y has two sources: the
variation in X ′β0 and that in ε and that if we choose b to be proportional to β0, then contribution to
the variation due to the variation in X ′β0 becomes zero in function mW (b) as E (Y |X ′b) = φ (X ′β0)
in that case. This observation lead to defining an estimator as

min
b

1
n

n∑
i=1

[
yi − E

(
yi|x′ib

)]2
W (xi)

if we knew the conditional mean function E (Yi|X ′
ib). As we do not know it, we need to replace it

with its estimate. But since the conditional mean function cannot be estimated at points where
the density of X ′

ib is low, we need to introduce trimming as other estimators we examined earlier.
The trimming function in this case has a further complication. Even if the density of X

is bounded away from zero, the density of X ′b is not, in general. This can be understood by
considering two variables that has the uniform distribution on the unit square and considering the
density corresponding to the sum.

A simple way around this problem is to define the trimming function as follows:

Ii = 1 {xi ∈ X} ,

where X denotes a fixed interior points of the support of Xi by at least certain distance. Note that
over this set X , by construction the density of x is bounded away from zero and that the density
of X ′b is also bounded away from zero.
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Another point to note is that for any constant value c 6= 0, E (Y |X ′b = x′b) = E (Y |X ′(cb) = x′(cb))
so that we cannot identify the length of β0. Thus we define the estimator to be the minimizer of
the following objective function after replacing E (Yi|X ′

ib) with a nonparametric estimator of it:

min
b∈{b:b′b=1}

1
n

n∑
i=1

[
yi − Ê

(
yi|x′ib

)]2
W (xi) Ii.

In implementation, two forms of normalization are used; in some cases β′β = 1 is imposed and in
other cases one of the coefficient is set to 1.46 In either case, the Var-Cov matrix of the estimator
is V −ΩV −, where

V = E
{[
ϕ′
(
x′β0

)]2 [
x̃− E

(
x̃|x′β0

)] [
x̃− E

(
x̃|x′β0

)]′}
,

Ω = E
{
σ2 (x)

[
ϕ′
(
x′β0

)]2 [
x̃− E

(
x̃|x′β0

)] [
x̃− E

(
x̃|x′β0

)]′}
,

σ2 (x) = V (y|x)

and all of the expectations are taken over a given set X over which the density of x′β0 is assumed
to be bounded away from 0. When β′β = 1, x̃ = x and when one of the coefficients is set to 1, x̃ is
the original regressors except the regressor whose coefficient is set to 1. For the first normalization,
note that Ωβ0 = 0 and V β0 = 0 hold so that V and Ω are not invertible.

There are two sources of efficiency loss. One is that the variation in x̃ − E (x̃|x′β0) is used
rather than the variation in x̃. The other is that heteroskedasticity is not accounted for in the
estimation. While the first problem arises as φ is unknown, and hence is genuine to the formulation
of the problem, the second problem can be resolved by weighting if the model is truly single index.
Oftentimes, however, we use the single index model as a convenient approximation to a more
general function. Ichimura and Lee (2006) shows that if the single index model is used when the
underlying model is not single index, the SLS estimator still is consistent to a vector which best
approximates the conditional mean function within the single index model, and it is asymptotically
normal but its asymptotic variance contains an additional term. They discuss how to estimate
the asymptotic variance term including this additional term and hence how to make the estimator
robust to misspecification. Here the discussion used the linear single index, but the same idea
applies to the nonlinear index model and also to the case of multiple indices. See Ichimura and Lee
(1991).

When the dependent variable is discrete, the more natural objective function is likelihood based.
Klein and Spady (1993) examines the case of binary choice models and shows that the estimator
is efficient among semiparametric estimators.

Blundell and Powell (2003) considers the single index model with an endogenous regressor and
Ichimura and Lee (2006) considers the estimation of the conditional quantile function when the
conditional quantile function is modeled as a single index function.

46We consider W (x) = 1 for simplicity below. See Ichimura (1993) for the weighted case. In general we need to

modify the standard estimation of E (Y |X ′b) to achieve efficiency by weighting.
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5.1.3 Partially Linear Regression Model

The partially linear regression model extends the linear regression model to include a nonparametric
component and specifies:

Y = X ′β0 + ϕ (Z) + ε

where X ∈ Rp and Z ∈ Rq do not have common variables. If they do, then the common variables
would be regarded as a part of Z but not X because the coefficients that correspond to the common
variables would be not identifiable. If there is no cross terms of z among X’s, then the model
presumes additive separability of ϕ (Z) and X, which may be too restrictive in some applications.

This framework is convenient for a model with many regressors, where fully nonparametric
estimation is often impractical. It is also a good choice for a model that contains discrete regressors
along with a few continuous ones. As discussed in section two, this model has been broadly applied
in economics, mainly to the problem of estimating Engel curves and to the problem of controlling for
sample selection bias. Estimators for the partially linear model are studied in Heckman (1980, 1990),
Shiller (1984), Stock (1991), Wahba (1984), Engle, Grander, Rice and Weiss (1986), Chamberlain
(1986b), Powell (1987), Newey (1988), Robinson (1988), Ichimura and Lee (1991), Andrews (1991),
Cosslett (1991), Choi (1992), Ahn and Powell (1993), Honoré and Powell (1994), Yatchew (1997),
Heckman, Ichimura, Smith, and Todd (1998a), Heckman, Ichimura, and Todd (1998b) and others.

As we saw, the nonparametric convergence rate would depend on the number of continuous
regressors in (X,Z). In the partially linear regression framework, the convergence rate of the
estimator of ϕ depends only on the number of continuous regressors among z and that the n1/2-
consistent estimation of β can be carried out regardless of the number of continuous regressors in
(X,Z) provided there is enough smoothness in underlying functions as shown by Robinson (1988).

To consider the estimator Robinson studied, observe that

E (Y |Z = z) = E
(
X ′|Z = z

)
β0 + ϕ (z)

so that
Y − E (Y |Z = z) = (X − E (X|Z = z))′ β0 + ε.

If we knew E (Y |Z = z) and E (X|Z = z) then one could estimate β0 by the ordinary least squares
method of Y − E (Y |Z = z) on X − E (X|Z = z). Since we do not know them, we can estimate
them by some nonparametric method, call them Ê (Y |Z = z) and Ê (X|Z = z), and estimate β0

by (
N∑

i=1

[
xi − Ê (xi|zi)

] [
xi − Ê (xi|zi)

]′)−1 N∑
i=1

[
xi − Ê (xi|zi)

] [
yi − Ê (yi|zi)

]
.

Since the conditional mean functions will not be estimated well where the density of Z is low,
Robinson makes use of a trimming function Îi = 1

{
f̂ (zi) > bn

}
, where f̂(z) is a kernel density

45



estimator, for a given sequence of numbers {bn}.47 The estimator is defined as

β̂ =

(
N∑

i=1

[
xi − Ê (xi|zi)

] [
xi − Ê (xi|zi)

]′
Îi

)−1 N∑
i=1

[
xi − Ê (xi|zi)

] [
yi − Ê (yi|zi)

]
Îi.

The estimation method is reminiscent of an interpretation of OLS estimator: consider the OLS
estimation of

Y = X ′β0 + Z ′γ + ε.

Then as it is well known the OLS estimator of β0 is the OLS estimator of uy on ux where uy is the
OLS residual of running Y on Z and ux is the OLS residual of running X on Z.48 Here, the first
stage is replaced by nonparametric regressions.

Let α and µ be nonnegative real numbers and m be the integer such that m − 1 ≤ µ ≤ m.
For such µ > 0, =α

µ is the class of functions g : Rq → R satisfying: g is (m− 1)-times partially
differentiable for all z; for some ρ > 0, supy∈{y;|y−z|<ρ} |g (y)− g (z)−Qm−1 (y, z)| / |y − z|µ ≤ h (z),
where Q0 = 0 and for m ≥ 2, Qm−1 (y, z) is the (m− 1)th-degree homogeneous polynomial in y−z
with coefficients the partial derivatives of g at z of order 1 through m − 1; and g (z), its partial
derivatives of order (m− 1) and less, and h (z), all have αth moments.

Robinson uses kernel regression estimator with independent kernel functions. He introduces the
following notation: Kl, l ≥ 1 is the class of even functions k : R→ R satisfying∫ ∞

−∞
uik (u) du =

{
1 if i = 0
0 if i = 1, ...l − 1

k (u) = O

((
1 + |u|l+1+δ

)−1
)

, for some δ > 0.

In the statement below, k is the kernel function, a is the bandwidth for estimating regression
function and density, and b is the trimming value, q is the dimension of z. Both a and b depend on
N although the notation does not explicitly express it.

Theorem 3. (Robinson) Let the following conditions hold: (i) (Xi, Yi, Zi), i = 1, 2..., are inde-
pendent and distributed as (X,Y, Z); (ii) the model specification is correct; (iii) ε is independent
of (X,Z); (iv) E

(
ε2
)

= σ2 < ∞; (v) E
(
|X|4

)
< ∞; (vi) Z admits a pdf f such that f ∈ =∞λ ,

for some λ > 0; (vii) E (X|Z = z) ∈ =2
µ, for some µ > 0; (viii) ϕ (z) ∈ =4

ν , for some ν > 0; (ix)
as N → ∞, Na2qb4 → ∞, na2min(λ+1,µ)+2min(λ+1,ν)b−4 → 0, amin(λ+1,2λ,µ,ν)b−2 → 0, b → 0; (x)
k ∈ Kmax(l+m−1,l+n−1), for the integers l, m, n such that l − 1 < λ ≤ l, m − 1 < µ ≤ m, and
n− 1 < ν ≤ n. Then the condition

Φ ≡ E
{
[x− E (x|z)] [x− E (x|z)]′

}
is positive definite

is necessary and sufficient for
√
N
(
β̂ − β

)
d→ N

(
0, σ2Φ−1

)
and

σ̂2

(
N−1

N∑
i=1

[
xi − Ê (xi|zi)

] [
xi − Ê (xi|zi)

]′
Îi

)−1

p→ σ2Φ−1,

47This trimming is used by Bickel (1982).
48Frisch-Waugh double residual regression. See Goldberger (1968) and Malinvaud (1970.)
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where

σ̂2 = N−1
N∑

i=1

[
yi − Ê (yi|zi)−

(
xi − Ê (xi|zi)

)′
β̂

]2

.

As stated earlier, the convergence rate of β̂ is
√
N , which does not depend on the dimension

of Z, despite the presence of ϕ. The theorem is stated for the kernel regression estimator, but the
result should hold for other nonparametric estimators as discussed in section 7.

If Ê is a linear in dependent variable estimator, then σ̂2 can be rewritten as

N−1
N∑

i=1

[
yi − x′iβ̂ − Ê

(
yi − x′iβ̂|zi

)]2
,

which is a natural estimator of σ2.
Compared to the OLS estimation without ϕ under homoskedasticity variance is higher because

V ar (x) = Φ + V ar (E (x|z)) .

When there is heteroskedasticity so that (iii) does not hold, under analogous conditions

√
N
(
β̂ − β

)
d→ N

(
0,Φ−1ΩΦ−1

)
,

where
Ω = E

{
ε2 [x− E (x|z)] [x− E (x|z)]′

}
.

The partially linear regression model also resembles the conditional mean function in the sample
selection models. If the outcome equation is specified as Y = X ′β + u and the selection equation
is specified by the latent model of the form 1z′θ + v > 0, where (u, v) and (X,Z) are independent,
then without specifying the joint distribution of (u, v), the following relationship holds:

Y = X ′β0 + ϕ
(
Z ′θ
)

+ ε,

E (ε|X,Z) = 0.

Note that in this case, there is more structure in ϕ function and that θ (up to a scalar) can be
estimated from the data about selection. Without this structure, as discussed above, the partially
linear regression model only identifies coefficients of X variables that are not in the Z variables.

Powell (1987) made use of this observation, modified Robinson’s estimator so that there is no
need for trimming, and discussed estimation of β0. Ahn and Powell (1993) extended this approach
further based on the observation that in the sample selection model one can write the conditional
mean function as

Y = X ′β0 + ϕ (P (Z)) + ε,

E (ε|X,Z) = 0,
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where P (z) is the probability of being selected into samples, which can be estimated from the data
about selection.49 Ichimura and Lee (1991) propose a way of simultaneously estimating β and θ

with truncated data. Yatchew (1997) proposes to examine the differencing idea of Powell (1987)
to a finite number. Heckman, Ichimura, Smith, and Todd (1998a), Heckman, Ichimura, and Todd
(1998b) study estimation of β and ϕ(P (z)), allowing for parametrically estimated P (z) and data-
dependent bandwidths. The estimator they study is basically the same with the estimator studied
by Robinson but they use local polynomial estimator instead of the kernel regression estimator,
instead of Z, they have a parametric form P (z′θ) where θ is estimated by θ̂ from the data on
selection, use trimming based on the estimated low percentile (usually 1 or 2%) of P (z′iθ̂), denoted
as q̂n so that the trimming function is written as Îi = 1(f̂(P̂i) > q̂n) where f̂(·) is the kernel density
estimator of the density of P (z′θ), and smoothing parameter can be data dependent. Estimation
of ϕ is done using the estimated β to purge Y of its dependence on X, we can estimate ϕ(p0) by a
local linear regression of Yi −X ′

iβ̂ on P̂i evaluated at p0, which we denote it by ˆϕ(p0)
The following theorem summarize the results by Heckman, Ichimura, Todd (1998b). Di denote

the indicator whether the ith observation is in the sample or not.

Theorem 4. Assume that

(i) Data {(Xi, Yi, Zi, Di)} are i.i.d., E{||xi||2+ε+||zi||2+ε} <∞ for some ε > 0, and E{|yi|3} <∞,

(ii)
√
n(θ̂ − θ0) = n−1/2

∑n
i=1 ψ(zi, di) + op(1), where n1/2

∑n
i=1 ψ(zi) converges in distribution to

a normal random vector,

(iii) the kernel function K(·) is supported on [−1, 1] and it is twice continuously differentiable,

(iv) P (z′iθ) is twice continuously differentiable with respect to θ and both derivatives have second
moments,

(v) E(X|P ), E{ϕ(P )} are twice continuously differentiable with respect to θ,

(vi) H1 = E{[X − E(X|P )][X − E(X|P )]′I} evaluated at the true θ = θ0 is nonsingular.

(vii) The density of P (Z ′θ), fθ, is uniformly bounded and uniformly continuous in the neighborhood
of θ0 and for any ε > 0 there exists δ > 0 such that if ||θ − θ0|| < δ then sup

0≤s≤1
|fθ(s)− fθ0(s)| <

ε.

(viii) na3
n/ log n→∞ and na8

n → 0.

Then

n1/2(β̂ − β0) = n−1/2
n∑

i=1

H−1
1 {[Xi − E(X|Pi)]εiIi +H2ψ(Zi, Di)}+ op(1)

49Establishing asymptotic distribution theory for an estimator that involves trimming which uses estimated θ or

estimated P (z) would be a non-trivial task. Powell (1987) and Ahn and Powell (1993) avoided the need for trimming

by a clever re-weighting scheme. This approach have been developed to be applicable to broader models by Honoré

and Powell (1994), Honoré and Powell (2005), and Aradillas-Lopez, Honoré, and Powell (2005).
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where H2 = E{[X − E(X|P )]P (Z ′θ0)[Z − E(Z|P )]′I}.
If in addition to the assumptions above, the following assumptions hold:

(ix) ϕ is twice continuously differentiable,

(x) fθ0(p0) > 0,

(xi) the bandwidth sequence satisfies ân = α̂nn
−1/5, plim α̂n = α0 > 0,

(xii) σ2(p0) = E[|Y −X ′β|2 |P = p0] is finite and continuous at p0,

then,
n2/5(ϕ̂(p0)− ϕ(p0)) ∼ N(B, V )

where
B =

1
2
ϕ′′(p0)

[∫
s2K(s)ds

]
α2

0

V =
Var (Y −X ′β|P = p0)

fθ0(p0)α0

∫
K2(s)ds,

where ϕ′′(p0) is the second derivative of the regression function.

5.2 Improving the convergence rate by changing the parameter

The prototypical way to improving the convergence rate is by averaging. If we give up estimating
a function at a point and instead average the point estimates over a region, we can, under some
conditions, improve the convergence rate. This point is clear enough for the case of the conditional
mean function m(x) = E(Y |X = x). We saw that the convergence rate of the estimation of the
conditional mean function depends on the number of continuous conditioning variables and the
underlying smoothness of the conditional mean function with respect to these variables. Let X =
(X1, X2). Instead of estimating m(x1, x2), one can estimate m(x1, A) = E(Y |X1 = x1, X2 ∈ A)
for some region A. In this case, since it is equivalent to having less continuous regressors, the
convergence would only depend on the number of continuous regressors among X1.

An analogous result holds for the estimation of the average of a nonparametric estimator of
the derivative of a function. The average derivative estimator is examined by Stoker (1986) and
its asymptotic distribution theory, in modified forms, is established by Powell, Stock, and Stoker
(1989), Robinson (1989), and Härdle and Stoker (1989). Newey and Stoker (1993) discusses effi-
ciency issues.

Note that when E(Y |X) = g(X), the solution to

min
b
E
{
[Y −X ′b]2

}
= min

b
E
{
[g(X)−X ′b]2

}
+ E[V ar(Y |X)]

corresponds to the OLS estimator and b∗ = E(XX ′)−1E[XY ] which can be interpreted as the best
predictor of the form X ′b∗ as observed by White (1980).
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Since we are also interested in measuring the marginal effect of a change in regressors to de-
pendent variables, ∂g/∂x, we may also want to estimate δk that solves

min
δk

E
{

(∂g/∂x− δk)
2
}

for each k = 1, ..., d. Clearly the solution is δ∗k = E {∂g/∂x}. Stoker (1986) proposed estimation of
δ∗k.

Another case δ∗k is of interest is when g (x) = φ (x′β0). Stoker observed that many limited
dependent variable models have this property. In this case

∂g/∂x = φ′
(
x′β0

)
· β0.

Thus E (∂g/∂x) = c · β0 for some constant c: estimation of the average derivative corresponds to
β0 parameter up to a constant term.

However, the interpretation of the average derivative as β0 parameter up to a constant term
depends on the assumption that (i) there is no discrete regressors among regressors and (ii) there
is no functional relationship among regressors. These two assumptions may make the direct ap-
plication of the average derivative method unsuitable for many limited dependent variable models.
This issue is not relevant if we interpret the average derivative in a nonparametric context.

As we discussed earlier, g (x) and its derivatives can be estimated consistently by non-parametric
estimators. But as we noted there, convergence rate is very slow especially when K is large and/or
when we estimate higher order derivatives. It turns out that δ∗k can be estimated 1/

√
n-consistently,

the typical rate at which parametric estimators converge.
Let ∆̂ (x) be a nonparametric estimator of ∂g/∂x at a point x. Then a natural estimator of

δ∗ = (δ∗1, δ
∗
2, ..., δ

∗
d)
′ is

1
n

n∑
i=1

∆̂ (xi) .

Stoker does not examine this estimator but instead bases his estimator on the integration by parts
argument. We present his argument for one dimension case but the same argument goes through for
a higher dimension: with an appropriate boundary conditions as made explicit in the computation
below

E
(
g′
)

=
∫ ∞

−∞
g′ (x) f (x) dx

= g (x) f (x) |∞−∞ −
∫ ∞

−∞
g (x) f ′ (x) dx

= −
∫ ∞

−∞
g (x)

f ′ (x)
f (x)

f (x) dx = −E
(
Y
f ′

f

)
Thus by making use of a nonparametric estimator of f (x) and its derivative, one can estimate the
average derivative. As the ratio f ′/f won’t be estimable where f is low, the estimator is defined
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making use of a trimming function Îi = 1
{
f̂ (xi) > bn

}
for a given sequence of numbers {bn}.

δ̂ =
1
n

n∑
i=1

−∂f̂ (xi) /∂x

f̂ (xi)
yiÎi, where

f̂ (x) =
1
n

n∑
j=1

1
aK

n

K

(
x− xj

an

)
.

The estimator can be obtained directly without any optimization. Härdle and Stoker (1989)
shows:

Theorem 5. Consider yi = g (xi) + εi with E (εi|xi) = 0 under iid sampling. If

1. The regressors have density f (x) where the support of f is a convex subset of RK ,

2. f (x) = 0 at the boundary of the support,

3. g (x) is continuously differentiable almost everywhere,

4. E
{
y2 (∂ log f (x) /∂x) (∂ log f (x) /∂x)′

}
and E

{
(∂g/∂x) (∂g/∂x)′

}
are finite and E

(
y2|x

)
is

continuous,

5. f (x) is differentiable up to p ≥ K + 2,

6. f (x) and g (x) obey local Lipschitz conditions, i.e. for v in neighborhood of 0, there exist
functions ωf , ωf ′, ωg′, and ω`g such that

|f (x+ ν)− f (x)| ≤ ωf (x) |ν| ,∣∣f ′ (x+ ν)− f ′ (x)
∣∣ ≤ ωf ′ (x) |ν| ,∣∣g′ (x+ ν)− g′ (x)
∣∣ ≤ ωg′ (x) |ν|∣∣∣∣∂ log f (x+ ν)

∂x
g (x+ ν)− ∂ log f (x)

∂x
g (x)

∣∣∣∣ ≤ ω`g (x) |ν|

where second moments of ωf , ωf ′, ωg′, and ω`g are all finite,

7. Let An = {x|f (x) > bn}. As n→∞,∫
Ac

n

g (x)
∂f (x)
∂x

dx = o
(
n−1/2

)
,

8. Let f (p) denote the pth order derivative of f . f (p) is locally Hölder continuous: there exists
γ > 0 and c (x) such that ∣∣∣f (p) (x+ ν)− f (p) (x)

∣∣∣ ≤ c (x) |ν|γ ,

where second moments of f (p) and c (x) are finite,
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9. The kernel function K (u), u ∈ RK has finite support, is symmetric, has p + γ-absolute
moments, and K (u) = 0 at the boundary points, and K (u) is of order p, i.e.

∫
RK K (u) du =

1, ∫
RK

u`1
1 u

`2
2 · · ·u

`ρ
ρ K (u1, u2, ..., uK) du = 0 where `1 + · · ·+ `ρ < p, for all ρ ≤ K, and∫

RK

u`1
1 u

`2
2 · · ·u

`ρ
ρ K (u1, u2, ..., uK) du 6= 0 where `1 + · · ·+ `ρ = p, for all ρ ≤ K,

10. As n → ∞, an → 0, bn → 0, an/bn → 0 and for some ε > 0, n1−εa2K−2
n b4n → ∞, and

na2p−2
n → 0,

Then
√
n
(
δ̂ − δ

)
d→ N (0,Σ) ,

where

Σ = E

{[
∂g

∂x
− E

(
∂g

∂x

)][
∂g

∂x
− E

(
∂g

∂x

)]′}
+ E

{
σ2

ε

∂ log f (x)
∂x

∂ log f (x)
∂x′

}
.

Although bn has to converge to zero, there is no restriction at the speed at which that con-
vergence has to happen in this condition. The speed requirement comes from assumption 7. As
na2p−2

n → 0, the parameter an does need to converge to zero sufficiently fast. In order for these
bandwidth requirements to be mutually consistent, the density f needs to approach 0 sufficiently
smoothly.

As observed above, the estimator is based on some boundary conditions. When the boundary
conditions do not hold, then direct estimation of the average of a nonparametric estimator of
the derivative would be preferable. Also, in deriving the theoretical properties of the estimator,
negative kernel functions are used to ”kill” the bias term asymptotically. Additionally, E (ε|x) = 0
is needed, so that models with endogenous regressors can not be treated with this estimator.
Lastly, if some of the regressors are discrete, the derivative is clearly not defined. Even in this
case, however, if one restricts taking derivative with respect to the continuous regressors, then the
arguments would go through without a modification. See Härdle and Stoker (1989) for estimation
of the asymptotic variance-covariance matrix. Newey and Stoker (1993) showed that the estimator
has the variance and covariance matrix that coincides with the smallest variance-covariance matrix
within nonparametric estimators that are 1/

√
n-consistent to δ∗.

5.3 Usage of different stochastic assumptions

As we discussed in the context of the censored regression model, a quantile restriction leads to
n1/2-consistent estimator even in the presence of an infinite dimensional nuisance parameter. This
important result was shown by Powell(1984). A conditional mean restriction is not sufficient. The
same idea applied to the binary response model does not lead to n1/2-consistent estimator. We will
see why via a discussion of Manski’s (1975, 1985) maximum score estimator.
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5.3.1 Censored Regression Model

The model we study is

y∗t = x′tβ0 − εt

yt =

{
y∗t if y∗t > 0
0 if y∗t ≤ 0.

where the conditional median of ε is assumed to be 0. In econometric literature, Powell (1984) is
the first to explicitly recognize essentially the parametric nature of the conditional quantile function
under the censored regression model even though the conditional distribution of ε is restricted to
have the conditional median to be 0.

There are two observations that lead to Powell’s estimator. First, when x′tβ0 > 0 the median of
observed dependent variable is still x′tβ0 and that when x′tβ0 < 0 the median of observed dependent
variable is 0 so that the median of the observed dependent variable is known to have the following
parametric form:

max
{
0, x′tβ0

}
.

Second, the minimizer of
∑T

t=1 |yt − a| over a estimates the median consistently. Thus the estimator
is defined as the minimizer of

inf
b

T∑
t=1

∣∣yt −max
{
0, x′tb

}∣∣ .
Powell (1984) showed that the estimator is n1/2-consistent and asymptotically normal:

√
T
(
β̂ − β0

)
d→ N

(
0, lim

T→∞
C−1

T MTC
−1
T

)
where

CT = E

{
T−1

T∑
t=1

2ft (0|xt) · 1
(
x′tβ0 > 0

)
xtx

′
t

}
and

MT = E

{
T−1

T∑
t=1

1
(
x′tβ0 > 0

)
xtx

′
t

}
.

When ft (0|xt) = f (0), CT = 2f (0) and thus

√
T
(
β̂ − β0

)
d→ N

(
0, lim

T→∞

1
4f (0)

M−1
T

)
.

Under this assumption Powell provides consistent estimator of f (0) and limT→∞MT . When we
have i.i.d. sampling f (0|x) can be estimated consistently and thus CT also, under some regularity
conditions.
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5.3.2 Binary response model

For the case of binary response, the model is:

yi = 1
(
x′iβ0 − εi > 0

)
.

Observe that
E (yi|xi) = Fε

(
x′iβ0|xi

)
,

where Fε is the cumulative distribution function of ε. If the median of εi given xi is 0, that is, if

Fε (s|xi) = 1/2 if and only if s = 0,

then the medial of yi given xi is 1 if x′iβ0 > 0 and 0 if x′iβ0 < 0. That is the conditional median
function of yi is known to be parametric and the form is 1 (x′iβ0 > 0). Thus, based on the quantile
regression idea, a natural estimator is to find the minimizer of the following objective function

n∑
i=1

∣∣yi − 1
(
x′iβ > 0

)∣∣ ,
as in the censored LAD estimator. As Manski (1985) discusses, minimizing this objective function
is equivalent to maximizing the maximum score objective function of Manski (1985):

n∑
i=1

(2yi − 1)sign(x′iβ),

where sign(s) equals 1 if s > 0 and −1 if s < 0 and equals 0 if s = 0. Unlike the objective
function of the censored LAD estimator, this objective function changes the value around the
points x′iβ = 0. As the observations corresponding to this line is measure zero when there is a
continuous regressor is present, the convergence rate is not n−1/2. Kim and Pollard (1990) showed
that in fact the estimator converges with rate n−1/3. Note that this convergence rate corresponds to
that of nonparametric estimators which do not exploit smoothness. Horowitz (1992) showed how
to exploit the smoothness of the underlying conditional CDF and improve the convergence rate
when indeed the underlying CDF is smooth. His estimator replaces the unsmooth sign function by
a smooth function.50

6 Smoothing parameter choice and trimming

The flexible estimators described in sections 4 and 5 are specified up to some choice of smooth-
ing parameter. For local estimators, the smoothing parameter choice corresponds to choosing
the bandwidth parameter. For global estimators, the smoothing parameter choice corresponds to
choosing the bases functions to include in the expansion. For semiparametric estimators, in addi-
tion to choosing the smoothing parameter, implementation of the estimators also requires choosing

50Horowitz (1992) implementation does not exactly correspond to a smoothed version of the Manski’s objective

function as Horowitz replaces the sign function with a smooth CDF function.
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a method of trimming the data, as discussed in section 5. In this section, we discuss the problem
of smoothing parameter choice in the context of density and conditional mean function estimation
and also in the context of semiparametric estimation. We also discuss trimming methods.

One way of choosing smoothing parameters is to use graphical diagnostics, which reveal how
an estimated surface changes in response to varying the smoothing parameters. For a simple
problem, some argue that this can be a reasonable way of selecting smoothing parameters. But
this procedure is subjective and hence the choice would be hard to justify formally or communicate
to others. In addition, even at the subjective level, it is questionable if we can visualize something
corresponding to bias and variance of the estimator. Moreover, for a higher dimensional problems or
for cases where nonparametric estimators are being used as input into a semiparametric estimation
problem, an implicit criteria the graphical approach uses is not necessarily appropriate and is
too user-intensive to be practical. A more automatic bandwidth selection method is needed. For
nonparametric density and regression estimation, the importance of developing data-based methods
to guide researchers in selecting bandwidths is well recognized and a variety of bandwidth selectors
have been proposed in the statistics and econometrics literatures. All the methods select the
bandwidth to minimize error in estimation with respect to a certain criteria. They differ in the
criteria used for measuring estimation error.

We summarize results in the literature as well as our own Monte Carlo studies evaluating the
performance of different smoothing parameter selection methods. Our discussion is limited to the
bandwidth selection methods for the kernel density estimator and local polynomial estimators.

There are two types of smoothing parameters: constant, or sometimes refer to as global, and
variable. A global smoothing parameter is held fixed for the entire domain of the function being
estimated and a variable smoothing parameter is allowed to vary at each point of the domain.51

For the density estimation, we discuss global bandwidth choice for the kernel density estimator.
The advantage of a variable bandwidth is that it adapts better to the design of the data. A
disadvantage, in the case of the kernel density estimation, is that once the bandwidth is allowed to
depend on the data, the resulting estimator is no longer guaranteed to be a density. For regression
estimation, this problem does not exist so we will consider both global and local bandwidth selectors.

6.1 Methods for selecting smoothing parameters in the kernel density estima-

tion

As was shown in Table 1, the efficiency of the kernel density estimator

fn(x;h) =
1
nh

n∑
i=1

K

(
x−Xi

h

)
depends more on the choice of bandwidth h than on the choice of kernel function K(·) within a
class of commonly used kernels. Therefore, in the following discussion we take the choice of kernel
function as given and focus on the question of how to choose the smoothing parameter.

51Fan and Gijbels (1992) studies a bandwidth selection method which differ for each data point and refers to the

method as a “global variable” method.
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The three bandwidth selection methods we discuss are the rule of thumb (ROT) method, the
least square cross validation (LSCV), and the smoothed bootstrap (SB) method by Taylor (1989).

The ROT method is chosen for its simplicity in implementation. The other two methods are
chosen for their theoretical coherence as well as reliable performance in Monte Carlo studies in the
literature and our own.

The loss function underlying all three methods of selecting the bandwidth of the kernel density
estimator is the highest order of the integrated mean squared error:∫

E{(fn(x;h)− f(x))2}dx =
∫

[V ar((fn(x;h))) +Bias2(x)]dx,

where Bias(x) = E[fn(x;h)] − f(x) and here and below, the integration is taken over the whole
real line.

Three methods differ in ways to approximate this objective function. If we wish to choose the
bandwidth local to a particular point x, then clearly we should examine E{(fn(x;h) − f(x))2} at
the point x rather than examining the overall measure such as above.

Rule of Thumb Under suitable regularity conditions IMSE can be approximated by the sum of
two terms:

AIMSE(h) =
c2K

nh
+
σ2

K

4
h4

∫
[f ′′(x)]2dx,

where c2K =
∫
K2(s)ds and σ2

K =
∫
s2K(s)ds. The first term represents the variance and the

second term represents the bias term.52

The h that minimizes the AIMSE is

hAIMSE =
[
c2K

σ2
K

1
[
∫

[f ′′(x)]2dx]

]1/5

n−1/5. (6.1)

The optimal bandwidth decreases with the size of the sample and increases when the effect of bias
on the AMISE is greater; i.e. when

∫
[f ′′(x)]2dx is larger.

From equation (6.1) we see that estimating the global optimal plug-in bandwidth that minimizes
the AIMSE requires obtaining an estimate of

∫
[f ′′(x)]2dx.

ROT estimates the unknown quantity by assuming a value based on a parametric family, usually
the N(µ, σ2) distribution. Under normality,∫

f
′′
(x)2dx = σ−5 3

8
√
π

≈ 0.212σ−5.

If in addition a normal kernel is used, the ROT bandwidth is approximately equal to 1.06σn−1/5.
52The highest order approximation to the MSE at point x is

c2K

nh
f(x) +

1

4
h4σ2

K [f ′′(x)]2.

There is a different trade-off between variance bias at each point reflecting different values of f(x) and f ′′(x). Thus

it seems more desirable to choose a point-wise bandwidth.
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Because the scale parameter σ is potentially sensitive to outliers, Silverman (1986) suggests
using a more robust rule-of-thumb estimator, where the interquartile range of the data replaces the
sample standard deviation as a scale parameter. It is given by hROT = 1.06 min(σ̂, R̂/1.34)n−1/5,

where σ̂ is the sample standard deviation and R̂ the estimated interquartile range. (for Gaussian
data, R̂ ≈ 1.34σ̂).53

Clearly, when the underlying density is not normal, the ROT method does not consistently
estimate the hAIMSE and hence suboptimal. However, because it converges to 0 with an appropri-
ate rate, it does yield a consistent and asymptotically normal kernel density estimator when the
underlying density is twice continuously differentiable.

Least Square Cross validation The least square cross validation (LSCV) discussed by Stone
(1974) chooses the bandwidth that minimizes the estimated integrated squared error (ISE):

ISE =
∫

[fn(x;h)− f(x)]2dx.

Hall (1982) showed that under regularity conditions

ISE = IMSE + op(h4 + (nh)−1)

so that minimizing the ISE and minimizing the IMSE is equivalent to the first order under some
regularity conditions.

Note that
ISE =

∫
[fn(x;h)]2dx− 2

∫
fn(x;h)f(x)dx+

∫
[f(x)]2dx

and that the last term does not depend on h so minimizing the sum of the first two terms is
equivalent to minimizing the ISE. Although the second term is not computable because f(x) is not
known, its unbiased estimator can be constructed by

−2
1
n

n∑
i=1

fni(Xi;h),

where fni(x;h) = (n− 1)−1
∑

j 6=iK((x−Xi)/h)/h.
Thus the LSCV chooses the bandwidth that minimizes

AISE(h) =
∫

[fn(x;h)]2dx− 2
1
n

n∑
i=1

fni(Xi;h).

Note that if we use fn(x;h) in place of fni(x;h), then the LSCV yields an inconsistent method. To
see this observe that∫

[fn(x;h)]2dx =
∫
K2(s)ds
nh

+
1
n2h

n∑
i=1

∑
j 6=i

K ∗K((Xi −Xj)/h),

53The rule-of-thumb method can of course be tailored to a particular application. For example, if a researcher

strongly suspected bimodality in the density, he/she may want to use a bimodal parametric density for the plug-in

estimator.
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where K ∗K(u) =
∫
K(u− s)K(s)ds. So if there is no duplication in the observations {Xi}n

i=1 and∫
K2(s)ds < 2K(0)

and lim|s|→∞ |s|K(s) = 0 as well as lim|s|→∞ |s|K ∗ K(s) = 0, then choosing h small will make
the objective function small. Since this holds regardless of f(x), the LSCV yields an inconsistent
method. Note that

∫
K2(s)ds < 2K(0) holds for most kernel functions such as those densities that

has a single peak at 0.54

When there is no duplication of observations, on the other hand, the “delete one” modification
fixes the problem as defined above. However, the same issue which was avoided by the “delete one”
modification arises when there are duplication of observations. Since the duplication of observations
arises naturally if there is discretization, one needs to be aware of this potential problem when
applying the LSCV.

Hall (1983) and Stone (1984) justified LSCV as a data dependent method to choose the optimal
bandwidth. In particular, Stone (1984) showed that, only assuming boundedness of f(x) (and its
marginals, for multivariate case),

ISE(hLSCV )
ISE(hopt)

→ 1

as n→∞ with probability 1, where hopt minimizes ISE(h).

Smoothed Bootstrap The smoothed bootstrap method of Taylor (1989) is motivated by the
formula obtained when estimating

∫
E{[fn(x;h) − f(x)]2}dx by a bootstrap sample generated

from fn(x;h). That is, writing X∗
i to be sampled from distribution fn(x;h), one can estimate∫

E{[fn(x;h)− f(x)]2}dx by

E∗

{
1
nh

n∑
i=1

K((x−X∗
i )/h)− 1

nh

n∑
i=1

K((x−Xi)/h)

}2

.

Taylor (1989) observes that this can be explicitly computed when Gaussian kernel is used and its
integration over x is:

1
2n2h(2π)1/2

 n∑
i=1

n∑
j=1

exp
{
−Xj −Xi

8h2

}
− 4

31/2

n∑
i=1

n∑
j=1

exp
{
−Xj −Xi

6h2

}

+ 21/2
n∑

i=1

n∑
j=1

exp
{
−Xj −Xi

4h2

}
+ n21/2

 .
He modifies the above formula to sum over i 6= j. The modified objective function, B∗(h), say, is
then minimized to define the data dependent bandwidth.

54For these functions
R

K2(x)dx can be regarded as the mean of K(x) and it has to be lower than its maximum

K(0).
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Taylor (1989) shows that

V ar{B∗(h)} =
0.026

8n2hπ1/2

∫
[f(x)]2dx+O(h/n2).

It is an order of magnitude less than the corresponding object for the LSCV, V ar(AISE(h))
computed by Scott and Terrell (1987):

V ar(AISE(h)) =
4
n

[∫
[f(x)]3dx−

{∫
[f(x)]2dx

}]
+O(1/(n2h) + h4/n).

A brief discussion of other methods Other methods which perform well in Monte Carlo
studies is the method of Sheather and Jones (1991) and its modification by Jones, Marron, and
Sheather (1996). We did not discuss this method here as the method seems theoretically incoherent.
Like the ROT method, their approach targets the optimal bandwidth when the underlying density
is twice continuously differentiable. But the method presumes that the density has higher order
derivatives so that the target is not necessarily an interesting object from a theoretical point of
view.

From a statistical perspective, the least square based objective functions we have discussed
above may seem ad hoc. Indeed the literature has considered likelihood based methods to selecting
the bandwidth as well. However, Schuster and Gregory (1981) showed that when the tail of the
target density is thicker than exponential decay, then choosing the bandwidth by the likelihood
based cross validation leads to an inconsistent density estimator.

Empirical performance Several published studies examine bandwidth performance in real data
examples and in Monte Carlo settings. They include Jones, Marron and Sheather (1992), Cao,
Cuevas, and Gonzales-Maniega (1994), Park and Turlach (1992), Park and Marron (1990), Härdle
(1991), Cleveland and Loader (1996) and Loader (1995). Below we summarize commonalities
and disparities in findings across studies and then present some findings from our own Monte
Carlo study. More empirical evidence needs to be accumulated to better understand how different
methods compare under data designs that commonly arise in economics.

In their evaluation of rule-of-thumb (ROT) methods, Silverman (1986), JMS (1992) and Härdle
(1991) conclude that a ROT estimator with a normal reference density has a tendency to over-
smooth, or choose too large a bandwidth, particularly when the data is highly skewed or is multi-
modal. In two separate examples, Jones, Marron, and Sheather (1996) (Hereafter JMS) and Härdle
find that the ROT estimator is unable to detect a simple case of bimodality.55

The LSCV estimator tends to suffer from the opposite problem: under-smoothing. JMS con-
clude that because of under-smoothing, the LSCV procedure leads to high variability and overall
unreliability in choosing the optimal bandwidth. Hall and Marron (1991) partly explain the under-
smoothing tendency by showing that LSCV frequently gives local minima and the tendency to

55This drawback could possibly be overcome by using a more flexible parametric family as a reference in constructing

the plug-in estimate of
R

[f ′′(x)]2dx. For example, a mixture of normals could be used.
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under-smooth likely comes from not finding the global minimum. Park and Marron (1990) and
Loader (1995) point out that LSCV is nonetheless the method of choice for cases where the re-
searcher is only willing to maintain a limited degree of smoothness on the true density. Most
other bandwidth selection methods require smoothness assumptions on higher order derivatives.
In Loader’s simulations, the LSCV approach performs well. This was also the finding in our own
simulations.

The SB selector has only been studied in a few papers. JMS find its performance to be close
to that of the Sheather and Jones’ method. Faraway and Juhn (1990) compare the SB and LSCV
procedures and find that SB performs better, which they attribute mostly to its lower variability.
For further evidence on relative performance of bandwidth selectors, see Hall, Sheather, Jones and
Marron (1991), and Park, Kim, and Marron (1994), and Loader (1995).

6.2 Methods for selecting smoothing parameters in the local polynomial esti-

mator of a regression function

Here, we consider the problem of choosing the smoothing parameter for a local polynomial estimator
of a fixed degree; typically equal to one (i.e. local linear regression). In particular we discuss a
rule of thumb method by Fan and Gijbels (1996), the least square cross validation, and Fan and
Gijbels’s method (1995) of residual square criteria (RSC). These methods do not require an initial
bandwidth selection. We also discuss Fan and Gijbels’s (1995) finite sample approximation method
as a prototype of an attempt to improving on these methods.

These methods are the standard bandwidth selection methods, but the limitation of these
methods are discussed in view of the alternatives proposed by Fan, Hall, Martin, and Patil (1996),
Doksum, Peterson, and Samarov (2000), and Prewitt and Lohr (2006).

6.2.1 A general discussion

All the methods we discuss estimate in some ways asymptotic mean square error (AMSE) of esti-
mating Djm(x0) (j = (j1, . . . , jd)) at a point for the case of the local bandwidth or its integral with
some weights for the case of the global bandwidth. For the local polynomial estimator of order
p when the underlying one dimensional regression function is at least p + 1 times continuously
differentiable function the AMSE at a point can be obtained by inspecting Theorem 2:

AMSE(x0) = [(M−1Bm(p+1)(x0))`]2h2(p+1−|j|) +
σ2(x0)/f(x0)
nhd+2|j| (M−1ΓM−1)`,`

where ` is the order in which j appear. Note that in using this formula, we assume that p− |j| is
odd so that the bias term does not vanish.

Thus the asymptotically optimum point-wise bandwidth is

hopt,p,j(x0) =
[
[(d+ 2|j|)(M−1ΓM−1)`,`σ

2(x0)/f(x0)]
2(p+ 1− |j|)[(M−1Bm(p+1)(x0))`]2n

]1/(2p+d+2)

.

The optimum bandwidth depends on three factors: the conditional variance, the density of regres-
sors, and the p + 1st derivative of the underlying function. The p + 1st derivative enters because
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we consider the local polynomial estimator of order p and the size of the p+1st derivative captures
a local deviation from the pth order model used. When there is a larger variance (high σ2(x0)),
less data (low f(x0)), or less deviation from the model (high ‖m(p+1)(x0)‖) then we want to use a
wider bandwidth.

Sometimes, statistical packages choose a fixed proportion of the data nearest to the point of
evaluation (x0) by default. This approach will effectively choose wider bandwidth at a lower density
region. In view of the result above, this may be appropriate when the variance and the model
approximation is roughly constant. However, generally the approach cannot be an optimal way to
choose the bandwidth as it does not have a way to accommodate the two other factors affecting
the optimal bandwidth. In addition, the method does not give us an idea what the appropriate
fixed proportion may be.

6.2.2 One step methods

Rule of Thumb Fan and Gijbels (1996) proposes a ROT method for choosing a global band-
width. Optimum global bandwidth is obtained by minimizing the integrated version of the AMSE(x)
using some weight function, say w(x) over x:

AMSE =
∫

[(M−1Bm(p+1)(x))`]2w(x)dxh2(p+1−|j|) +
∫

[σ2(x)/f(x)]w(x)dx
nhd+2|j| (M−1ΓM−1)`,`

Thus the optimum global bandwidth is expressed exactly as the local one except that each of
the functions in the expression above are replaced by the integrated versions:

hopt,global,p,j =
[
[(d+ 2|j|)(M−1ΓM−1)`,`

∫
[σ2(x)/f(x)]w(x)dx]

2(p+ 1− |j|)
∫

[(M−1Bm(p+1)(x))`]2w(x)dxn

]1/(2p+d+2)

.

They propose to use w(x) = f(x)w0(x) for a given w0(x), estimate m(x) by a global polynomial
of order p + 3, m̂p+3(x) so that the p + 1st derivative m̂(p+1)

p+3 (x) has enough flexibility, and use
the residuals yi − m̂p+3(xi) from the global polynomial regression to estimate the global residual
variance, say σ̂2 and defined the ROT bandwidth:

hROT,p,j =

[
[(d+ 2|j|)(M−1ΓM−1)i,iσ̂

2
∫
w0(x)dx

2(p+ 1− |j|)
∑n

i=1[(M−1Bm̂
(p+1)
p+3 (xi))`]2w0(xi)

]1/(2p+d+2)

.

Effectively, the method presumes homoskedasticity. Note that
∫

[(M−1Bm(p+1)(x))`]2w(x)dxn is
replaced by its consistent estimator

n∑
i=1

[(M−1Bm̂
(p+1)
p+3 (xi))`]2w0(xi).

In implementation, they used a constant function on the support of the regressors as w0.
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Least Square Cross Validation The LSCV bandwidth is a method for obtaining the optimum
bandwidth for estimating the conditional mean function. A global bandwidth is chosen to minimize
a weighted sum of the squared prediction errors:

hLSCV = arg min
h

1
n

n∑
i=1

(yi − m̂i,h(xi))2w0(xi).

where m̂i,h(xi) is the local polynomial regression function estimator computed without using the
ith observation but evaluated at xi. The ith observation has to be omitted, because if we use all
observations to estimate the conditional mean function, by choosing the bandwidth very small, one
can always make the objective function 0. 56

Another consideration in carrying out LSCV is that the local linear estimator in one dimension is
defined only when there are at least two data points within the support of the kernel weight function.
This effectively places a lower bound on the values of bandwidths that can be considered.57

Note the importance of using w0(x) in the objective function. Without the weight function
LSCV chooses a global bandwidth with w(x) = f(x) thus unless the regressor distribution is
bounded, the objective function may not converge to a meaningful object when the conditional
variance is bounded away from zero, for example.

Residual Squares Criterion Fan and Gijbels (1995) proposes an objective function for choosing
the bandwidth appropriate for estimating the conditional mean function and its derivatives by the
local polynomial estimator of order p in one dimensional problems. Note that in one dimensional
problems the AMSE(x0) simplifies to

AMSE(x0) = [(M−1B)`m
(p+1)(x0)]2h2(p+1−|j|) +

σ2(x0)/f(x0)
nhd+2|j| (M−1ΓM−1)`,`

because m(p+1)(x0) is a scalar. Thus the bandwidth optimal for estimating the regression function
can be adjusted by a known factor to produce the optimum bandwidth suitable for estimating the
derivatives of the regression function. Thus they study

RSC(x0) =
∑n

i=1(yi − ŷi)2Kh(xi − x0)
trace{W −WX(X ′WX)−1X ′W}

(1 + (p+ 1)V̂ ),

where ŷ = (ŷ1, . . . , ŷn)′ = Xβ̂ is the local polynomial fit using all the estimated coefficients, V̂
is the 1-1 element of (X ′WX)−1(X ′W 2X)(X ′WX)−1. The minimizer of this objective function
multiplied by a known factor is the local RSC bandwidth. The multiplying factor depends on p

and the order of the derivative being estimated. They show that this method selects the locally
optimum bandwidth asymptotically.58

56When there are duplicate observations in the sense that the (yi, xi) pair is the same for multiple observations,

then the “leave-one-out” m̂i,h(xi) estimator needs to be modified to also exclude duplicate observations. Otherwise

the problem the leave-one-out approach aims to avoid would not be avoided.
57By restricting the range of the bandwidth to be above a certain smallest value, we may not need to use the

delete-one-method, which is computationally costly.
58See Fan and Gijbels (1995), Table 1 for the adjustment factors.
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To understand the objective function we examine each term of the expression separately. Note
that since β̂ = (X ′WX)−1X ′Wy, the denominator, ignoring the 1 + (p+ 1)V term can be written
as

y′(I −WX(X ′WX)−1X ′)W (I −X(X ′WX)−1X ′W )y = y′(W −WX(X ′WX)−1X ′W )y

Recall that y = Xβ0 + r + ε. Since the term related to Xβ0 vanishes and ignoring the cross terms
of r and ε as they are smaller order, the leading two terms are

r′(W −WX(X ′WX)−1X ′W )r and ε′(W −WX(X ′WX)−1X ′W )ε.

For the local linear case the first term divided by the trace in the denominator of the definition of
RSC converges to [m(p+1)(x0)]2h2(p+1) times a constant (say C) and the second term divided by
the same trace converges to σ2(x0).

As we saw, the V̂ is approximately constant (say C ′) divided by (nh)f(x0). Thus

(C[m(p+1)(x0)]2h2(p+1) + σ2(x0))
(

1 +
(1 + p)C ′

nhf(x0)

)
= σ2(x0) + C[m(p+1)(x0)]2h2(p+1) +

(1 + p)C ′σ2(x0)
nhf(x0)

+ o(h4 + 1/(nh)).

The minimizer is proportional to the optimum bandwidth by a known factor as desired.
They advocate using the integrated version of the RSC(x0) over an interval to select a global

bandwidth. In fact even for the local bandwidth, they advocate using locally integrated version of
RSC(x0) objective function. Clearly the adjustment term does not change.

6.2.3 Two step methods

The methods discussed above do not require that an initial bandwidth be specified. As discussed,
other methods proposed in the literature attempt to improve on these procedures by using the first
stage estimates as inputs into a second stage.

The methods estimate the bias and variance terms. Note that to estimate the bias term, which
involves the p+1st order derivative, we need to assume that the function is smoother than required
for estimating the regression function itself. For example, when a twice continuously differentiable
function is being estimated by the local linear regression estimator, the bias term depends on the
second order derivative. To compute the optimum bandwidth for estimating the second order
derivative, the underlying function is assumed to be at least p+1-times continuously differentiable,
or in this case at least three times continuously differentiable. But for a function with that
degree of smoothness, the local linear estimator does not achieve the optimum rate of convergence.
Thus the bandwidth computed does not have an overall optimality property. In this case, we will
be estimating the optimal bandwidth optimum given that the local linear estimator is used in
estimation.
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Fan and Gijbels’s finite sample method Fan and Gijbels (1995) proposes to use their RSC
bandwidths to construct a “refined” bandwidth. Instead of using the asymptotic formula, they
propose to use the finite sample counter-part discussed in section 4. The bias is

(X ′WX)−1X ′Wr

and the variance is
(X ′WX)−1X ′WXW 2X(X ′WX)−1σ2(x0).

Because r = m−Xβ0, the bias is not known. But it can be approximated by

(X ′WX)−1X ′Wτ,

where the τ is a vector of length n with the ith element to be

(xi − x0)(p+1)/(p+ 1)!β(p+1) + · · ·+ (xi − x0)(p+a)/(p+ a)!β(p+a).

They advocate using a = 2 or 3 as a target bias expression. Writing Sn = X ′WX and Sn,s,t =
[X(s)′/s!]W [X(t)/t!, we can write (X ′WX)−1X ′Wτ as

S−1
n


Sn,0,p+1β

(p+1) + · · ·+ Sn,0,p+aβ
(p+a)

...
Sn,p,p+1β

(p+1) + · · ·+ Sn,p,p+aβ
(p+a)

 .

The unknown terms β(p+1), . . . , β(p+a) can be estimated using the local polynomial estimator of
degree p+ a. For this step, RSC method is being advocated. They also note that the finite sample
performance was better when the terms corresponding to Sn,s,p+t where s+ t > p+ a are set to 0.
These terms are smaller order terms than the target bias expression.

The conditional variance is estimated by the same expression corresponding to the first expres-
sion of the RSC objective function:∑n

i=1(yi − ˆyp+ai)
2Kh(xi − x0)

trace{W −WXp+a(X ′
p+aWXp+a)−1X ′

p+aW}
,

where Xp+a corresponds to regressors of the p+ ath degree local polynomial estimator and ŷp+a =
Xp+aβ̂p+a. Because the higher degree local polynomial estimator is used, the bias contribution is
of order hp+a+1 and thus can be ignored. The estimated bias and variance terms are then used to
form the estimated mean square error used to choose the bandwidth.

Other methods Ruppert (1997) proposes instead to estimate the bias term by running the OLS
regression of

m̂
(j)
h (x0) = c0(x0) + cp+1−|j|(x0)hp+1−|j| + · · ·+ cp+a−|j|h

p+a−|j|

using different h values as regressors and the corresponding m̂
(j)
h (x0) values as the dependent

variable. This formulation is motivated by the asymptotic bias calculation. The estimated terms
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after the first one are used to estimate the bias. Rupert (1997) replaces Fan and Gijbels’s bias
estimator in the finite sample method with this estimator in approximating the asymptotic mean
square error.

Note that the point-wise optimum bandwidth becomes infinite when m(p+1)(x0) = 0, even
though this may hold only at x0, so that the pth order approximation does not hold globally. This
is a limitation of considering the optimum bandwidth point-wise. Fan, Hall, Martin, and Patil
(1996) considers modeling the local bandwidth globally using the LSCV objective function. While
they describe the method for the kernel regression estimator, the method is clearly applicable to
local polynomial estimator. Their objective function is

n∑
i=1

[yi −mi(xi, h(xi))]2

where in their case

mi(x, h(x)) =

∑
j 6=i yjK((x− xj)/h(x))∑
j 6=iK((x− xj)/h(x))

and h(x) = h0g(x) for some g(x) to be in a prespecified class of functions. This approach avoids
approaching the problem point-wise and also makes the global LSCV method a local method.

Doksum, Petersen, and Samarov (2000) argues that the asymptotic formula used to construct
approximation to the asymptotic mean square error is valid only for small bandwidths. They show
that for larger bandwidths, a finite differencing gives a better approximation.

Prewitt and Lohr (2006) develops a way to eliminate a too small bandwidth from being consid-
ered, using the ratio of the largest to the smallest eigenvalues of the matrix X ′WX/(nhd), drawing
an analogy between local polynomial methods and regular linear regression analysis. This ap-
proach could be applied to prevent to guard against too small a bandwidth being chosen by any of
the above methods.

6.3 How to choose smoothing parameters in semiparametric models

Relatively few papers have examined the problem of how to choose smoothing parameters in im-
plementing semiparametric models.59 Here we provide a brief account of some of the developments
in this area of research.

6.3.1 Optimal bandwidth choice in average derivative estimation

The problem of choosing the optimal bandwidth in average derivative estimation is considered
in Powell and Stoker (1996), Härdle, Hart, Marron, and Tsybakov (1992), Härdle and Tsybakov
(1993), and Nishiyama and Robinson (2000, 2001). Härdle et. al. (1992) study bandwidth choice
for the estimation of univariate unweighted average derivatives. Härdle and Tsybakov (1993) and

59See Härdle, Hall, and Ichimura (1993), Härdle, Hart, Marron, and Tsybakov (1992), Härdle and Tsybakov (1993),

Hall and Horowitz (1990), Hall and Marron (1987), Horowitz (1992), Ichimura and Linton (2005), Linton (1995, 1996),

Nishiyama and Robinson (2000, 2001), Powell and Stoker (1996), Stoker (1996), and Robinson (1991).
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Powell and Stoker (1996) study a variety of weighted average derivative estimators for higher di-
mensions under a variety of weighting schemes using asymptotic mean square error as a criterion.
Nishiyama and Robinson (2000, 2001) proposes to use an approximation to the asymptotic nor-
mality as a criterion.

Here, we describe the approach taken in Powell and Stoker (1996) as a prototype analysis of an
optimal plug-in bandwidth selection to minimize the leading terms of the asymptotic mean-squared
error of a semiparametric estimators. Recall from section 5 of the chapter that an indirect density
weighted average derivative estimator takes the form

δ̂WIAD = − 2
n

n∑
i=1

∂f̂(x)
∂x

yi.

As shown in Powell and Stoker (1989), this estimator can alternatively be written as(
N

2

)−1∑
i<j

p(zi, zj , h),

where zi = (xi, yi), for a d-dimensional vector xi and a scalar yi, p(zi, zj , h) = −h−d−1K ′ (xi−xk
h

)
(yi−

yj) and K(·) is a kernel function satisfying K(u) = K(−u), K ′(·) denote the d-dimensional vector
of partial derivatives of K(·),

∫
K(u)du = 1,

∫
K(u)uldu = 0 for l < α,

∫
K(u)uαdu 6= 0 (for com-

monly used kernel functions, α = 2). A requirement for asymptotic normality of the estimator is
2α > d+ 2,. Define

r̂(zi, h) =
1

N − 1

∑
j 6=i

p(zi, zj , h),

r0(z) = limh→0E[r̂(z, h)]. Note that

E[r̂(z, h)]− r0(z) = s(z)hα + o(hα)

for some s(z) under the assumption on the kernel function, among others and

E(‖p(z, zj , h)‖2) = q(z)h−γ + o(h−γ).

For the average derivative case, γ = d+ 2 and

q(z) = [(y − E(y|x))2 + V ar(y|x)]f(x)
k∑

j=1

∫
K2

j (s)ds

where Kj denote the jth element of K ′. As shown in Powell and Stoker (1996), the leading terms
of the mean-squared error of δ̂WIAD are

[E(s(zi))]2h2α + 4n−1V ar[r0(zi)] + 2n−1C0h
α + 2n−2E[q(zi)]h−(d+2)

+o(h2α) + o(hα/n) + o(1/(n2hd+2)).

66



Minimizing over h (noting that the variance term does not depend on the bandwidth) and keeping
only the leading terms gives the optimal plug-in bandwidth selector60:

hopt =
[
(d+ 2)E[q(zi)]
α[E(s(x))]2

]1/(2α+d+2) [ 1
n

]2/(2α+d+2)

.

The method calls for using a high order kernel so that 2α > d+2. However, a simulation study
conducted by Horowitz and Härdle (1996) found that using a second order kernel produced a more
stable results.

Robinson (1995) showed that the normal approximation to the asymptotic distribution of the
density weighted averaged derivative estimator could be worse than for the standard parametric
case, depending on the bandwidth. In particular, he showed that, under some regularity conditions,
the approximation error is of order

n−1/2 + n−1h−d−2 + n1/2hα + hM−1,

where M denotes the order of differentiability of the conditional mean function of y given x. Thus,
the bandwidth required to make the order of approximation comparable to the parametric case of
n−1/2 is, for some C ∈ (1,∞) when M − 1 ≥ α/2,

(Cn1/(2d+4))−1 ≤ h ≤ Cn−α.

The optimum bandwidth proposed by Powell and Stoker (1996) does not satisfy the second inequal-
ity, (the bias contribution to the normal approximation dominates) so using the bandwidth will
make the normal approximation to be suboptimal. Nishiyama and Robinson (2000, 2001) derived
the optimum bandwidth when approximation to the normality is the criterion.

Given that the normal approximation is worse than the parametric cases, Nishiyama and Robin-
son (2005) examines the bootstrap approximation and provides sufficient conditions under which
the bootstrap approximates the asymptotic distribution to a higher order. While the work is carried
out in detail for the particular case of the average derivative estimator, no doubt the technologies
developed would be useful for investigating properties of other estimators.

6.3.2 Other works

Härdle, Hall, and Ichimura (1993) studies the semiparametric least squares estimation of the single
index model and proposes to optimize over the bandwidth as well as the unknown coefficient.
They propose a way of choosing the bandwidth that is asymptotically optimal for estimating the
conditional mean function. It is not in general optimal for estimating the unknown coefficient,
although the asymptotic distribution theory will still be valid with that choice of bandwidth.

Hall and Horowitz (1990), Horowitz (1992), Ichimura and Linton (2005) and Linton (1995)
study optimum bandwidth selection for estimation of censored regression models, binary choice
models, program evaluation models and the partially linear regression models, respectively. All

60See Proposition 4.1 in Powell and Stoker (1996).
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these papers use the leading terms of the asymptotic mean square error terms as the criterion in
choosing the optimum bandwidth.

Compared to the literature in the nonparametric estimation, the literature in selecting the
smoothing parameter for estimators of semiparametric model parameters is sparse. Much more
research needs to be done in this direction. Without specifying ways of choosing the bandwidth
parameter, the estimators not well defined.

6.4 Trimming

6.4.1 What is trimming?

In the context of computing a statistics, trimming refers to a practice to systematically discarding
the contribution of estimated function values to the statistics when some properties hold at the
points the function is being evaluated. Usually the term “trimming function” refers to an indicator
function indicating which points to include, rather than which point to discard.

6.4.2 Three reasons for trimming

There are three reasons for trimming. First, a parameter studied may not make sense without
trimming. Second, a statistic may not make sense without trimming, or third, the statistics may
not have desirable properties asymptotically without trimming.

As an example for the first case, consider estimating the conditional mean function m (x).
Recall that this function is defined at any point in the support, S, of the conditioning random
vector so more precisely we should write it as m (x) ·1 (x ∈ S). If we are to estimate the conditional
mean function at observed data points, the indicator function is always 1, so that we can ignore
the trimming function, but otherwise, the definition of the parameter calls for it. Parameters
examined in section 2 provide some other examples where trimming is needed. We saw there that
the identifiable parameter under the matching assumption needed to satisfy the common support
condition. Therefore, the definition of the average treatment on treated parameter, for example,
incorporated the trimming function as in

E {(Y1 − Y0) 1 (X ∈ S) |D = 1}
E {1 (X ∈ S) |D = 1}

.

where S denotes the common support of regressors X.
As an example for the second reason for trimming, recall the definition of the kernel regression

estimator using the Epanechnikov kernel with optimal bandwidth. With this estimator, there is
a positive probability that the denominator is zero, so that the estimator is not necessarily well
defined. The estimator is well defined only if there is a data point in the appropriate neighborhood.

There are at least two distinct technical reasons for trimming in order to establish desirable
properties of the statistics under consideration. First, to secure local data and second, to avoid
the boundary value problem. Consider the same estimator and assume we want to show that the
estimator converges with a rate uniformly over a given domain. Then at any point over the domain,
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the density of the conditioning vector needs to be bounded away from 0 by the amount dictated
by the convergence rate of the estimator we wish to obtain. For one thing, if the density is too
low, then we cannot hope to obtain the local observation comparable to other regions. From a
theoretical point of view, we can assume that the density is bounded away from 0, but of course in
application, the condition does not necessarily hold and hence we have to introduce trimming. We
also need to ensure that the function is not evaluated at points too close to the boundary value.

The third case for trimming often arises in examining semiparametric estimators which use
nonparametric estimators in their construction. In establishing asymptotic properties of the semi-
parametric estimator, a uniform convergence rate of the nonparametric estimator is used.

The need for trimming for all cases is uncontroversial. But we have heard some claims for
ignoring trimming “in practice” as “it does not matter very much.” While we also think it would
be nice if it were true, we emphasize that at this point we know of no systematic empirical or
theoretical study which substantiates the claim.

6.4.3 How trimming is done

Sometimes trimming is specified using a priori chosen set over which some desirable properties hold,
such as density be bounded away from zero. There is no provision for how we should choose such
a set given a finite amount of observations.

Bickel (1982) introduced the trimming function that does not depend on a priori knowledge of
the shape of the support in the context of adaptive estimation. In carrying out trimming of certain
data points with low density, he used estimated density. A deterministic sequence which converges
to zero is used to decide which points correspond to “low” density points.

While theoretically this procedure can be carried out without knowing anything about the
density, in finite sample, the procedure might inadvertently trim out a high fraction of observations.
To avoid this problem, Heckman, Ichimura, Smith, and Todd (1998) proposed defining a trimming
function using a quantile of the estimated density.

An additional complication arises for the case of the index model. Consider for concreteness
the linear index model. In this case we need to find low points of density corresponding to any
index defined by a linear combination of the regressors. It may seem enough to trim observations
based on the joint density of the regressors but that is not the case. To see this consider two
independent regressors both distributed uniformly over unit intervals. On the support the density
of the regressors are bounded away from zero. But any linear combination of the two regressors
will not be bounded away from zero at the minimum and the maximum points when indeed two
regressors are involved in the linear combination. This is because the density is low when the length
of the line segment that leads to the same value for the linear combination is short. At the points
that have the minimum and the maximum values of the linear combination, the corresponding
length of the line segments are zero.

In addition to the density being bounded away from zero, trimming in this case needs to
guarantee that the points of estimation are interior points of the support, so that the length of
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the line segments will be away from zero. Clearly, one can presume a priori knowledge about the
support and define trimming function using the knowledge.

One way to define the trimming function empirically is to use the estimated density as previously
described. In this case, we need to keep points only if the density values are above certain value
and that in a neighborhood there is no points with density values below the prespecified value. The
prespecified value can be defined using the quantiles of the estimated density as in the previous
case.

Given that the index models are used when we do not have enough observations to use fully
nonparametric models, the above trimming approach may be unattractive because it uses fully
nonparametric density estimator. An alternative approach which only involves one dimensional
density estimation is to search over the lowest one dimensional density estimate at each point. We
only keep a point if the point does not correspond to a low density point for any linear combination
of regressors. Clearly this approach is computationally intensive. A practical alternative to this
approach may be to try out the density estimation of the index defined by the bases of the space
of the coefficients and keep all points which are above the prespecified low density values.

7 Asymptotic distribution of semiparametric estimators

In this section, we gather some basic asymptotic results that are useful in deriving the asymptotic
distribution for semiparametric estimators. The structure underlying the asymptotic distribution
of semiparametric estimators has been clarified greatly through the works of Aı̈t-Sahalia (1992),
Andrews (1994), Newey (1994), Sherman (1994), Ai and Chen (2003), Chen, Linton, and Keilegom
(2003), and Ichimura and Lee (2006). Using these results, the asymptotic variance-covariance
matrix of most of the semiparametric estimators can be easily computed. Chen (in this hand-
book) describes this development for the semiparametric GMM estimators, so we will describe the
developments with regard to semiparametric M-estimators, summarizing the results obtained by
Ichimura and Lee (2006).

Let Z denote the random variable of dimension Rdz with the support S. Also, let θ0 be an
element of a finite-dimensional parameter space Θ ⊂ Rdθ that minimizes E[m(Z, θ, f0(·, θ)], for an
unknown, df -vector-valued function f0 ∈ F , where F is a Banach space of df -vector-valued function
of Z on the domain U with the supremum norm. We assume that for each θ ∈ Θ, f(·, θ) ∈ F . Note
that function f(·, θ) is a function of Z, but the · argument may be different from Z. This is the
reason for introducing the notation of U . We will discuss this again with an example.

We denote the Euclidean norm by ‖ ·‖, ‖f‖F = supθ∈Θ supz∈S ‖f(z, θ)‖ for any f(·, θ) ∈ F , and
‖(θ, f)‖Θ×F = ‖θ‖ + ‖f‖F . When f depends on θ, ‖f(·, θ)‖∞ is understood to be the supremum
norm with θ fixed.

Let the function m(Z, θ, f) denote a known, real-valued function that may depend on the data
Z and parameter θ directly and also possibly indirectly through f, for example, if f depends on
θ. The function m can depend on f only via a particular value Z, in which case m is a regular
function with respect to f(Z, θ), or it can depend on an entire function f(·, θ), in which case m is
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a functional with respect to f for each Z and θ. In any case, we assume that m(z, θ, f) is defined
over S×Θ×F .

Assume that for each θ, a nonparametric estimator f̂n(·, θ) of f0(·, θ) is available. We define
an M-estimator of θ0 as the minimizer of

Ŝn(θ) ≡ n−1
n∑

i=1

m(Zi, θ, f̂n(·, θ)),

under the assumption that the observed data {Zi : i = 1, . . . , n} are a random sample of Z. Let θ̂n

denote the resulting estimator of θ0.
Examples that fit within this framework include the estimators studied by Robinson (1988),

Powell, Stock, and Stoker (1989), Ichimura (1993), and Klein and Spady (1993) among many others,
but the framework is also general enough to include the single-index quantile regression estimator,
as discussed in Ichimura and Lee (2006).

Here, we will use the semiparametric least squares (SLS) estimator of Ichimura (1993) as a
working example to illustrate how the assumptions and theorems can be applied to derive the
distribution theory. In the SLS case, Z = (Y,X) and

m(Z, θ, f(·, θ)) = (Y − f(X ′θ, θ))21(X ∈ X )/2.

We assume E(Y |X) = φ(X ′θ0). In this example, θ enters m only via f and m depends on f only
via its value at X. Note that the · argument in this case is one-dimensional, although X is in
general a vector. In this example, U is the support of X ′θ.

To state the assumptions and results of Ichimura and Lee (2006), we need to introduce some
more notation. For any δ1 > 0 and δ2 > 0, define Θδ1 = {θ ∈ Θ : ‖θ− θ0‖ < δ0} and Fδ1,δ2 = {f ∈
F : supθ∈Θδ1

‖f(·, θ)− f0(·, θ0)‖∞<δ2}.

7.1 Assumptions

The functionm is not required to be differentiable, but is assumed to satisfy the following conditions.

Assumption 7.1. For any (θ1, f1) and (θ2, f2) in Θδ1 ×Fδ1,δ2, there exist linear operators ∆1(z) ·
(θ1 − θ2) and ∆2(z, f1(·)− f2(·)) and a function ṁ(z, δ1, δ2) satisfying

(a) |m(z, θ1, f1(·))−m(z, θ2, f2(·))−∆1(z)(θ1 − θ2)−∆2(z, f1(·)− f2(·))|

≤ [‖θ1 − θ2‖+ ‖f1(·)− f2(·)‖∞] ṁ(z, δ1, δ2),

and

(b) E[ṁ2(Z, δ1, δ2)]1/2 ≤ C (δα1
1 + δα2

2 )

for some constants C <∞, α1 > 0, and α2 > 0.61

61Here, ∆1, ∆2, and ṁ may depend on (θ2, f2(·)). However, we suppress the dependence on (θ2, f2(·)) for the sake

of simplicity in notation.
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Ichimura and Lee (2006) verifies the condition for the single-index semiparametric quantile
regression estimator. The condition is easier to verify for differentiable cases. Note that ∆1(z)
and ∆2(z) corresponds to the “derivatives” of m with respect to θ and f , respectively. Because m
is generally a functional in f , the first “derivative” with respect to f is a linear operator, whereas
the “derivative” with respect to θ can be expressed as a finite dimensional vector.

For SLS, the function m depends on f only via f(X ′θ, θ), so that both “derivatives” correspond
to a finite dimensional vector. One can guess the forms of ∆1(z) and ∆2(z) by taking derivatives
and evaluating them at the true values. Because the function m does not depend on θ directly,
∆1(z) = 0 and ∆2(z) = −(Y − f0(X ′θ0, θ0)). One can verify that with these functions, the
assumption holds with ṁ(z, δ1, δ2) = δ2, so that α2 = 1.

While the function m is allowed to be non-differentiable, its expected value is assumed to be
differentiable with respect to θ and f (as assumed in Pollard (1985)). Denote the expected value
by m∗(θ, f) = E[m(Z, θ, f)].

Assumption 7.2. m∗(θ, f) is twice continuously Fréchet differentiable in an open, convex neigh-
borhood of (θ0, f0(·, θ0)) with respect to a norm ‖(θ, f)‖Θ×F .

For the SLS example, the Fréchet derivative with respect to θ is zero and hence the cross deriva-
tive is also. The Frećhet derivative with respect to f is Dfm

∗(θ, f)(h) = −E[(Y −f(X))h(X)1{X ∈
X}] and the second Frećhet derivative with respect to f isDf,fm

∗(θ, f)(h1, h2) = E[h1(X)h2(X)1{X ∈
X}].

The class of functions F needs to be restricted as well. To characterize the nature of the
restriction, we first introduce a few additional notations. Let α denote the greatest integer strictly
smaller than α, j = (j1, . . . , jd), and let

‖g‖α = max
|j|≤α

sup
x
|Djg(x)|+ max

|j|=α
sup
x,y

|Djg(x)−Djg(y)|
‖x− y‖α−α ,

where the suprema are taken over all x, y in the interior of U with x 6= y. Then Cα
M (U) is defined

as the set of all continuous functions g : U ⊂ Rd 7→ R with ‖g‖α ≤M .

Assumption 7.3. f0(·, θ) is twice continuously differentiable on Θδ1 with bounded derivatives on
U and F is a subset of Cα

M (U), where U is a finite union of bounded convex subsets of Rdu with
non-empty interior where α > du/2.

For SLS, f0(u, θ) = E(Y |X ′θ = u). The assumption requires that f0 is twice continuously
differentiable with respect to θ. In the SLS case, du = 1, so we do not require differentiability with
respect to u.

The next set of assumptions are restrictions on the estimator of f0.

Assumption 7.4. (a) For any θ ∈ Θδ1, f̂n(·, θ) ∈ Cα
M (X ) with probability approaching one.

(b) supθ∈Θδ1

∥∥∥f̂n(·, θ)− f0(·, θ)
∥∥∥
∞

= Op(δ̃2) for δ̃2 satisfying n1/2δ̃
1+α2

2 → 0.
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(c) For any ε > 0 and δ > 0, independent of θ, there exists n0 such that for all n ≥ n0, the
following holds:

Pr
{∥∥∥[f̂n(·, θ)− f̂n(·, θ0)]− [f0(·, θ)− f0(·, θ0)]

∥∥∥
∞
≤ δ ‖θ − θ0‖

}
≥ 1− ε.

Condition (b) requires that f̂n(·, θ) converge uniformly in probability. If α2 = 1 (smooth m),
then δ̃2 = o(n−1/4); when α2 = 0.5 (non-smooth m), then δ̃2 = o(n−1/3). In general, f̂n(·, θ) needs
to converge at a faster rate when m is less smooth.

Condition (c) is satisfied if f̂n(·, θ) is differentiable with respect to θ and the derivative converges
uniformly to ∂f0(·, θ)/∂θ over both arguments. This is shown by Ichimura (1993) for the SLS
example. Ichimura and Lee’s (1991) results in the appendix is useful in proving analogous results
in other kernel based estimators.

The next set of assumptions are joint conditions on the second Fréchet derivative of m∗(θ, f)
with respect to f and the estimator of f0. Write Df,fm

∗(θ, f) =
∫
w(θ, f(·, θ))h1(·)h2(·)dP , where

P is the measure of Z.

Assumption 7.5. One of the following three conditions holds:

(i) w(θ, f(·, θ)) does not depend on θ or f(·, θ) and is bounded.

(ii) ‖w(θ, f(·, θ))− w(θ0, f0(·, θ0))‖ ≤ Cw ‖θ − θ0‖ for some finite constant Cw

and supθ∈Θδ1

∥∥∥f̂n(·, θ)− f0(·, θ)
∥∥∥
∞

= op(n−1/4).

(iii) ‖w(θ, f(·, θ))− w(θ0, f0(·, θ0))‖ ≤ Cw [‖θ − θ0‖+ ‖f(·, θ)− f0(·, θ0)‖∞] for some finite con-
stant Cw

We saw that for SLS, case (i) applies.
The following assumption is made first to accommodate cases where estimation of f0 has an

effect on the asymptotic distribution of the estimator of θ0. Later, sufficient conditions for this
higher level assumption are discussed.

Assumption 7.6. (a) As a function of θ, Dfm
∗(θ, f0(·, θ))[f̂n(·, θ)−f0(·, θ)] is twice continuously

differentiable on Θδ1 with probability approaching one.

(b) There exists a dθ-row-vector-valued Γ1(z) such that E[Γ1(Z)] = 0, E[Γ1(Z)ΓT
1 (Z)] < ∞ and

nonsingular,

d

dθT

(
Dfm

∗(θ, f0(·, θ))[f̂n(·, θ)− f0(·, θ)]
) ∣∣∣

θ=θ0

= n−1
n∑

i=1

Γ1(Zi) + op(n−1/2). (7.1)

In (b), Γ1(z) captures the effects of the first stage estimation of f0. Two cases where the deriva-
tive is easy to compute are: when f0 does not depend on θ and when Dfm

∗(θ, f0(·, θ))[f̂n(·, θ) −
f0(·, θ)] is identically zero. For SLS estimator, Dfm

∗(θ, f0(·, θ))[f̂n(·, θ)−f0(·, θ)] is identically zero
so that there is no first order effect of estimating f0.

The following proposition proved in Ichimura and Lee (2006) provides a set of sufficient condi-
tions for computing the adjustment term that appears in Assumption 7.6.
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Proposition 7.1. Assume that

(a)

Dfm
∗(θ, f0(·, θ))[h(·)] =

∫
h(·)g(·, θ)dP, (7.2)

(b) g(·, θ) is twice continuously differentiable with respect to θ with probability one,

(c) f̂n(·, θ) has an asymptotic linear form: for any θ ∈ Θδ1,

f̂n(·, θ)− f0(·, θ) = n−1
n∑

j=1

ϕnj(·, θ) + bn(·, θ) +Rn(·, θ), (7.3)

where ϕnj(·, θ) is a stochastic term that has expectation zero (with respect to the j-th ob-
servation), bn(·, θ) is a bias term satisfying supz,θ ‖bn(z, θ)‖ = o(n−1/2) , and Rn(·, θ) is a
remainder term satisfying supz,θ ‖Rn(z, θ)‖ = op(n−1/2).

(d) f̂n(·, θ) is twice continuously differentiable with respect to θ with probability approaching one
and ∂f̂n(·, θ)∂θ also has an asymptotic linear form:

∂f̂n(·, θ)
∂θ

− ∂f0(·, θ)
∂θ

= n−1
n∑

j=1

ϕ̃nj(·, θ) + op(n−1/2), (7.4)

uniformly over (z, θ), where ϕ̃nj(·, θ) is a stochastic term that has expectation zero (with
respect to the j-th observation), and

(e) there exists a dθ-row-vector-valued Γ1(z) such that E[Γ1(Z)] = 0 and

max
1≤i≤n

‖Γn1(Zi)− Γ1(Zi)‖ = op

(
n−1/2

)
,

where

Γn1(Zi) =
∫
ϕ̃ni(·, θ0)g(·, θ0) dP +

∫
ϕni(·, θ0)

∂g(·, θ0)
∂θ

dP. (7.5)

Then Assumption 7.6 is satisfied.

7.2 Main results on asymptotic distribution

First some notation. Let ∆10(z) and ∆20(z, h) denote ∆1(z) and ∆2(z, h) in Assumption 7.1 with
(θ1, f1) = (θ, f) and (θ2, f2) = (θ0, f0(·, θ0)). Thus, ∆10(z)(θ − θ0) + ∆20(z, f(·, θ) − f0(·, θ0)) is a
linear approximation of m(z, θ, f(·, θ))−m(z, θ0, f0(·, θ0)). Define ∆∗

20[h] = E[∆20(Z, h)] for fixed
h. Also define a dθ-row-vector-valued function Γ0(z) such that

Γ0(z) = ∆10(z)− E[∆10(Z)] + ∆20

[
z,
∂f0(·, θ0)
∂θT

]
−∆∗

20

[
∂f0(·, θ0)
∂θT

]
+ Γ1(z),

74



Ω0 = E[Γ0(Z)T Γ0(Z)], and

V0 =
d2m∗(θ, f0(·, θ))

dθ dθT

∣∣∣
θ=θ0

.

Notice that V0 is the Hessian matrix of m∗(θ, f0(·, θ)) with respect to θ, evaluated at θ = θ0.
The following theorem gives the asymptotic distribution of θ̂n.

Theorem 7.2. Assume that θ0 is an interior point of Θ, θ0 is a unique minimizer of m∗(θ, f0(·, θ),
and θ̂n is a consistent estimator of θ0. Moreover, assume that {Zi : i = 1, . . . , n} are a random sam-
ple of Z. Let Assumptions 7.1-7.6 hold. Assume that there exists C(z) satisfying ‖∆20[z, h(·, θ)]‖ ≤
C(z) ‖h(·, θ)‖∞ for any θ and ‖C(Z)‖L2(P ) <∞. Also, assume that Ω0 exists and V0 is a positive
definite matrix. Then

n1/2(θ̂n − θ0) →d N(0, V −1
0 Ω0V

−1
0 ).

Let ∂1m
∗(θ, f) denote a vector of the usual partial derivatives of m∗(θ, f) with respect to the

first argument θ. In this notation, ∂1m
∗(θ, f(·, θ)) denotes the partial derivative of m∗(θ, f) with

respect to the first argument θ, evaluated at (θ, f) = (θ, f(·, θ)). Similarly, let ∂2
1m

∗(θ, f) denote
the usual Hessian matrix of m∗(θ, f) with respect to θ, holding f constant. Using this notation,
note that by the chain rule, the expression of V0 can be written as62

V0 =
d2m∗(θ, f0(·, θ))

dθ dθT

∣∣∣
θ=θ0

= ∂2
1m

∗(θ0, f0(·, θ0)) +Dffm
∗(θ0, f0(·, θ0))

[
∂f0(·, θ0)

∂θ
,
∂f0(·, θ0)
∂θT

]
+ 2

{
Df

[
∂1m

∗(θ0, f0(·, θ0))T
] [∂f0(·, θ0)

∂θ

]}
+Dfm

∗(θ0, f0(·, θ0))
[
∂2f0(·, θ0)
∂θ∂θT

]
.

For the SLS case, note that ∂1m
∗(θ, f0(·, θ)) = 0 and that Dfm

∗(θ0, f0(·, θ0))(h) = 0 so that

V0 = Dffm
∗(θ0, f0(·, θ0))

[
∂f0(·, θ0)

∂θ
,
∂f0(·, θ0)
∂θT

]
.

Because ∂f0(X ′θ, θ)/∂θ evaluated at θ0 is φ′(X ′θ0)[X̃ − E(X̃|X ′θ0)], where X̃ is all X except for
the variable whose associated coefficient is set to 1 (required for normalization). Thus,

V0 = E{[φ′(X ′θ0)]21{X ∈ X}[X̃ − E(X̃|X ′θ0)][X̃ − E(X̃|X ′θ0)]′}

and
Ω0 = E{[φ′(X ′θ0)]2ε21{X ∈ X}[X̃ − E(X̃|X ′θ0)][X̃ − E(X̃|X ′θ0)]′}

where ε = Y − φ(X ′θ0).
As indicated above, when f0 does not depend on θ, one can easily compute the adjustment term

Γ1(z). It turns out that one can relax the smoothness condition on function m with respect to f
as well. The following assumptions are invoked in the theorem below, which gives the asymptotic
distribution of θ̂n when the first-stage nonparametric estimator f̂n(·, θ) does not depend on θ.

62See Ichimura and Lee (2006) Appendix for the expression of V0 when df > 1.
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Assumption 7.7. For any (θ1, f) and (θ2, f) in Θδ1 × Fδ2, there exist a dθ-row-vector-valued
function ∆1(z, θ2, f) and a function ṁ(z, δ1) satisfying

(a) |m(z, θ1, f(·))−m(z, θ2, f(·))−∆1(z, θ2, f)(θ1 − θ2)| ≤ ‖θ1 − θ2‖ ṁ(z, δ1),

(b) ‖ṁ(Z, δ1)‖L2(P ) ≤ Cδα1
1 for some constants C <∞ and α1 > 0,

and

(c) sup
f∈Fδ2

∥∥∥∥∥n−1
n∑

i=1

{∆1(Zi, θ0, f)− E [∆1(Z, θ0, f)]} − {∆1(Zi, θ0, f0)− E [∆1(Z, θ0, f0)]}

∥∥∥∥∥
= op

(
n−1/2

)
for any δ2 → 0.

Assumption 7.8. (a) f0(·) is an element of Cα
M (X ) for some α > d1/2, where d1 is the dimen-

sion of the argument of f0(·) and X is a finite union of bounded, convex subset of Rd1 with
nonempty interior.

(b) f̂n(·) ∈ Cα
M (X ) with probability approaching one.

(c)
∥∥∥f̂n(·)− f0(·)

∥∥∥
∞

= op(1).

We next state the theorem providing the asymptotic distribution of θ̂n when the first-stage
nonparametric estimator f̂n(·, θ) does not depend on θ.

Theorem 6. Assume that θ0 is an interior point of Θ, θ0 is a unique minimizer of m∗(θ, f0(·),
and θ̂n is a consistent estimator of θ0. Moreover, assume that {Zi : i = 1, . . . , n} are a random
sample of Z. Let Assumptions 7.2, 7.5, 7.6, and 7.8 hold. Assume that either Assumption 7.1 or
Assumption 7.7 holds. Also, assume that Ω0 = E[Γ0(Z)T Γ0(Z)T ] exists and V0 is a positive definite
matrix, where

Γ0(z) = ∆1(z, θ0, f0)− E [∆1(Z, θ0, f0)] + Γ1(z)

and

V0 =
∂2m∗(θ0, f0(·))

∂θ∂θT
.

Then
n1/2(θ̂n − θ0) →d N(0, V −1

0 Ω0V
−1
0 ).

8 Computation

Flexible modeling methods are computationally more demanding than traditional approaches.
Among the various classes of flexible estimators, local methods tend to be the most computation-
ally intensive, because they require solving separate problems at each point at which the density
or function is evaluated. The computational burden is particularly great when cross-validation or
bootstrap methods are used to select smoothing parameters and/or bootstrap methods are used to
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evaluate the variation of the estimators. Because local density and regression estimators form the
ingredients for many semiparametric procedures, the semiparametric methods can also be highly
computationally intensive.

Fortunately, the processing speeds of today’s computers make nonparametric and semiparamet-
ric modeling methods feasible in many applications with sample sizes of a few thousand, despite
their additional computational burden. But when sample sizes get large, say on the order of 10,000
or more, then computing estimates and standard errors can become a major task, and time con-
siderations may drive the choice of bandwidth selector and variance estimator. In such cases, one
can take advantage of approximation methods that were suggested by Silverman (1982) and further
studied in Fan and Marron (1994), Hall and Wand (1996), Jones and Lotwick (1984), Wand (1994)
and others for speeding up computations in local regression and density estimation. These methods
allow for great gains in speed and provide a way of controlling the accuracy of the approximation.

8.1 Description of an approximation method

The approximation method first grids the x-axis and computes the estimates only at grid points.
Computation over grids is done efficiently using fast Fourier transformation. The method then
interpolates to find function values between the grid-point estimates. The number of grid points,
M , is chosen by the researcher. We first describe the most simple version of the binning method,
in the context of obtaining a local linear regression estimate. Then we describe a fast Fourier
implementation of the binning method, first for density estimation and then for local regression.
The FF transformation effectively factors the data component and the bandwidth component in
the frequency domain. This allows computation across different bandwidths to be done in a more
efficient way, because the data component of the computation can be done only once and reused
when computing the values at different bandwidths..

8.1.1 A simple binning estimator

Let x1...xn denote n actual data points at which we wish to evaluate the conditional mean function
for the model

y = m(x) + ε.

The local linear regression estimator at a point x is given by

Ên(yi|x) =

∑n
j=1 yiKj

∑n
k=1Kk(x− xk)2 −

∑n
j=1 yiKj(x− xj)

∑n
k=1Kk(x− xk)∑n

j=1Kj
∑n

k=1Kk(xi − xk)2 −
[∑n

j=1Kj(xi − xj)
]2 ,

where Kj = K((x − xj)/hn). Calculating the local regression estimator requires estimating terms
of the form

n∑
i=1

yi(xi − x)lK((xi − xj)/hn) (8.1)

for l = 0, 1, 2 for the n data points at which the function is evaluated.
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The binning method reduces the computational burden of evaluating these kernel values by
making a grid over the support of x1..xn of equally spaced points, evaluating the function only at
the grid points and interpolating to estimate the value of the function at other points. Denote the
N grid points by z1..zN . Binning can be implemented by first assigning each data point (xi) and
point of evaluation (x) to their nearest grid points (zj′ and zj , respectively) and approximating
(8.1) by

N∑
j′=1

∑
i∈Ij′

yi(zj′ − zj)lK((zj′ − zj)/hn),

where zj are now the N grid points of evaluation, zj′ are the grid points to which the data points
have been assigned and Ij′ are the set of indices that are binned into the j′th bin.

A consequence of choosing equally-spaced grid points is that the distance between z1 and z3 is
the same as between zN−2 and zN , etc. Letting ∆ denote the smallest distance between two grid
points, we only need to evaluate the kernel at N values:

K(∆/h),K(2∆/h),K(3∆/h), ...,K(N∆/h)

which reduces the required number of evaluations of the kernel function to N from n2(the number
required under a naive strategy of evaluating the kernel for each possible combination of data-
points).

Fan and Marron (1994) introduce a modification of this simple binning idea, called linear bin-
ning. Linear binning assigns each data point or point of evaluation to multiple grid points, weighting
each in proportion to their distance from the grid points. Fan and Marron (1994) show that for
the linear binning estimator, the approximation error can be bounded by δ4, where δ is the bin or
grid width. The FFT implementation described below uses the linear binning idea.

8.1.2 Fast Fourier transform (FFT) binning for density estimation

The binning method described above is adequate for many univariate estimation problems. But
for multivariate as well as univariate estimation problems, a more efficient FFT implementation
of binning is available. We describe how the FFT can be used to increase the efficiency of the
binning estimator in the context of estimating a density, and then discuss how to apply it for local
linear regression estimation. The FFT reduces the number of computations by taking advantage
of periodicity in complex functions.

The Fourier transform of a density g(t) is

g̃(s) = (2π)−1/2

∫ ∞

−∞
eistg(t)dt (8.2)

Let f̂n(x) be a standard kernel density estimator, f̂n(x) = (nhn)−1
∑n

i=1K((t − xi)/hn). The F-
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transform of f̂n(x) is

˜̂
fn(s) = (2π)−1/2(nhn)−1

n∑
i=1

∫
eistK((t− xi)/hn)dt

= (2π)−1/2n−1
n∑

i=1

∫
eis(xi+hnu)K(u)du

= {n−1
n∑

i=1

eisxi} · {(2π)−1/2

∫
eishnuK(u)du}

where the last two equalities follow after doing a change of variables u = (t−xj)/hn. The first term
in brackets depends only on the data. The second is the F-transform of the K(shn), which depends
on the kernel and bandwidth choice. Under certain choices for K, there is an explicit solution for
the second term. For example, if K is normal it equals (2π)−1/2 exp{(−s2h2

n)/2}.
The separation of (8.2) into two terms–one that depends solely on the data and one on the

smoothing parameters–has a major computational advantage for algorithms, such as cross-validation,
which require evaluating the function for several different bandwidth parameter, since the data
component need to be evaluated only once.

To be able to quickly evaluate the data component, we wish to find an approximation to the
first term, (2π)−1/2n−1

∑n
i=1 e

isxi . Then fn(s) will be estimated by applying FF inversion to ˜̂fn(s).
For large n, (2π)−1/2n−1

∑n
i=1 e

isxi converges to (2π)−1/2
∫∞
−∞ eisxig(xi)dxi. Usually it is not

possible to explicitly obtain the integral, but it can be approximated over a discrete set of points. Let
tk = k∆ denotes grid points over the interval [−∞,∞], ∆ a bin width, k = −(N−1), ..., 0, ...(N−1),
and let gk = g(tk). The discrete FFT approximation to the integral evaluated at a point sn =
n/(N∆), n = −N/2, ..., N/2 is

g̃(sn) = (2π)−1/2

(N−1)∑
k=−(N−1)

eisntkgk∆,

The last expression can be written as

g̃(sn) = (2π)−1/2∆
(N−1)∑

k=−(N−1)

e
ink∆
N∆ gk.

We can use the fact that eiα is a cyclical function to reduce the number of calculations to N log2N .
Writing the last expression as

(2π)−1/2∆


−1∑

k=−(N−1)

e
ink
N gk + g0 +

(N−1)∑
k=1

e
ink
N gk

 . (8.3)

We now consider just the third term in brackets, since all the same considerations apply to the
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first. We can write it as

(N−1)∑
k=1

e
ink
N gk =

(N
2
−1)∑

k=1

e
in(2k+1)

N g(2k+1) +
(N

2
−1)∑

k=1

e
in(2k)

N g(2k)

= e
in
N

(N
2
−1)∑

k=1

e
ink
N/2 g(2k+1) +

(N
2
−1)∑

k=1

e
ink
N/2 g(2k).

Repeat this process until the summation only includes one term:

= e
in
N

(N
4
−1)∑

k=1

e
in(2k+1)

N/2 g(2(2k+1)+1) + e
in
N

(N
4
−1)∑

k=1

e
in(2k)
N/2 g(2(2k)+1)

+
(N

4
−1)∑

k=1

e
in(2k+1)

N/2 g(2(2k+1)) +
(N

4
−1)∑

k=1

e
in2k
N/2 g(2(2k))

= e
in
N e

in
N/2

(N
4
−1)∑

k=1

e
ink
N/4 g(4k+3) + e

in
N

(N
4
−1)∑

k=1

e
ink
N/4 g(4k+1)

+e
in

N/2

(N
4
−1)∑

k=1

e
ink
N/4 g(4k+2) +

(N
4
−1)∑

k=1

e
ink
N/4 g(4k)

etc...

After making these substitutions, we get

= g(0)(e
in/N )0 + g(1)(e

in/N )1 + g(2)(e
in/N )2 + · · ·+ g(2r)(e

in/N )2r,

where 2r is the total number of grid points (2r = M).
Consider the number of calculations required for each of these terms for n = 0, ..., N/2. (Negative

terms are complex conjugates). Here

g(1)(e
in/N ) , n = 0, .., N/2 requires N complex multiplications

g(2)(e
in/N )2 , n = 0, .., N/2 requires N/2 complex multiplications

g(3)(e
in/N )3 , n = 0, .., N/2 requires N/3 complex multiplications

.

.

g(2r)(e
in/N )2

r
, n = 0, .., N/2 requires N/N complex multiplications.

Thus, we need no more than N +N/2 +N/3 + ...+N/N = N log2N complex multiplications.

Making the grid To implement the method described above, consider an interval [a, b] in which
the data lie. The FFT method imposes periodic boundary conditions, so the interval needs to be
chosen large enough. For a normal kernel, it suffices to choose a and b that satisfy

a < min(xj)− 3hn

b > max(xj) + 3hn,
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where hn is the bandwidth.(Silverman, 1986) Also, let M = 2r for some integer r denote the total
number of grid points and let δ the bin width, δ = (b − a)/M . The grid points are given by
tk = a+ kδ, for k = 0, 1, ...,M − 1. If the data point falls onto the grid interval [tk, tk+1], we assign
a weight ξ

k
= δ−2n−1(tk+1 − xj) to tk and a weight ξ̄k+1 = δ−2n−1(xj − tk) to tk+1. The weights

over all the data points (xj , j = 1..n) are accumulated at each grid point. Let

ξ
k

= δ−2n−1
n∑

j=1

(tk+1 − xj)1(xj ∈ [tk, tk+1])

ξ̄k = δ−2n−1
n∑

j=1

(xj − tk−1)1(xj ∈ [tk−1, tk])

ξk = ξ
k

+ ξ̄k.

The ξk weights satisfy
∑M

k=0 ξk = δ−1.

In this notation, we can write the binning approximation for (2π)−1/2n−1
∑n

i=1 e
isnxi as

≈ (2π)−1/2
M−1∑
k=0

δξke
isntk

= (2π)−1/2
M−1∑
k=0

δξke
isn(a+kδ).

sn are taken to be sn = n/Mδ for n = −M/2, ...,M/2:

= (2π)−1/2
M−1∑
k=0

δξke
i n

Mδ
(a+kδ)

= (2π)−1/2e
ia

Mδ {
M−1∑
k=0

δξke
ink
M }.

This last expression is in the form needed to apply FFT. Jones and Lotwick (1983) show that the
MISE of this approximation is O(δ4).

8.2 Performance evaluation

In this section, we evaluate the gains in speed in a set-up where we are performing local linear
regression and choosing smoothing parameters through least squares cross-validation (the LSCV
method described in section 6). The computational method effectively factors the data compo-
nent and the bandwidth component in the frequency domain, so that computation across different
bandwidths can be done efficiently by reusing the data component of the computation. We show
how these techniques work very well and make it feasible to do nonparametric and semiparametric
estimation with sample sizes well over 100,000.

The following result is obtained for data generated by y = expx without error, where x has the
standard normal distribution. Grids are constructed between -3 and 3. We estimate E{y|x} at all
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n = 1000 n = 10,000 n = 100,000

M = 100
1.02 sec
0.25%

14.7 sec
0.27%

185.8 sec
0.40%

M = 500
1.81 sec
0.047%

11.5 sec
0.048%

145.1 sec
0.049%

M = 1000
2.45 sec
0.021%

11.5 sec
0.036%

137.4 sec
0.041%

no approx. 175.2 sec 22257 sec N/A

Table 1: Speed/Accuracy comparisons

data points using the local linear regression method and use LSCV to select the globally optimum
bandwidth. The machine we used is a DEC 5000/240.

Table 1 compares the speed and the average root percentage mean squared errors compared
to the method without approximating (reported in the second row of each cell) for different size
samples and for different grid sizes, M.

Speed does not necessarily increase with the gain in accuracy, because the computation involves
optimization over the bandwidth. The time it takes for convergence, in our experience, goes down
as M increases. As one can see for the case of 10000 observations we can reduce the computation
time to 0.036 % of the time it would otherwise take. For the case of 100,000 observations and for
this workstation, the computation would have been a major task running over days as opposed to
about 3 minutes with the approximation method.

9 Conclusions

In this chapter, we have reviewed recent advances in nonparametric and semiparametric estima-
tion, with emphasis on applicability of methods in empirical research. Our discussion focused on
the modeling and estimation of densities, conditional mean functions and derivatives of functions.
The examples of section two illustrated how flexible modeling methods have been adopted in pre-
vious empirical studies, either as an estimation method in their own right or as a way of checking
parametric modeling assumptions. Section three highlighted key concepts in semiparametric and
nonparametric modeling that do not have counterparts in parametric modeling, such as the depen-
dence of rates of convergence on the dimension of the estimation problem, the notion of models
with an infinite number of parameters, the criteria used to define optimal convergence rates, and
the existence of so-called ”dimension-free” semiparametric estimators.

Section four of the chapter described a number of nonparametric approaches for estimating den-
sities and conditional mean functions. Although nonparametric estimators are sometimes deemed
infeasible because of slow convergence rates, they are nonetheless of keen interest because they
form the building blocks of many semiparametric methods. We introduced some likelihood based
and method of moments based approaches and presented a unifying framework for thinking about
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how apparently different estimators relate to one another. The asymptotic distribution theory for
the commonly used local polynomial regression estimator was also presented.

Section five studied application of a variety of semiparametric models that offer a middle ground
between fully parametric and nonparametric approaches. By imposing some parametric restrictions,
they typically achieve faster convergence rates than a nonparametric estimators. By remaining flex-
ible with regard to certain aspects of the model, semiparametric estimators are consistent under
a broader class of models than are fully parametric estimators. In some cases, flexibility can be
achieved without sacrificing rates of convergence. However we note that semiparametric models
are generally not embedded in a sequence of models in which arbitrary function can be approxi-
mated. It is desirable to consider such embedding and construct test against such sequences when
semiparametric models are used. Stone’s extended linear model provides such a framework for the
additive separable models.

In section six we addressed questions that arise in implementing nonparametric methods, with
regard to optimal choices of smoothing parameters and how best to implement trimming procedures.
We reviewed a large and growing literature on bandwidth selectors for nonparametric density and
regression estimators. Section six also considers the bandwidth selection problem in the context of
semiparametric models, although that literature is still in its infancy. We described a few bandwidth
selectors that have been proposed for index models and for the partially linear model.

Section seven presented a way to compute asymptotic variance of the semiparametric M-
estimators. Section eight provided a brief introduction to some computational methods that have
been introduced to ease the computational burden of nonparametric estimators when applied to
large datasets. These methods show much promise, but their performance has yet to be widely
studied in economic applications.

It is our hope that the topics of this chapter have provided an overview of how empirical
researchers can best take advantage of recent developments in nonparametric and semiparametric
modeling.

83



References

[1] Abbring, J., Heckman, J. J. and E. Vytlacil (2006): Chapter in this Handbook.

[2] Ahmad, I. A. (1976): “On Asymptotic Properties Of An Estimate Of A Functional OF A
Probability Density,” Scandinavian Actuarial Journal, 176–181.

[3] Aı̈t-Sahalia, Y. (1992): “The delta method for nonparametric kernel functionals,” mimeo.

[4] Altonji, J. and H. Ichimura (1998): “Estimating Derivatives in Nonseparable Models with
Limited Dependent Variables,” mimeo.

[5] Ahn, H. and J. L. Powell (1993), “Semiparametric Estimation of Censored Sample Selection
Models with A Nonparametric Selection Mechanism.” Journal of Econometrics, 58, No. 1-2,
3–29.

[6] Ai, Chunrong, Richard Blundell and Xiaohong Chen (2000): “Semiparametric Engel Curves
with Endogenous Expenditure,” mimeo, UCL.

[7] Ai, Chunrong and Xiaohong Chen (2003): “Efficient Estimation of Models with Conditional
Moment Restrictions Containing Unknown Functions,” Econometrica, 71, 1795–1843.

[8] Andrews, D. (1991): “Asymptotic Normality of Series Estimators for Various Nonparametric
and Semiparametric Models, ” Econometrica, 59, 307–345.

[9] Andrews, D. (1994): “Empirical Process Methods in Econometrics,” Handbook of Economet-
rics, Volume 4. eds. R.F. Engle and D.L. McFadden, 2247–2294.
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[108] Horowitz, Joel L. and W. Härdle (1996): “Direct semiparametric estimation of single-index
models with discrete covariates,” Journal of American Statistical Association, 91, 1632–1640.

[109] Horowitz, Joel L. and S. Lee (2005): “Nonparametric Estimation of an Additive Quantile
Regression Model,” Journal of the American Statistical Association, 100, 1238–1249.

[110] Huang, Jianhua Z. (1998): “Projection estimation in multiple regression with application to
functional ANOVA models,” Annals of Statistics, 26, 242–272.

[111] Huang, Jianhua Z. (2003): “Local asymptotics for polynomial spline regression,” Annals of
Statistics, 31, 1600–1635.

[112] Huang, Su-Yun (1999): “Density estimation by wavelet-based reproducing kernels,” Statistica
Sinica, 9, 137–151.

[113] Ichimura, Hidehiko (1993): “Semiparametric Least Squares Estimation of Single Index Models
(SLS) and Weighted SLS Estimation of Single Index Models.” Journal of Econometrics, 58,
71–120.

[114] Ichimura, Hidehiko (1995): “Asymptotic Distribution Theory for Semiparametric and
Nonparametric Estimators with Data Dependent Smoothing Parameters,” unpublished
manuscript, University of Pittsburgh.

[115] Ichimura, Hidehiko and Lung-Fei Lee ( 1991): “Semiparametric Least Squares Estimation of
Multiple Index Models: Single Equation Estimation,” in Nonparametric and Semiparamet-
ric Methods in Economics and Statistics, ed. by W.A. Barnett, J. Powell, and G. Tauchen
(Cambridge, England: Cambridge University Press) 3–49.

[116] Ichimura, H. and O. Linton (2005): “Asymptotic expansions for some semiparametric pro-
gram evaluation estimators,” Identification and Inference for Econometric Models, edited by
D. Andrews and J. Stock, Cambridge University Press, NY.

[117] Ichimura, H. and S. Lee (2006): “Characterization of the asymptotic distribution of semi-
parametric M-estimators,” mimeo, University of Tokyo.

[118] Jones, M. C. and S.J. Sheather (1991): “A reliable data-based bandwidth selection method for
kernel density estimation” in Journal of the Royal Statistical Society, Series B, 53, 683–690.

[119] Jones, M. C., Marron, J. S. and Sheather, S. J. (1996): “A Brief Survey of Bandwidth
Selection for Density Estimation” in Journal of the American Statistical Association, 91,
401–407.

91



[120] Jones, M. C. and J. S. Marron and S. J. Sheather, (1992): “Progress in Data-Based Bandwidth
Selection for Kernel Density Estimation,” manuscript.

[121] Jones, M.C. and Lotwick, H.W. (1983), “On the errors involved in computing the empirical
characteristic function” in Journal of Statistical Computation and Simulation, 17, 133–149.

[122] Jones, M.C. and Lotwick, H.W. (1984), “A Remark on Algorithm AS 176 Kernel Density
Estimation using the Fast Fourier Transform” in Applied Statistics, 33, 120–122.

[123] Klein, R. W. and R. H. Spady (1993), “An Efficient Semiparametric Estimator for Binary
Response Models,” Econometrica, 61, 387–421.

[124] Kim, Jeankyung and D. Pollard (1990): “Cube Root Asymptotics,” Annals of Statistics, 18,
191–219.

[125] Koenker, R. (2005): Quantile Regression, Cambridge University Press.

[126] Koenker, R. and G. Bassett (1978), “Regression Quantiles” in Econometrica, 46, 33–50.

[127] Lee, Myoung-Jae (1996): Methods of Moments and Semiparametric Econometrics for Limited
Dependent Variable Models, Springer-Verlag.

[128] Lewis, H. Gregg (1974): “Comments on Selectivity Biases in Wage Comparisons” in Journal
of Political Economy, 82, 1145–1155.

[129] Linton, Oliver B. (1995): “Second Order Approximation in a Partially Linear Regression
Model,” Econometrica, 63, 1079–1113.

[130] Linton, Oliver B. (1995): “Estimation in semiparametric models: A review,” A Volume in
Honor of C.R. Rao, in P.C.B. Phillips and G.S. Maddala (eds.), Blackwell.

[131] Linton, Oliver B. (1996): “Edgeworth approximation for MINPIN estimators in semipara-
metric regressions models,” Econometric Theory, 12, 30–60.

[132] Linton, Oliver B. (1997): “Efficient estimation of additive nonparametric regression models,”
Biometrika, 84, 469–474.

[133] Linton, Oliver B., Chen, Rong, Wang, Naiysin, and Härdle, Wolfgang (1997): “An Analy-
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