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Abstract

This paper discusses asymptotic behavior of one- and two-parameter Poisson-
Dirichlet models, that is, Ewens models and its two parameter extensions
by Pitman, and show that their asymptotic behavior are very different.

The paper shows asymptotic properties of a class of one- and two-
parameter Poisson-Dirichlet distribution models are drastically different.

Convergence behavior is expressed in terms of generalized Mittag-Leffler
distributions in the statistics literature. The coefficients of variations of
suitably normalized number of clusters and of clusters of specific sizes do not
vanish in the two-parameter version, but they do in one-parameter Ewens
models.

Key Words:Two-parameterPoisson-Dirichlet distributions; Mittag-Leffler
distributions; Non-self averaging phenomena, Power laws.
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Introduction

In old industrial organization literature, several tests and measures of de-
grees of industrial concentration have been used to to decide if a given indus-
try is monopolistic or not.1 One such test uses Herfindahl, or Herfindahl-
Hirschman index of concentration. It is defined as the sum of squares of
fractions of shares, i.e.,

H =
∑

i

x2
i ,

where x′s are the fractions of ”shares” of markets or sales by sectors or
firms. By definition xi is positive, and sum to one,

∑
i xi = 1. As we discuss

shortly, this literasture used a rudimentary version of the size-biased sam-
pling scheme as a test on oligopoly. This meassure of concentration is used
in both domestic and foregin trade context. It is sometimes (mistakenly)
called Gini-index.2 The question is that of distribution of fractions of the
numbers of clusters, and the numbers of agents by types.

A simple application of shares of market by two types of agents, using
one-parameter Poisson-Dirichlet distribution (also called Ewens distribution,
Ewens (1972, 1979, 1990)) has been made by Aoki (2000a, 2000b).

This paper develops further the original ideas in these papers by applying
some of the results from two-parameter Poisson-Dirichlet distributions in
the recent combinatorial stochastic process literature, in Kingman (1993),
Carlton (1999), Holst (2001), Pitman (1999, 2002), and Pitman and Yor
(1996), among others.

In physics literature, Mekjian and Chase (1997) have used two-parameter
models. They refer to the work by Pitman (1996). There are other works in
the physics literature, in particular the papers by Derrida-Flyvbjerg men-
tioned in footnote 2, and Derrida (1994a, 1997).3 There are other papers
in the physics literature that deal with random partitions. Higgs (1995)
have noted the similarities of some physical distributions and power laws,
and mention population genetics papers by Ewens in particular. There are
many papers on stick-breading version of the residual allocation processes,
such as Krapivvsky, Grosse, and B. Nadin (2002). They have not touch on
connections with the two-parameter Poisson-Dirichlet distributions, how-
ever.

In macroeconomic and finance modelings, agents of different character-
istics or strategies are of different types and form separate clusters and
affect aggregate behavior. In this paper, we therfore explore more broadly
economic implications of long-run relations that may exist among non-self
averaging economic or financial variables.

1See for example Scherer (1980) which describes many case studies.
2Sometimes it is called Gini-Simpson index of divesity. See Hirschman (1960) about

the origin and mis-attribution of this notion to Herfindahl. In the population genetics
literature H is called homozygosity. See Ewens (1972). Interestingly, the same measure has
been used by Derrida-Flyvbjerk (1989) in discussing relative sizes of basins of attractions of
Kaufman random maps and ramdom dynamics in statistics and physics. These, however,
involve a sigle parameter θ in their statistical description. See also Aldous (1985).

3Derrida (1994b) has added some material on residual allocation models.
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In this paper we use the coefficients of variations rather than the notion
of non-self averaging in physics, because the former notion more correctly
reflects the long-run or asymptotic sample dependence of some phenomena
of interest. More specifically this paper shows that components of partition
vectors in PD(α, θ) with positive α have non-vanishing coefficients of vari-
ations (non-self averaging in the physics terminology when means do not
diverge), while in PD(θ) they do not.

Number of Clusters in two-parameter Poisson-Dirichlet

Distributions

The probabilities of new types entering models in PD(θ), and the number
of clusters have been discussed in Aoki (2002, Sec.10.8, App. A.5), for ex-
ample. In the two-parameter Poisson-Dirichlet distribution the conditional
probabilities for the number of clusters in a sample of size n, Kn is given by

Pr(Kn+1 = k + 1|K1, . . . , Kn = k) =
kα+ θ

n + θ
, (1)

and
Pr(Kn+1 = k|K1, . . . , Kn = k) =

n− kα

n+ θ
, (2)

where the random variable Kn is the number of different types of agents
present in a sample of size n. Eq.(1) means that the (n + 1)th entrant is
a new type. Eq.(2) means that it is one of the previously existing types.
Hence the number of clusters does not change.

Let the probability for Kn = k be denoted by qαθ(n, k). From (1) and
(2) it can be recursively computed using the two conditional probability
equations above

qαθ(n+ 1, k) =
(n− kα)
(n+ θ)

qαθ(n, k) +
θ + (k − 1)α

n+ θ
qαθ(n, k− 1), (3)

for 1 ≤ k ≤ n. The expressions for the boundary Kn = 1 for all n, and that
of Kn = n are given by the expression

qαθ(n, 1) =
(1− α)(2 − α) · · ·(n − 1 − α)
(θ + 1)(θ + 2) · · ·(θ + n− 1)

,

and
qαθ(n, n) =

(θ + α)(θ + 2α) · · ·(θ + (n− 1)α)
(θ + 1)(θ + 2)) · · ·(θ + n− 1)

.

These expressions generalize the recurrence relation for the one-parameter
PD(θ). In the one-parameter case, θ/(θ+n) is a probability that the (n+1)th
agent that enter the model is a new type, and n/(θ + n) is the probability
that the next agent is one of the types already in the model.

In the one-parameter case, qθ(n, k) := P (Kn = k) is governed by the
recurrence relation

qθ(n+ 1, k) =
n

n+ θ
qn,k +

θ

θ + n
qn,k−1.
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The solution of this recurrence equation is expressible as

qn,k =
c(n, k)θk

θ[n]
,

where θ[n] := θ(θ + 1) · · ·(θ + n − 1) = Γ(θ+n)
Γ(θ) , and c(n, k) is the unsigned

(signless) Stirling number of the first kind. It satisfies the recursion

c(n+ 1, k) = nc(n, k) + c(n, k− 1).

Since qn,k sums to one with respect to k we have

θ[n] =
n∑

k=1

c(n, k)θk. (4)

See Aoki (2002, p.208) for example on the Stirling numbers, and their com-
binatorial interpretations.

In the two-parameter PD(α, θ) case, the probability of the number of
clusters is given by

Pα,θ(Kn = k) =
θ[k,α]

αkθ[n]
c(n, k;α), (5)

where
θ[k,α] := θ(θ + α)(θ + 2α) · · ·(θ + (k − 1)α),

and the expression c(n, k;α) generalizes the signless Stirling number of the
first kind of one-parameter situation. This is called generalized Stirling
number of the first kind. See Charalambides (2002).

Let Sα(n, k) := 1
αk c(n, k;α). It satisfies the recursion

Sα(n+ 1, k) = (n− kα)Sα(n, k) + Sα(n, k − 1).

Instead of (4) we have

θ[n] =
n∑

k=1

Sα(n, k)θ[k,α]. (6)

Pitman (1999) obtained its asymptotic expression as

Sα(n, k) ∼ Γ(n)
Γ(k)

n−αα1−kgα(x),

where k ∼ xnα. Here, gα is the Mittag-Leffler (α)function. This function is
discussed in the next section.

Asymptotic Behavior of Cluster Sizes

We collect here some known asymptotoc facts about cluster sizes as n→ ∞.
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The number of clusters Kn

EKn =
θ

α
[
(θ + α)[n]

θ[n]
− 1],

where we note that
(θ + α)[n]

θ[n]
=

Γ(θ)
Γ(θ + α)

Γ(θ + α+ n)
Γ(θ + n)

.

Applying the asymptotic expression for the Gamma function for large n
Γ(n + a)

Γ(n)
∼ na,

to the above expression, we have an asymptotic expression,

E(
Kn

nα
) ∼ Γ(θ + 1)

αΓ(θ + α)
. (7)

Yamato and Sibuya (2000) obained the asymptotic value of the variance
of Kn/n

α,

var(Kn/n
α) ∼ Γ(θ + 1)

α2
γα,θ ≥ 0, (8)

where
γα,θ :=

θ + α

Γ(θ + 2α)
− Γ(θ + 1)

[Γ(θ + α)]2
. (9)

Note that this quantity vanishes for all one-parameter models,
Fact: γ0,θ = 0.
This fact is important in the long-run behavior of components of the

partition vectors, to be discussed in the next subsection.
We calculate the asymptotic behavior of the coefficient of variation, (var(Kn/nα)1/2

E(Kn/nα .

It is given asymptotically by
√

γαθ
Γ(θ+1)Γ(θ+α). This ratio is zero at α = 0.

This is one of the important difference in the asymptotic behaviors of one-
and two-parameter Poisson-Dirichlet models.

Actually they calculate more generally

limE(
Kn

nα
)r = µ′r ,

where µ′r is the r− th moment of the generalized Mittag-Leffler distribution
with density

gα,θ :=
Γ(θ + 1)

Γ(θ/α + 1)
x

θ
α gα(x),

where θ/α > −1, and where gα(x) is the Mittag-Leffler (α) density func-
tion. It is known that this function is uniquely determined by the moment
conditions ∫ ∞

0
xpgα(x)dx =

Γ(p+ 1)
Γ(pα+ 1)

,

for all p > −1. The moments of this density satisfy the sufficient condition
for the density to be uniquely determined by the set of all moments so
that the method of moments applies. Note that the integral of gα,θ over
the interval from zero to infinity is 1, as it should be. See Pollard (1946),
for example, for the expression of the density. See also Blumenfeld and
Mandelbrot (1997) who credit Feller (1949) as the original source.
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Mittag-Leffler distributions

Pitman (2002, Sec. 3) has stronger result:

Kn/n
α → L, a.s.,

where the expression L has the density

d

ds
Pα,θ(L ∈ ds) = gα,θ

where letting η = θ
α we define

gα,θ(s) :=
Γ(θ + 1)
Γ(η + 1)

sηgα(s),

where s > 0, and where gα = gα,0 is the Mittag-Leffler density

gα(s) =
1
π

∞∑

k=1

[
Γ(kα)
Γ(k)

sin(kπα)(−s)k−1].

We note that

µ′1 = Eα,θ(L) = Γ(θ + 1)/αΓ(θ + α),

and
µ′2 = Eα,θ(L2) = Γ(θ + 1)(θ + α)/α2Γ(θ + 2α).

Hence variance of L is given as µ′2 − (µ′1)
2 = [Γ(θ + 1)/α2]γαθ.

For the record we have
Fact

E(
Kn

nα
) =

Γ(θ = 1
αΓ(α + θ)

, varα,θ{
Kn

nα
} = varα,θL =

Γ(θ + 1)
α2

γα,θ. (10)

The partition vector a

Denote the partition vector by a = (a1, a2, . . .), where we recall that ai is
the number of distinct clusters of size i, hence

∑
i ai = Kn, and

∑
i iai = n.

Yamato and Sibuya obtain the limit of the first component, a1

limE[
a1

nα
] =

Γ(θ + 1)
Γ(θ + α)

,

and
lim var(

a1

nα
) = Γ(θ + 1)γα,θ ≥ 0.

In fact all aj/n
α have asymptotically non-vanishing coefficients of varia-

tions, that is, are all non-self averaging, as well as jaj/n
α, where jaj is the

total number of agents in the clusters of size j. Note that they are all zero
with α = 0, that is the asymptotic coefficients of variations of aj/n

α are all
zero in PD(θ) models. In two-parameter models they are given by

√
a1/nα/E(a1/n

α) ∼
√
γαθ/Γ(θ = 1)Γ(θ + α).
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Fact Combining the above with (7) we have

Ea1

EKn
→ α.

The expressions for ai/n
α, i ≥ 1 are all non-zero with 0 < α < 1.

Sibuya (2005) used Formula 6.1.41 in Abramovitz and Stegun (1965) to
obtain asymptotic expression

E(
aj

nα
) ≈ (1− α)[j−1]

j!
Γ(θ + 1)
Γ(θ + α)

+O(n−1).

We state the asymptotic behavior of Kn/n
α and aj/n

α as
Proposition: As in (10)

lim varα,θ(Kn/n
α) = varα,θ(L),

and
lim varα,θ(aj/n

α) = α2varα,θ(L) = Γ(θ + 1)γα,θ,

and we have
aj/n

α ∼ √
γαθj!Γ(θ+ α)/(1− α)j−1.

They also show that covariances of components of the partition vectors
are non-self averaging with positive α values:

Fact:

limCov(
ai

nα
,
aj

nα
) = Γ(θ + 1)γα,θ ×

(1 − α)[i−1]

i!
(1− α)[j−1]

j!
> 0, : α > 0.

The correlation coefficient between them is given by

ρi,j ∼
(1 − α)[i−1]

i!
(1 − α)[j−1]

j!
.

It is also known that

j!aj/n
α

α(1 − α)[j−1]
→d L. (11)

We have

E(
aj

nα
|Kn = k) ∼ (1− α)[j−1]

j!
(1− j/n)−(1+α) × ξ,

where ξ depends on gα,θ.

The number of clusters, Kn, is spread among the components of the
partition vector, ai, i = 1, 2, . . . , n at the proportion α(1 − α)[j−1]/j!, 0 <
α < 1. Devroye (1993) calls this Sibuya distribution.

We also note that

Lim
E(ai)
E(Kn)

=
α2

Γ(θ + α)γα,θ
.
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We note that aj/Kn is self-averaging for all j = 1, . . . , n. Yamato and
Sibuya also examined the clusters of size k or less

K[1, k] := a1 + a2 + · · ·+ ak,

and the number of agents in K[1, k], denoted by N [1, k] and obtained their
limiting expressions as

K[1, k]
nα

→d {1− (1− α)[k]

k!
}L,

and

N [1, k]
nα

→d α
(2 − α)[k−1]

(k − 1)!
L,

Sibuya also notes that

{ a1

nα
,
2a2

nα
· · · .kak

nα
}

converges in distribution to a sequence of random variables depending on L
as

{1, (1 − α)
1!

, · · · , (1− α)[k−1]

(k − 1)!
}.

In PD(α) it is known that

Kn − θln(n)√
θln(n)

→ N(0, 1).

Hence (Kn/ln(n)) is self-averaging.

Almost sure convergence

Denote by aj(n) the number of clusters of size j when there are n agents in
the model. We noted earlier that

∑n
j=1 jaj(n) = n, and Kn :=

∑n
j aj(n) is

the total number of clusters formed by the total of n agents.
By Rouault (1976, 1978)

aj(n)
Kn

→ αΓ(j − α)
Γ(1 − α)j!

, a.s.

Recallint that Kn/n
α → L,a.s., we have

aj(n)/nα → αΓ(j − α)
Γ(1 − α)j!

L, a.s.

wbere
aj(n)
Kn

→ α

j!
Pα,j ,

where
Pαj =

Γ(j − α)
Γ(1 − α)

,

for every j = 1, 2, . . . a.s. as n goes to infinity, and that aj(n) ∼ Pα,jLnα

in a two-parameter Poisson-Dirichlet case.
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Local Limit Theorem

Suppose N independent positive random variables Xi, i = 1, 2, . . .N are
normalized by their sum SN = X1 + · · ·+XN

xi = Xi/SN , i = 1, . . .N,

so that
Y1 :=

∑

i

xi = 1.

Suppose that the probability density ofXi is such that it has a power-law
tail,

ρ(x) ∼ Ax−1−µ,

with 0 < µ < 1. Then, SN/N
1/µ has a stable distribution (called Lévy

distribution).
Pitman’s formula for the probability of Kn = k, with k ∼ snα indicates

that the power law nα which is 2α < 2 or 2α = 1 + µ with 0 < µ < 1, the
case in Derrida.

With the 2-parameter PD distribution satisfying the power law condi-
tion, Derrida’s conclusion that the Hs are non-self averaging applies to this
case as well.

Estimating the Parameters

Carlton (1999) and Sibuya (2005)are the only systematic source on estimat-
ing the parameters of two-parameter Poisson-Dirichlet distributions.

With α = 0, Ewens had shown that Kn is the sufficient statistics for θ.
Carlton discusses the case where α is known and θ unknown. He derives
the asymptotic distribution of the maximum likelihood estimate of θ, given
n samples.

Lemma
Given α in (0,1), the maximum-likelihood estimate of θ, θ̂n is given by

ψ(1 + θ̂n/α) − αψ(1 + θ̂n) → logS, as.

Here ψ is the digamma function.
With θ known, and α unknown, Carlton proves
Lemma
Let {A1, . . . , An} is distributed according to the two-parameter Ewens

distribution of size n. (His Eq. (4.2) on page 55.) Then,

α̂n =
logKn

logn
→ α a.s.

Sibuya uses the conditional probability distribution of the partition vec-
tor components, given that

∑
i ai = k, and expresses the distribution

P (a|
∑

aj = k) =
1

Sα(n, k)
n!∏
aj !

∏

j

{(1− α)[j−1]

j!
}aj
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which is proportional to

exp{−
∑ j

2(j − 2)!
aj}α+ O(α2)

and test the hypothesis α = 0, against the alternative hypothesis α < 0.
Sibuya proposes the rejection region

∑ j

2(j − 2)!
− aj > const.k.

When both parameters are unknown, the estimation problem is appar-
ently unsolved.

Some Potential Applications

In physics literature, Derrida (1994 a, b) sketched a derivation that the
expected values of Yk =

∑
i x

k
i , k = 2, 3, . . . can be calculated for mean field

spin glass models using the Parisi replica approach, and remarkably the
formula is the same as the GEM model described above.

In the rest of this section we focus on economic examples.
Example Scaling of GDP growth rates was considered by Canning,

Amaral, Lee, Meyer, and Stanley (1998). They showed that the standard
deviation of the GDP growth rate may sclae as Y −β , with β about 0.15.
Here, we heuristically explain how their finding may be explained using a
random partition framework.

We modify the model of Huang and Solomon (2001) and apply the same
procedures to estimate the growth rate of real GDP.4 View the real economy
as composed of K sectors of various sizes. Stochastically one or more of the
sectors experience what we call elementary events, the aggregate of which
yields the real growth of the economy, leading to its random growth rates. To
be simple one may assume that the individual elementary growth of sectors
is random λ = 1+g, where g = ±γ randomly with some positive γ. Further,
we adopt the mechanism of Huang and Solomon that a random number τ
of this type of elementary events are experienced in a unit of calendar time.
The random growth rate is the composite effects of these random elementary
events.

We refer the detail of the mechanism to their paper, and mention only
that the growth rate will be exponential only if the number of changes τ is
less than some critical value τc, and change in GDP has a power law density
with index −(1 + α).

The value of α is defined to be the ratio of minimum and average real
consumption in the model q = cmin/caverage, and is tied to α by

α ≈ 1/(1− q),

when K is sufficiently larger that e1/q, due to inherent normalization condi-
tions of densities involved.

4Their focus is on financial sector, not real sector. See Aoki and Yoshikawa (2006 a,
b).
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For example, setting q = 0.25 leads to α = 1.33, and K must be such
that K >> e4 > 55. The value of τc is defined by (N/2q)α. With τ less than
τc, the growth rate r can be shown to have the density

p(r) = Cexp(−a|r − rm|),

for r > rm, with a different constant for the case r < rm.
The deviation of r is then related to variability ofK and τ , among others.

From this one can deduce that the average deviation in the growth rates is
basically determined by percentage changes of the size of the largest cluster
which can be related to the GDP when the productivity is assumed not to
vary too much, and the conclusion follows that the standard deviation of
the growth rate is Y −µ with µ less than 1. See Aoki and Yoshikawa (2006a,
b) for detail.

Concluding Remarks

In physics phenomena with non-vanishing coefficients of variation abound.
In traditional microeconomic foundations of economics, one deals almost ex-
clusively with well-posed optimization problems for the representative agents
with well defined peaks and valleys of the cost functions. It is also taken
for granted that as the number of agents goes to infinity, any unpleasant
fluctuations vanish and well defined deterministic macroeconomic relations
prevail. In other words, non-self-averaging phenomena are not in the mental
pictures of average macro- or microeconomists.

However, we know that as we go to problems which require agents to
solve some combinatorial optimization problems, this nice picture may dis-
appear. In the limit of the number of agents going to infinity some results
are sample-dependent and deterministic results will not follow. Some of this
type of phenomena have been reported in Aoki (1996, Sec. 7.1.7) and also in
Aoki (1996, p. 225) where Derrida’s random energy model was introduced
to the economic audience. Unfortunately it did not catch the attention of
the economic audiences. See Mertens (2000). This paper is another attempt
at exposing non-self-averaging phenomena in economics. We also mention
a possibility of extending the phrase to cover existence of non-degenerate
distributions with time going to infinity. What are the implications if some
economic models have non-self averaging property? For one thing, it means
that we cannot blindly try for larger size samples in the hope that we obtain
better estimates.

The example above is just an indication of the potential of this approach
of using exchangeable random partition methods. It is the opinion of this
author that subjects such as in the papers by Fabritiis, Pammolli, and Ric-
caboni (2003), or by Amaral et al (1998) could be re-examined from the
random combinatorial partition approach with profit. Another example is
Sutton (2002). He modeled independent business in which the business sizes
vary by partitions of integers to discuss the dependence of variances of firm
growth rates. He assumed each partition is equally likely, however. Use
of random partitions discussed in this paper may provide more realistic or
flexible framework for the question he examined.
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Finally, the key question in applications to macroeconomic or financial
modelings of the random partition approach is ”What are the most likely
combinations of the values of Kn = k, aj , and jaj all suitably normalized ?”
This question appears too complicated to answer analytically at this time.
Some simulations would help.
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